xref: /freebsd/sys/kern/kern_sendfile.c (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 /*-
2  * Copyright (c) 2013-2015 Gleb Smirnoff <glebius@FreeBSD.org>
3  * Copyright (c) 1998, David Greenman. All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_kern_tls.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/capsicum.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/ktls.h>
41 #include <sys/mutex.h>
42 #include <sys/malloc.h>
43 #include <sys/mman.h>
44 #include <sys/mount.h>
45 #include <sys/mbuf.h>
46 #include <sys/proc.h>
47 #include <sys/protosw.h>
48 #include <sys/rwlock.h>
49 #include <sys/sf_buf.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/syscallsubr.h>
53 #include <sys/sysctl.h>
54 #include <sys/sysproto.h>
55 #include <sys/vnode.h>
56 
57 #include <net/vnet.h>
58 #include <netinet/in.h>
59 #include <netinet/tcp.h>
60 
61 #include <security/audit/audit.h>
62 #include <security/mac/mac_framework.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_pager.h>
67 
68 static MALLOC_DEFINE(M_SENDFILE, "sendfile", "sendfile dynamic memory");
69 
70 #define	EXT_FLAG_SYNC		EXT_FLAG_VENDOR1
71 #define	EXT_FLAG_NOCACHE	EXT_FLAG_VENDOR2
72 #define	EXT_FLAG_CACHE_LAST	EXT_FLAG_VENDOR3
73 
74 /*
75  * Structure describing a single sendfile(2) I/O, which may consist of
76  * several underlying pager I/Os.
77  *
78  * The syscall context allocates the structure and initializes 'nios'
79  * to 1.  As sendfile_swapin() runs through pages and starts asynchronous
80  * paging operations, it increments 'nios'.
81  *
82  * Every I/O completion calls sendfile_iodone(), which decrements the 'nios',
83  * and the syscall also calls sendfile_iodone() after allocating all mbufs,
84  * linking them and sending to socket.  Whoever reaches zero 'nios' is
85  * responsible to * call pru_ready on the socket, to notify it of readyness
86  * of the data.
87  */
88 struct sf_io {
89 	volatile u_int	nios;
90 	u_int		error;
91 	int		npages;
92 	struct socket	*so;
93 	struct mbuf	*m;
94 	vm_object_t	obj;
95 	vm_pindex_t	pindex0;
96 #ifdef KERN_TLS
97 	struct ktls_session *tls;
98 #endif
99 	vm_page_t	pa[];
100 };
101 
102 /*
103  * Structure used to track requests with SF_SYNC flag.
104  */
105 struct sendfile_sync {
106 	struct mtx	mtx;
107 	struct cv	cv;
108 	unsigned	count;
109 	bool		waiting;
110 };
111 
112 static void
113 sendfile_sync_destroy(struct sendfile_sync *sfs)
114 {
115 	KASSERT(sfs->count == 0, ("sendfile sync %p still busy", sfs));
116 
117 	cv_destroy(&sfs->cv);
118 	mtx_destroy(&sfs->mtx);
119 	free(sfs, M_SENDFILE);
120 }
121 
122 static void
123 sendfile_sync_signal(struct sendfile_sync *sfs)
124 {
125 	mtx_lock(&sfs->mtx);
126 	KASSERT(sfs->count > 0, ("sendfile sync %p not busy", sfs));
127 	if (--sfs->count == 0) {
128 		if (!sfs->waiting) {
129 			/* The sendfile() waiter was interrupted by a signal. */
130 			sendfile_sync_destroy(sfs);
131 			return;
132 		} else {
133 			cv_signal(&sfs->cv);
134 		}
135 	}
136 	mtx_unlock(&sfs->mtx);
137 }
138 
139 counter_u64_t sfstat[sizeof(struct sfstat) / sizeof(uint64_t)];
140 
141 static void
142 sfstat_init(const void *unused)
143 {
144 
145 	COUNTER_ARRAY_ALLOC(sfstat, sizeof(struct sfstat) / sizeof(uint64_t),
146 	    M_WAITOK);
147 }
148 SYSINIT(sfstat, SI_SUB_MBUF, SI_ORDER_FIRST, sfstat_init, NULL);
149 
150 static int
151 sfstat_sysctl(SYSCTL_HANDLER_ARGS)
152 {
153 	struct sfstat s;
154 
155 	COUNTER_ARRAY_COPY(sfstat, &s, sizeof(s) / sizeof(uint64_t));
156 	if (req->newptr)
157 		COUNTER_ARRAY_ZERO(sfstat, sizeof(s) / sizeof(uint64_t));
158 	return (SYSCTL_OUT(req, &s, sizeof(s)));
159 }
160 SYSCTL_PROC(_kern_ipc, OID_AUTO, sfstat,
161     CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
162     sfstat_sysctl, "I",
163     "sendfile statistics");
164 
165 static void
166 sendfile_free_mext(struct mbuf *m)
167 {
168 	struct sf_buf *sf;
169 	vm_page_t pg;
170 	int flags;
171 
172 	KASSERT(m->m_flags & M_EXT && m->m_ext.ext_type == EXT_SFBUF,
173 	    ("%s: m %p !M_EXT or !EXT_SFBUF", __func__, m));
174 
175 	sf = m->m_ext.ext_arg1;
176 	pg = sf_buf_page(sf);
177 	flags = (m->m_ext.ext_flags & EXT_FLAG_NOCACHE) != 0 ? VPR_TRYFREE : 0;
178 
179 	sf_buf_free(sf);
180 	vm_page_release(pg, flags);
181 
182 	if (m->m_ext.ext_flags & EXT_FLAG_SYNC) {
183 		struct sendfile_sync *sfs = m->m_ext.ext_arg2;
184 		sendfile_sync_signal(sfs);
185 	}
186 }
187 
188 static void
189 sendfile_free_mext_pg(struct mbuf *m)
190 {
191 	struct mbuf_ext_pgs *ext_pgs;
192 	vm_page_t pg;
193 	int flags, i;
194 	bool cache_last;
195 
196 	KASSERT(m->m_flags & M_EXT && m->m_ext.ext_type == EXT_PGS,
197 	    ("%s: m %p !M_EXT or !EXT_PGS", __func__, m));
198 
199 	cache_last = m->m_ext.ext_flags & EXT_FLAG_CACHE_LAST;
200 	ext_pgs = &m->m_ext_pgs;
201 	flags = (m->m_ext.ext_flags & EXT_FLAG_NOCACHE) != 0 ? VPR_TRYFREE : 0;
202 
203 	for (i = 0; i < ext_pgs->npgs; i++) {
204 		if (cache_last && i == ext_pgs->npgs - 1)
205 			flags = 0;
206 		pg = PHYS_TO_VM_PAGE(ext_pgs->m_epg_pa[i]);
207 		vm_page_release(pg, flags);
208 	}
209 
210 	if (m->m_ext.ext_flags & EXT_FLAG_SYNC) {
211 		struct sendfile_sync *sfs = m->m_ext.ext_arg1;
212 		sendfile_sync_signal(sfs);
213 	}
214 }
215 
216 /*
217  * Helper function to calculate how much data to put into page i of n.
