xref: /freebsd/sys/kern/kern_rmlock.c (revision 3c134670993bf525fcd6c4dfef84a3dfc3d4ed1b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007 Stephan Uphoff <ups@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the author nor the names of any co-contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * Machine independent bits of reader/writer lock implementation.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_ddb.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 
44 #include <sys/kernel.h>
45 #include <sys/kdb.h>
46 #include <sys/ktr.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/rmlock.h>
51 #include <sys/sched.h>
52 #include <sys/smp.h>
53 #include <sys/turnstile.h>
54 #include <sys/lock_profile.h>
55 #include <machine/cpu.h>
56 #include <vm/uma.h>
57 
58 #ifdef DDB
59 #include <ddb/ddb.h>
60 #endif
61 
62 /*
63  * A cookie to mark destroyed rmlocks.  This is stored in the head of
64  * rm_activeReaders.
65  */
66 #define	RM_DESTROYED	((void *)0xdead)
67 
68 #define	rm_destroyed(rm)						\
69 	(LIST_FIRST(&(rm)->rm_activeReaders) == RM_DESTROYED)
70 
71 #define RMPF_ONQUEUE	1
72 #define RMPF_SIGNAL	2
73 
74 #ifndef INVARIANTS
75 #define	_rm_assert(c, what, file, line)
76 #endif
77 
78 static void	assert_rm(const struct lock_object *lock, int what);
79 #ifdef DDB
80 static void	db_show_rm(const struct lock_object *lock);
81 #endif
82 static void	lock_rm(struct lock_object *lock, uintptr_t how);
83 #ifdef KDTRACE_HOOKS
84 static int	owner_rm(const struct lock_object *lock, struct thread **owner);
85 #endif
86 static uintptr_t unlock_rm(struct lock_object *lock);
87 
88 struct lock_class lock_class_rm = {
89 	.lc_name = "rm",
90 	.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
91 	.lc_assert = assert_rm,
92 #ifdef DDB
93 	.lc_ddb_show = db_show_rm,
94 #endif
95 	.lc_lock = lock_rm,
96 	.lc_unlock = unlock_rm,
97 #ifdef KDTRACE_HOOKS
98 	.lc_owner = owner_rm,
99 #endif
100 };
101 
102 struct lock_class lock_class_rm_sleepable = {
103 	.lc_name = "sleepable rm",
104 	.lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_RECURSABLE,
105 	.lc_assert = assert_rm,
106 #ifdef DDB
107 	.lc_ddb_show = db_show_rm,
108 #endif
109 	.lc_lock = lock_rm,
110 	.lc_unlock = unlock_rm,
111 #ifdef KDTRACE_HOOKS
112 	.lc_owner = owner_rm,
113 #endif
114 };
115 
116 static void
117 assert_rm(const struct lock_object *lock, int what)
118 {
119 
120 	rm_assert((const struct rmlock *)lock, what);
121 }
122 
123 static void
124 lock_rm(struct lock_object *lock, uintptr_t how)
125 {
126 	struct rmlock *rm;
127 	struct rm_priotracker *tracker;
128 
129 	rm = (struct rmlock *)lock;
130 	if (how == 0)
131 		rm_wlock(rm);
132 	else {
133 		tracker = (struct rm_priotracker *)how;
134 		rm_rlock(rm, tracker);
135 	}
136 }
137 
138 static uintptr_t
139 unlock_rm(struct lock_object *lock)
140 {
141 	struct thread *td;
142 	struct pcpu *pc;
143 	struct rmlock *rm;
144 	struct rm_queue *queue;
145 	struct rm_priotracker *tracker;
146 	uintptr_t how;
147 
148 	rm = (struct rmlock *)lock;
149 	tracker = NULL;
150 	how = 0;
151 	rm_assert(rm, RA_LOCKED | RA_NOTRECURSED);
152 	if (rm_wowned(rm))
153 		rm_wunlock(rm);
154 	else {
155 		/*
156 		 * Find the right rm_priotracker structure for curthread.
157 		 * The guarantee about its uniqueness is given by the fact
158 		 * we already asserted the lock wasn't recursively acquired.
159 		 */
160 		critical_enter();
161 		td = curthread;
162 		pc = get_pcpu();
163 		for (queue = pc->pc_rm_queue.rmq_next;
164 		    queue != &pc->pc_rm_queue; queue = queue->rmq_next) {
165 			tracker = (struct rm_priotracker *)queue;
166 				if ((tracker->rmp_rmlock == rm) &&
167 				    (tracker->rmp_thread == td)) {
168 					how = (uintptr_t)tracker;
169 					break;
170 				}
171 		}
172 		KASSERT(tracker != NULL,
173 		    ("rm_priotracker is non-NULL when lock held in read mode"));
174 		critical_exit();
175 		rm_runlock(rm, tracker);
176 	}
177 	return (how);
178 }
179 
180 #ifdef KDTRACE_HOOKS
181 static int
182 owner_rm(const struct lock_object *lock, struct thread **owner)
183 {
184 	const struct rmlock *rm;
185 	struct lock_class *lc;
186 
187 	rm = (const struct rmlock *)lock;
188 	lc = LOCK_CLASS(&rm->rm_wlock_object);
189 	return (lc->lc_owner(&rm->rm_wlock_object, owner));
190 }
191 #endif
192 
193 static struct mtx rm_spinlock;
194 
195 MTX_SYSINIT(rm_spinlock, &rm_spinlock, "rm_spinlock", MTX_SPIN);
196 
197 /*
198  * Add or remove tracker from per-cpu list.
