xref: /freebsd/sys/kern/kern_sendfile.c (revision d65cd7a57bf0600b722afc770838a5d0c1c3a8e1)
1 /*-
2  * Copyright (c) 2013-2015 Gleb Smirnoff <glebius@FreeBSD.org>
3  * Copyright (c) 1998, David Greenman. All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_kern_tls.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/capsicum.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/ktls.h>
41 #include <sys/mutex.h>
42 #include <sys/malloc.h>
43 #include <sys/mman.h>
44 #include <sys/mount.h>
45 #include <sys/mbuf.h>
46 #include <sys/proc.h>
47 #include <sys/protosw.h>
48 #include <sys/rwlock.h>
49 #include <sys/sf_buf.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/syscallsubr.h>
53 #include <sys/sysctl.h>
54 #include <sys/sysproto.h>
55 #include <sys/vnode.h>
56 
57 #include <net/vnet.h>
58 #include <netinet/in.h>
59 #include <netinet/tcp.h>
60 
61 #include <security/audit/audit.h>
62 #include <security/mac/mac_framework.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_pager.h>
67 
68 static MALLOC_DEFINE(M_SENDFILE, "sendfile", "sendfile dynamic memory");
69 
70 #define	EXT_FLAG_SYNC		EXT_FLAG_VENDOR1
71 #define	EXT_FLAG_NOCACHE	EXT_FLAG_VENDOR2
72 #define	EXT_FLAG_CACHE_LAST	EXT_FLAG_VENDOR3
73 
74 /*
75  * Structure describing a single sendfile(2) I/O, which may consist of
76  * several underlying pager I/Os.
77  *
78  * The syscall context allocates the structure and initializes 'nios'
79  * to 1.  As sendfile_swapin() runs through pages and starts asynchronous
80  * paging operations, it increments 'nios'.
81  *
82  * Every I/O completion calls sendfile_iodone(), which decrements the 'nios',
83  * and the syscall also calls sendfile_iodone() after allocating all mbufs,
84  * linking them and sending to socket.  Whoever reaches zero 'nios' is
85  * responsible to * call pru_ready on the socket, to notify it of readyness
86  * of the data.
87  */
88 struct sf_io {
89 	volatile u_int	nios;
90 	u_int		error;
91 	int		npages;
92 	struct socket	*so;
93 	struct mbuf	*m;
94 	vm_object_t	obj;
95 	vm_pindex_t	pindex0;
96 #ifdef KERN_TLS
97 	struct ktls_session *tls;
98 #endif
99 	vm_page_t	pa[];
100 };
101 
102 /*
103  * Structure used to track requests with SF_SYNC flag.
104  */
105 struct sendfile_sync {
106 	struct mtx	mtx;
107 	struct cv	cv;
108 	unsigned	count;
109 	bool		waiting;
110 };
111 
112 static void
113 sendfile_sync_destroy(struct sendfile_sync *sfs)
114 {
115 	KASSERT(sfs->count == 0, ("sendfile sync %p still busy", sfs));
116 
117 	cv_destroy(&sfs->cv);
118 	mtx_destroy(&sfs->mtx);
119 	free(sfs, M_SENDFILE);
120 }
121 
122 static void
123 sendfile_sync_signal(struct sendfile_sync *sfs)
124 {
125 	mtx_lock(&sfs->mtx);
126 	KASSERT(sfs->count > 0, ("sendfile sync %p not busy", sfs));
127 	if (--sfs->count == 0) {
128 		if (!sfs->waiting) {
129 			/* The sendfile() waiter was interrupted by a signal. */
130 			sendfile_sync_destroy(sfs);
131 			return;
132 		} else {
133 			cv_signal(&sfs->cv);
134 		}
135 	}
136 	mtx_unlock(&sfs->mtx);
137 }
138 
139 counter_u64_t sfstat[sizeof(struct sfstat) / sizeof(uint64_t)];
140 
141 static void
142 sfstat_init(const void *unused)
143 {
144 
145 	COUNTER_ARRAY_ALLOC(sfstat, sizeof(struct sfstat) / sizeof(uint64_t),
146 	    M_WAITOK);
147 }
148 SYSINIT(sfstat, SI_SUB_MBUF, SI_ORDER_FIRST, sfstat_init, NULL);
149 
150 static int
151 sfstat_sysctl(SYSCTL_HANDLER_ARGS)
152 {
153 	struct sfstat s;
154 
155 	COUNTER_ARRAY_COPY(sfstat, &s, sizeof(s) / sizeof(uint64_t));
156 	if (req->newptr)
157 		COUNTER_ARRAY_ZERO(sfstat, sizeof(s) / sizeof(uint64_t));
158 	return (SYSCTL_OUT(req, &s, sizeof(s)));
159 }
160 SYSCTL_PROC(_kern_ipc, OID_AUTO, sfstat,
161     CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
162     sfstat_sysctl, "I",
163     "sendfile statistics");
164 
165 static void
166 sendfile_free_mext(struct mbuf *m)
167 {
168 	struct sf_buf *sf;
169 	vm_page_t pg;
170 	int flags;
171 
172 	KASSERT(m->m_flags & M_EXT && m->m_ext.ext_type == EXT_SFBUF,
173 	    ("%s: m %p !M_EXT or !EXT_SFBUF", __func__, m));
174 
175 	sf = m->m_ext.ext_arg1;
176 	pg = sf_buf_page(sf);
177 	flags = (m->m_ext.ext_flags & EXT_FLAG_NOCACHE) != 0 ? VPR_TRYFREE : 0;
178 
179 	sf_buf_free(sf);
180 	vm_page_release(pg, flags);
181 
182 	if (m->m_ext.ext_flags & EXT_FLAG_SYNC) {
183 		struct sendfile_sync *sfs = m->m_ext.ext_arg2;
184 		sendfile_sync_signal(sfs);
185 	}
186 }
187 
188 static void
189 sendfile_free_mext_pg(struct mbuf *m)
190 {
191 	vm_page_t pg;
192 	int flags, i;
193 	bool cache_last;
194 
195 	M_ASSERTEXTPG(m);
196 
197 	cache_last = m->m_ext.ext_flags & EXT_FLAG_CACHE_LAST;
198 	flags = (m->m_ext.ext_flags & EXT_FLAG_NOCACHE) != 0 ? VPR_TRYFREE : 0;
199 
200 	for (i = 0; i < m->m_epg_npgs; i++) {
201 		if (cache_last && i == m->m_epg_npgs - 1)
202 			flags = 0;
203 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
204 		vm_page_release(pg, flags);
205 	}
206 
207 	if (m->m_ext.ext_flags & EXT_FLAG_SYNC) {
208 		struct sendfile_sync *sfs = m->m_ext.ext_arg1;
209 		sendfile_sync_signal(sfs);
210 	}
211 }
212 
213 /*
214  * Helper function to calculate how much data to put into page i of n.