218  * Only first and last pages are special.
219  */
220 static inline off_t
221 xfsize(int i, int n, off_t off, off_t len)
222 {
223 
224 	if (i == 0)
225 		return (omin(PAGE_SIZE - (off & PAGE_MASK), len));
226 
227 	if (i == n - 1 && ((off + len) & PAGE_MASK) > 0)
228 		return ((off + len) & PAGE_MASK);
229 
230 	return (PAGE_SIZE);
231 }
232 
233 /*
234  * Helper function to get offset within object for i page.
235  */
236 static inline vm_ooffset_t
237 vmoff(int i, off_t off)
238 {
239 
240 	if (i == 0)
241 		return ((vm_ooffset_t)off);
242 
243 	return (trunc_page(off + i * PAGE_SIZE));
244 }
245 
246 /*
247  * Helper function used when allocation of a page or sf_buf failed.
248  * Pretend as if we don't have enough space, subtract xfsize() of
249  * all pages that failed.
250  */
251 static inline void
252 fixspace(int old, int new, off_t off, int *space)
253 {
254 
255 	KASSERT(old > new, ("%s: old %d new %d", __func__, old, new));
256 
257 	/* Subtract last one. */
258 	*space -= xfsize(old - 1, old, off, *space);
259 	old--;
260 
261 	if (new == old)
262 		/* There was only one page. */
263 		return;
264 
265 	/* Subtract first one. */
266 	if (new == 0) {
267 		*space -= xfsize(0, old, off, *space);
268 		new++;
269 	}
270 
271 	/* Rest of pages are full sized. */
272 	*space -= (old - new) * PAGE_SIZE;
273 
274 	KASSERT(*space >= 0, ("%s: space went backwards", __func__));
275 }
276 
277 /*
278  * Wait for all in-flight ios to complete, we must not unwire pages
279  * under them.
280  */
281 static void
282 sendfile_iowait(struct sf_io *sfio, const char *wmesg)
283 {
284 	while (atomic_load_int(&sfio->nios) != 1)
285 		pause(wmesg, 1);
286 }
287 
288 /*
289  * I/O completion callback.
290  */
291 static void
292 sendfile_iodone(void *arg, vm_page_t *pa, int count, int error)
293 {
294 	struct sf_io *sfio = arg;
295 	struct socket *so;
296 	int i;
297 
298 	if (error != 0) {
299 		sfio->error = error;
300 		/*
301 		 * Restore of the pg[] elements is done by
302 		 * sendfile_swapin().
303 		 */
304 	} else {
305 		/*
306 		 * Restore the valid page pointers.  They are already
307 		 * unbusied, but still wired.  For error != 0 case,
308 		 * sendfile_swapin() handles unbusy.
309 		 *
310 		 * XXXKIB since pages are only wired, and we do not
311 		 * own the object lock, other users might have
312 		 * invalidated them in meantime.  Similarly, after we
313 		 * unbusied the swapped-in pages, they can become
314 		 * invalid under us.
315 		 */
316 		MPASS(count == 0 || pa[0] != bogus_page);
317 		for (i = 0; i < count; i++) {
318 			if (pa[i] == bogus_page) {
319 				sfio->pa[(pa[0]->pindex - sfio->pindex0) + i] =
320 				    pa[i] = vm_page_relookup(sfio->obj,
321 				    pa[0]->pindex + i);
322 				KASSERT(pa[i] != NULL,
323 				    ("%s: page %p[%d] disappeared",
324 				    __func__, pa, i));
325 			} else {
326 				vm_page_xunbusy_unchecked(pa[i]);
327 			}
328 		}
329 	}
330 
331 	if (!refcount_release(&sfio->nios))
332 		return;
333 
334 #ifdef INVARIANTS
335 	for (i = 1; i < sfio->npages; i++) {
336 		if (sfio->pa[i] == NULL)
337 			break;
338 		KASSERT(vm_page_wired(sfio->pa[i]),
339 		    ("sfio %p page %d %p not wired", sfio, i, sfio->pa[i]));
340 		if (i == 0)
341 			continue;
342 		KASSERT(sfio->pa[0]->object == sfio->pa[i]->object,
343 		    ("sfio %p page %d %p wrong owner %p %p", sfio, i,
344 		    sfio->pa[i], sfio->pa[0]->object, sfio->pa[i]->object));
345 		KASSERT(sfio->pa[0]->pindex + i == sfio->pa[i]->pindex,
346 		    ("sfio %p page %d %p wrong index %jx %jx", sfio, i,
347 		    sfio->pa[i], (uintmax_t)sfio->pa[0]->pindex,
348 		    (uintmax_t)sfio->pa[i]->pindex));
349 	}
350 #endif
351 
352 	vm_object_pip_wakeup(sfio->obj);
353 
354 	if (sfio->m == NULL) {
355 		/*
356 		 * Either I/O operation failed, or we failed to allocate
357 		 * buffers, or we bailed out on first busy page, or we
358 		 * succeeded filling the request without any I/Os. Anyway,
359 		 * pru_send hadn't been executed - nothing had been sent
360 		 * to the socket yet.
361 		 */
362 		MPASS((curthread->td_pflags & TDP_KTHREAD) == 0);
363 		free(sfio, M_SENDFILE);
364 		return;
365 	}
366 
367 #if defined(KERN_TLS) && defined(INVARIANTS)
368 	if ((sfio->m->m_flags & M_EXT) != 0 &&
369 	    sfio->m->m_ext.ext_type == EXT_PGS)
370 		KASSERT(sfio->tls == sfio->m->m_ext_pgs.tls,
371 		    ("TLS session mismatch"));
372 	else
373 		KASSERT(sfio->tls == NULL,
374 		    ("non-ext_pgs mbuf with TLS session"));
375 #endif
376 	so = sfio->so;
377 	CURVNET_SET(so->so_vnet);
378 	if (__predict_false(sfio->error)) {
379 		/*
380 		 * I/O operation failed.  The state of data in the socket
381 		 * is now inconsistent, and all what we can do is to tear
382 		 * it down. Protocol abort method would tear down protocol
383 		 * state, free all ready mbufs and detach not ready ones.