199  *
200  * The per-cpu list can be traversed at any time in forward direction from an
201  * interrupt on the *local* cpu.
202  */
203 static void inline
204 rm_tracker_add(struct pcpu *pc, struct rm_priotracker *tracker)
205 {
206 	struct rm_queue *next;
207 
208 	/* Initialize all tracker pointers */
209 	tracker->rmp_cpuQueue.rmq_prev = &pc->pc_rm_queue;
210 	next = pc->pc_rm_queue.rmq_next;
211 	tracker->rmp_cpuQueue.rmq_next = next;
212 
213 	/* rmq_prev is not used during froward traversal. */
214 	next->rmq_prev = &tracker->rmp_cpuQueue;
215 
216 	/* Update pointer to first element. */
217 	pc->pc_rm_queue.rmq_next = &tracker->rmp_cpuQueue;
218 }
219 
220 /*
221  * Return a count of the number of trackers the thread 'td' already
222  * has on this CPU for the lock 'rm'.
223  */
224 static int
225 rm_trackers_present(const struct pcpu *pc, const struct rmlock *rm,
226     const struct thread *td)
227 {
228 	struct rm_queue *queue;
229 	struct rm_priotracker *tracker;
230 	int count;
231 
232 	count = 0;
233 	for (queue = pc->pc_rm_queue.rmq_next; queue != &pc->pc_rm_queue;
234 	    queue = queue->rmq_next) {
235 		tracker = (struct rm_priotracker *)queue;
236 		if ((tracker->rmp_rmlock == rm) && (tracker->rmp_thread == td))
237 			count++;
238 	}
239 	return (count);
240 }
241 
242 static void inline
243 rm_tracker_remove(struct pcpu *pc, struct rm_priotracker *tracker)
244 {
245 	struct rm_queue *next, *prev;
246 
247 	next = tracker->rmp_cpuQueue.rmq_next;
248 	prev = tracker->rmp_cpuQueue.rmq_prev;
249 
250 	/* Not used during forward traversal. */
251 	next->rmq_prev = prev;
252 
253 	/* Remove from list. */
254 	prev->rmq_next = next;
255 }
256 
257 static void
258 rm_cleanIPI(void *arg)
259 {
260 	struct pcpu *pc;
261 	struct rmlock *rm = arg;
262 	struct rm_priotracker *tracker;
263 	struct rm_queue *queue;
264 	pc = get_pcpu();
265 
266 	for (queue = pc->pc_rm_queue.rmq_next; queue != &pc->pc_rm_queue;
267 	    queue = queue->rmq_next) {
268 		tracker = (struct rm_priotracker *)queue;
269 		if (tracker->rmp_rmlock == rm && tracker->rmp_flags == 0) {
270 			tracker->rmp_flags = RMPF_ONQUEUE;
271 			mtx_lock_spin(&rm_spinlock);
272 			LIST_INSERT_HEAD(&rm->rm_activeReaders, tracker,
273 			    rmp_qentry);
274 			mtx_unlock_spin(&rm_spinlock);
275 		}
276 	}
277 }
278 
279 void
280 rm_init_flags(struct rmlock *rm, const char *name, int opts)
281 {
282 	struct lock_class *lc;
283 	int liflags, xflags;
284 
285 	liflags = 0;
286 	if (!(opts & RM_NOWITNESS))
287 		liflags |= LO_WITNESS;
288 	if (opts & RM_RECURSE)
289 		liflags |= LO_RECURSABLE;
290 	if (opts & RM_NEW)
291 		liflags |= LO_NEW;
292 	rm->rm_writecpus = all_cpus;
293 	LIST_INIT(&rm->rm_activeReaders);
294 	if (opts & RM_SLEEPABLE) {
295 		liflags |= LO_SLEEPABLE;
296 		lc = &lock_class_rm_sleepable;
297 		xflags = (opts & RM_NEW ? SX_NEW : 0);
298 		sx_init_flags(&rm->rm_lock_sx, "rmlock_sx",
299 		    xflags | SX_NOWITNESS);
300 	} else {
301 		lc = &lock_class_rm;
302 		xflags = (opts & RM_NEW ? MTX_NEW : 0);
303 		mtx_init(&rm->rm_lock_mtx, name, "rmlock_mtx",
304 		    xflags | MTX_NOWITNESS);
305 	}
306 	lock_init(&rm->lock_object, lc, name, NULL, liflags);
307 }
308 
309 void
310 rm_init(struct rmlock *rm, const char *name)
311 {
312 
313 	rm_init_flags(rm, name, 0);
314 }
315 
316 void
317 rm_destroy(struct rmlock *rm)
318 {
319 
320 	rm_assert(rm, RA_UNLOCKED);
321 	LIST_FIRST(&rm->rm_activeReaders) = RM_DESTROYED;
322 	if (rm->lock_object.lo_flags & LO_SLEEPABLE)
