xref: /freebsd/sys/kern/kern_shutdown.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1986, 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_shutdown.c	8.3 (Berkeley) 1/21/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ddb.h"
43 #include "opt_ekcd.h"
44 #include "opt_kdb.h"
45 #include "opt_panic.h"
46 #include "opt_printf.h"
47 #include "opt_sched.h"
48 #include "opt_watchdog.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/bio.h>
53 #include <sys/boottrace.h>
54 #include <sys/buf.h>
55 #include <sys/conf.h>
56 #include <sys/compressor.h>
57 #include <sys/cons.h>
58 #include <sys/disk.h>
59 #include <sys/eventhandler.h>
60 #include <sys/filedesc.h>
61 #include <sys/jail.h>
62 #include <sys/kdb.h>
63 #include <sys/kernel.h>
64 #include <sys/kerneldump.h>
65 #include <sys/kthread.h>
66 #include <sys/ktr.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/mount.h>
70 #include <sys/priv.h>
71 #include <sys/proc.h>
72 #include <sys/reboot.h>
73 #include <sys/resourcevar.h>
74 #include <sys/rwlock.h>
75 #include <sys/sbuf.h>
76 #include <sys/sched.h>
77 #include <sys/smp.h>
78 #include <sys/sysctl.h>
79 #include <sys/sysproto.h>
80 #include <sys/taskqueue.h>
81 #include <sys/vnode.h>
82 #include <sys/watchdog.h>
83 
84 #include <crypto/chacha20/chacha.h>
85 #include <crypto/rijndael/rijndael-api-fst.h>
86 #include <crypto/sha2/sha256.h>
87 
88 #include <ddb/ddb.h>
89 
90 #include <machine/cpu.h>
91 #include <machine/dump.h>
92 #include <machine/pcb.h>
93 #include <machine/smp.h>
94 
95 #include <security/mac/mac_framework.h>
96 
97 #include <vm/vm.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pager.h>
101 #include <vm/swap_pager.h>
102 
103 #include <sys/signalvar.h>
104 
105 static MALLOC_DEFINE(M_DUMPER, "dumper", "dumper block buffer");
106 
107 #ifndef PANIC_REBOOT_WAIT_TIME
108 #define PANIC_REBOOT_WAIT_TIME 15 /* default to 15 seconds */
109 #endif
110 static int panic_reboot_wait_time = PANIC_REBOOT_WAIT_TIME;
111 SYSCTL_INT(_kern, OID_AUTO, panic_reboot_wait_time, CTLFLAG_RWTUN,
112     &panic_reboot_wait_time, 0,
113     "Seconds to wait before rebooting after a panic");
114 
115 /*
116  * Note that stdarg.h and the ANSI style va_start macro is used for both
117  * ANSI and traditional C compilers.
118  */
119 #include <machine/stdarg.h>
120 
121 #ifdef KDB
122 #ifdef KDB_UNATTENDED
123 int debugger_on_panic = 0;
124 #else
125 int debugger_on_panic = 1;
126 #endif
127 SYSCTL_INT(_debug, OID_AUTO, debugger_on_panic,
128     CTLFLAG_RWTUN | CTLFLAG_SECURE,
129     &debugger_on_panic, 0, "Run debugger on kernel panic");
130 
131 static bool debugger_on_recursive_panic = false;
132 SYSCTL_BOOL(_debug, OID_AUTO, debugger_on_recursive_panic,
133     CTLFLAG_RWTUN | CTLFLAG_SECURE,
134     &debugger_on_recursive_panic, 0, "Run debugger on recursive kernel panic");
135 
136 int debugger_on_trap = 0;
137 SYSCTL_INT(_debug, OID_AUTO, debugger_on_trap,
138     CTLFLAG_RWTUN | CTLFLAG_SECURE,
139     &debugger_on_trap, 0, "Run debugger on kernel trap before panic");
140 
141 #ifdef KDB_TRACE
142 static int trace_on_panic = 1;
143 static bool trace_all_panics = true;
144 #else
145 static int trace_on_panic = 0;
146 static bool trace_all_panics = false;
147 #endif
148 SYSCTL_INT(_debug, OID_AUTO, trace_on_panic,
149     CTLFLAG_RWTUN | CTLFLAG_SECURE,
150     &trace_on_panic, 0, "Print stack trace on kernel panic");
151 SYSCTL_BOOL(_debug, OID_AUTO, trace_all_panics, CTLFLAG_RWTUN,
152     &trace_all_panics, 0, "Print stack traces on secondary kernel panics");
153 #endif /* KDB */
154 
155 static int sync_on_panic = 0;
156 SYSCTL_INT(_kern, OID_AUTO, sync_on_panic, CTLFLAG_RWTUN,
157 	&sync_on_panic, 0, "Do a sync before rebooting from a panic");
158 
159 static bool poweroff_on_panic = 0;
160 SYSCTL_BOOL(_kern, OID_AUTO, poweroff_on_panic, CTLFLAG_RWTUN,
161 	&poweroff_on_panic, 0, "Do a power off instead of a reboot on a panic");
162 
163 static bool powercycle_on_panic = 0;
164 SYSCTL_BOOL(_kern, OID_AUTO, powercycle_on_panic, CTLFLAG_RWTUN,
165 	&powercycle_on_panic, 0, "Do a power cycle instead of a reboot on a panic");
166 
167 static SYSCTL_NODE(_kern, OID_AUTO, shutdown, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
168     "Shutdown environment");
169 
170 #ifndef DIAGNOSTIC
171 static int show_busybufs;
172 #else
173 static int show_busybufs = 1;
174 #endif
175 SYSCTL_INT(_kern_shutdown, OID_AUTO, show_busybufs, CTLFLAG_RW,
176     &show_busybufs, 0,
177     "Show busy buffers during shutdown");
178 
179 int suspend_blocked = 0;
180 SYSCTL_INT(_kern, OID_AUTO, suspend_blocked, CTLFLAG_RW,
181 	&suspend_blocked, 0, "Block suspend due to a pending shutdown");
182 
183 #ifdef EKCD
184 FEATURE(ekcd, "Encrypted kernel crash dumps support");
185 
186 MALLOC_DEFINE(M_EKCD, "ekcd", "Encrypted kernel crash dumps data");
187 
188 struct kerneldumpcrypto {
189 	uint8_t			kdc_encryption;
190 	uint8_t			kdc_iv[KERNELDUMP_IV_MAX_SIZE];
191 	union {
192 		struct {
193 			keyInstance	aes_ki;
194 			cipherInstance	aes_ci;
195 		} u_aes;
196 		struct chacha_ctx	u_chacha;
197 	} u;
198 #define	kdc_ki	u.u_aes.aes_ki
199 #define	kdc_ci	u.u_aes.aes_ci
200 #define	kdc_chacha	u.u_chacha
201 	uint32_t		kdc_dumpkeysize;
202 	struct kerneldumpkey	kdc_dumpkey[];
203 };
204 #endif
205 
206 struct kerneldumpcomp {
207 	uint8_t			kdc_format;
208 	struct compressor	*kdc_stream;
209 	uint8_t			*kdc_buf;
210 	size_t			kdc_resid;
211 };
212 
213 static struct kerneldumpcomp *kerneldumpcomp_create(struct dumperinfo *di,
214 		    uint8_t compression);
215 static void	kerneldumpcomp_destroy(struct dumperinfo *di);
216 static int	kerneldumpcomp_write_cb(void *base, size_t len, off_t off, void *arg);
217 
218 static int kerneldump_gzlevel = 6;
219 SYSCTL_INT(_kern, OID_AUTO, kerneldump_gzlevel, CTLFLAG_RWTUN,
220     &kerneldump_gzlevel, 0,
221     "Kernel crash dump compression level");
222 
223 /*
224  * Variable panicstr contains argument to first call to panic; used as flag
225  * to indicate that the kernel has already called panic.
226  */
227 const char *panicstr;
228 bool __read_frequently panicked;
229 
230 int __read_mostly dumping;		/* system is dumping */
231 int rebooting;				/* system is rebooting */
232 /*
233  * Used to serialize between sysctl kern.shutdown.dumpdevname and list
234  * modifications via ioctl.