215  * Only first and last pages are special.
216  */
217 static inline off_t
218 xfsize(int i, int n, off_t off, off_t len)
219 {
220 
221 	if (i == 0)
222 		return (omin(PAGE_SIZE - (off & PAGE_MASK), len));
223 
224 	if (i == n - 1 && ((off + len) & PAGE_MASK) > 0)
225 		return ((off + len) & PAGE_MASK);
226 
227 	return (PAGE_SIZE);
228 }
229 
230 /*
231  * Helper function to get offset within object for i page.
232  */
233 static inline vm_ooffset_t
234 vmoff(int i, off_t off)
235 {
236 
237 	if (i == 0)
238 		return ((vm_ooffset_t)off);
239 
240 	return (trunc_page(off + i * PAGE_SIZE));
241 }
242 
243 /*
244  * Helper function used when allocation of a page or sf_buf failed.
245  * Pretend as if we don't have enough space, subtract xfsize() of
246  * all pages that failed.
247  */
248 static inline void
249 fixspace(int old, int new, off_t off, int *space)
250 {
251 
252 	KASSERT(old > new, ("%s: old %d new %d", __func__, old, new));
253 
254 	/* Subtract last one. */
255 	*space -= xfsize(old - 1, old, off, *space);
256 	old--;
257 
258 	if (new == old)
259 		/* There was only one page. */
260 		return;
261 
262 	/* Subtract first one. */
263 	if (new == 0) {
264 		*space -= xfsize(0, old, off, *space);
265 		new++;
266 	}
267 
268 	/* Rest of pages are full sized. */
269 	*space -= (old - new) * PAGE_SIZE;
270 
271 	KASSERT(*space >= 0, ("%s: space went backwards", __func__));
272 }
273 
274 /*
275  * Wait for all in-flight ios to complete, we must not unwire pages
276  * under them.
277  */
278 static void
279 sendfile_iowait(struct sf_io *sfio, const char *wmesg)
280 {
281 	while (atomic_load_int(&sfio->nios) != 1)
282 		pause(wmesg, 1);
283 }
284 
285 /*
286  * I/O completion callback.
287  */
288 static void
289 sendfile_iodone(void *arg, vm_page_t *pa, int count, int error)
290 {
291 	struct sf_io *sfio = arg;
292 	struct socket *so;
293 	int i;
294 
295 	if (error != 0) {
296 		sfio->error = error;
297 		/*
298 		 * Restore of the pg[] elements is done by
299 		 * sendfile_swapin().
300 		 */
301 	} else {
302 		/*
303 		 * Restore the valid page pointers.  They are already
304 		 * unbusied, but still wired.  For error != 0 case,
305 		 * sendfile_swapin() handles unbusy.
306 		 *
307 		 * XXXKIB since pages are only wired, and we do not
308 		 * own the object lock, other users might have
309 		 * invalidated them in meantime.  Similarly, after we
310 		 * unbusied the swapped-in pages, they can become
311 		 * invalid under us.
312 		 */
313 		MPASS(count == 0 || pa[0] != bogus_page);
314 		for (i = 0; i < count; i++) {
315 			if (pa[i] == bogus_page) {
316 				sfio->pa[(pa[0]->pindex - sfio->pindex0) + i] =
317 				    pa[i] = vm_page_relookup(sfio->obj,
318 				    pa[0]->pindex + i);
319 				KASSERT(pa[i] != NULL,
320 				    ("%s: page %p[%d] disappeared",
321 				    __func__, pa, i));
322 			} else {
323 				vm_page_xunbusy_unchecked(pa[i]);
324 			}
325 		}
326 	}
327 
328 	if (!refcount_release(&sfio->nios))
329 		return;
330 
331 #ifdef INVARIANTS
332 	for (i = 1; i < sfio->npages; i++) {
333 		if (sfio->pa[i] == NULL)
334 			break;
335 		KASSERT(vm_page_wired(sfio->pa[i]),
336 		    ("sfio %p page %d %p not wired", sfio, i, sfio->pa[i]));
337 		if (i == 0)
338 			continue;
339 		KASSERT(sfio->pa[0]->object == sfio->pa[i]->object,
340 		    ("sfio %p page %d %p wrong owner %p %p", sfio, i,
341 		    sfio->pa[i], sfio->pa[0]->object, sfio->pa[i]->object));
342 		KASSERT(sfio->pa[0]->pindex + i == sfio->pa[i]->pindex,
343 		    ("sfio %p page %d %p wrong index %jx %jx", sfio, i,
344 		    sfio->pa[i], (uintmax_t)sfio->pa[0]->pindex,
345 		    (uintmax_t)sfio->pa[i]->pindex));
346 	}
347 #endif
348 
349 	vm_object_pip_wakeup(sfio->obj);
350 
351 	if (sfio->m == NULL) {
352 		/*
353 		 * Either I/O operation failed, or we failed to allocate
354 		 * buffers, or we bailed out on first busy page, or we
355 		 * succeeded filling the request without any I/Os. Anyway,
356 		 * pru_send hadn't been executed - nothing had been sent
357 		 * to the socket yet.
358 		 */
359 		MPASS((curthread->td_pflags & TDP_KTHREAD) == 0);
360 		free(sfio, M_SENDFILE);
361 		return;
362 	}
363 
364 #if defined(KERN_TLS) && defined(INVARIANTS)
365 	if ((sfio->m->m_flags & M_EXTPG) != 0)
366 		KASSERT(sfio->tls == sfio->m->m_epg_tls,
367 		    ("TLS session mismatch"));
368 	else
369 		KASSERT(sfio->tls == NULL,
370 		    ("non-ext_pgs mbuf with TLS session"));
371 #endif
372 	so = sfio->so;
373 	CURVNET_SET(so->so_vnet);
374 	if (__predict_false(sfio->error)) {
375 		/*
376 		 * I/O operation failed.  The state of data in the socket
377 		 * is now inconsistent, and all what we can do is to tear
378 		 * it down. Protocol abort method would tear down protocol
379 		 * state, free all ready mbufs and detach not ready ones.