323 		sx_destroy(&rm->rm_lock_sx);
324 	else
325 		mtx_destroy(&rm->rm_lock_mtx);
326 	lock_destroy(&rm->lock_object);
327 }
328 
329 int
330 rm_wowned(const struct rmlock *rm)
331 {
332 
333 	if (rm->lock_object.lo_flags & LO_SLEEPABLE)
334 		return (sx_xlocked(&rm->rm_lock_sx));
335 	else
336 		return (mtx_owned(&rm->rm_lock_mtx));
337 }
338 
339 void
340 rm_sysinit(void *arg)
341 {
342 	struct rm_args *args;
343 
344 	args = arg;
345 	rm_init_flags(args->ra_rm, args->ra_desc, args->ra_flags);
346 }
347 
348 static __noinline int
349 _rm_rlock_hard(struct rmlock *rm, struct rm_priotracker *tracker, int trylock)
350 {
351 	struct pcpu *pc;
352 
353 	critical_enter();
354 	pc = get_pcpu();
355 
356 	/* Check if we just need to do a proper critical_exit. */
357 	if (!CPU_ISSET(pc->pc_cpuid, &rm->rm_writecpus)) {
358 		critical_exit();
359 		return (1);
360 	}
361 
362 	/* Remove our tracker from the per-cpu list. */
363 	rm_tracker_remove(pc, tracker);
364 
365 	/* Check to see if the IPI granted us the lock after all. */
366 	if (tracker->rmp_flags) {
367 		/* Just add back tracker - we hold the lock. */
368 		rm_tracker_add(pc, tracker);
369 		critical_exit();
370 		return (1);
371 	}
372 
373 	/*
374 	 * We allow readers to acquire a lock even if a writer is blocked if
375 	 * the lock is recursive and the reader already holds the lock.
376 	 */
377 	if ((rm->lock_object.lo_flags & LO_RECURSABLE) != 0) {
378 		/*
379 		 * Just grant the lock if this thread already has a tracker
380 		 * for this lock on the per-cpu queue.
381 		 */
382 		if (rm_trackers_present(pc, rm, curthread) != 0) {
383 			mtx_lock_spin(&rm_spinlock);
384 			LIST_INSERT_HEAD(&rm->rm_activeReaders, tracker,
385 			    rmp_qentry);
386 			tracker->rmp_flags = RMPF_ONQUEUE;
387 			mtx_unlock_spin(&rm_spinlock);
388 			rm_tracker_add(pc, tracker);
389 			critical_exit();
390 			return (1);
391 		}
392 	}
393 
394 	sched_unpin();
395 	critical_exit();
396 
397 	if (trylock) {
398 		if (rm->lock_object.lo_flags & LO_SLEEPABLE) {
399 			if (!sx_try_xlock(&rm->rm_lock_sx))
400 				return (0);
401 		} else {
402 			if (!mtx_trylock(&rm->rm_lock_mtx))
403 				return (0);
404 		}
405 	} else {
406 		if (rm->lock_object.lo_flags & LO_SLEEPABLE) {
407 			THREAD_SLEEPING_OK();
408 			sx_xlock(&rm->rm_lock_sx);
409 			THREAD_NO_SLEEPING();
410 		} else
411 			mtx_lock(&rm->rm_lock_mtx);
412 	}
413 
414 	critical_enter();
415 	pc = get_pcpu();
416 	CPU_CLR(pc->pc_cpuid, &rm->rm_writecpus);
417 	rm_tracker_add(pc, tracker);
418 	sched_pin();
419 	critical_exit();
420 
421 	if (rm->lock_object.lo_flags & LO_SLEEPABLE)
422 		sx_xunlock(&rm->rm_lock_sx);
423 	else
424 		mtx_unlock(&rm->rm_lock_mtx);
425 
426 	return (1);
427 }
428 
429 int
430 _rm_rlock(struct rmlock *rm, struct rm_priotracker *tracker, int trylock)
431 {
432 	struct thread *td = curthread;
433 	struct pcpu *pc;
434 
435 	if (SCHEDULER_STOPPED())
436 		return (1);
437 
438 	tracker->rmp_flags  = 0;
439 	tracker->rmp_thread = td;
440 	tracker->rmp_rmlock = rm;
441 
442 	if (rm->lock_object.lo_flags & LO_SLEEPABLE)
443 		THREAD_NO_SLEEPING();
444 
445 	td->td_critnest++;	/* critical_enter(); */
446 
447 	__compiler_membar();
448 
449 	pc = cpuid_to_pcpu[td->td_oncpu]; /* pcpu_find(td->td_oncpu); */
450 
451 	rm_tracker_add(pc, tracker);
452 
453 	sched_pin();
454 
455 	__compiler_membar();
456 
457 	td->td_critnest--;
458 
459 	/*
460 	 * Fast path to combine two common conditions into a single
461 	 * conditional jump.