384 		 * We will free the mbufs corresponding to this I/O manually.
385 		 *
386 		 * The socket would be marked with EIO and made available
387 		 * for read, so that application receives EIO on next
388 		 * syscall and eventually closes the socket.
389 		 */
390 		so->so_proto->pr_usrreqs->pru_abort(so);
391 		so->so_error = EIO;
392 
393 		mb_free_notready(sfio->m, sfio->npages);
394 #ifdef KERN_TLS
395 	} else if (sfio->tls != NULL && sfio->tls->mode == TCP_TLS_MODE_SW) {
396 		/*
397 		 * I/O operation is complete, but we still need to
398 		 * encrypt.  We cannot do this in the interrupt thread
399 		 * of the disk controller, so forward the mbufs to a
400 		 * different thread.
401 		 *
402 		 * Donate the socket reference from sfio to rather
403 		 * than explicitly invoking soref().
404 		 */
405 		ktls_enqueue(sfio->m, so, sfio->npages);
406 		goto out_with_ref;
407 #endif
408 	} else
409 		(void)(so->so_proto->pr_usrreqs->pru_ready)(so, sfio->m,
410 		    sfio->npages);
411 
412 	SOCK_LOCK(so);
413 	sorele(so);
414 #ifdef KERN_TLS
415 out_with_ref:
416 #endif
417 	CURVNET_RESTORE();
418 	free(sfio, M_SENDFILE);
419 }
420 
421 /*
422  * Iterate through pages vector and request paging for non-valid pages.
423  */
424 static int
425 sendfile_swapin(vm_object_t obj, struct sf_io *sfio, int *nios, off_t off,
426     off_t len, int npages, int rhpages, int flags)
427 {
428 	vm_page_t *pa;
429 	int a, count, count1, grabbed, i, j, rv;
430 
431 	pa = sfio->pa;
432 	*nios = 0;
433 	flags = (flags & SF_NODISKIO) ? VM_ALLOC_NOWAIT : 0;
434 	sfio->pindex0 = OFF_TO_IDX(off);
435 
436 	/*
437 	 * First grab all the pages and wire them.  Note that we grab
438 	 * only required pages.  Readahead pages are dealt with later.
439 	 */
440 	grabbed = vm_page_grab_pages_unlocked(obj, OFF_TO_IDX(off),
441 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED | flags, pa, npages);
442 	if (grabbed < npages) {
443 		for (int i = grabbed; i < npages; i++)
444 			pa[i] = NULL;
445 		npages = grabbed;
446 		rhpages = 0;
447 	}
448 
449 	for (i = 0; i < npages;) {
450 		/* Skip valid pages. */
451 		if (vm_page_is_valid(pa[i], vmoff(i, off) & PAGE_MASK,
452 		    xfsize(i, npages, off, len))) {
453 			vm_page_xunbusy(pa[i]);
454 			SFSTAT_INC(sf_pages_valid);
455 			i++;
456 			continue;
457 		}
458 
459 		/*
460 		 * Next page is invalid.  Check if it belongs to pager.  It
461 		 * may not be there, which is a regular situation for shmem
462 		 * pager.  For vnode pager this happens only in case of
463 		 * a sparse file.
464 		 *
465 		 * Important feature of vm_pager_has_page() is the hint
466 		 * stored in 'a', about how many pages we can pagein after
467 		 * this page in a single I/O.
468 		 */
469 		VM_OBJECT_RLOCK(obj);
470 		if (!vm_pager_has_page(obj, OFF_TO_IDX(vmoff(i, off)), NULL,
471 		    &a)) {
472 			VM_OBJECT_RUNLOCK(obj);
473 			pmap_zero_page(pa[i]);
474 			vm_page_valid(pa[i]);
475 			MPASS(pa[i]->dirty == 0);
476 			vm_page_xunbusy(pa[i]);
477 			i++;
478 			continue;
479 		}
480 		VM_OBJECT_RUNLOCK(obj);
481 
482 		/*
483 		 * We want to pagein as many pages as possible, limited only
484 		 * by the 'a' hint and actual request.
485 		 */
486 		count = min(a + 1, npages - i);
487 
488 		/*
489 		 * We should not pagein into a valid page because
490 		 * there might be still unfinished write tracked by
491 		 * e.g. a buffer, thus we substitute any valid pages
492 		 * with the bogus one.
493 		 *
494 		 * We must not leave around xbusy pages which are not
495 		 * part of the run passed to vm_pager_getpages(),
496 		 * otherwise pager might deadlock waiting for the busy
497 		 * status of the page, e.g. if it constitues the
498 		 * buffer needed to validate other page.
499 		 *
500 		 * First trim the end of the run consisting of the
501 		 * valid pages, then replace the rest of the valid
502 		 * with bogus.
503 		 */
504 		count1 = count;
505 		for (j = i + count - 1; j > i; j--) {
506 			if (vm_page_is_valid(pa[j], vmoff(j, off) & PAGE_MASK,
507 			    xfsize(j, npages, off, len))) {
508 				vm_page_xunbusy(pa[j]);
509 				SFSTAT_INC(sf_pages_valid);
510 				count--;
511 			} else {
512 				break;
513 			}
514 		}
515 
516 		/*
517 		 * The last page in the run pa[i + count - 1] is
518 		 * guaranteed to be invalid by the trim above, so it
519 		 * is not replaced with bogus, thus -1 in the loop end
520 		 * condition.
521 		 */
522 		MPASS(pa[i + count - 1]->valid != VM_PAGE_BITS_ALL);
523 		for (j = i + 1; j < i + count - 1; j++) {
524 			if (vm_page_is_valid(pa[j], vmoff(j, off) & PAGE_MASK,
525 			    xfsize(j, npages, off, len))) {
526 				vm_page_xunbusy(pa[j]);
527 				SFSTAT_INC(sf_pages_valid);
528 				SFSTAT_INC(sf_pages_bogus);
529 				pa[j] = bogus_page;
530 			}
531 		}
532 
533 		refcount_acquire(&sfio->nios);
534 		rv = vm_pager_get_pages_async(obj, pa + i, count, NULL,
535 		    i + count == npages ? &rhpages : NULL,
536 		    &sendfile_iodone, sfio);
537 		if (__predict_false(rv != VM_PAGER_OK)) {
538 			sendfile_iowait(sfio, "sferrio");
539 
540 			/*
541 			 * Perform full pages recovery before returning EIO.