235  */
236 static struct mtx dumpconf_list_lk;
237 MTX_SYSINIT(dumper_configs, &dumpconf_list_lk, "dumper config list", MTX_DEF);
238 
239 /* Our selected dumper(s). */
240 static TAILQ_HEAD(dumpconflist, dumperinfo) dumper_configs =
241     TAILQ_HEAD_INITIALIZER(dumper_configs);
242 
243 /* Context information for dump-debuggers. */
244 static struct pcb dumppcb;		/* Registers. */
245 lwpid_t dumptid;			/* Thread ID. */
246 
247 static struct cdevsw reroot_cdevsw = {
248      .d_version = D_VERSION,
249      .d_name    = "reroot",
250 };
251 
252 static void poweroff_wait(void *, int);
253 static void shutdown_halt(void *junk, int howto);
254 static void shutdown_panic(void *junk, int howto);
255 static void shutdown_reset(void *junk, int howto);
256 static int kern_reroot(void);
257 
258 /* register various local shutdown events */
259 static void
260 shutdown_conf(void *unused)
261 {
262 
263 	EVENTHANDLER_REGISTER(shutdown_final, poweroff_wait, NULL,
264 	    SHUTDOWN_PRI_FIRST);
265 	EVENTHANDLER_REGISTER(shutdown_final, shutdown_halt, NULL,
266 	    SHUTDOWN_PRI_LAST + 100);
267 	EVENTHANDLER_REGISTER(shutdown_final, shutdown_panic, NULL,
268 	    SHUTDOWN_PRI_LAST + 100);
269 	EVENTHANDLER_REGISTER(shutdown_final, shutdown_reset, NULL,
270 	    SHUTDOWN_PRI_LAST + 200);
271 }
272 
273 SYSINIT(shutdown_conf, SI_SUB_INTRINSIC, SI_ORDER_ANY, shutdown_conf, NULL);
274 
275 /*
276  * The only reason this exists is to create the /dev/reroot/ directory,
277  * used by reroot code in init(8) as a mountpoint for tmpfs.
278  */
279 static void
280 reroot_conf(void *unused)
281 {
282 	int error;
283 	struct cdev *cdev;
284 
285 	error = make_dev_p(MAKEDEV_CHECKNAME | MAKEDEV_WAITOK, &cdev,
286 	    &reroot_cdevsw, NULL, UID_ROOT, GID_WHEEL, 0600, "reroot/reroot");
287 	if (error != 0) {
288 		printf("%s: failed to create device node, error %d",
289 		    __func__, error);
290 	}
291 }
292 
293 SYSINIT(reroot_conf, SI_SUB_DEVFS, SI_ORDER_ANY, reroot_conf, NULL);
294 
295 /*
296  * The system call that results in a reboot.
297  */
298 /* ARGSUSED */
299 int
300 sys_reboot(struct thread *td, struct reboot_args *uap)
301 {
302 	int error;
303 
304 	error = 0;
305 #ifdef MAC
306 	error = mac_system_check_reboot(td->td_ucred, uap->opt);
307 #endif
308 	if (error == 0)
309 		error = priv_check(td, PRIV_REBOOT);
310 	if (error == 0) {
311 		if (uap->opt & RB_REROOT)
312 			error = kern_reroot();
313 		else
314 			kern_reboot(uap->opt);
315 	}
316 	return (error);
317 }
318 
319 static void
320 shutdown_nice_task_fn(void *arg, int pending __unused)
321 {
322 	int howto;
323 
324 	howto = (uintptr_t)arg;
325 	/* Send a signal to init(8) and have it shutdown the world. */
326 	PROC_LOCK(initproc);
327 	if ((howto & RB_POWEROFF) != 0) {
328 		BOOTTRACE("SIGUSR2 to init(8)");
329 		kern_psignal(initproc, SIGUSR2);
330 	} else if ((howto & RB_POWERCYCLE) != 0) {
331 		BOOTTRACE("SIGWINCH to init(8)");
332 		kern_psignal(initproc, SIGWINCH);
333 	} else if ((howto & RB_HALT) != 0) {
334 		BOOTTRACE("SIGUSR1 to init(8)");
335 		kern_psignal(initproc, SIGUSR1);
336 	} else {
337 		BOOTTRACE("SIGINT to init(8)");
338 		kern_psignal(initproc, SIGINT);
339 	}
340 	PROC_UNLOCK(initproc);
341 }
342 
343 static struct task shutdown_nice_task = TASK_INITIALIZER(0,
344     &shutdown_nice_task_fn, NULL);
345 
346 /*
347  * Called by events that want to shut down.. e.g  <CTL><ALT><DEL> on a PC
348  */
349 void
350 shutdown_nice(int howto)
351 {
352 
353 	if (initproc != NULL && !SCHEDULER_STOPPED()) {
354 		BOOTTRACE("shutdown initiated");
355 		shutdown_nice_task.ta_context = (void *)(uintptr_t)howto;
356 		taskqueue_enqueue(taskqueue_fast, &shutdown_nice_task);
357 	} else {
358 		/*
359 		 * No init(8) running, or scheduler would not allow it
360 		 * to run, so simply reboot.
361 		 */
362 		kern_reboot(howto | RB_NOSYNC);
363 	}
364 }
365 
366 static void
367 print_uptime(void)
368 {
369 	int f;
370 	struct timespec ts;
371 
372 	getnanouptime(&ts);
373 	printf("Uptime: ");
374 	f = 0;
375 	if (ts.tv_sec >= 86400) {
376 		printf("%ldd", (long)ts.tv_sec / 86400);
377 		ts.tv_sec %= 86400;
378 		f = 1;
379 	}
380 	if (f || ts.tv_sec >= 3600) {
381 		printf("%ldh", (long)ts.tv_sec / 3600);
382 		ts.tv_sec %= 3600;
383 		f = 1;
384 	}
385 	if (f || ts.tv_sec >= 60) {
386 		printf("%ldm", (long)ts.tv_sec / 60);
387 		ts.tv_sec %= 60;
388 		f = 1;
389 	}
390 	printf("%lds\n", (long)ts.tv_sec);
391 }
392 
393 int
394 doadump(boolean_t textdump)
395 {
396 	boolean_t coredump;
397 	int error;
398 
399 	error = 0;
400 	if (dumping)
401 		return (EBUSY);
402 	if (TAILQ_EMPTY(&dumper_configs))
403 		return (ENXIO);
404 
405 	savectx(&dumppcb);
406 	dumptid = curthread->td_tid;
407 	dumping++;
408 
409 	coredump = TRUE;
410 #ifdef DDB
411 	if (textdump && textdump_pending) {
412 		coredump = FALSE;
413 		textdump_dumpsys(TAILQ_FIRST(&dumper_configs));
414 	}
415 #endif
416 	if (coredump) {
417 		struct dumperinfo *di;
418 
419 		TAILQ_FOREACH(di, &dumper_configs, di_next) {
420 			error = dumpsys(di);
421 			if (error == 0)
422 				break;
423 		}
424 	}
425 
426 	dumping--;
427 	return (error);
428 }
429 
430 /*
431  * Trace the shutdown reason.
432  */
433 static void
434 reboottrace(int howto)
435 {
436 	if ((howto & RB_DUMP) != 0) {
437 		if ((howto & RB_HALT) != 0)
438 			BOOTTRACE("system panic: halting...");
439 		if ((howto & RB_POWEROFF) != 0)
440 			BOOTTRACE("system panic: powering off...");
441 		if ((howto & (RB_HALT|RB_POWEROFF)) == 0)
442 			BOOTTRACE("system panic: rebooting...");
443 	} else {
444 		if ((howto & RB_HALT) != 0)
445 			BOOTTRACE("system halting...");
446 		if ((howto & RB_POWEROFF) != 0)
447 			BOOTTRACE("system powering off...");
448 		if ((howto & (RB_HALT|RB_POWEROFF)) == 0)
449 			BOOTTRACE("system rebooting...");
450 	}
451 }
452 
453 /*
454  * kern_reboot(9): Shut down the system cleanly to prepare for reboot, halt, or
455  * power off.
456  */
457 void
458 kern_reboot(int howto)
459 {
460 	static int once = 0;
461 
462 	if (initproc != NULL && curproc != initproc)
463 		BOOTTRACE("kernel shutdown (dirty) started");
464 	else
465 		BOOTTRACE("kernel shutdown (clean) started");
466 
467 	/*
468 	 * Normal paths here don't hold Giant, but we can wind up here
469 	 * unexpectedly with it held.  Drop it now so we don't have to
470 	 * drop and pick it up elsewhere. The paths it is locking will
471 	 * never be returned to, and it is preferable to preclude
472 	 * deadlock than to lock against code that won't ever
473 	 * continue.