380 		 * We will free the mbufs corresponding to this I/O manually.
381 		 *
382 		 * The socket would be marked with EIO and made available
383 		 * for read, so that application receives EIO on next
384 		 * syscall and eventually closes the socket.
385 		 */
386 		so->so_proto->pr_usrreqs->pru_abort(so);
387 		so->so_error = EIO;
388 
389 		mb_free_notready(sfio->m, sfio->npages);
390 #ifdef KERN_TLS
391 	} else if (sfio->tls != NULL && sfio->tls->mode == TCP_TLS_MODE_SW) {
392 		/*
393 		 * I/O operation is complete, but we still need to
394 		 * encrypt.  We cannot do this in the interrupt thread
395 		 * of the disk controller, so forward the mbufs to a
396 		 * different thread.
397 		 *
398 		 * Donate the socket reference from sfio to rather
399 		 * than explicitly invoking soref().
400 		 */
401 		ktls_enqueue(sfio->m, so, sfio->npages);
402 		goto out_with_ref;
403 #endif
404 	} else
405 		(void)(so->so_proto->pr_usrreqs->pru_ready)(so, sfio->m,
406 		    sfio->npages);
407 
408 	SOCK_LOCK(so);
409 	sorele(so);
410 #ifdef KERN_TLS
411 out_with_ref:
412 #endif
413 	CURVNET_RESTORE();
414 	free(sfio, M_SENDFILE);
415 }
416 
417 /*
418  * Iterate through pages vector and request paging for non-valid pages.
419  */
420 static int
421 sendfile_swapin(vm_object_t obj, struct sf_io *sfio, int *nios, off_t off,
422     off_t len, int npages, int rhpages, int flags)
423 {
424 	vm_page_t *pa;
425 	int a, count, count1, grabbed, i, j, rv;
426 
427 	pa = sfio->pa;
428 	*nios = 0;
429 	flags = (flags & SF_NODISKIO) ? VM_ALLOC_NOWAIT : 0;
430 	sfio->pindex0 = OFF_TO_IDX(off);
431 
432 	/*
433 	 * First grab all the pages and wire them.  Note that we grab
434 	 * only required pages.  Readahead pages are dealt with later.
435 	 */
436 	grabbed = vm_page_grab_pages_unlocked(obj, OFF_TO_IDX(off),
437 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED | flags, pa, npages);
438 	if (grabbed < npages) {
439 		for (int i = grabbed; i < npages; i++)
440 			pa[i] = NULL;
441 		npages = grabbed;
442 		rhpages = 0;
443 	}
444 
445 	for (i = 0; i < npages;) {
446 		/* Skip valid pages. */
447 		if (vm_page_is_valid(pa[i], vmoff(i, off) & PAGE_MASK,
448 		    xfsize(i, npages, off, len))) {
449 			vm_page_xunbusy(pa[i]);
450 			SFSTAT_INC(sf_pages_valid);
451 			i++;
452 			continue;
453 		}
454 
455 		/*
456 		 * Next page is invalid.  Check if it belongs to pager.  It
457 		 * may not be there, which is a regular situation for shmem
458 		 * pager.  For vnode pager this happens only in case of
459 		 * a sparse file.
460 		 *
461 		 * Important feature of vm_pager_has_page() is the hint
462 		 * stored in 'a', about how many pages we can pagein after
463 		 * this page in a single I/O.
464 		 */
465 		VM_OBJECT_RLOCK(obj);
466 		if (!vm_pager_has_page(obj, OFF_TO_IDX(vmoff(i, off)), NULL,
467 		    &a)) {
468 			VM_OBJECT_RUNLOCK(obj);
469 			pmap_zero_page(pa[i]);
470 			vm_page_valid(pa[i]);
471 			MPASS(pa[i]->dirty == 0);
472 			vm_page_xunbusy(pa[i]);
473 			i++;
474 			continue;
475 		}
476 		VM_OBJECT_RUNLOCK(obj);
477 
478 		/*
479 		 * We want to pagein as many pages as possible, limited only
480 		 * by the 'a' hint and actual request.
481 		 */
482 		count = min(a + 1, npages - i);
483 
484 		/*
485 		 * We should not pagein into a valid page because
486 		 * there might be still unfinished write tracked by
487 		 * e.g. a buffer, thus we substitute any valid pages
488 		 * with the bogus one.
489 		 *
490 		 * We must not leave around xbusy pages which are not
491 		 * part of the run passed to vm_pager_getpages(),
492 		 * otherwise pager might deadlock waiting for the busy
493 		 * status of the page, e.g. if it constitues the
494 		 * buffer needed to validate other page.
495 		 *
496 		 * First trim the end of the run consisting of the
497 		 * valid pages, then replace the rest of the valid
498 		 * with bogus.
499 		 */
500 		count1 = count;
501 		for (j = i + count - 1; j > i; j--) {
502 			if (vm_page_is_valid(pa[j], vmoff(j, off) & PAGE_MASK,
503 			    xfsize(j, npages, off, len))) {
504 				vm_page_xunbusy(pa[j]);
505 				SFSTAT_INC(sf_pages_valid);
506 				count--;
507 			} else {
508 				break;
509 			}
510 		}
511 
512 		/*
513 		 * The last page in the run pa[i + count - 1] is
514 		 * guaranteed to be invalid by the trim above, so it
515 		 * is not replaced with bogus, thus -1 in the loop end
516 		 * condition.
517 		 */
518 		MPASS(pa[i + count - 1]->valid != VM_PAGE_BITS_ALL);
519 		for (j = i + 1; j < i + count - 1; j++) {
520 			if (vm_page_is_valid(pa[j], vmoff(j, off) & PAGE_MASK,
521 			    xfsize(j, npages, off, len))) {
522 				vm_page_xunbusy(pa[j]);
523 				SFSTAT_INC(sf_pages_valid);
524 				SFSTAT_INC(sf_pages_bogus);
525 				pa[j] = bogus_page;
526 			}
527 		}
528 
529 		refcount_acquire(&sfio->nios);
530 		rv = vm_pager_get_pages_async(obj, pa + i, count, NULL,
531 		    i + count == npages ? &rhpages : NULL,
532 		    &sendfile_iodone, sfio);
533 		if (__predict_false(rv != VM_PAGER_OK)) {
534 			sendfile_iowait(sfio, "sferrio");
535 
536 			/*
537 			 * Perform full pages recovery before returning EIO.