542 			 * Pages from 0 to npages are wired.
543 			 * Pages from (i + 1) to (i + count - 1) may be
544 			 * substituted to bogus page, and not busied.
545 			 * Pages from (i + count) to (i + count1 - 1) are
546 			 * not busied.
547 			 * Rest of the pages from i to npages are busied.
548 			 */
549 			for (j = 0; j < npages; j++) {
550 				if (j >= i + count && j < i + count1)
551 					;
552 				else if (j > i && j < i + count - 1 &&
553 				    pa[j] == bogus_page)
554 					pa[j] = vm_page_relookup(obj,
555 					    OFF_TO_IDX(vmoff(j, off)));
556 				else if (j >= i)
557 					vm_page_xunbusy(pa[j]);
558 				KASSERT(pa[j] != NULL && pa[j] != bogus_page,
559 				    ("%s: page %p[%d] I/O recovery failure",
560 				    __func__, pa, j));
561 				vm_page_unwire(pa[j], PQ_INACTIVE);
562 			}
563 			return (EIO);
564 		}
565 
566 		SFSTAT_INC(sf_iocnt);
567 		SFSTAT_ADD(sf_pages_read, count);
568 		if (i + count == npages)
569 			SFSTAT_ADD(sf_rhpages_read, rhpages);
570 
571 		i += count1;
572 		(*nios)++;
573 	}
574 
575 	if (*nios == 0 && npages != 0)
576 		SFSTAT_INC(sf_noiocnt);
577 
578 	return (0);
579 }
580 
581 static int
582 sendfile_getobj(struct thread *td, struct file *fp, vm_object_t *obj_res,
583     struct vnode **vp_res, struct shmfd **shmfd_res, off_t *obj_size,
584     int *bsize)
585 {
586 	struct vattr va;
587 	vm_object_t obj;
588 	struct vnode *vp;
589 	struct shmfd *shmfd;
590 	int error;
591 
592 	vp = *vp_res = NULL;
593 	obj = NULL;
594 	shmfd = *shmfd_res = NULL;
595 	*bsize = 0;
596 
597 	/*
598 	 * The file descriptor must be a regular file and have a
599 	 * backing VM object.
600 	 */
601 	if (fp->f_type == DTYPE_VNODE) {
602 		vp = fp->f_vnode;
603 		vn_lock(vp, LK_SHARED | LK_RETRY);
604 		if (vp->v_type != VREG) {
605 			error = EINVAL;
606 			goto out;
607 		}
608 		*bsize = vp->v_mount->mnt_stat.f_iosize;
609 		error = VOP_GETATTR(vp, &va, td->td_ucred);
610 		if (error != 0)
611 			goto out;
612 		*obj_size = va.va_size;
613 		obj = vp->v_object;
614 		if (obj == NULL) {
615 			error = EINVAL;
616 			goto out;
617 		}
618 	} else if (fp->f_type == DTYPE_SHM) {
619 		error = 0;
620 		shmfd = fp->f_data;
621 		obj = shmfd->shm_object;
622 		*obj_size = shmfd->shm_size;
623 	} else {
624 		error = EINVAL;
625 		goto out;
626 	}
627 
628 	VM_OBJECT_WLOCK(obj);
629 	if ((obj->flags & OBJ_DEAD) != 0) {
630 		VM_OBJECT_WUNLOCK(obj);
631 		error = EBADF;
632 		goto out;
633 	}
634 
635 	/*
636 	 * Temporarily increase the backing VM object's reference
637 	 * count so that a forced reclamation of its vnode does not
638 	 * immediately destroy it.
639 	 */
640 	vm_object_reference_locked(obj);
641 	VM_OBJECT_WUNLOCK(obj);
642 	*obj_res = obj;
643 	*vp_res = vp;
644 	*shmfd_res = shmfd;
645 
646 out:
647 	if (vp != NULL)
648 		VOP_UNLOCK(vp);
649 	return (error);
650 }
651 
652 static int
653 sendfile_getsock(struct thread *td, int s, struct file **sock_fp,
654     struct socket **so)
655 {
656 	int error;
657 
658 	*sock_fp = NULL;
659 	*so = NULL;
660 
661 	/*
662 	 * The socket must be a stream socket and connected.
663 	 */
664 	error = getsock_cap(td, s, &cap_send_rights,
665 	    sock_fp, NULL, NULL);
666 	if (error != 0)
667 		return (error);
668 	*so = (*sock_fp)->f_data;
669 	if ((*so)->so_type != SOCK_STREAM)
670 		return (EINVAL);
671 	/*
672 	 * SCTP one-to-one style sockets currently don't work with
673 	 * sendfile(). So indicate EINVAL for now.
674 	 */
675 	if ((*so)->so_proto->pr_protocol == IPPROTO_SCTP)
676 		return (EINVAL);
677 	if (SOLISTENING(*so))
678 		return (ENOTCONN);
679 	return (0);
680 }
681 
682 int
683 vn_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
684     struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
685     struct thread *td)
686 {
687 	struct file *sock_fp;
688 	struct vnode *vp;
689 	struct vm_object *obj;
690 	vm_page_t pga;
691 	struct socket *so;
692 #ifdef KERN_TLS
693 	struct ktls_session *tls;
694 #endif
695 	struct mbuf_ext_pgs *ext_pgs;
696 	struct mbuf *m, *mh, *mhtail;
697 	struct sf_buf *sf;
698 	struct shmfd *shmfd;
699 	struct sendfile_sync *sfs;
700 	struct vattr va;
701 	off_t off, sbytes, rem, obj_size;
702 	int bsize, error, ext_pgs_idx, hdrlen, max_pgs, softerr;
703 #ifdef KERN_TLS
704 	int tls_enq_cnt;
705 #endif
706 	bool use_ext_pgs;
707 
708 	obj = NULL;
709 	so = NULL;
710 	m = mh = NULL;
711 	sfs = NULL;
712 #ifdef KERN_TLS
713 	tls = NULL;
714 #endif
715 	hdrlen = sbytes = 0;
716 	softerr = 0;
717 	use_ext_pgs = false;
718 
719 	error = sendfile_getobj(td, fp, &obj, &vp, &shmfd, &obj_size, &bsize);
720 	if (error != 0)
721 		return (error);
722 
723 	error = sendfile_getsock(td, sockfd, &sock_fp, &so);
724 	if (error != 0)
725 		goto out;
726 
727 #ifdef MAC
728 	error = mac_socket_check_send(td->td_ucred, so);
729 	if (error != 0)
730 		goto out;
731 #endif
732 
733 	SFSTAT_INC(sf_syscalls);
734 	SFSTAT_ADD(sf_rhpages_requested, SF_READAHEAD(flags));
735 
736 	if (flags & SF_SYNC) {
737 		sfs = malloc(sizeof(*sfs), M_SENDFILE, M_WAITOK | M_ZERO);
738 		mtx_init(&sfs->mtx, "sendfile", NULL, MTX_DEF);
739 		cv_init(&sfs->cv, "sendfile");
740 		sfs->waiting = true;
741 	}
742 
743 	rem = nbytes ? omin(nbytes, obj_size - offset) : obj_size - offset;
744 
745 	/*
746 	 * Protect against multiple writers to the socket.