474 	 */
475 	while (mtx_owned(&Giant))
476 		mtx_unlock(&Giant);
477 
478 #if defined(SMP)
479 	/*
480 	 * Bind us to the first CPU so that all shutdown code runs there.  Some
481 	 * systems don't shutdown properly (i.e., ACPI power off) if we
482 	 * run on another processor.
483 	 */
484 	if (!SCHEDULER_STOPPED()) {
485 		thread_lock(curthread);
486 		sched_bind(curthread, CPU_FIRST());
487 		thread_unlock(curthread);
488 		KASSERT(PCPU_GET(cpuid) == CPU_FIRST(),
489 		    ("%s: not running on cpu 0", __func__));
490 	}
491 #endif
492 	/* We're in the process of rebooting. */
493 	rebooting = 1;
494 	reboottrace(howto);
495 
496 	/* We are out of the debugger now. */
497 	kdb_active = 0;
498 
499 	/*
500 	 * Do any callouts that should be done BEFORE syncing the filesystems.
501 	 */
502 	EVENTHANDLER_INVOKE(shutdown_pre_sync, howto);
503 	BOOTTRACE("shutdown pre sync complete");
504 
505 	/*
506 	 * Now sync filesystems
507 	 */
508 	if (!cold && (howto & RB_NOSYNC) == 0 && once == 0) {
509 		once = 1;
510 		BOOTTRACE("bufshutdown begin");
511 		bufshutdown(show_busybufs);
512 		BOOTTRACE("bufshutdown end");
513 	}
514 
515 	print_uptime();
516 
517 	cngrab();
518 
519 	/*
520 	 * Ok, now do things that assume all filesystem activity has
521 	 * been completed.
522 	 */
523 	EVENTHANDLER_INVOKE(shutdown_post_sync, howto);
524 	BOOTTRACE("shutdown post sync complete");
525 
526 	if ((howto & (RB_HALT|RB_DUMP)) == RB_DUMP && !cold && !dumping)
527 		doadump(TRUE);
528 
529 	/* Now that we're going to really halt the system... */
530 	BOOTTRACE("shutdown final begin");
531 
532 	if (shutdown_trace)
533 		boottrace_dump_console();
534 
535 	EVENTHANDLER_INVOKE(shutdown_final, howto);
536 
537 	for(;;) ;	/* safety against shutdown_reset not working */
538 	/* NOTREACHED */
539 }
540 
541 /*
542  * The system call that results in changing the rootfs.
543  */
544 static int
545 kern_reroot(void)
546 {
547 	struct vnode *oldrootvnode, *vp;
548 	struct mount *mp, *devmp;
549 	int error;
550 
551 	if (curproc != initproc)
552 		return (EPERM);
553 
554 	/*
555 	 * Mark the filesystem containing currently-running executable
556 	 * (the temporary copy of init(8)) busy.
557 	 */
558 	vp = curproc->p_textvp;
559 	error = vn_lock(vp, LK_SHARED);
560 	if (error != 0)
561 		return (error);
562 	mp = vp->v_mount;
563 	error = vfs_busy(mp, MBF_NOWAIT);
564 	if (error != 0) {
565 		vfs_ref(mp);
566 		VOP_UNLOCK(vp);
567 		error = vfs_busy(mp, 0);
568 		vn_lock(vp, LK_SHARED | LK_RETRY);
569 		vfs_rel(mp);
570 		if (error != 0) {
571 			VOP_UNLOCK(vp);
572 			return (ENOENT);
573 		}
574 		if (VN_IS_DOOMED(vp)) {
575 			VOP_UNLOCK(vp);
576 			vfs_unbusy(mp);
577 			return (ENOENT);
578 		}
579 	}
580 	VOP_UNLOCK(vp);
581 
582 	/*
583 	 * Remove the filesystem containing currently-running executable
584 	 * from the mount list, to prevent it from being unmounted
585 	 * by vfs_unmountall(), and to avoid confusing vfs_mountroot().
586 	 *
587 	 * Also preserve /dev - forcibly unmounting it could cause driver
588 	 * reinitialization.
589 	 */
590 
591 	vfs_ref(rootdevmp);
592 	devmp = rootdevmp;
593 	rootdevmp = NULL;
594 
595 	mtx_lock(&mountlist_mtx);
596 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
597 	TAILQ_REMOVE(&mountlist, devmp, mnt_list);
598 	mtx_unlock(&mountlist_mtx);
599 
600 	oldrootvnode = rootvnode;
601 
602 	/*
603 	 * Unmount everything except for the two filesystems preserved above.
604 	 */
605 	vfs_unmountall();
606 
607 	/*
608 	 * Add /dev back; vfs_mountroot() will move it into its new place.
609 	 */
610 	mtx_lock(&mountlist_mtx);
611 	TAILQ_INSERT_HEAD(&mountlist, devmp, mnt_list);
612 	mtx_unlock(&mountlist_mtx);
613 	rootdevmp = devmp;
614 	vfs_rel(rootdevmp);
615 
616 	/*
617 	 * Mount the new rootfs.
618 	 */
619 	vfs_mountroot();
620 
621 	/*
622 	 * Update all references to the old rootvnode.
623 	 */
624 	mountcheckdirs(oldrootvnode, rootvnode);
625 
626 	/*
627 	 * Add the temporary filesystem back and unbusy it.
628 	 */
629 	mtx_lock(&mountlist_mtx);
630 	TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
631 	mtx_unlock(&mountlist_mtx);
632 	vfs_unbusy(mp);
633 
634 	return (0);
635 }
636 
637 /*
638  * If the shutdown was a clean halt, behave accordingly.
639  */
640 static void
641 shutdown_halt(void *junk, int howto)
642 {
643 
644 	if (howto & RB_HALT) {
645 		printf("\n");
646 		printf("The operating system has halted.\n");
647 		printf("Please press any key to reboot.\n\n");
648 
649 		wdog_kern_pat(WD_TO_NEVER);
650 
651 		switch (cngetc()) {
652 		case -1:		/* No console, just die */
653 			cpu_halt();
654 			/* NOTREACHED */
655 		default:
656 			break;
657 		}
658 	}
659 }
660 
661 /*
662  * Check to see if the system paniced, pause and then reboot
663  * according to the specified delay.
664  */
665 static void
666 shutdown_panic(void *junk, int howto)
667 {
668 	int loop;
669 
670 	if (howto & RB_DUMP) {
671 		if (panic_reboot_wait_time != 0) {
672 			if (panic_reboot_wait_time != -1) {
673 				printf("Automatic reboot in %d seconds - "
674 				       "press a key on the console to abort\n",
675 					panic_reboot_wait_time);
676 				for (loop = panic_reboot_wait_time * 10;
677 				     loop > 0; --loop) {
678 					DELAY(1000 * 100); /* 1/10th second */
679 					/* Did user type a key? */
680 					if (cncheckc() != -1)
681 						break;
682 				}
683 				if (!loop)
684 					return;
685 			}
686 		} else { /* zero time specified - reboot NOW */
687 			return;
688 		}
689 		printf("--> Press a key on the console to reboot,\n");
690 		printf("--> or switch off the system now.\n");
691 		cngetc();
692 	}
693 }
694 
695 /*
696  * Everything done, now reset
697  */
698 static void
699 shutdown_reset(void *junk, int howto)
700 {
701 
702 	printf("Rebooting...\n");
703 	DELAY(1000000);	/* wait 1 sec for printf's to complete and be read */
704 
705 	/*
706 	 * Acquiring smp_ipi_mtx here has a double effect:
707 	 * - it disables interrupts avoiding CPU0 preemption
708 	 *   by fast handlers (thus deadlocking  against other CPUs)
709 	 * - it avoids deadlocks against smp_rendezvous() or, more
710 	 *   generally, threads busy-waiting, with this spinlock held,
711 	 *   and waiting for responses by threads on other CPUs
712 	 *   (ie. smp_tlb_shootdown()).
713 	 *
714 	 * For the !SMP case it just needs to handle the former problem.
