1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_compat.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/sysproto.h> 45 #include <sys/file.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mutex.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/refcount.h> 53 #include <sys/resourcevar.h> 54 #include <sys/sched.h> 55 #include <sys/sx.h> 56 #include <sys/syscallsubr.h> 57 #include <sys/sysent.h> 58 #include <sys/time.h> 59 60 #include <vm/vm.h> 61 #include <vm/vm_param.h> 62 #include <vm/pmap.h> 63 #include <vm/vm_map.h> 64 65 66 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures"); 67 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 68 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 69 static struct mtx uihashtbl_mtx; 70 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 71 static u_long uihash; /* size of hash table - 1 */ 72 73 static void calcru1(struct proc *p, struct rusage_ext *ruxp, 74 struct timeval *up, struct timeval *sp); 75 static int donice(struct thread *td, struct proc *chgp, int n); 76 static struct uidinfo *uilookup(uid_t uid); 77 78 /* 79 * Resource controls and accounting. 80 */ 81 82 #ifndef _SYS_SYSPROTO_H_ 83 struct getpriority_args { 84 int which; 85 int who; 86 }; 87 #endif 88 /* 89 * MPSAFE 90 */ 91 int 92 getpriority(td, uap) 93 struct thread *td; 94 register struct getpriority_args *uap; 95 { 96 struct proc *p; 97 struct pgrp *pg; 98 int error, low; 99 100 error = 0; 101 low = PRIO_MAX + 1; 102 switch (uap->which) { 103 104 case PRIO_PROCESS: 105 if (uap->who == 0) 106 low = td->td_proc->p_nice; 107 else { 108 p = pfind(uap->who); 109 if (p == NULL) 110 break; 111 if (p_cansee(td, p) == 0) 112 low = p->p_nice; 113 PROC_UNLOCK(p); 114 } 115 break; 116 117 case PRIO_PGRP: 118 sx_slock(&proctree_lock); 119 if (uap->who == 0) { 120 pg = td->td_proc->p_pgrp; 121 PGRP_LOCK(pg); 122 } else { 123 pg = pgfind(uap->who); 124 if (pg == NULL) { 125 sx_sunlock(&proctree_lock); 126 break; 127 } 128 } 129 sx_sunlock(&proctree_lock); 130 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 131 PROC_LOCK(p); 132 if (!p_cansee(td, p)) { 133 if (p->p_nice < low) 134 low = p->p_nice; 135 } 136 PROC_UNLOCK(p); 137 } 138 PGRP_UNLOCK(pg); 139 break; 140 141 case PRIO_USER: 142 if (uap->who == 0) 143 uap->who = td->td_ucred->cr_uid; 144 sx_slock(&allproc_lock); 145 LIST_FOREACH(p, &allproc, p_list) { 146 PROC_LOCK(p); 147 if (!p_cansee(td, p) && 148 p->p_ucred->cr_uid == uap->who) { 149 if (p->p_nice < low) 150 low = p->p_nice; 151 } 152 PROC_UNLOCK(p); 153 } 154 sx_sunlock(&allproc_lock); 155 break; 156 157 default: 158 error = EINVAL; 159 break; 160 } 161 if (low == PRIO_MAX + 1 && error == 0) 162 error = ESRCH; 163 td->td_retval[0] = low; 164 return (error); 165 } 166 167 #ifndef _SYS_SYSPROTO_H_ 168 struct setpriority_args { 169 int which; 170 int who; 171 int prio; 172 }; 173 #endif 174 /* 175 * MPSAFE 176 */ 177 int 178 setpriority(td, uap) 179 struct thread *td; 180 struct setpriority_args *uap; 181 { 182 struct proc *curp, *p; 183 struct pgrp *pg; 184 int found = 0, error = 0; 185 186 curp = td->td_proc; 187 switch (uap->which) { 188 case PRIO_PROCESS: 189 if (uap->who == 0) { 190 PROC_LOCK(curp); 191 error = donice(td, curp, uap->prio); 192 PROC_UNLOCK(curp); 193 } else { 194 p = pfind(uap->who); 195 if (p == 0) 196 break; 197 if (p_cansee(td, p) == 0) 198 error = donice(td, p, uap->prio); 199 PROC_UNLOCK(p); 200 } 201 found++; 202 break; 203 204 case PRIO_PGRP: 205 sx_slock(&proctree_lock); 206 if (uap->who == 0) { 207 pg = curp->p_pgrp; 208 PGRP_LOCK(pg); 209 } else { 210 pg = pgfind(uap->who); 211 if (pg == NULL) { 212 sx_sunlock(&proctree_lock); 213 