538 			 * Pages from 0 to npages are wired.
539 			 * Pages from (i + 1) to (i + count - 1) may be
540 			 * substituted to bogus page, and not busied.
541 			 * Pages from (i + count) to (i + count1 - 1) are
542 			 * not busied.
543 			 * Rest of the pages from i to npages are busied.
544 			 */
545 			for (j = 0; j < npages; j++) {
546 				if (j >= i + count && j < i + count1)
547 					;
548 				else if (j > i && j < i + count - 1 &&
549 				    pa[j] == bogus_page)
550 					pa[j] = vm_page_relookup(obj,
551 					    OFF_TO_IDX(vmoff(j, off)));
552 				else if (j >= i)
553 					vm_page_xunbusy(pa[j]);
554 				KASSERT(pa[j] != NULL && pa[j] != bogus_page,
555 				    ("%s: page %p[%d] I/O recovery failure",
556 				    __func__, pa, j));
557 				vm_page_unwire(pa[j], PQ_INACTIVE);
558 			}
559 			return (EIO);
560 		}
561 
562 		SFSTAT_INC(sf_iocnt);
563 		SFSTAT_ADD(sf_pages_read, count);
564 		if (i + count == npages)
565 			SFSTAT_ADD(sf_rhpages_read, rhpages);
566 
567 		i += count1;
568 		(*nios)++;
569 	}
570 
571 	if (*nios == 0 && npages != 0)
572 		SFSTAT_INC(sf_noiocnt);
573 
574 	return (0);
575 }
576 
577 static int
578 sendfile_getobj(struct thread *td, struct file *fp, vm_object_t *obj_res,
579     struct vnode **vp_res, struct shmfd **shmfd_res, off_t *obj_size,
580     int *bsize)
581 {
582 	struct vattr va;
583 	vm_object_t obj;
584 	struct vnode *vp;
585 	struct shmfd *shmfd;
586 	int error;
587 
588 	vp = *vp_res = NULL;
589 	obj = NULL;
590 	shmfd = *shmfd_res = NULL;
591 	*bsize = 0;
592 
593 	/*
594 	 * The file descriptor must be a regular file and have a
595 	 * backing VM object.
596 	 */
597 	if (fp->f_type == DTYPE_VNODE) {
598 		vp = fp->f_vnode;
599 		vn_lock(vp, LK_SHARED | LK_RETRY);
600 		if (vp->v_type != VREG) {
601 			error = EINVAL;
602 			goto out;
603 		}
604 		*bsize = vp->v_mount->mnt_stat.f_iosize;
605 		error = VOP_GETATTR(vp, &va, td->td_ucred);
606 		if (error != 0)
607 			goto out;
608 		*obj_size = va.va_size;
609 		obj = vp->v_object;
610 		if (obj == NULL) {
611 			error = EINVAL;
612 			goto out;
613 		}
614 	} else if (fp->f_type == DTYPE_SHM) {
615 		error = 0;
616 		shmfd = fp->f_data;
617 		obj = shmfd->shm_object;
618 		*obj_size = shmfd->shm_size;
619 	} else {
620 		error = EINVAL;
621 		goto out;
622 	}
623 
624 	VM_OBJECT_WLOCK(obj);
625 	if ((obj->flags & OBJ_DEAD) != 0) {
626 		VM_OBJECT_WUNLOCK(obj);
627 		error = EBADF;
628 		goto out;
629 	}
630 
631 	/*
632 	 * Temporarily increase the backing VM object's reference
633 	 * count so that a forced reclamation of its vnode does not
634 	 * immediately destroy it.
635 	 */
636 	vm_object_reference_locked(obj);
637 	VM_OBJECT_WUNLOCK(obj);
638 	*obj_res = obj;
639 	*vp_res = vp;
640 	*shmfd_res = shmfd;
641 
642 out:
643 	if (vp != NULL)
644 		VOP_UNLOCK(vp);
645 	return (error);
646 }
647 
648 static int
649 sendfile_getsock(struct thread *td, int s, struct file **sock_fp,
650     struct socket **so)
651 {
652 	int error;
653 
654 	*sock_fp = NULL;
655 	*so = NULL;
656 
657 	/*
658 	 * The socket must be a stream socket and connected.
659 	 */
660 	error = getsock_cap(td, s, &cap_send_rights,
661 	    sock_fp, NULL, NULL);
662 	if (error != 0)
663 		return (error);
664 	*so = (*sock_fp)->f_data;
665 	if ((*so)->so_type != SOCK_STREAM)
666 		return (EINVAL);
667 	/*
668 	 * SCTP one-to-one style sockets currently don't work with
669 	 * sendfile(). So indicate EINVAL for now.
670 	 */
671 	if ((*so)->so_proto->pr_protocol == IPPROTO_SCTP)
672 		return (EINVAL);
673 	if (SOLISTENING(*so))
674 		return (ENOTCONN);
675 	return (0);
676 }
677 
678 int
679 vn_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
680     struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
681     struct thread *td)
682 {
683 	struct file *sock_fp;
684 	struct vnode *vp;
685 	struct vm_object *obj;
686 	vm_page_t pga;
687 	struct socket *so;
688 #ifdef KERN_TLS
689 	struct ktls_session *tls;
690 #endif
691 	struct mbuf *m, *mh, *mhtail;
692 	struct sf_buf *sf;
693 	struct shmfd *shmfd;
694 	struct sendfile_sync *sfs;
695 	struct vattr va;
696 	off_t off, sbytes, rem, obj_size;
697 	int bsize, error, ext_pgs_idx, hdrlen, max_pgs, softerr;
698 #ifdef KERN_TLS
699 	int tls_enq_cnt;
700 #endif
701 	bool use_ext_pgs;
702 
703 	obj = NULL;
704 	so = NULL;
705 	m = mh = NULL;
706 	sfs = NULL;
707 #ifdef KERN_TLS
708 	tls = NULL;
709 #endif
710 	hdrlen = sbytes = 0;
711 	softerr = 0;
712 	use_ext_pgs = false;
713 
714 	error = sendfile_getobj(td, fp, &obj, &vp, &shmfd, &obj_size, &bsize);
715 	if (error != 0)
716 		return (error);
717 
718 	error = sendfile_getsock(td, sockfd, &sock_fp, &so);
719 	if (error != 0)
720 		goto out;
721 
722 #ifdef MAC
723 	error = mac_socket_check_send(td->td_ucred, so);
724 	if (error != 0)
725 		goto out;
726 #endif
727 
728 	SFSTAT_INC(sf_syscalls);
729 	SFSTAT_ADD(sf_rhpages_requested, SF_READAHEAD(flags));
730 
731 	if (flags & SF_SYNC) {
732 		sfs = malloc(sizeof(*sfs), M_SENDFILE, M_WAITOK | M_ZERO);
733 		mtx_init(&sfs->mtx, "sendfile", NULL, MTX_DEF);
734 		cv_init(&sfs->cv, "sendfile");
735 		sfs->waiting = true;
736 	}
737 
738 	rem = nbytes ? omin(nbytes, obj_size - offset) : obj_size - offset;
739 
740 	/*
741 	 * Protect against multiple writers to the socket.