462 	 */
463 	if (__predict_true(0 == (td->td_owepreempt |
464 	    CPU_ISSET(pc->pc_cpuid, &rm->rm_writecpus))))
465 		return (1);
466 
467 	/* We do not have a read token and need to acquire one. */
468 	return _rm_rlock_hard(rm, tracker, trylock);
469 }
470 
471 static __noinline void
472 _rm_unlock_hard(struct thread *td,struct rm_priotracker *tracker)
473 {
474 
475 	if (td->td_owepreempt) {
476 		td->td_critnest++;
477 		critical_exit();
478 	}
479 
480 	if (!tracker->rmp_flags)
481 		return;
482 
483 	mtx_lock_spin(&rm_spinlock);
484 	LIST_REMOVE(tracker, rmp_qentry);
485 
486 	if (tracker->rmp_flags & RMPF_SIGNAL) {
487 		struct rmlock *rm;
488 		struct turnstile *ts;
489 
490 		rm = tracker->rmp_rmlock;
491 
492 		turnstile_chain_lock(&rm->lock_object);
493 		mtx_unlock_spin(&rm_spinlock);
494 
495 		ts = turnstile_lookup(&rm->lock_object);
496 
497 		turnstile_signal(ts, TS_EXCLUSIVE_QUEUE);
498 		turnstile_unpend(ts);
499 		turnstile_chain_unlock(&rm->lock_object);
500 	} else
501 		mtx_unlock_spin(&rm_spinlock);
502 }
503 
504 void
505 _rm_runlock(struct rmlock *rm, struct rm_priotracker *tracker)
506 {
507 	struct pcpu *pc;
508 	struct thread *td = tracker->rmp_thread;
509 
510 	if (SCHEDULER_STOPPED())
511 		return;
512 
513 	td->td_critnest++;	/* critical_enter(); */
514 	pc = cpuid_to_pcpu[td->td_oncpu]; /* pcpu_find(td->td_oncpu); */
515 	rm_tracker_remove(pc, tracker);
516 	td->td_critnest--;
517 	sched_unpin();
518 
519 	if (rm->lock_object.lo_flags & LO_SLEEPABLE)
520 		THREAD_SLEEPING_OK();
521 
522 	if (__predict_true(0 == (td->td_owepreempt | tracker->rmp_flags)))
523 		return;
524 
525 	_rm_unlock_hard(td, tracker);
526 }
527 
528 void
529 _rm_wlock(struct rmlock *rm)
530 {
531 	struct rm_priotracker *prio;
532 	struct turnstile *ts;
533 	cpuset_t readcpus;
534 
535 	if (SCHEDULER_STOPPED())
536 		return;
537 
538 	if (rm->lock_object.lo_flags & LO_SLEEPABLE)
539 		sx_xlock(&rm->rm_lock_sx);
540 	else
541 		mtx_lock(&rm->rm_lock_mtx);
542 
543 	if (CPU_CMP(&rm->rm_writecpus, &all_cpus)) {
544 		/* Get all read tokens back */
545 		readcpus = all_cpus;
546 		CPU_ANDNOT(&readcpus, &rm->rm_writecpus);
547 		rm->rm_writecpus = all_cpus;
548 
549 		/*
550 		 * Assumes rm->rm_writecpus update is visible on other CPUs
551 		 * before rm_cleanIPI is called.