747 	 *
748 	 * XXXRW: Historically this has assumed non-interruptibility, so now
749 	 * we implement that, but possibly shouldn't.
750 	 */
751 	(void)sblock(&so->so_snd, SBL_WAIT | SBL_NOINTR);
752 #ifdef KERN_TLS
753 	tls = ktls_hold(so->so_snd.sb_tls_info);
754 #endif
755 
756 	/*
757 	 * Loop through the pages of the file, starting with the requested
758 	 * offset. Get a file page (do I/O if necessary), map the file page
759 	 * into an sf_buf, attach an mbuf header to the sf_buf, and queue
760 	 * it on the socket.
761 	 * This is done in two loops.  The inner loop turns as many pages
762 	 * as it can, up to available socket buffer space, without blocking
763 	 * into mbufs to have it bulk delivered into the socket send buffer.
764 	 * The outer loop checks the state and available space of the socket
765 	 * and takes care of the overall progress.
766 	 */
767 	for (off = offset; rem > 0; ) {
768 		struct sf_io *sfio;
769 		vm_page_t *pa;
770 		struct mbuf *m0, *mtail;
771 		int nios, space, npages, rhpages;
772 
773 		mtail = NULL;
774 		/*
775 		 * Check the socket state for ongoing connection,
776 		 * no errors and space in socket buffer.
777 		 * If space is low allow for the remainder of the
778 		 * file to be processed if it fits the socket buffer.
779 		 * Otherwise block in waiting for sufficient space
780 		 * to proceed, or if the socket is nonblocking, return
781 		 * to userland with EAGAIN while reporting how far
782 		 * we've come.
783 		 * We wait until the socket buffer has significant free
784 		 * space to do bulk sends.  This makes good use of file
785 		 * system read ahead and allows packet segmentation
786 		 * offloading hardware to take over lots of work.  If
787 		 * we were not careful here we would send off only one
788 		 * sfbuf at a time.
789 		 */
790 		SOCKBUF_LOCK(&so->so_snd);
791 		if (so->so_snd.sb_lowat < so->so_snd.sb_hiwat / 2)
792 			so->so_snd.sb_lowat = so->so_snd.sb_hiwat / 2;
793 retry_space:
794 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
795 			error = EPIPE;
796 			SOCKBUF_UNLOCK(&so->so_snd);
797 			goto done;
798 		} else if (so->so_error) {
799 			error = so->so_error;
800 			so->so_error = 0;
801 			SOCKBUF_UNLOCK(&so->so_snd);
802 			goto done;
803 		}
804 		if ((so->so_state & SS_ISCONNECTED) == 0) {
805 			SOCKBUF_UNLOCK(&so->so_snd);
806 			error = ENOTCONN;
807 			goto done;
808 		}
809 
810 		space = sbspace(&so->so_snd);
811 		if (space < rem &&
812 		    (space <= 0 ||
813 		     space < so->so_snd.sb_lowat)) {
814 			if (so->so_state & SS_NBIO) {
815 				SOCKBUF_UNLOCK(&so->so_snd);
816 				error = EAGAIN;
817 				goto done;
818 			}
819 			/*
820 			 * sbwait drops the lock while sleeping.
821 			 * When we loop back to retry_space the
822 			 * state may have changed and we retest
823 			 * for it.
824 			 */
825 			error = sbwait(&so->so_snd);
826 			/*
827 			 * An error from sbwait usually indicates that we've
828 			 * been interrupted by a signal. If we've sent anything
829 			 * then return bytes sent, otherwise return the error.
830 			 */
831 			if (error != 0) {
832 				SOCKBUF_UNLOCK(&so->so_snd);
833 				goto done;
834 			}
835 			goto retry_space;
836 		}
837 		SOCKBUF_UNLOCK(&so->so_snd);
838 
839 		/*
840 		 * At the beginning of the first loop check if any headers
841 		 * are specified and copy them into mbufs.  Reduce space in
842 		 * the socket buffer by the size of the header mbuf chain.
843 		 * Clear hdr_uio here and hdrlen at the end of the first loop.
844 		 */
845 		if (hdr_uio != NULL && hdr_uio->uio_resid > 0) {
846 			hdr_uio->uio_td = td;
847 			hdr_uio->uio_rw = UIO_WRITE;
848 #ifdef KERN_TLS
849 			if (tls != NULL)
850 				mh = m_uiotombuf(hdr_uio, M_WAITOK, space,
851 				    tls->params.max_frame_len, M_NOMAP);
852 			else
853 #endif
854 				mh = m_uiotombuf(hdr_uio, M_WAITOK,
855 				    space, 0, 0);
856 			hdrlen = m_length(mh, &mhtail);
857 			space -= hdrlen;
858 			/*
859 			 * If header consumed all the socket buffer space,
860 			 * don't waste CPU cycles and jump to the end.
861 			 */
862 			if (space == 0) {
863 				sfio = NULL;
864 				nios = 0;
865 				goto prepend_header;
866 			}
867 			hdr_uio = NULL;
868 		}
869 
870 		if (vp != NULL) {
871 			error = vn_lock(vp, LK_SHARED);
872 			if (error != 0)
873 				goto done;
874 			error = VOP_GETATTR(vp, &va, td->td_ucred);
875 			if (error != 0 || off >= va.va_size) {
876 				VOP_UNLOCK(vp);
877 				goto done;
878 			}
879 			if (va.va_size != obj_size) {
880 				obj_size = va.va_size;
881 				rem = nbytes ?