742 	 *
743 	 * XXXRW: Historically this has assumed non-interruptibility, so now
744 	 * we implement that, but possibly shouldn't.
745 	 */
746 	(void)sblock(&so->so_snd, SBL_WAIT | SBL_NOINTR);
747 #ifdef KERN_TLS
748 	tls = ktls_hold(so->so_snd.sb_tls_info);
749 #endif
750 
751 	/*
752 	 * Loop through the pages of the file, starting with the requested
753 	 * offset. Get a file page (do I/O if necessary), map the file page
754 	 * into an sf_buf, attach an mbuf header to the sf_buf, and queue
755 	 * it on the socket.
756 	 * This is done in two loops.  The inner loop turns as many pages
757 	 * as it can, up to available socket buffer space, without blocking
758 	 * into mbufs to have it bulk delivered into the socket send buffer.
759 	 * The outer loop checks the state and available space of the socket
760 	 * and takes care of the overall progress.
761 	 */
762 	for (off = offset; rem > 0; ) {
763 		struct sf_io *sfio;
764 		vm_page_t *pa;
765 		struct mbuf *m0, *mtail;
766 		int nios, space, npages, rhpages;
767 
768 		mtail = NULL;
769 		/*
770 		 * Check the socket state for ongoing connection,
771 		 * no errors and space in socket buffer.
772 		 * If space is low allow for the remainder of the
773 		 * file to be processed if it fits the socket buffer.
774 		 * Otherwise block in waiting for sufficient space
775 		 * to proceed, or if the socket is nonblocking, return
776 		 * to userland with EAGAIN while reporting how far
777 		 * we've come.
778 		 * We wait until the socket buffer has significant free
779 		 * space to do bulk sends.  This makes good use of file
780 		 * system read ahead and allows packet segmentation
781 		 * offloading hardware to take over lots of work.  If
782 		 * we were not careful here we would send off only one
783 		 * sfbuf at a time.
784 		 */
785 		SOCKBUF_LOCK(&so->so_snd);
786 		if (so->so_snd.sb_lowat < so->so_snd.sb_hiwat / 2)
787 			so->so_snd.sb_lowat = so->so_snd.sb_hiwat / 2;
788 retry_space:
789 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
790 			error = EPIPE;
791 			SOCKBUF_UNLOCK(&so->so_snd);
792 			goto done;
793 		} else if (so->so_error) {
794 			error = so->so_error;
795 			so->so_error = 0;
796 			SOCKBUF_UNLOCK(&so->so_snd);
797 			goto done;
798 		}
799 		if ((so->so_state & SS_ISCONNECTED) == 0) {
800 			SOCKBUF_UNLOCK(&so->so_snd);
801 			error = ENOTCONN;
802 			goto done;
803 		}
804 
805 		space = sbspace(&so->so_snd);
806 		if (space < rem &&
807 		    (space <= 0 ||
808 		     space < so->so_snd.sb_lowat)) {
809 			if (so->so_state & SS_NBIO) {
810 				SOCKBUF_UNLOCK(&so->so_snd);
811 				error = EAGAIN;
812 				goto done;
813 			}
814 			/*
815 			 * sbwait drops the lock while sleeping.
816 			 * When we loop back to retry_space the
817 			 * state may have changed and we retest
818 			 * for it.
819 			 */
820 			error = sbwait(&so->so_snd);
821 			/*
822 			 * An error from sbwait usually indicates that we've
823 			 * been interrupted by a signal. If we've sent anything
824 			 * then return bytes sent, otherwise return the error.
825 			 */
826 			if (error != 0) {
827 				SOCKBUF_UNLOCK(&so->so_snd);
828 				goto done;
829 			}
830 			goto retry_space;
831 		}
832 		SOCKBUF_UNLOCK(&so->so_snd);
833 
834 		/*
835 		 * At the beginning of the first loop check if any headers
836 		 * are specified and copy them into mbufs.  Reduce space in
837 		 * the socket buffer by the size of the header mbuf chain.
838 		 * Clear hdr_uio here and hdrlen at the end of the first loop.
839 		 */
840 		if (hdr_uio != NULL && hdr_uio->uio_resid > 0) {
841 			hdr_uio->uio_td = td;
842 			hdr_uio->uio_rw = UIO_WRITE;
843 #ifdef KERN_TLS
844 			if (tls != NULL)
845 				mh = m_uiotombuf(hdr_uio, M_WAITOK, space,
846 				    tls->params.max_frame_len, M_EXTPG);
847 			else
848 #endif
849 				mh = m_uiotombuf(hdr_uio, M_WAITOK,
850 				    space, 0, 0);
851 			hdrlen = m_length(mh, &mhtail);
852 			space -= hdrlen;
853 			/*
854 			 * If header consumed all the socket buffer space,
855 			 * don't waste CPU cycles and jump to the end.