715 	 */
716 #ifdef SMP
717 	mtx_lock_spin(&smp_ipi_mtx);
718 #else
719 	spinlock_enter();
720 #endif
721 
722 	cpu_reset();
723 	/* NOTREACHED */ /* assuming reset worked */
724 }
725 
726 #if defined(WITNESS) || defined(INVARIANT_SUPPORT)
727 static int kassert_warn_only = 0;
728 #ifdef KDB
729 static int kassert_do_kdb = 0;
730 #endif
731 #ifdef KTR
732 static int kassert_do_ktr = 0;
733 #endif
734 static int kassert_do_log = 1;
735 static int kassert_log_pps_limit = 4;
736 static int kassert_log_mute_at = 0;
737 static int kassert_log_panic_at = 0;
738 static int kassert_suppress_in_panic = 0;
739 static int kassert_warnings = 0;
740 
741 SYSCTL_NODE(_debug, OID_AUTO, kassert, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
742     "kassert options");
743 
744 #ifdef KASSERT_PANIC_OPTIONAL
745 #define KASSERT_RWTUN	CTLFLAG_RWTUN
746 #else
747 #define KASSERT_RWTUN	CTLFLAG_RDTUN
748 #endif
749 
750 SYSCTL_INT(_debug_kassert, OID_AUTO, warn_only, KASSERT_RWTUN,
751     &kassert_warn_only, 0,
752     "KASSERT triggers a panic (0) or just a warning (1)");
753 
754 #ifdef KDB
755 SYSCTL_INT(_debug_kassert, OID_AUTO, do_kdb, KASSERT_RWTUN,
756     &kassert_do_kdb, 0, "KASSERT will enter the debugger");
757 #endif
758 
759 #ifdef KTR
760 SYSCTL_UINT(_debug_kassert, OID_AUTO, do_ktr, KASSERT_RWTUN,
761     &kassert_do_ktr, 0,
762     "KASSERT does a KTR, set this to the KTRMASK you want");
763 #endif
764 
765 SYSCTL_INT(_debug_kassert, OID_AUTO, do_log, KASSERT_RWTUN,
766     &kassert_do_log, 0,
767     "If warn_only is enabled, log (1) or do not log (0) assertion violations");
768 
769 SYSCTL_INT(_debug_kassert, OID_AUTO, warnings, CTLFLAG_RD | CTLFLAG_STATS,
770     &kassert_warnings, 0, "number of KASSERTs that have been triggered");
771 
772 SYSCTL_INT(_debug_kassert, OID_AUTO, log_panic_at, KASSERT_RWTUN,
773     &kassert_log_panic_at, 0, "max number of KASSERTS before we will panic");
774 
775 SYSCTL_INT(_debug_kassert, OID_AUTO, log_pps_limit, KASSERT_RWTUN,
776     &kassert_log_pps_limit, 0, "limit number of log messages per second");
777 
778 SYSCTL_INT(_debug_kassert, OID_AUTO, log_mute_at, KASSERT_RWTUN,
779     &kassert_log_mute_at, 0, "max number of KASSERTS to log");
780 
781 SYSCTL_INT(_debug_kassert, OID_AUTO, suppress_in_panic, KASSERT_RWTUN,
782     &kassert_suppress_in_panic, 0,
783     "KASSERTs will be suppressed while handling a panic");
784 #undef KASSERT_RWTUN
785 
786 static int kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS);
787 
788 SYSCTL_PROC(_debug_kassert, OID_AUTO, kassert,
789     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE | CTLFLAG_MPSAFE, NULL, 0,
790     kassert_sysctl_kassert, "I",
791     "set to trigger a test kassert");
792 
793 static int
794 kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS)
795 {
796 	int error, i;
797 
798 	error = sysctl_wire_old_buffer(req, sizeof(int));
799 	if (error == 0) {
800 		i = 0;
801 		error = sysctl_handle_int(oidp, &i, 0, req);
802 	}
803 	if (error != 0 || req->newptr == NULL)
804 		return (error);
805 	KASSERT(0, ("kassert_sysctl_kassert triggered kassert %d", i));
806 	return (0);
807 }
808 
809 #ifdef KASSERT_PANIC_OPTIONAL
810 /*
811  * Called by KASSERT, this decides if we will panic
812  * or if we will log via printf and/or ktr.
813  */
814 void
815 kassert_panic(const char *fmt, ...)
816 {
817 	static char buf[256];
818 	va_list ap;
819 
820 	va_start(ap, fmt);
821 	(void)vsnprintf(buf, sizeof(buf), fmt, ap);
822 	va_end(ap);
823 
824 	/*
825 	 * If we are suppressing secondary panics, log the warning but do not
826 	 * re-enter panic/kdb.
827 	 */
828 	if (panicstr != NULL && kassert_suppress_in_panic) {
829 		if (kassert_do_log) {
830 			printf("KASSERT failed: %s\n", buf);
831 #ifdef KDB
832 			if (trace_all_panics && trace_on_panic)
833 				kdb_backtrace();
834 #endif
835 		}
836 		return;
837 	}
838 
839 	/*
840 	 * panic if we're not just warning, or if we've exceeded
841 	 * kassert_log_panic_at warnings.
842 	 */
843 	if (!kassert_warn_only ||
844 	    (kassert_log_panic_at > 0 &&
845 	     kassert_warnings >= kassert_log_panic_at)) {
846 		va_start(ap, fmt);
847 		vpanic(fmt, ap);
848 		/* NORETURN */
849 	}
850 #ifdef KTR
851 	if (kassert_do_ktr)
852 		CTR0(ktr_mask, buf);
853 #endif /* KTR */
854 	/*
855 	 * log if we've not yet met the mute limit.
856 	 */
857 	if (kassert_do_log &&
858 	    (kassert_log_mute_at == 0 ||
859 	     kassert_warnings < kassert_log_mute_at)) {
860 		static  struct timeval lasterr;
861 		static  int curerr;
862 
863 		if (ppsratecheck(&lasterr, &curerr, kassert_log_pps_limit)) {
864 			printf("KASSERT failed: %s\n", buf);
865 			kdb_backtrace();
866 		}
867 	}
868 #ifdef KDB
869 	if (kassert_do_kdb) {
870 		kdb_enter(KDB_WHY_KASSERT, buf);
871 	}
872 #endif
873 	atomic_add_int(&kassert_warnings, 1);
874 }
875 #endif /* KASSERT_PANIC_OPTIONAL */
876 #endif
877 
878 /*
879  * Panic is called on unresolvable fatal errors.  It prints "panic: mesg",
880  * and then reboots.  If we are called twice, then we avoid trying to sync
881  * the disks as this often leads to recursive panics.
882  */
883 void
884 panic(const char *fmt, ...)
885 {
886 	va_list ap;
887 
888 	va_start(ap, fmt);
889 	vpanic(fmt, ap);
890 }
891 
892 void
893 vpanic(const char *fmt, va_list ap)
894 {
895 #ifdef SMP
896 	cpuset_t other_cpus;
897 #endif
898 	struct thread *td = curthread;
899 	int bootopt, newpanic;
900 	static char buf[256];
901 
902 	spinlock_enter();
903 
904 #ifdef SMP
905 	/*
906 	 * stop_cpus_hard(other_cpus) should prevent multiple CPUs from
907 	 * concurrently entering panic.  Only the winner will proceed
908 	 * further.
909 	 */
910 	if (panicstr == NULL && !kdb_active) {
911 		other_cpus = all_cpus;
912 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
913 		stop_cpus_hard(other_cpus);
914 	}
915 #endif
916 
917 	/*
918 	 * Ensure that the scheduler is stopped while panicking, even if panic
919 	 * has been entered from kdb.
920 	 */
921 	td->td_stopsched = 1;
922 
923 	bootopt = RB_AUTOBOOT;
924 	newpanic = 0;
925 	if (panicstr)
926 		bootopt |= RB_NOSYNC;
927 	else {
928 		bootopt |= RB_DUMP;
929 		panicstr = fmt;
930 		panicked = true;
931 		newpanic = 1;
932 	}
933 
934 	if (newpanic) {
935 		(void)vsnprintf(buf, sizeof(buf), fmt, ap);
936 		panicstr = buf;
937 		cngrab();
938 		printf("panic: %s\n", buf);
939 	} else {
940 		printf("panic: ");
941 		vprintf(fmt, ap);
942 		printf("\n");
943 	}
944 #ifdef SMP
945 	printf("cpuid = %d\n", PCPU_GET(cpuid));
946 #endif
947 	printf("time = %jd\n", (intmax_t )time_second);
948 #ifdef KDB
949 	if ((newpanic || trace_all_panics) && trace_on_panic)
950 		kdb_backtrace();
951 	if (debugger_on_panic)
952 		kdb_enter(KDB_WHY_PANIC, "panic");
953 	else if (!newpanic && debugger_on_recursive_panic)
954 		kdb_enter(KDB_WHY_PANIC, "re-panic");
955 #endif
956 	/*thread_lock(td); */
957 	td->td_flags |= TDF_INPANIC;
958 	/* thread_unlock(td); */
959 	if (!sync_on_panic)
960 		bootopt |= RB_NOSYNC;
961 	if (poweroff_on_panic)
962 		bootopt |= RB_POWEROFF;
963 	if (powercycle_on_panic)
964 		bootopt |= RB_POWERCYCLE;
965 	kern_reboot(bootopt);
966 }
967 
968 /*
969  * Support for poweroff delay.