552 		 */
553 #ifdef SMP
554 		smp_rendezvous_cpus(readcpus,
555 		    smp_no_rendezvous_barrier,
556 		    rm_cleanIPI,
557 		    smp_no_rendezvous_barrier,
558 		    rm);
559 
560 #else
561 		rm_cleanIPI(rm);
562 #endif
563 
564 		mtx_lock_spin(&rm_spinlock);
565 		while ((prio = LIST_FIRST(&rm->rm_activeReaders)) != NULL) {
566 			ts = turnstile_trywait(&rm->lock_object);
567 			prio->rmp_flags = RMPF_ONQUEUE | RMPF_SIGNAL;
568 			mtx_unlock_spin(&rm_spinlock);
569 			turnstile_wait(ts, prio->rmp_thread,
570 			    TS_EXCLUSIVE_QUEUE);
571 			mtx_lock_spin(&rm_spinlock);
572 		}
573 		mtx_unlock_spin(&rm_spinlock);
574 	}
575 }
576 
577 void
578 _rm_wunlock(struct rmlock *rm)
579 {
580 
581 	if (rm->lock_object.lo_flags & LO_SLEEPABLE)
582 		sx_xunlock(&rm->rm_lock_sx);
583 	else
584 		mtx_unlock(&rm->rm_lock_mtx);
585 }
586 
587 #if LOCK_DEBUG > 0
588 
589 void
590 _rm_wlock_debug(struct rmlock *rm, const char *file, int line)
591 {
592 
593 	if (SCHEDULER_STOPPED())
594 		return;
595 
596 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
597 	    ("rm_wlock() by idle thread %p on rmlock %s @ %s:%d",
598 	    curthread, rm->lock_object.lo_name, file, line));
599 	KASSERT(!rm_destroyed(rm),
600 	    ("rm_wlock() of destroyed rmlock @ %s:%d", file, line));
601 	_rm_assert(rm, RA_UNLOCKED, file, line);
602 
603 	WITNESS_CHECKORDER(&rm->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE,
604 	    file, line, NULL);
605 
606 	_rm_wlock(rm);
607 
608 	LOCK_LOG_LOCK("RMWLOCK", &rm->lock_object, 0, 0, file, line);
609 	WITNESS_LOCK(&rm->lock_object, LOP_EXCLUSIVE, file, line);
610 	TD_LOCKS_INC(curthread);
611 }
612 
613 void
614 _rm_wunlock_debug(struct rmlock *rm, const char *file, int line)
615 {
616 
617 	if (SCHEDULER_STOPPED())
618 		return;
619 
620 	KASSERT(!rm_destroyed(rm),
621 	    ("rm_wunlock() of destroyed rmlock @ %s:%d", file, line));
622 	_rm_assert(rm, RA_WLOCKED, file, line);
623 	WITNESS_UNLOCK(&rm->lock_object, LOP_EXCLUSIVE, file, line);
624 	LOCK_LOG_LOCK("RMWUNLOCK", &rm->lock_object, 0, 0, file, line);
625 	_rm_wunlock(rm);
626 	TD_LOCKS_DEC(curthread);
627 }
628 
629 int
630 _rm_rlock_debug(struct rmlock *rm, struct rm_priotracker *tracker,
631     int trylock, const char *file, int line)
632 {
633 
634 	if (SCHEDULER_STOPPED())
635 		return (1);
636 
637 #ifdef INVARIANTS
638 	if (!(rm->lock_object.lo_flags & LO_RECURSABLE) && !trylock) {
639 		critical_enter();
640 		KASSERT(rm_trackers_present(get_pcpu(), rm,
641 		    curthread) == 0,
642 		    ("rm_rlock: recursed on non-recursive rmlock %s @ %s:%d\n",
643 		    rm->lock_object.lo_name, file, line));
644 		critical_exit();
645 	}
646 #endif
647 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
648 	    ("rm_rlock() by idle thread %p on rmlock %s @ %s:%d",
649 	    curthread, rm->lock_object.lo_name, file, line));
650 	KASSERT(!rm_destroyed(rm),
651 	    ("rm_rlock() of destroyed rmlock @ %s:%d", file, line));
652 	if (!trylock) {
653 		KASSERT(!rm_wowned(rm),
654 		    ("rm_rlock: wlock already held for %s @ %s:%d",
655 		    rm->lock_object.lo_name, file, line));
656 		WITNESS_CHECKORDER(&rm->lock_object,
657 		    LOP_NEWORDER | LOP_NOSLEEP, file, line, NULL);
658 	}
659 
660 	if (_rm_rlock(rm, tracker, trylock)) {
661 		if (trylock)
662 			LOCK_LOG_TRY("RMRLOCK", &rm->lock_object, 0, 1, file,
663 			    line);
664 		else
665 			LOCK_LOG_LOCK("RMRLOCK", &rm->lock_object, 0, 0, file,
666 			    line);
667 		WITNESS_LOCK(&rm->lock_object, LOP_NOSLEEP, file, line);
668 		TD_LOCKS_INC(curthread);
669 		return (1);
670 	} else if (trylock)
671 		LOCK_LOG_TRY("RMRLOCK", &rm->lock_object, 0, 0, file, line);
672 
673 	return (0);
674 }
675 
676 void
677 _rm_runlock_debug(struct rmlock *rm, struct rm_priotracker *tracker,
678     const char *file, int line)
679 {
680 
681 	if (SCHEDULER_STOPPED())
682 		return;
683 
684 	KASSERT(!rm_destroyed(rm),
685 	    ("rm_runlock() of destroyed rmlock @ %s:%d", file, line));
686 	_rm_assert(rm, RA_RLOCKED, file, line);
687 	WITNESS_UNLOCK(&rm->lock_object, 0, file, line);
688 	LOCK_LOG_LOCK("RMRUNLOCK", &rm->lock_object, 0, 0, file, line);
689 	_rm_runlock(rm, tracker);
690 	TD_LOCKS_DEC(curthread);
691 }
692 
693 #else
694 
695 /*
696  * Just strip out file and line arguments if no lock debugging is enabled in
697  * the kernel - we are called from a kernel module.