882 				    omin(nbytes + offset, obj_size) : obj_size;
883 				rem -= off;
884 			}
885 		}
886 
887 		if (space > rem)
888 			space = rem;
889 		else if (space > PAGE_SIZE) {
890 			/*
891 			 * Use page boundaries when possible for large
892 			 * requests.
893 			 */
894 			if (off & PAGE_MASK)
895 				space -= (PAGE_SIZE - (off & PAGE_MASK));
896 			space = trunc_page(space);
897 			if (off & PAGE_MASK)
898 				space += (PAGE_SIZE - (off & PAGE_MASK));
899 		}
900 
901 		npages = howmany(space + (off & PAGE_MASK), PAGE_SIZE);
902 
903 		/*
904 		 * Calculate maximum allowed number of pages for readahead
905 		 * at this iteration.  If SF_USER_READAHEAD was set, we don't
906 		 * do any heuristics and use exactly the value supplied by
907 		 * application.  Otherwise, we allow readahead up to "rem".
908 		 * If application wants more, let it be, but there is no
909 		 * reason to go above MAXPHYS.  Also check against "obj_size",
910 		 * since vm_pager_has_page() can hint beyond EOF.
911 		 */
912 		if (flags & SF_USER_READAHEAD) {
913 			rhpages = SF_READAHEAD(flags);
914 		} else {
915 			rhpages = howmany(rem + (off & PAGE_MASK), PAGE_SIZE) -
916 			    npages;
917 			rhpages += SF_READAHEAD(flags);
918 		}
919 		rhpages = min(howmany(MAXPHYS, PAGE_SIZE), rhpages);
920 		rhpages = min(howmany(obj_size - trunc_page(off), PAGE_SIZE) -
921 		    npages, rhpages);
922 
923 		sfio = malloc(sizeof(struct sf_io) +
924 		    npages * sizeof(vm_page_t), M_SENDFILE, M_WAITOK);
925 		refcount_init(&sfio->nios, 1);
926 		sfio->obj = obj;
927 		sfio->error = 0;
928 		sfio->m = NULL;
929 #ifdef KERN_TLS
930 		/*
931 		 * This doesn't use ktls_hold() because sfio->m will
932 		 * also have a reference on 'tls' that will be valid
933 		 * for all of sfio's lifetime.
934 		 */
935 		sfio->tls = tls;
936 #endif
937 		vm_object_pip_add(obj, 1);
938 		error = sendfile_swapin(obj, sfio, &nios, off, space, npages,
939 		    rhpages, flags);
940 		if (error != 0) {
941 			if (vp != NULL)
942 				VOP_UNLOCK(vp);
943 			sendfile_iodone(sfio, NULL, 0, error);
944 			goto done;
945 		}
946 
947 		/*
948 		 * Loop and construct maximum sized mbuf chain to be bulk
949 		 * dumped into socket buffer.
950 		 */
951 		pa = sfio->pa;
952 
953 		/*
954 		 * Use unmapped mbufs if enabled for TCP.  Unmapped
955 		 * bufs are restricted to TCP as that is what has been
956 		 * tested.  In particular, unmapped mbufs have not
957 		 * been tested with UNIX-domain sockets.
958 		 *
959 		 * TLS frames always require unmapped mbufs.
960 		 */
961 		if ((mb_use_ext_pgs &&
962 		    so->so_proto->pr_protocol == IPPROTO_TCP)
963 #ifdef KERN_TLS
964 		    || tls != NULL
965 #endif
966 		    ) {
967 			use_ext_pgs = true;
968 #ifdef KERN_TLS
969 			if (tls != NULL)
970 				max_pgs = num_pages(tls->params.max_frame_len);
971 			else
972 #endif
973 				max_pgs = MBUF_PEXT_MAX_PGS;
974 
975 			/* Start at last index, to wrap on first use. */
976 			ext_pgs_idx = max_pgs - 1;
977 		}
978 
979 		for (int i = 0; i < npages; i++) {
980 			/*
981 			 * If a page wasn't grabbed successfully, then
982 			 * trim the array. Can happen only with SF_NODISKIO.
983 			 */
984 			if (pa[i] == NULL) {
985 				SFSTAT_INC(sf_busy);
986 				fixspace(npages, i, off, &space);
987 				npages = i;
988 				softerr = EBUSY;
989 				break;
990 			}
991 			pga = pa[i];
992 			if (pga == bogus_page)
993 				pga = vm_page_relookup(obj, sfio->pindex0 + i);
994 
995 			if (use_ext_pgs) {
996 				off_t xfs;
997 
998 				ext_pgs_idx++;
999 				if (ext_pgs_idx == max_pgs) {
1000 					m0 = mb_alloc_ext_pgs(M_WAITOK,
1001 					    sendfile_free_mext_pg);
1002 
1003 					if (flags & SF_NOCACHE) {
1004 						m0->m_ext.ext_flags |=
1005 						    EXT_FLAG_NOCACHE;
1006 
1007 						/*
1008 						 * See comment below regarding
1009 						 * ignoring SF_NOCACHE for the
1010 						 * last page.