856 			 */
857 			if (space == 0) {
858 				sfio = NULL;
859 				nios = 0;
860 				goto prepend_header;
861 			}
862 			hdr_uio = NULL;
863 		}
864 
865 		if (vp != NULL) {
866 			error = vn_lock(vp, LK_SHARED);
867 			if (error != 0)
868 				goto done;
869 			error = VOP_GETATTR(vp, &va, td->td_ucred);
870 			if (error != 0 || off >= va.va_size) {
871 				VOP_UNLOCK(vp);
872 				goto done;
873 			}
874 			if (va.va_size != obj_size) {
875 				obj_size = va.va_size;
876 				rem = nbytes ?
877 				    omin(nbytes + offset, obj_size) : obj_size;
878 				rem -= off;
879 			}
880 		}
881 
882 		if (space > rem)
883 			space = rem;
884 		else if (space > PAGE_SIZE) {
885 			/*
886 			 * Use page boundaries when possible for large
887 			 * requests.
888 			 */
889 			if (off & PAGE_MASK)
890 				space -= (PAGE_SIZE - (off & PAGE_MASK));
891 			space = trunc_page(space);
892 			if (off & PAGE_MASK)
893 				space += (PAGE_SIZE - (off & PAGE_MASK));
894 		}
895 
896 		npages = howmany(space + (off & PAGE_MASK), PAGE_SIZE);
897 
898 		/*
899 		 * Calculate maximum allowed number of pages for readahead
900 		 * at this iteration.  If SF_USER_READAHEAD was set, we don't
901 		 * do any heuristics and use exactly the value supplied by
902 		 * application.  Otherwise, we allow readahead up to "rem".
903 		 * If application wants more, let it be, but there is no
904 		 * reason to go above MAXPHYS.  Also check against "obj_size",
905 		 * since vm_pager_has_page() can hint beyond EOF.
906 		 */
907 		if (flags & SF_USER_READAHEAD) {
908 			rhpages = SF_READAHEAD(flags);
909 		} else {
910 			rhpages = howmany(rem + (off & PAGE_MASK), PAGE_SIZE) -
911 			    npages;
912 			rhpages += SF_READAHEAD(flags);
913 		}
914 		rhpages = min(howmany(MAXPHYS, PAGE_SIZE), rhpages);
915 		rhpages = min(howmany(obj_size - trunc_page(off), PAGE_SIZE) -
916 		    npages, rhpages);
917 
918 		sfio = malloc(sizeof(struct sf_io) +
919 		    npages * sizeof(vm_page_t), M_SENDFILE, M_WAITOK);
920 		refcount_init(&sfio->nios, 1);
921 		sfio->obj = obj;
922 		sfio->error = 0;
923 		sfio->m = NULL;
924 #ifdef KERN_TLS
925 		/*
926 		 * This doesn't use ktls_hold() because sfio->m will
927 		 * also have a reference on 'tls' that will be valid
928 		 * for all of sfio's lifetime.
929 		 */
930 		sfio->tls = tls;
931 #endif
932 		vm_object_pip_add(obj, 1);
933 		error = sendfile_swapin(obj, sfio, &nios, off, space, npages,
934 		    rhpages, flags);
935 		if (error != 0) {
936 			if (vp != NULL)
937 				VOP_UNLOCK(vp);
938 			sendfile_iodone(sfio, NULL, 0, error);
939 			goto done;
940 		}
941 
942 		/*
943 		 * Loop and construct maximum sized mbuf chain to be bulk
944 		 * dumped into socket buffer.
945 		 */
946 		pa = sfio->pa;
947 
948 		/*
949 		 * Use unmapped mbufs if enabled for TCP.  Unmapped
950 		 * bufs are restricted to TCP as that is what has been
951 		 * tested.  In particular, unmapped mbufs have not
952 		 * been tested with UNIX-domain sockets.
953 		 *
954 		 * TLS frames always require unmapped mbufs.
955 		 */
956 		if ((mb_use_ext_pgs &&
957 		    so->so_proto->pr_protocol == IPPROTO_TCP)
958 #ifdef KERN_TLS
959 		    || tls != NULL
960 #endif
961 		    ) {
962 			use_ext_pgs = true;
963 #ifdef KERN_TLS
964 			if (tls != NULL)
965 				max_pgs = num_pages(tls->params.max_frame_len);
966 			else
967 #endif
968 				max_pgs = MBUF_PEXT_MAX_PGS;
969 
970 			/* Start at last index, to wrap on first use. */
971 			ext_pgs_idx = max_pgs - 1;
972 		}
973 
974 		for (int i = 0; i < npages; i++) {
975 			/*
976 			 * If a page wasn't grabbed successfully, then
977 			 * trim the array. Can happen only with SF_NODISKIO.
978 			 */
979 			if (pa[i] == NULL) {
980 				SFSTAT_INC(sf_busy);
981 				fixspace(npages, i, off, &space);
982 				npages = i;
983 				softerr = EBUSY;
984 				break;
985 			}
986 			pga = pa[i];
987 			if (pga == bogus_page)
988 				pga = vm_page_relookup(obj, sfio->pindex0 + i);
989 
990 			if (use_ext_pgs) {
991 				off_t xfs;
992 
993 				ext_pgs_idx++;
994 				if (ext_pgs_idx == max_pgs) {
995 					m0 = mb_alloc_ext_pgs(M_WAITOK,
996 					    sendfile_free_mext_pg);
997 
998 					if (flags & SF_NOCACHE) {
999 						m0->m_ext.ext_flags |=
1000 						    EXT_FLAG_NOCACHE;
1001 
1002 						/*
1003 						 * See comment below regarding
1004 						 * ignoring SF_NOCACHE for the
1005 						 * last page.