698  */
699 void
700 _rm_wlock_debug(struct rmlock *rm, const char *file, int line)
701 {
702 
703 	_rm_wlock(rm);
704 }
705 
706 void
707 _rm_wunlock_debug(struct rmlock *rm, const char *file, int line)
708 {
709 
710 	_rm_wunlock(rm);
711 }
712 
713 int
714 _rm_rlock_debug(struct rmlock *rm, struct rm_priotracker *tracker,
715     int trylock, const char *file, int line)
716 {
717 
718 	return _rm_rlock(rm, tracker, trylock);
719 }
720 
721 void
722 _rm_runlock_debug(struct rmlock *rm, struct rm_priotracker *tracker,
723     const char *file, int line)
724 {
725 
726 	_rm_runlock(rm, tracker);
727 }
728 
729 #endif
730 
731 #ifdef INVARIANT_SUPPORT
732 #ifndef INVARIANTS
733 #undef _rm_assert
734 #endif
735 
736 /*
737  * Note that this does not need to use witness_assert() for read lock
738  * assertions since an exact count of read locks held by this thread
739  * is computable.
740  */
741 void
742 _rm_assert(const struct rmlock *rm, int what, const char *file, int line)
743 {
744 	int count;
745 
746 	if (SCHEDULER_STOPPED())
747 		return;
748 	switch (what) {
749 	case RA_LOCKED:
750 	case RA_LOCKED | RA_RECURSED:
751 	case RA_LOCKED | RA_NOTRECURSED:
752 	case RA_RLOCKED:
753 	case RA_RLOCKED | RA_RECURSED:
754 	case RA_RLOCKED | RA_NOTRECURSED:
755 		/*
756 		 * Handle the write-locked case.  Unlike other
757 		 * primitives, writers can never recurse.
758 		 */
759 		if (rm_wowned(rm)) {
760 			if (what & RA_RLOCKED)
761 				panic("Lock %s exclusively locked @ %s:%d\n",
762 				    rm->lock_object.lo_name, file, line);
763 			if (what & RA_RECURSED)
764 				panic("Lock %s not recursed @ %s:%d\n",
765 				    rm->lock_object.lo_name, file, line);
766 			break;
767 		}
768 
769 		critical_enter();
770 		count = rm_trackers_present(get_pcpu(), rm, curthread);
771 		critical_exit();
772 
773 		if (count == 0)
774 			panic("Lock %s not %slocked @ %s:%d\n",
775 			    rm->lock_object.lo_name, (what & RA_RLOCKED) ?
776 			    "read " : "", file, line);
777 		if (count > 1) {
778 			if (what & RA_NOTRECURSED)
779 				panic("Lock %s recursed @ %s:%d\n",
780 				    rm->lock_object.lo_name, file, line);
781 		} else if (what & RA_RECURSED)
782 			panic("Lock %s not recursed @ %s:%d\n",
783 			    rm->lock_object.lo_name, file, line);
784 		break;
785 	case RA_WLOCKED:
786 		if (!rm_wowned(rm))
787 			panic("Lock %s not exclusively locked @ %s:%d\n",
788 			    rm->lock_object.lo_name, file, line);
789 		break;
790 	case RA_UNLOCKED:
791 		if (rm_wowned(rm))
792 			panic("Lock %s exclusively locked @ %s:%d\n",
793 			    rm->lock_object.lo_name, file, line);
794 
795 		critical_enter();
796 		count = rm_trackers_present(get_pcpu(), rm, curthread);
797 		critical_exit();
798 
799 		if (count != 0)
800 			panic("Lock %s read locked @ %s:%d\n",
801 			    rm->lock_object.lo_name, file, line);
802 		break;
803 	default:
804 		panic("Unknown rm lock assertion: %d @ %s:%d", what, file,
805 		    line);
806 	}
807 }
808 #endif /* INVARIANT_SUPPORT */
809 
810 #ifdef DDB
811 static void
812 print_tracker(struct rm_priotracker *tr)
813 {
814 	struct thread *td;
815 
816 	td = tr->rmp_thread;
817 	db_printf("   thread %p (tid %d, pid %d, \"%s\") {", td, td->td_tid,
818 	    td->td_proc->p_pid, td->td_name);
819 	if (tr->rmp_flags & RMPF_ONQUEUE) {
820 		db_printf("ONQUEUE");
821 		if (tr->rmp_flags & RMPF_SIGNAL)
822 			db_printf(",SIGNAL");
823 	} else
824 		db_printf("0");
825 	db_printf("}\n");
826 }
827 
828 static void
829 db_show_rm(const struct lock_object *lock)
830 {
831 	struct rm_priotracker *tr;
832 	struct rm_queue *queue;
833 	const struct rmlock *rm;
834 	struct lock_class *lc;
835 	struct pcpu *pc;
836 
837 	rm = (const struct rmlock *)lock;
838 	db_printf(" writecpus: ");
839 	ddb_display_cpuset(__DEQUALIFY(const cpuset_t *, &rm->rm_writecpus));
840 	db_printf("\n");
841 	db_printf(" per-CPU readers:\n");
842 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu)
843 		for (queue = pc->pc_rm_queue.rmq_next;
844 		    queue != &pc->pc_rm_queue; queue = queue->rmq_next) {
845 			tr = (struct rm_priotracker *)queue;
846 			if (tr->rmp_rmlock == rm)
847 				print_tracker(tr);
848 		}
849 	db_printf(" active readers:\n");
850 	LIST_FOREACH(tr, &rm->rm_activeReaders, rmp_qentry)
851 		print_tracker(tr);
852 	lc = LOCK_CLASS(&rm->rm_wlock_object);
853 	db_printf("Backing write-lock (%s):\n", lc->lc_name);
854 	lc->lc_ddb_show(&rm->rm_wlock_object);
855 }
856 #endif
857 
858 /*
859  * Read-mostly sleepable locks.