1011 						 */
1012 						if ((npages - i <= max_pgs) &&
1013 						    ((off + space) & PAGE_MASK) &&
1014 						    (rem > space || rhpages > 0))
1015 							m0->m_ext.ext_flags |=
1016 							    EXT_FLAG_CACHE_LAST;
1017 					}
1018 					if (sfs != NULL) {
1019 						m0->m_ext.ext_flags |=
1020 						    EXT_FLAG_SYNC;
1021 						if (m0->m_ext.ext_type ==
1022 						    EXT_PGS)
1023 							m0->m_ext.ext_arg1 =
1024 								sfs;
1025 						else
1026 							m0->m_ext.ext_arg2 =
1027 								sfs;
1028 						mtx_lock(&sfs->mtx);
1029 						sfs->count++;
1030 						mtx_unlock(&sfs->mtx);
1031 					}
1032 					ext_pgs = &m0->m_ext_pgs;
1033 					ext_pgs_idx = 0;
1034 
1035 					/* Append to mbuf chain. */
1036 					if (mtail != NULL)
1037 						mtail->m_next = m0;
1038 					else
1039 						m = m0;
1040 					mtail = m0;
1041 					ext_pgs->first_pg_off =
1042 					    vmoff(i, off) & PAGE_MASK;
1043 				}
1044 				if (nios) {
1045 					mtail->m_flags |= M_NOTREADY;
1046 					ext_pgs->nrdy++;
1047 				}
1048 
1049 				ext_pgs->m_epg_pa[ext_pgs_idx] = VM_PAGE_TO_PHYS(pga);
1050 				ext_pgs->npgs++;
1051 				xfs = xfsize(i, npages, off, space);
1052 				ext_pgs->last_pg_len = xfs;
1053 				MBUF_EXT_PGS_ASSERT_SANITY(ext_pgs);
1054 				mtail->m_len += xfs;
1055 				mtail->m_ext.ext_size += PAGE_SIZE;
1056 				continue;
1057 			}
1058 
1059 			/*
1060 			 * Get a sendfile buf.  When allocating the
1061 			 * first buffer for mbuf chain, we usually
1062 			 * wait as long as necessary, but this wait
1063 			 * can be interrupted.  For consequent
1064 			 * buffers, do not sleep, since several
1065 			 * threads might exhaust the buffers and then
1066 			 * deadlock.
1067 			 */
1068 			sf = sf_buf_alloc(pga,
1069 			    m != NULL ? SFB_NOWAIT : SFB_CATCH);
1070 			if (sf == NULL) {
1071 				SFSTAT_INC(sf_allocfail);
1072 				sendfile_iowait(sfio, "sfnosf");
1073 				for (int j = i; j < npages; j++)
1074 					vm_page_unwire(pa[j], PQ_INACTIVE);
1075 				if (m == NULL)
1076 					softerr = ENOBUFS;
1077 				fixspace(npages, i, off, &space);
1078 				npages = i;
1079 				break;
1080 			}
1081 
1082 			m0 = m_get(M_WAITOK, MT_DATA);
1083 			m0->m_ext.ext_buf = (char *)sf_buf_kva(sf);
1084 			m0->m_ext.ext_size = PAGE_SIZE;
1085 			m0->m_ext.ext_arg1 = sf;
1086 			m0->m_ext.ext_type = EXT_SFBUF;
1087 			m0->m_ext.ext_flags = EXT_FLAG_EMBREF;
1088 			m0->m_ext.ext_free = sendfile_free_mext;
1089 			/*
1090 			 * SF_NOCACHE sets the page as being freed upon send.
1091 			 * However, we ignore it for the last page in 'space',
1092 			 * if the page is truncated, and we got more data to
1093 			 * send (rem > space), or if we have readahead
1094 			 * configured (rhpages > 0).
1095 			 */
1096 			if ((flags & SF_NOCACHE) &&
1097 			    (i != npages - 1 ||
1098 			    !((off + space) & PAGE_MASK) ||
1099 			    !(rem > space || rhpages > 0)))
1100 				m0->m_ext.ext_flags |= EXT_FLAG_NOCACHE;
1101 			if (sfs != NULL) {
1102 				m0->m_ext.ext_flags |= EXT_FLAG_SYNC;
1103 				if (m0->m_ext.ext_type == EXT_PGS)
1104 					m0->m_ext.ext_arg1 = sfs;
1105 				else
1106 					m0->m_ext.ext_arg2 = sfs;
1107 				m0->m_ext.ext_arg2 = sfs;
1108 				mtx_lock(&sfs->mtx);
1109 				sfs->count++;
1110 				mtx_unlock(&sfs->mtx);
1111 			}
1112 			m0->m_ext.ext_count = 1;
1113 			m0->m_flags |= (M_EXT | M_RDONLY);
1114 			if (nios)
1115 				m0->m_flags |= M_NOTREADY;
1116 			m0->m_data = (char *)sf_buf_kva(sf) +
1117 			    (vmoff(i, off) & PAGE_MASK);
1118 			m0->m_len = xfsize(i, npages, off, space);
1119 
1120 			/* Append to mbuf chain. */
1121 			if (mtail != NULL)
1122 				mtail->m_next = m0;
1123 			else
1124 				m = m0;
1125 			mtail = m0;
1126 		}
1127 
1128 		if (vp != NULL)
1129 			VOP_UNLOCK(vp);
1130 
1131 		/* Keep track of bytes processed. */
1132 		off += space;
1133 		rem -= space;
1134 
1135 		/*
1136 		 * Prepend header, if any.  Save pointer to first mbuf
1137 		 * with a page.
1138 		 */
1139 		if (hdrlen) {
1140 prepend_header:
1141 			m0 = mhtail->m_next = m;
1142 			m = mh;
1143 			mh = NULL;
1144 		} else
1145 			m0 = m;
1146 
1147 		if (m == NULL) {
1148 			KASSERT(softerr, ("%s: m NULL, no error", __func__));
1149 			error = softerr;
1150 			sendfile_iodone(sfio, NULL, 0, 0);
1151 			goto done;
1152 		}
1153 
1154 		/* Add the buffer chain to the socket buffer. */
1155 		KASSERT(m_length(m, NULL) == space + hdrlen,
1156 		    ("%s: mlen %u space %d hdrlen %d",
1157 		    __func__, m_length(m, NULL), space, hdrlen));
1158 
1159 		CURVNET_SET(so->so_vnet);
1160 #ifdef KERN_TLS
1161 		if (tls != NULL)
1162 			ktls_frame(m, tls, &tls_enq_cnt, TLS_RLTYPE_APP);
1163 #endif
1164 		if (nios == 0) {
1165 			/*
1166 			 * If sendfile_swapin() didn't initiate any I/Os,
1167 			 * which happens if all data is cached in VM, or if
1168 			 * the header consumed all socket buffer space and
1169 			 * sfio is NULL, then we can send data right now
1170 			 * without the PRUS_NOTREADY flag.