1006 						 */
1007 						if ((npages - i <= max_pgs) &&
1008 						    ((off + space) & PAGE_MASK) &&
1009 						    (rem > space || rhpages > 0))
1010 							m0->m_ext.ext_flags |=
1011 							    EXT_FLAG_CACHE_LAST;
1012 					}
1013 					if (sfs != NULL) {
1014 						m0->m_ext.ext_flags |=
1015 						    EXT_FLAG_SYNC;
1016 						m0->m_ext.ext_arg1 = sfs;
1017 						mtx_lock(&sfs->mtx);
1018 						sfs->count++;
1019 						mtx_unlock(&sfs->mtx);
1020 					}
1021 					ext_pgs_idx = 0;
1022 
1023 					/* Append to mbuf chain. */
1024 					if (mtail != NULL)
1025 						mtail->m_next = m0;
1026 					else
1027 						m = m0;
1028 					mtail = m0;
1029 					m0->m_epg_1st_off =
1030 					    vmoff(i, off) & PAGE_MASK;
1031 				}
1032 				if (nios) {
1033 					mtail->m_flags |= M_NOTREADY;
1034 					m0->m_epg_nrdy++;
1035 				}
1036 
1037 				m0->m_epg_pa[ext_pgs_idx] = VM_PAGE_TO_PHYS(pga);
1038 				m0->m_epg_npgs++;
1039 				xfs = xfsize(i, npages, off, space);
1040 				m0->m_epg_last_len = xfs;
1041 				MBUF_EXT_PGS_ASSERT_SANITY(m0);
1042 				mtail->m_len += xfs;
1043 				mtail->m_ext.ext_size += PAGE_SIZE;
1044 				continue;
1045 			}
1046 
1047 			/*
1048 			 * Get a sendfile buf.  When allocating the
1049 			 * first buffer for mbuf chain, we usually
1050 			 * wait as long as necessary, but this wait
1051 			 * can be interrupted.  For consequent
1052 			 * buffers, do not sleep, since several
1053 			 * threads might exhaust the buffers and then
1054 			 * deadlock.
1055 			 */
1056 			sf = sf_buf_alloc(pga,
1057 			    m != NULL ? SFB_NOWAIT : SFB_CATCH);
1058 			if (sf == NULL) {
1059 				SFSTAT_INC(sf_allocfail);
1060 				sendfile_iowait(sfio, "sfnosf");
1061 				for (int j = i; j < npages; j++)
1062 					vm_page_unwire(pa[j], PQ_INACTIVE);
1063 				if (m == NULL)
1064 					softerr = ENOBUFS;
1065 				fixspace(npages, i, off, &space);
1066 				npages = i;
1067 				break;
1068 			}
1069 
1070 			m0 = m_get(M_WAITOK, MT_DATA);
1071 			m0->m_ext.ext_buf = (char *)sf_buf_kva(sf);
1072 			m0->m_ext.ext_size = PAGE_SIZE;
1073 			m0->m_ext.ext_arg1 = sf;
1074 			m0->m_ext.ext_type = EXT_SFBUF;
1075 			m0->m_ext.ext_flags = EXT_FLAG_EMBREF;
1076 			m0->m_ext.ext_free = sendfile_free_mext;
1077 			/*
1078 			 * SF_NOCACHE sets the page as being freed upon send.
1079 			 * However, we ignore it for the last page in 'space',
1080 			 * if the page is truncated, and we got more data to
1081 			 * send (rem > space), or if we have readahead
1082 			 * configured (rhpages > 0).
1083 			 */
1084 			if ((flags & SF_NOCACHE) &&
1085 			    (i != npages - 1 ||
1086 			    !((off + space) & PAGE_MASK) ||
1087 			    !(rem > space || rhpages > 0)))
1088 				m0->m_ext.ext_flags |= EXT_FLAG_NOCACHE;
1089 			if (sfs != NULL) {
1090 				m0->m_ext.ext_flags |= EXT_FLAG_SYNC;
1091 				m0->m_ext.ext_arg2 = sfs;
1092 				mtx_lock(&sfs->mtx);
1093 				sfs->count++;
1094 				mtx_unlock(&sfs->mtx);
1095 			}
1096 			m0->m_ext.ext_count = 1;
1097 			m0->m_flags |= (M_EXT | M_RDONLY);
1098 			if (nios)
1099 				m0->m_flags |= M_NOTREADY;
1100 			m0->m_data = (char *)sf_buf_kva(sf) +
1101 			    (vmoff(i, off) & PAGE_MASK);
1102 			m0->m_len = xfsize(i, npages, off, space);
1103 
1104 			/* Append to mbuf chain. */
1105 			if (mtail != NULL)
1106 				mtail->m_next = m0;
1107 			else
1108 				m = m0;
1109 			mtail = m0;
1110 		}
1111 
1112 		if (vp != NULL)
1113 			VOP_UNLOCK(vp);
1114 
1115 		/* Keep track of bytes processed. */
1116 		off += space;
1117 		rem -= space;
1118 
1119 		/*
1120 		 * Prepend header, if any.  Save pointer to first mbuf
1121 		 * with a page.
1122 		 */
1123 		if (hdrlen) {
1124 prepend_header:
1125 			m0 = mhtail->m_next = m;
1126 			m = mh;
1127 			mh = NULL;
1128 		} else
1129 			m0 = m;
1130 
1131 		if (m == NULL) {
1132 			KASSERT(softerr, ("%s: m NULL, no error", __func__));
1133 			error = softerr;
1134 			sendfile_iodone(sfio, NULL, 0, 0);
1135 			goto done;
1136 		}
1137 
1138 		/* Add the buffer chain to the socket buffer. */
1139 		KASSERT(m_length(m, NULL) == space + hdrlen,
1140 		    ("%s: mlen %u space %d hdrlen %d",
1141 		    __func__, m_length(m, NULL), space, hdrlen));
1142 
1143 		CURVNET_SET(so->so_vnet);
1144 #ifdef KERN_TLS
1145 		if (tls != NULL)
1146 			ktls_frame(m, tls, &tls_enq_cnt, TLS_RLTYPE_APP);
1147 #endif
1148 		if (nios == 0) {
1149 			/*
1150 			 * If sendfile_swapin() didn't initiate any I/Os,
1151 			 * which happens if all data is cached in VM, or if
1152 			 * the header consumed all socket buffer space and
1153 			 * sfio is NULL, then we can send data right now
1154 			 * without the PRUS_NOTREADY flag.
1155 			 */
1156 			if (sfio != NULL)
1157 				sendfile_iodone(sfio, NULL, 0, 0);
1158 #ifdef KERN_TLS
1159 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
1160 				error = (*so->so_proto->pr_usrreqs->pru_send)
1161 				    (so, PRUS_NOTREADY, m, NULL, NULL, td);
1162 				soref(so);
1163 				ktls_enqueue(m, so, tls_enq_cnt);
1164 			} else
1165 #endif
1166 				error = (*so->so_proto->pr_usrreqs->pru_send)
1167 				    (so, 0, m, NULL, NULL, td);
1168 		} else {
1169 			sfio->so = so;
1170 			sfio->m = m0;
1171 			sfio->npages = npages;
1172 			soref(so);
1173 			error = (*so->so_proto->pr_usrreqs->pru_send)
1174 			    (so, PRUS_NOTREADY, m, NULL, NULL, td);
1175 			sendfile_iodone(sfio, NULL, 0, 0);
1176 		}
1177 		CURVNET_RESTORE();
1178 
1179 		m = NULL;	/* pru_send always consumes */
1180 		if (error)
1181 			goto done;
1182 		sbytes += space + hdrlen;
1183 		if (hdrlen)
1184 			hdrlen = 0;
1185 		if (softerr) {
1186 			error = softerr;
1187 			goto done;
1188 		}
1189 	}
1190 
1191 	/*
1192 	 * Send trailers. Wimp out and use writev(2).