860  *
861  * These primitives allow both readers and writers to sleep. However, neither
862  * readers nor writers are tracked and subsequently there is no priority
863  * propagation.
864  *
865  * They are intended to be only used when write-locking is almost never needed
866  * (e.g., they can guard against unloading a kernel module) while read-locking
867  * happens all the time.
868  *
869  * Concurrent writers take turns taking the lock while going off cpu. If this is
870  * of concern for your usecase, this is not the right primitive.
871  *
872  * Neither rms_rlock nor rms_runlock use fences. Instead compiler barriers are
873  * inserted to prevert reordering of generated code. Execution ordering is
874  * provided with the use of an IPI handler.
875  *
876  * No attempt is made to track which CPUs read locked at least once,
877  * consequently write locking sends IPIs to all of them. This will become a
878  * problem at some point. The easiest way to lessen it is to provide a bitmap.
879  */
880 
881 void
882 rms_init(struct rmslock *rms, const char *name)
883 {
884 
885 	rms->writers = 0;
886 	rms->readers = 0;
887 	mtx_init(&rms->mtx, name, NULL, MTX_DEF | MTX_NEW);
888 	rms->readers_pcpu = uma_zalloc_pcpu(pcpu_zone_int, M_WAITOK | M_ZERO);
889 	rms->readers_influx = uma_zalloc_pcpu(pcpu_zone_int, M_WAITOK | M_ZERO);
890 }
891 
892 void
893 rms_destroy(struct rmslock *rms)
894 {
895 
896 	MPASS(rms->writers == 0);
897 	MPASS(rms->readers == 0);
898 	mtx_destroy(&rms->mtx);
899 	uma_zfree_pcpu(pcpu_zone_int, rms->readers_pcpu);
900 	uma_zfree_pcpu(pcpu_zone_int, rms->readers_influx);
901 }
902 
903 static void __noinline
904 rms_rlock_fallback(struct rmslock *rms)
905 {
906 
907 	zpcpu_set_protected(rms->readers_influx, 0);
908 	critical_exit();
909 
910 	mtx_lock(&rms->mtx);
911 	MPASS(*zpcpu_get(rms->readers_pcpu) == 0);
912 	while (rms->writers > 0)
913 		msleep(&rms->readers, &rms->mtx, PUSER - 1, mtx_name(&rms->mtx), 0);
914 	critical_enter();
915 	zpcpu_add_protected(rms->readers_pcpu, 1);
916 	mtx_unlock(&rms->mtx);
917 	critical_exit();
918 }
919 
920 void
921 rms_rlock(struct rmslock *rms)
922 {
923 
924 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
925 
926 	critical_enter();
927 	zpcpu_set_protected(rms->readers_influx, 1);
928 	__compiler_membar();
929 	if (__predict_false(rms->writers > 0)) {
930 		rms_rlock_fallback(rms);
931 		return;
932 	}
933 	__compiler_membar();
934 	zpcpu_add_protected(rms->readers_pcpu, 1);
935 	__compiler_membar();
936 	zpcpu_set_protected(rms->readers_influx, 0);
937 	critical_exit();
938 }
939 
940 int
941 rms_try_rlock(struct rmslock *rms)
942 {
943 
944 	critical_enter();
945 	zpcpu_set_protected(rms->readers_influx, 1);
946 	__compiler_membar();
947 	if (__predict_false(rms->writers > 0)) {
948 		__compiler_membar();
949 		zpcpu_set_protected(rms->readers_influx, 0);
950 		critical_exit();
951 		return (0);
952 	}
953 	__compiler_membar();
954 	zpcpu_add_protected(rms->readers_pcpu, 1);
955 	__compiler_membar();
956 	zpcpu_set_protected(rms->readers_influx, 0);
957 	critical_exit();
958 	return (1);
959 }
960 