970  *
971  * Please note that setting this delay too short might power off your machine
972  * before the write cache on your hard disk has been flushed, leading to
973  * soft-updates inconsistencies.
974  */
975 #ifndef POWEROFF_DELAY
976 # define POWEROFF_DELAY 5000
977 #endif
978 static int poweroff_delay = POWEROFF_DELAY;
979 
980 SYSCTL_INT(_kern_shutdown, OID_AUTO, poweroff_delay, CTLFLAG_RW,
981     &poweroff_delay, 0, "Delay before poweroff to write disk caches (msec)");
982 
983 static void
984 poweroff_wait(void *junk, int howto)
985 {
986 
987 	if ((howto & (RB_POWEROFF | RB_POWERCYCLE)) == 0 || poweroff_delay <= 0)
988 		return;
989 	DELAY(poweroff_delay * 1000);
990 }
991 
992 /*
993  * Some system processes (e.g. syncer) need to be stopped at appropriate
994  * points in their main loops prior to a system shutdown, so that they
995  * won't interfere with the shutdown process (e.g. by holding a disk buf
996  * to cause sync to fail).  For each of these system processes, register
997  * shutdown_kproc() as a handler for one of shutdown events.
998  */
999 static int kproc_shutdown_wait = 60;
1000 SYSCTL_INT(_kern_shutdown, OID_AUTO, kproc_shutdown_wait, CTLFLAG_RW,
1001     &kproc_shutdown_wait, 0, "Max wait time (sec) to stop for each process");
1002 
1003 void
1004 kproc_shutdown(void *arg, int howto)
1005 {
1006 	struct proc *p;
1007 	int error;
1008 
1009 	if (panicstr)
1010 		return;
1011 
1012 	p = (struct proc *)arg;
1013 	printf("Waiting (max %d seconds) for system process `%s' to stop... ",
1014 	    kproc_shutdown_wait, p->p_comm);
1015 	error = kproc_suspend(p, kproc_shutdown_wait * hz);
1016 
1017 	if (error == EWOULDBLOCK)
1018 		printf("timed out\n");
1019 	else
1020 		printf("done\n");
1021 }
1022 
1023 void
1024 kthread_shutdown(void *arg, int howto)
1025 {
1026 	struct thread *td;
1027 	int error;
1028 
1029 	if (panicstr)
1030 		return;
1031 
1032 	td = (struct thread *)arg;
1033 	printf("Waiting (max %d seconds) for system thread `%s' to stop... ",
1034 	    kproc_shutdown_wait, td->td_name);
1035 	error = kthread_suspend(td, kproc_shutdown_wait * hz);
1036 
1037 	if (error == EWOULDBLOCK)
1038 		printf("timed out\n");
1039 	else
1040 		printf("done\n");
1041 }
1042 
1043 static int
1044 dumpdevname_sysctl_handler(SYSCTL_HANDLER_ARGS)
1045 {
1046 	char buf[256];
1047 	struct dumperinfo *di;
1048 	struct sbuf sb;
1049 	int error;
1050 
1051 	error = sysctl_wire_old_buffer(req, 0);
1052 	if (error != 0)
1053 		return (error);
1054 
1055 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
1056 
1057 	mtx_lock(&dumpconf_list_lk);
1058 	TAILQ_FOREACH(di, &dumper_configs, di_next) {
1059 		if (di != TAILQ_FIRST(&dumper_configs))
1060 			sbuf_putc(&sb, ',');
1061 		sbuf_cat(&sb, di->di_devname);
1062 	}
1063 	mtx_unlock(&dumpconf_list_lk);
1064 
1065 	error = sbuf_finish(&sb);
1066 	sbuf_delete(&sb);
1067 	return (error);
1068 }
1069 SYSCTL_PROC(_kern_shutdown, OID_AUTO, dumpdevname,
1070     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, &dumper_configs, 0,
1071     dumpdevname_sysctl_handler, "A",
1072     "Device(s) for kernel dumps");
1073 
1074 static int	_dump_append(struct dumperinfo *di, void *virtual,
1075 		    vm_offset_t physical, size_t length);
1076 
1077 #ifdef EKCD
1078 static struct kerneldumpcrypto *
1079 kerneldumpcrypto_create(size_t blocksize, uint8_t encryption,
1080     const uint8_t *key, uint32_t encryptedkeysize, const uint8_t *encryptedkey)
1081 {
1082 	struct kerneldumpcrypto *kdc;
1083 	struct kerneldumpkey *kdk;
1084 	uint32_t dumpkeysize;
1085 
1086 	dumpkeysize = roundup2(sizeof(*kdk) + encryptedkeysize, blocksize);
1087 	kdc = malloc(sizeof(*kdc) + dumpkeysize, M_EKCD, M_WAITOK | M_ZERO);
1088 
1089 	arc4rand(kdc->kdc_iv, sizeof(kdc->kdc_iv), 0);
1090 
1091 	kdc->kdc_encryption = encryption;
1092 	switch (kdc->kdc_encryption) {
1093 	case KERNELDUMP_ENC_AES_256_CBC:
1094 		if (rijndael_makeKey(&kdc->kdc_ki, DIR_ENCRYPT, 256, key) <= 0)
1095 			goto failed;
1096 		break;
1097 	case KERNELDUMP_ENC_CHACHA20:
1098 		chacha_keysetup(&kdc->kdc_chacha, key, 256);
1099 		break;
1100 	default:
1101 		goto failed;
1102 	}
1103 
1104 	kdc->kdc_dumpkeysize = dumpkeysize;
1105 	kdk = kdc->kdc_dumpkey;
1106 	kdk->kdk_encryption = kdc->kdc_encryption;
1107 	memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
1108 	kdk->kdk_encryptedkeysize = htod32(encryptedkeysize);
1109 	memcpy(kdk->kdk_encryptedkey, encryptedkey, encryptedkeysize);
1110 
1111 	return (kdc);
1112 failed:
1113 	zfree(kdc, M_EKCD);
1114 	return (NULL);
1115 }
1116 
1117 static int
1118 kerneldumpcrypto_init(struct kerneldumpcrypto *kdc)
1119 {
1120 	uint8_t hash[SHA256_DIGEST_LENGTH];
1121 	SHA256_CTX ctx;
1122 	struct kerneldumpkey *kdk;
1123 	int error;
1124 
1125 	error = 0;
1126 
1127 	if (kdc == NULL)
1128 		return (0);
1129 
1130 	/*
1131 	 * When a user enters ddb it can write a crash dump multiple times.
1132 	 * Each time it should be encrypted using a different IV.