1193 	 */
1194 	if (trl_uio != NULL) {
1195 		sbunlock(&so->so_snd);
1196 		error = kern_writev(td, sockfd, trl_uio);
1197 		if (error == 0)
1198 			sbytes += td->td_retval[0];
1199 		goto out;
1200 	}
1201 
1202 done:
1203 	sbunlock(&so->so_snd);
1204 out:
1205 	/*
1206 	 * If there was no error we have to clear td->td_retval[0]
1207 	 * because it may have been set by writev.
1208 	 */
1209 	if (error == 0) {
1210 		td->td_retval[0] = 0;
1211 	}
1212 	if (sent != NULL) {
1213 		(*sent) = sbytes;
1214 	}
1215 	if (obj != NULL)
1216 		vm_object_deallocate(obj);
1217 	if (so)
1218 		fdrop(sock_fp, td);
1219 	if (m)
1220 		m_freem(m);
1221 	if (mh)
1222 		m_freem(mh);
1223 
1224 	if (sfs != NULL) {
1225 		mtx_lock(&sfs->mtx);
1226 		if (sfs->count != 0)
1227 			error = cv_wait_sig(&sfs->cv, &sfs->mtx);
1228 		if (sfs->count == 0) {
1229 			sendfile_sync_destroy(sfs);
1230 		} else {
1231 			sfs->waiting = false;
1232 			mtx_unlock(&sfs->mtx);
1233 		}
1234 	}
1235 #ifdef KERN_TLS
1236 	if (tls != NULL)
1237 		ktls_free(tls);
1238 #endif
1239 
1240 	if (error == ERESTART)
1241 		error = EINTR;
1242 
1243 	return (error);
1244 }
1245 
1246 static int
1247 sendfile(struct thread *td, struct sendfile_args *uap, int compat)
1248 {
1249 	struct sf_hdtr hdtr;
1250 	struct uio *hdr_uio, *trl_uio;
1251 	struct file *fp;
1252 	off_t sbytes;
1253 	int error;
1254 
1255 	/*
1256 	 * File offset must be positive.  If it goes beyond EOF
1257 	 * we send only the header/trailer and no payload data.
1258 	 */
1259 	if (uap->offset < 0)
1260 		return (EINVAL);
1261 
1262 	sbytes = 0;
1263 	hdr_uio = trl_uio = NULL;
1264 
1265 	if (uap->hdtr != NULL) {
1266 		error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
1267 		if (error != 0)
1268 			goto out;
1269 		if (hdtr.headers != NULL) {
1270 			error = copyinuio(hdtr.headers, hdtr.hdr_cnt,
1271 			    &hdr_uio);
1272 			if (error != 0)
1273 				goto out;
1274 #ifdef COMPAT_FREEBSD4
1275 			/*
1276 			 * In FreeBSD < 5.0 the nbytes to send also included
1277 			 * the header.  If compat is specified subtract the
1278 			 * header size from nbytes.
1279 			 */
1280 			if (compat) {
1281 				if (uap->nbytes > hdr_uio->uio_resid)
1282 					uap->nbytes -= hdr_uio->uio_resid;
1283 				else
1284 					uap->nbytes = 0;
1285 			}
1286 #endif
1287 		}
1288 		if (hdtr.trailers != NULL) {
1289 			error = copyinuio(hdtr.trailers, hdtr.trl_cnt,
1290 			    &trl_uio);
1291 			if (error != 0)
1292 				goto out;
1293 		}
1294 	}
1295 
1296 	AUDIT_ARG_FD(uap->fd);
1297 
1298 	/*
1299 	 * sendfile(2) can start at any offset within a file so we require
1300 	 * CAP_READ+CAP_SEEK = CAP_PREAD.
1301 	 */
1302 	if ((error = fget_read(td, uap->fd, &cap_pread_rights, &fp)) != 0)
1303 		goto out;
1304 
1305 	error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, uap->offset,
1306 	    uap->nbytes, &sbytes, uap->flags, td);
1307 	fdrop(fp, td);
1308 
1309 	if (uap->sbytes != NULL)
1310 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
1311 
1312 out:
1313 	free(hdr_uio, M_IOV);
1314 	free(trl_uio, M_IOV);
1315 	return (error);
1316 }
1317 
1318 /*
1319  * sendfile(2)
1320  *
1321  * int sendfile(int fd, int s, off_t offset, size_t nbytes,
1322  *       struct sf_hdtr *hdtr, off_t *sbytes, int flags)
1323  *
1324  * Send a file specified by 'fd' and starting at 'offset' to a socket
1325  * specified by 's'. Send only 'nbytes' of the file or until EOF if nbytes ==
1326  * 0.  Optionally add a header and/or trailer to the socket output.  If
1327  * specified, write the total number of bytes sent into *sbytes.
1328  */
1329 int
1330 sys_sendfile(struct thread *td, struct sendfile_args *uap)
1331 {
1332 
1333 	return (sendfile(td, uap, 0));
1334 }
1335 
1336 #ifdef COMPAT_FREEBSD4
1337 int
1338 freebsd4_sendfile(struct thread *td, struct freebsd4_sendfile_args *uap)
1339 {
1340 	struct sendfile_args args;
1341 
1342 	args.fd = uap->fd;
1343 	args.s = uap->s;
1344 	args.offset = uap->offset;
1345 	args.nbytes = uap->nbytes;
1346 	args.hdtr = uap->hdtr;
1347 	args.sbytes = uap->sbytes;
1348 	args.flags = uap->flags;
1349 
1350 	return (sendfile(td, &args, 1));
1351 }
1352 #endif /* COMPAT_FREEBSD4 */
1353