961 static void __noinline
962 rms_runlock_fallback(struct rmslock *rms)
963 {
964 
965 	zpcpu_set_protected(rms->readers_influx, 0);
966 	critical_exit();
967 
968 	mtx_lock(&rms->mtx);
969 	MPASS(*zpcpu_get(rms->readers_pcpu) == 0);
970 	MPASS(rms->writers > 0);
971 	MPASS(rms->readers > 0);
972 	rms->readers--;
973 	if (rms->readers == 0)
974 		wakeup_one(&rms->writers);
975 	mtx_unlock(&rms->mtx);
976 }
977 
978 void
979 rms_runlock(struct rmslock *rms)
980 {
981 
982 	critical_enter();
983 	zpcpu_set_protected(rms->readers_influx, 1);
984 	__compiler_membar();
985 	if (__predict_false(rms->writers > 0)) {
986 		rms_runlock_fallback(rms);
987 		return;
988 	}
989 	__compiler_membar();
990 	zpcpu_sub_protected(rms->readers_pcpu, 1);
991 	__compiler_membar();
992 	zpcpu_set_protected(rms->readers_influx, 0);
993 	critical_exit();
994 }
995 
996 struct rmslock_ipi {
997 	struct rmslock *rms;
998 	struct smp_rendezvous_cpus_retry_arg srcra;
999 };
1000 
1001 static void
1002 rms_action_func(void *arg)
1003 {
1004 	struct rmslock_ipi *rmsipi;
1005 	struct rmslock *rms;
1006 	int readers;
1007 
1008 	rmsipi = __containerof(arg, struct rmslock_ipi, srcra);
1009 	rms = rmsipi->rms;
1010 
1011 	if (*zpcpu_get(rms->readers_influx))
1012 		return;
1013 	readers = zpcpu_replace(rms->readers_pcpu, 0);
1014 	if (readers != 0)
1015 		atomic_add_int(&rms->readers, readers);
1016 	smp_rendezvous_cpus_done(arg);
1017 }
1018 
1019 static void
1020 rms_wait_func(void *arg, int cpu)
1021 {
1022 	struct rmslock_ipi *rmsipi;
1023 	struct rmslock *rms;
1024 	int *in_op;
1025 
1026 	rmsipi = __containerof(arg, struct rmslock_ipi, srcra);
1027 	rms = rmsipi->rms;
1028 
1029 	in_op = zpcpu_get_cpu(rms->readers_influx, cpu);
1030 	while (atomic_load_int(in_op))
1031 		cpu_spinwait();
1032 }
1033 
1034 static void
1035 rms_wlock_switch(struct rmslock *rms)
1036 {
1037 	struct rmslock_ipi rmsipi;
1038 
1039 	MPASS(rms->readers == 0);
1040 	MPASS(rms->writers == 1);
1041 
1042 	rmsipi.rms = rms;
1043 
1044 	smp_rendezvous_cpus_retry(all_cpus,
1045 	    smp_no_rendezvous_barrier,
1046 	    rms_action_func,
1047 	    smp_no_rendezvous_barrier,
1048 	    rms_wait_func,
1049 	    &rmsipi.srcra);
1050 }
1051 
1052 void
1053 rms_wlock(struct rmslock *rms)
1054 {
1055 
1056 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
1057 
1058 	mtx_lock(&rms->mtx);
1059 	rms->writers++;
1060 	if (rms->writers > 1) {
1061 		msleep(&rms->writers, &rms->mtx, (PUSER - 1) | PDROP,
1062 		    mtx_name(&rms->mtx), 0);
1063 		MPASS(rms->readers == 0);
1064 		return;
1065 	}
1066 
1067 	rms_wlock_switch(rms);
1068 
1069 	if (rms->readers > 0)
1070 		msleep(&rms->writers, &rms->mtx, (PUSER - 1) | PDROP,
1071 		    mtx_name(&rms->mtx), 0);
1072 	else
1073 		mtx_unlock(&rms->mtx);
1074 	MPASS(rms->readers == 0);
1075 }
1076 
1077 void
1078 rms_wunlock(struct rmslock *rms)
1079 {
1080 
1081 	mtx_lock(&rms->mtx);
1082 	MPASS(rms->writers >= 1);
1083 	MPASS(rms->readers == 0);
1084 	rms->writers--;
1085 	if (rms->writers > 0)
1086 		wakeup_one(&rms->writers);
1087 	else
1088 		wakeup(&rms->readers);
1089 	mtx_unlock(&rms->mtx);
1090 }
1091