1133 	 */
1134 	SHA256_Init(&ctx);
1135 	SHA256_Update(&ctx, kdc->kdc_iv, sizeof(kdc->kdc_iv));
1136 	SHA256_Final(hash, &ctx);
1137 	bcopy(hash, kdc->kdc_iv, sizeof(kdc->kdc_iv));
1138 
1139 	switch (kdc->kdc_encryption) {
1140 	case KERNELDUMP_ENC_AES_256_CBC:
1141 		if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
1142 		    kdc->kdc_iv) <= 0) {
1143 			error = EINVAL;
1144 			goto out;
1145 		}
1146 		break;
1147 	case KERNELDUMP_ENC_CHACHA20:
1148 		chacha_ivsetup(&kdc->kdc_chacha, kdc->kdc_iv, NULL);
1149 		break;
1150 	default:
1151 		error = EINVAL;
1152 		goto out;
1153 	}
1154 
1155 	kdk = kdc->kdc_dumpkey;
1156 	memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
1157 out:
1158 	explicit_bzero(hash, sizeof(hash));
1159 	return (error);
1160 }
1161 
1162 static uint32_t
1163 kerneldumpcrypto_dumpkeysize(const struct kerneldumpcrypto *kdc)
1164 {
1165 
1166 	if (kdc == NULL)
1167 		return (0);
1168 	return (kdc->kdc_dumpkeysize);
1169 }
1170 #endif /* EKCD */
1171 
1172 static struct kerneldumpcomp *
1173 kerneldumpcomp_create(struct dumperinfo *di, uint8_t compression)
1174 {
1175 	struct kerneldumpcomp *kdcomp;
1176 	int format;
1177 
1178 	switch (compression) {
1179 	case KERNELDUMP_COMP_GZIP:
1180 		format = COMPRESS_GZIP;
1181 		break;
1182 	case KERNELDUMP_COMP_ZSTD:
1183 		format = COMPRESS_ZSTD;
1184 		break;
1185 	default:
1186 		return (NULL);
1187 	}
1188 
1189 	kdcomp = malloc(sizeof(*kdcomp), M_DUMPER, M_WAITOK | M_ZERO);
1190 	kdcomp->kdc_format = compression;
1191 	kdcomp->kdc_stream = compressor_init(kerneldumpcomp_write_cb,
1192 	    format, di->maxiosize, kerneldump_gzlevel, di);
1193 	if (kdcomp->kdc_stream == NULL) {
1194 		free(kdcomp, M_DUMPER);
1195 		return (NULL);
1196 	}
1197 	kdcomp->kdc_buf = malloc(di->maxiosize, M_DUMPER, M_WAITOK | M_NODUMP);
1198 	return (kdcomp);
1199 }
1200 
1201 static void
1202 kerneldumpcomp_destroy(struct dumperinfo *di)
1203 {
1204 	struct kerneldumpcomp *kdcomp;
1205 
1206 	kdcomp = di->kdcomp;
1207 	if (kdcomp == NULL)
1208 		return;
1209 	compressor_fini(kdcomp->kdc_stream);
1210 	zfree(kdcomp->kdc_buf, M_DUMPER);
1211 	free(kdcomp, M_DUMPER);
1212 }
1213 
1214 /*
1215  * Must not be present on global list.
1216  */
1217 static void
1218 free_single_dumper(struct dumperinfo *di)
1219 {
1220 
1221 	if (di == NULL)
1222 		return;
1223 
1224 	zfree(di->blockbuf, M_DUMPER);
1225 
1226 	kerneldumpcomp_destroy(di);
1227 
1228 #ifdef EKCD
1229 	zfree(di->kdcrypto, M_EKCD);
1230 #endif
1231 	zfree(di, M_DUMPER);
1232 }
1233 
1234 /* Registration of dumpers */
1235 int
1236 dumper_insert(const struct dumperinfo *di_template, const char *devname,
1237     const struct diocskerneldump_arg *kda)
1238 {
1239 	struct dumperinfo *newdi, *listdi;
1240 	bool inserted;
1241 	uint8_t index;
1242 	int error;
1243 
1244 	index = kda->kda_index;
1245 	MPASS(index != KDA_REMOVE && index != KDA_REMOVE_DEV &&
1246 	    index != KDA_REMOVE_ALL);
1247 
1248 	error = priv_check(curthread, PRIV_SETDUMPER);
1249 	if (error != 0)
1250 		return (error);
1251 
1252 	newdi = malloc(sizeof(*newdi) + strlen(devname) + 1, M_DUMPER, M_WAITOK
1253 	    | M_ZERO);
1254 	memcpy(newdi, di_template, sizeof(*newdi));
1255 	newdi->blockbuf = NULL;
1256 	newdi->kdcrypto = NULL;
1257 	newdi->kdcomp = NULL;
1258 	strcpy(newdi->di_devname, devname);
1259 
1260 	if (kda->kda_encryption != KERNELDUMP_ENC_NONE) {
1261 #ifdef EKCD
1262 		newdi->kdcrypto = kerneldumpcrypto_create(di_template->blocksize,
1263 		    kda->kda_encryption, kda->kda_key,
1264 		    kda->kda_encryptedkeysize, kda->kda_encryptedkey);
1265 		if (newdi->kdcrypto == NULL) {
1266 			error = EINVAL;
1267 			goto cleanup;
1268 		}
1269 #else
1270 		error = EOPNOTSUPP;
1271 		goto cleanup;
1272 #endif
1273 	}
1274 	if (kda->kda_compression != KERNELDUMP_COMP_NONE) {
1275 #ifdef EKCD
1276 		/*
1277 		 * We can't support simultaneous unpadded block cipher
1278 		 * encryption and compression because there is no guarantee the
1279 		 * length of the compressed result is exactly a multiple of the
1280 		 * cipher block size.
1281 		 */
1282 		if (kda->kda_encryption == KERNELDUMP_ENC_AES_256_CBC) {
1283 			error = EOPNOTSUPP;
1284 			goto cleanup;
1285 		}
1286 #endif
1287 		newdi->kdcomp = kerneldumpcomp_create(newdi,
1288 		    kda->kda_compression);
1289 		if (newdi->kdcomp == NULL) {
1290 			error = EINVAL;
1291 			goto cleanup;
1292 		}
1293 	}
1294 
1295 	newdi->blockbuf = malloc(newdi->blocksize, M_DUMPER, M_WAITOK | M_ZERO);
1296 
1297 	/* Add the new configuration to the queue */
1298 	mtx_lock(&dumpconf_list_lk);
1299 	inserted = false;
1300 	TAILQ_FOREACH(listdi, &dumper_configs, di_next) {
1301 		if (index == 0) {
1302 			TAILQ_INSERT_BEFORE(listdi, newdi, di_next);
1303 			inserted = true;
1304 			break;
1305 		}
1306 		index--;
1307 	}
1308 	if (!inserted)
1309 		TAILQ_INSERT_TAIL(&dumper_configs, newdi, di_next);
1310 	mtx_unlock(&dumpconf_list_lk);
1311 
1312 	return (0);
1313 
1314 cleanup:
1315 	free_single_dumper(newdi);
1316 	return (error);
1317 }
1318 
1319 #ifdef DDB
1320 void
1321 dumper_ddb_insert(struct dumperinfo *newdi)
1322 {
1323 	TAILQ_INSERT_HEAD(&dumper_configs, newdi, di_next);
1324 }
1325 
1326 void
1327 dumper_ddb_remove(struct dumperinfo *di)
1328 {
1329 	TAILQ_REMOVE(&dumper_configs, di, di_next);
1330 }
1331 #endif
1332 
1333 static bool
1334 dumper_config_match(const struct dumperinfo *di, const char *devname,
1335     const struct diocskerneldump_arg *kda)
1336 {
1337 	if (kda->kda_index == KDA_REMOVE_ALL)
1338 		return (true);
1339 
1340 	if (strcmp(di->di_devname, devname) != 0)
1341 		return (false);
1342 
1343 	/*
1344 	 * Allow wildcard removal of configs matching a device on g_dev_orphan.
1345 	 */
1346 	if (kda->kda_index == KDA_REMOVE_DEV)
1347 		return (true);
1348 
1349 	if (di->kdcomp != NULL) {
1350 		if (di->kdcomp->kdc_format != kda->kda_compression)
1351 			return (false);
1352 	} else if (kda->kda_compression != KERNELDUMP_COMP_NONE)
1353 		return (false);
1354 #ifdef EKCD
1355 	if (di->kdcrypto != NULL) {
1356 		if (di->kdcrypto->kdc_encryption != kda->kda_encryption)
1357 			return (false);
1358 		/*
1359 		 * Do we care to verify keys match to delete?  It seems weird
1360 		 * to expect multiple fallback dump configurations on the same
1361 		 * device that only differ in crypto key.
1362 		 */
1363 	} else
1364 #endif
1365 		if (kda->kda_encryption != KERNELDUMP_ENC_NONE)
1366 			return (false);
1367 
1368 	return (true);
1369 }
1370 
1371 int
1372 dumper_remove(const char *devname, const struct diocskerneldump_arg *kda)
1373 {
1374 	struct dumperinfo *di, *sdi;
1375 	bool found;
1376 	int error;
1377 
1378 	error = priv_check(curthread, PRIV_SETDUMPER);
1379 	if (error != 0)
1380 		return (error);
1381 
1382 	/*
1383 	 * Try to find a matching configuration, and kill it.