1171 			 */
1172 			if (sfio != NULL)
1173 				sendfile_iodone(sfio, NULL, 0, 0);
1174 #ifdef KERN_TLS
1175 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
1176 				error = (*so->so_proto->pr_usrreqs->pru_send)
1177 				    (so, PRUS_NOTREADY, m, NULL, NULL, td);
1178 				soref(so);
1179 				ktls_enqueue(m, so, tls_enq_cnt);
1180 			} else
1181 #endif
1182 				error = (*so->so_proto->pr_usrreqs->pru_send)
1183 				    (so, 0, m, NULL, NULL, td);
1184 		} else {
1185 			sfio->so = so;
1186 			sfio->m = m0;
1187 			sfio->npages = npages;
1188 			soref(so);
1189 			error = (*so->so_proto->pr_usrreqs->pru_send)
1190 			    (so, PRUS_NOTREADY, m, NULL, NULL, td);
1191 			sendfile_iodone(sfio, NULL, 0, 0);
1192 		}
1193 		CURVNET_RESTORE();
1194 
1195 		m = NULL;	/* pru_send always consumes */
1196 		if (error)
1197 			goto done;
1198 		sbytes += space + hdrlen;
1199 		if (hdrlen)
1200 			hdrlen = 0;
1201 		if (softerr) {
1202 			error = softerr;
1203 			goto done;
1204 		}
1205 	}
1206 
1207 	/*
1208 	 * Send trailers. Wimp out and use writev(2).
1209 	 */
1210 	if (trl_uio != NULL) {
1211 		sbunlock(&so->so_snd);
1212 		error = kern_writev(td, sockfd, trl_uio);
1213 		if (error == 0)
1214 			sbytes += td->td_retval[0];
1215 		goto out;
1216 	}
1217 
1218 done:
1219 	sbunlock(&so->so_snd);
1220 out:
1221 	/*
1222 	 * If there was no error we have to clear td->td_retval[0]
1223 	 * because it may have been set by writev.
1224 	 */
1225 	if (error == 0) {
1226 		td->td_retval[0] = 0;
1227 	}
1228 	if (sent != NULL) {
1229 		(*sent) = sbytes;
1230 	}
1231 	if (obj != NULL)
1232 		vm_object_deallocate(obj);
1233 	if (so)
1234 		fdrop(sock_fp, td);
1235 	if (m)
1236 		m_freem(m);
1237 	if (mh)
1238 		m_freem(mh);
1239 
1240 	if (sfs != NULL) {
1241 		mtx_lock(&sfs->mtx);
1242 		if (sfs->count != 0)
1243 			error = cv_wait_sig(&sfs->cv, &sfs->mtx);
1244 		if (sfs->count == 0) {
1245 			sendfile_sync_destroy(sfs);
1246 		} else {
1247 			sfs->waiting = false;
1248 			mtx_unlock(&sfs->mtx);
1249 		}
1250 	}
1251 #ifdef KERN_TLS
1252 	if (tls != NULL)
1253 		ktls_free(tls);
1254 #endif
1255 
1256 	if (error == ERESTART)
1257 		error = EINTR;
1258 
1259 	return (error);
1260 }
1261 
1262 static int
1263 sendfile(struct thread *td, struct sendfile_args *uap, int compat)
1264 {
1265 	struct sf_hdtr hdtr;
1266 	struct uio *hdr_uio, *trl_uio;
1267 	struct file *fp;
1268 	off_t sbytes;
1269 	int error;
1270 
1271 	/*
1272 	 * File offset must be positive.  If it goes beyond EOF
1273 	 * we send only the header/trailer and no payload data.
1274 	 */
1275 	if (uap->offset < 0)
1276 		return (EINVAL);
1277 
1278 	sbytes = 0;
1279 	hdr_uio = trl_uio = NULL;
1280 
1281 	if (uap->hdtr != NULL) {
1282 		error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
1283 		if (error != 0)
1284 			goto out;
1285 		if (hdtr.headers != NULL) {
1286 			error = copyinuio(hdtr.headers, hdtr.hdr_cnt,
1287 			    &hdr_uio);
1288 			if (error != 0)
1289 				goto out;
1290 #ifdef COMPAT_FREEBSD4
1291 			/*
1292 			 * In FreeBSD < 5.0 the nbytes to send also included
1293 			 * the header.  If compat is specified subtract the
1294 			 * header size from nbytes.
1295 			 */
1296 			if (compat) {
1297 				if (uap->nbytes > hdr_uio->uio_resid)
1298 					uap->nbytes -= hdr_uio->uio_resid;
1299 				else
1300 					uap->nbytes = 0;
1301 			}
1302 #endif
1303 		}
1304 		if (hdtr.trailers != NULL) {
1305 			error = copyinuio(hdtr.trailers, hdtr.trl_cnt,
1306 			    &trl_uio);
1307 			if (error != 0)
1308 				goto out;
1309 		}
1310 	}
1311 
1312 	AUDIT_ARG_FD(uap->fd);
1313 
1314 	/*
1315 	 * sendfile(2) can start at any offset within a file so we require
1316 	 * CAP_READ+CAP_SEEK = CAP_PREAD.
1317 	 */
1318 	if ((error = fget_read(td, uap->fd, &cap_pread_rights, &fp)) != 0)
1319 		goto out;
1320 
1321 	error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, uap->offset,
1322 	    uap->nbytes, &sbytes, uap->flags, td);
1323 	fdrop(fp, td);
1324 
1325 	if (uap->sbytes != NULL)
1326 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
1327 
1328 out:
1329 	free(hdr_uio, M_IOV);
1330 	free(trl_uio, M_IOV);
1331 	return (error);
1332 }
1333 
1334 /*
1335  * sendfile(2)
1336  *
1337  * int sendfile(int fd, int s, off_t offset, size_t nbytes,
1338  *       struct sf_hdtr *hdtr, off_t *sbytes, int flags)
1339  *
1340  * Send a file specified by 'fd' and starting at 'offset' to a socket
1341  * specified by 's'. Send only 'nbytes' of the file or until EOF if nbytes ==
1342  * 0.  Optionally add a header and/or trailer to the socket output.  If
1343  * specified, write the total number of bytes sent into *sbytes.
1344  */
1345 int
1346 sys_sendfile(struct thread *td, struct sendfile_args *uap)
1347 {
1348 
1349 	return (sendfile(td, uap, 0));
1350 }
1351 
1352 #ifdef COMPAT_FREEBSD4
1353 int
1354 freebsd4_sendfile(struct thread *td, struct freebsd4_sendfile_args *uap)
1355 {
1356 	struct sendfile_args args;
1357 
1358 	args.fd = uap->fd;
1359 	args.s = uap->s;
1360 	args.offset = uap->offset;
1361 	args.nbytes = uap->nbytes;
1362 	args.hdtr = uap->hdtr;
1363 	args.sbytes = uap->sbytes;
1364 	args.flags = uap->flags;
1365 
1366 	return (sendfile(td, &args, 1));
1367 }
1368 #endif /* COMPAT_FREEBSD4 */
1369