1384 	 *
1385 	 * NULL 'kda' indicates remove any configuration matching 'devname',
1386 	 * which may remove multiple configurations in atypical configurations.
1387 	 */
1388 	found = false;
1389 	mtx_lock(&dumpconf_list_lk);
1390 	TAILQ_FOREACH_SAFE(di, &dumper_configs, di_next, sdi) {
1391 		if (dumper_config_match(di, devname, kda)) {
1392 			found = true;
1393 			TAILQ_REMOVE(&dumper_configs, di, di_next);
1394 			free_single_dumper(di);
1395 		}
1396 	}
1397 	mtx_unlock(&dumpconf_list_lk);
1398 
1399 	/* Only produce ENOENT if a more targeted match didn't match. */
1400 	if (!found && kda->kda_index == KDA_REMOVE)
1401 		return (ENOENT);
1402 	return (0);
1403 }
1404 
1405 static int
1406 dump_check_bounds(struct dumperinfo *di, off_t offset, size_t length)
1407 {
1408 
1409 	if (di->mediasize > 0 && length != 0 && (offset < di->mediaoffset ||
1410 	    offset - di->mediaoffset + length > di->mediasize)) {
1411 		if (di->kdcomp != NULL && offset >= di->mediaoffset) {
1412 			printf(
1413 		    "Compressed dump failed to fit in device boundaries.\n");
1414 			return (E2BIG);
1415 		}
1416 
1417 		printf("Attempt to write outside dump device boundaries.\n"
1418 	    "offset(%jd), mediaoffset(%jd), length(%ju), mediasize(%jd).\n",
1419 		    (intmax_t)offset, (intmax_t)di->mediaoffset,
1420 		    (uintmax_t)length, (intmax_t)di->mediasize);
1421 		return (ENOSPC);
1422 	}
1423 	if (length % di->blocksize != 0) {
1424 		printf("Attempt to write partial block of length %ju.\n",
1425 		    (uintmax_t)length);
1426 		return (EINVAL);
1427 	}
1428 	if (offset % di->blocksize != 0) {
1429 		printf("Attempt to write at unaligned offset %jd.\n",
1430 		    (intmax_t)offset);
1431 		return (EINVAL);
1432 	}
1433 
1434 	return (0);
1435 }
1436 
1437 #ifdef EKCD
1438 static int
1439 dump_encrypt(struct kerneldumpcrypto *kdc, uint8_t *buf, size_t size)
1440 {
1441 
1442 	switch (kdc->kdc_encryption) {
1443 	case KERNELDUMP_ENC_AES_256_CBC:
1444 		if (rijndael_blockEncrypt(&kdc->kdc_ci, &kdc->kdc_ki, buf,
1445 		    8 * size, buf) <= 0) {
1446 			return (EIO);
1447 		}
1448 		if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
1449 		    buf + size - 16 /* IV size for AES-256-CBC */) <= 0) {
1450 			return (EIO);
1451 		}
1452 		break;
1453 	case KERNELDUMP_ENC_CHACHA20:
1454 		chacha_encrypt_bytes(&kdc->kdc_chacha, buf, buf, size);
1455 		break;
1456 	default:
1457 		return (EINVAL);
1458 	}
1459 
1460 	return (0);
1461 }
1462 
1463 /* Encrypt data and call dumper. */
1464 static int
1465 dump_encrypted_write(struct dumperinfo *di, void *virtual,
1466     vm_offset_t physical, off_t offset, size_t length)
1467 {
1468 	static uint8_t buf[KERNELDUMP_BUFFER_SIZE];
1469 	struct kerneldumpcrypto *kdc;
1470 	int error;
1471 	size_t nbytes;
1472 
1473 	kdc = di->kdcrypto;
1474 
1475 	while (length > 0) {
1476 		nbytes = MIN(length, sizeof(buf));
1477 		bcopy(virtual, buf, nbytes);
1478 
1479 		if (dump_encrypt(kdc, buf, nbytes) != 0)
1480 			return (EIO);
1481 
1482 		error = dump_write(di, buf, physical, offset, nbytes);
1483 		if (error != 0)
1484 			return (error);
1485 
1486 		offset += nbytes;
1487 		virtual = (void *)((uint8_t *)virtual + nbytes);
1488 		length -= nbytes;
1489 	}
1490 
1491 	return (0);
1492 }
1493 #endif /* EKCD */
1494 
1495 static int
1496 kerneldumpcomp_write_cb(void *base, size_t length, off_t offset, void *arg)
1497 {
1498 	struct dumperinfo *di;
1499 	size_t resid, rlength;
1500 	int error;
1501 
1502 	di = arg;
1503 
1504 	if (length % di->blocksize != 0) {
1505 		/*
1506 		 * This must be the final write after flushing the compression
1507 		 * stream. Write as many full blocks as possible and stash the
1508 		 * residual data in the dumper's block buffer. It will be
1509 		 * padded and written in dump_finish().
1510 		 */
1511 		rlength = rounddown(length, di->blocksize);
1512 		if (rlength != 0) {
1513 			error = _dump_append(di, base, 0, rlength);
1514 			if (error != 0)
1515 				return (error);
1516 		}
1517 		resid = length - rlength;
1518 		memmove(di->blockbuf, (uint8_t *)base + rlength, resid);
1519 		bzero((uint8_t *)di->blockbuf + resid, di->blocksize - resid);
1520 		di->kdcomp->kdc_resid = resid;
1521 		return (EAGAIN);
1522 	}
1523 	return (_dump_append(di, base, 0, length));
1524 }
1525 
1526 /*
1527  * Write kernel dump headers at the beginning and end of the dump extent.
1528  * Write the kernel dump encryption key after the leading header if we were
1529  * configured to do so.
1530  */
1531 static int
1532 dump_write_headers(struct dumperinfo *di, struct kerneldumpheader *kdh)
1533 {
1534 #ifdef EKCD
1535 	struct kerneldumpcrypto *kdc;
1536 #endif
1537 	void *buf;
1538 	size_t hdrsz;
1539 	uint64_t extent;
1540 	uint32_t keysize;
1541 	int error;
1542 
1543 	hdrsz = sizeof(*kdh);
1544 	if (hdrsz > di->blocksize)
1545 		return (ENOMEM);
1546 
1547 #ifdef EKCD
1548 	kdc = di->kdcrypto;
1549 	keysize = kerneldumpcrypto_dumpkeysize(kdc);
1550 #else
1551 	keysize = 0;
1552 #endif
1553 
1554 	/*
1555 	 * If the dump device has special handling for headers, let it take care
1556 	 * of writing them out.
1557 	 */
1558 	if (di->dumper_hdr != NULL)
1559 		return (di->dumper_hdr(di, kdh));
1560 
1561 	if (hdrsz == di->blocksize)
1562 		buf = kdh;
1563 	else {
1564 		buf = di->blockbuf;
1565 		memset(buf, 0, di->blocksize);
1566 		memcpy(buf, kdh, hdrsz);
1567 	}
1568 
1569 	extent = dtoh64(kdh->dumpextent);
1570 #ifdef EKCD
1571 	if (kdc != NULL) {
1572 		error = dump_write(di, kdc->kdc_dumpkey, 0,
1573 		    di->mediaoffset + di->mediasize - di->blocksize - extent -
1574 		    keysize, keysize);
1575 		if (error != 0)
1576 			return (error);
1577 	}
1578 #endif
1579 
1580 	error = dump_write(di, buf, 0,
1581 	    di->mediaoffset + di->mediasize - 2 * di->blocksize - extent -
1582 	    keysize, di->blocksize);
1583 	if (error == 0)
1584 		error = dump_write(di, buf, 0, di->mediaoffset + di->mediasize -
1585 		    di->blocksize, di->blocksize);
1586 	return (error);
1587 }
1588 
1589 /*
1590  * Don't touch the first SIZEOF_METADATA bytes on the dump device.  This is to
1591  * protect us from metadata and metadata from us.
1592  */
1593 #define	SIZEOF_METADATA		(64 * 1024)
1594 
1595 /*
1596  * Do some preliminary setup for a kernel dump: initialize state for encryption,
1597  * if requested, and make sure that we have enough space on the dump device.
1598  *
1599  * We set things up so that the dump ends before the last sector of the dump
1600  * device, at which the trailing header is written.
1601  *
1602  *     +-----------+------+-----+----------------------------+------+
1603  *     |           | lhdr | key |    ... kernel dump ...     | thdr |
1604  *     +-----------+------+-----+----------------------------+------+
1605  *                   1 blk  opt <------- dump extent --------> 1 blk
1606  *
1607  * Dumps written using dump_append() start at the beginning of the extent.
1608  * Uncompressed dumps will use the entire extent, but compressed dumps typically
1609  * will not. The true length of the dump is recorded in the leading and trailing
1610  * headers once the dump has been completed.
1611  *
1612  * The dump device may provide a callback, in which case it will initialize
1613  * dumpoff and take care of laying out the headers.
1614  */
1615 int
1616 dump_start(struct dumperinfo *di, struct kerneldumpheader *kdh)
1617 {
1618 #ifdef EKCD
1619 	struct kerneldumpcrypto *kdc;
1620 #endif
1621 	void *key;
1622 	uint64_t dumpextent, span;
1623 	uint32_t keysize;
1624 	int error;
1625 
1626 #ifdef EKCD
1627 	/* Send the key before the dump so a partial dump is still usable. */
1628 	kdc = di->kdcrypto;
1629 	error = kerneldumpcrypto_init(kdc);
1630 	if (error != 0)
1631 		return (error);
1632 	keysize = kerneldumpcrypto_dumpkeysize(kdc);
1633 	key = keysize > 0 ? kdc->kdc_dumpkey : NULL;
1634 #else
1635 	error = 0;
1636 	keysize = 0;
1637 	key = NULL;
1638 #endif
1639 
1640 	if (di->dumper_start != NULL) {
1641 		error = di->dumper_start(di, key, keysize);
1642 	} else {
1643 		dumpextent = dtoh64(kdh->dumpextent);
1644 		span = SIZEOF_METADATA + dumpextent + 2 * di->blocksize +
1645 		    keysize;
1646 		if (di->mediasize < span) {
1647 			if (di->kdcomp == NULL)
1648 				return (E2BIG);
1649 
1650 			/*
1651 			 * We don't yet know how much space the compressed dump
1652 			 * will occupy, so try to use the whole swap partition
1653 			 * (minus the first 64KB) in the hope that the
1654 			 * compressed dump will fit. If that doesn't turn out to
1655 			 * be enough, the bounds checking in dump_write()
1656 			 * will catch us and cause the dump to fail.
1657 			 */
1658 			dumpextent = di->mediasize - span + dumpextent;
1659 			kdh->dumpextent = htod64(dumpextent);
1660 		}
1661 
1662 		/*
1663 		 * The offset at which to begin writing the dump.
1664 		 */
1665 		di->dumpoff = di->mediaoffset + di->mediasize - di->blocksize -
1666 		    dumpextent;
1667 	}
1668 	di->origdumpoff = di->dumpoff;
1669 	return (error);
1670 }
1671 
1672 static int
1673 _dump_append(struct dumperinfo *di, void *virtual, vm_offset_t physical,
1674     size_t length)
1675 {
1676 	int error;
1677 
1678 #ifdef EKCD
1679 	if (di->kdcrypto != NULL)
1680 		error = dump_encrypted_write(di, virtual, physical, di->dumpoff,
1681 		    length);
1682 	else
1683 #endif
1684 		error = dump_write(di, virtual, physical, di->dumpoff, length);
1685 	if (error == 0)
1686 		di->dumpoff += length;
1687 	return (error);
1688 }
1689 
1690 /*
1691  * Write to the dump device starting at dumpoff. When compression is enabled,
1692  * writes to the device will be performed using a callback that gets invoked
1693  * when the compression stream's output buffer is full.
1694  */
1695 int
1696 dump_append(struct dumperinfo *di, void *virtual, vm_offset_t physical,
1697     size_t length)
1698 {
1699 	void *buf;
1700 
1701 	if (di->kdcomp != NULL) {
1702 		/* Bounce through a buffer to avoid CRC errors. */
1703 		if (length > di->maxiosize)
1704 			return (EINVAL);
1705 		buf = di->kdcomp->kdc_buf;
1706 		memmove(buf, virtual, length);
1707 		return (compressor_write(di->kdcomp->kdc_stream, buf, length));
1708 	}
1709 	return (_dump_append(di, virtual, physical, length));
1710 }
1711 
1712 /*
1713  * Write to the dump device at the specified offset.
1714  */
1715 int
1716 dump_write(struct dumperinfo *di, void *virtual, vm_offset_t physical,
1717     off_t offset, size_t length)
1718 {
1719 	int error;
1720 
1721 	error = dump_check_bounds(di, offset, length);
1722 	if (error != 0)
1723 		return (error);
1724 	return (di->dumper(di->priv, virtual, physical, offset, length));
1725 }
1726 
1727 /*
1728  * Perform kernel dump finalization: flush the compression stream, if necessary,
1729  * write the leading and trailing kernel dump headers now that we know the true
1730  * length of the dump, and optionally write the encryption key following the
1731  * leading header.
1732  */
1733 int
1734 dump_finish(struct dumperinfo *di, struct kerneldumpheader *kdh)
1735 {
1736 	int error;
1737 
1738 	if (di->kdcomp != NULL) {
1739 		error = compressor_flush(di->kdcomp->kdc_stream);
1740 		if (error == EAGAIN) {
1741 			/* We have residual data in di->blockbuf. */
1742 			error = _dump_append(di, di->blockbuf, 0, di->blocksize);
1743 			if (error == 0)
1744 				/* Compensate for _dump_append()'s adjustment. */
1745 				di->dumpoff -= di->blocksize - di->kdcomp->kdc_resid;
1746 			di->kdcomp->kdc_resid = 0;
1747 		}
1748 		if (error != 0)
1749 			return (error);
1750 
1751 		/*
1752 		 * We now know the size of the compressed dump, so update the
1753 		 * header accordingly and recompute parity.
1754 		 */
1755 		kdh->dumplength = htod64(di->dumpoff - di->origdumpoff);
1756 		kdh->parity = 0;
1757 		kdh->parity = kerneldump_parity(kdh);
1758 
1759 		compressor_reset(di->kdcomp->kdc_stream);
1760 	}
1761 
1762 	error = dump_write_headers(di, kdh);
1763 	if (error != 0)
1764 		return (error);
1765 
1766 	(void)dump_write(di, NULL, 0, 0, 0);
1767 	return (0);
1768 }
1769 
1770 void
1771 dump_init_header(const struct dumperinfo *di, struct kerneldumpheader *kdh,
1772     const char *magic, uint32_t archver, uint64_t dumplen)
1773 {
1774 	size_t dstsize;
1775 
1776 	bzero(kdh, sizeof(*kdh));
1777 	strlcpy(kdh->magic, magic, sizeof(kdh->magic));
1778 	strlcpy(kdh->architecture, MACHINE_ARCH, sizeof(kdh->architecture));
1779 	kdh->version = htod32(KERNELDUMPVERSION);
1780 	kdh->architectureversion = htod32(archver);
1781 	kdh->dumplength = htod64(dumplen);
1782 	kdh->dumpextent = kdh->dumplength;
1783 	kdh->dumptime = htod64(time_second);
1784 #ifdef EKCD
1785 	kdh->dumpkeysize = htod32(kerneldumpcrypto_dumpkeysize(di->kdcrypto));
1786 #else
1787 	kdh->dumpkeysize = 0;
1788 #endif
1789 	kdh->blocksize = htod32(di->blocksize);
1790 	strlcpy(kdh->hostname, prison0.pr_hostname, sizeof(kdh->hostname));
1791 	dstsize = sizeof(kdh->versionstring);
1792 	if (strlcpy(kdh->versionstring, version, dstsize) >= dstsize)
1793 		kdh->versionstring[dstsize - 2] = '\n';
1794 	if (panicstr != NULL)
1795 		strlcpy(kdh->panicstring, panicstr, sizeof(kdh->panicstring));
1796 	if (di->kdcomp != NULL)
1797 		kdh->compression = di->kdcomp->kdc_format;
1798 	kdh->parity = kerneldump_parity(kdh);
1799 }
1800 
1801 #ifdef DDB
1802 DB_SHOW_COMMAND(panic, db_show_panic)
1803 {
1804 
1805 	if (panicstr == NULL)
1806 		db_printf("panicstr not set\n");
1807 	else
1808 		db_printf("panic: %s\n", panicstr);
1809 }
1810 #endif
1811