break; 214 } 215 } 216 sx_sunlock(&proctree_lock); 217 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 218 PROC_LOCK(p); 219 if (!p_cansee(td, p)) { 220 error = donice(td, p, uap->prio); 221 found++; 222 } 223 PROC_UNLOCK(p); 224 } 225 PGRP_UNLOCK(pg); 226 break; 227 228 case PRIO_USER: 229 if (uap->who == 0) 230 uap->who = td->td_ucred->cr_uid; 231 sx_slock(&allproc_lock); 232 FOREACH_PROC_IN_SYSTEM(p) { 233 PROC_LOCK(p); 234 if (p->p_ucred->cr_uid == uap->who && 235 !p_cansee(td, p)) { 236 error = donice(td, p, uap->prio); 237 found++; 238 } 239 PROC_UNLOCK(p); 240 } 241 sx_sunlock(&allproc_lock); 242 break; 243 244 default: 245 error = EINVAL; 246 break; 247 } 248 if (found == 0 && error == 0) 249 error = ESRCH; 250 return (error); 251 } 252 253 /* 254 * Set "nice" for a (whole) process. 255 */ 256 static int 257 donice(struct thread *td, struct proc *p, int n) 258 { 259 int error; 260 261 PROC_LOCK_ASSERT(p, MA_OWNED); 262 if ((error = p_cansched(td, p))) 263 return (error); 264 if (n > PRIO_MAX) 265 n = PRIO_MAX; 266 if (n < PRIO_MIN) 267 n = PRIO_MIN; 268 if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0) 269 return (EACCES); 270 mtx_lock_spin(&sched_lock); 271 sched_nice(p, n); 272 mtx_unlock_spin(&sched_lock); 273 return (0); 274 } 275 276 /* 277 * Set realtime priority for LWP. 278 * 279 * MPSAFE 280 */ 281 #ifndef _SYS_SYSPROTO_H_ 282 struct rtprio_thread_args { 283 int function; 284 lwpid_t lwpid; 285 struct rtprio *rtp; 286 }; 287 #endif 288 289 int 290 rtprio_thread(struct thread *td, struct rtprio_thread_args *uap) 291 { 292 struct proc *curp; 293 struct proc *p; 294 struct rtprio rtp; 295 struct thread *td1; 296 int cierror, error; 297 298 /* Perform copyin before acquiring locks if needed. */ 299 if (uap->function == RTP_SET) 300 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 301 else 302 cierror = 0; 303 304 curp = td->td_proc; 305 /* 306 * Though lwpid is unique, only current process is supported 307 * since there is no efficient way to look up a LWP yet. 308 */ 309 p = curp; 310 PROC_LOCK(p); 311 312 switch (uap->function) { 313 case RTP_LOOKUP: 314 if ((error = p_cansee(td, p))) 315 break; 316 mtx_lock_spin(&sched_lock); 317 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) 318 td1 = td; 319 else 320 td1 = thread_find(p, uap->lwpid); 321 if (td1 != NULL) 322 pri_to_rtp(td1, &rtp); 323 else 324 error = ESRCH; 325 mtx_unlock_spin(&sched_lock); 326 PROC_UNLOCK(p); 327 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 328 case RTP_SET: 329 if ((error = p_cansched(td, p)) || (error = cierror)) 330 break; 331 332 /* Disallow setting rtprio in most cases if not superuser. */ 333 if (suser(td) != 0) { 334 /* can't set realtime priority */ 335 /* 336 * Realtime priority has to be restricted for reasons which should be 337 * obvious. However, for idle priority, there is a potential for 338 * system deadlock if an idleprio process gains a lock on a resource 339 * that other processes need (and the idleprio process can't run 340 * due to a CPU-bound normal process). Fix me! XXX 341 */ 342 #if 0 343 if (RTP_PRIO_IS_REALTIME(rtp.type)) { 344 #else 345 if (rtp.type != RTP_PRIO_NORMAL) { 346 #endif 347 error = EPERM; 348 break; 349 } 350 } 351 352 mtx_lock_spin(&sched_lock); 353 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) 354 td1 = td; 355 else 356 td1 = thread_find(p, uap->lwpid); 357 if (td1 != NULL) 358 error = rtp_to_pri(&rtp, td1); 359 else 360 error = ESRCH; 361 mtx_unlock_spin(&sched_lock); 362 break; 363 default: 364 error = EINVAL; 365 break; 366 } 367 PROC_UNLOCK(p); 368 return (error); 369 } 370 371 /* 372 * Set realtime priority. 373 * 374 * MPSAFE 375 */ 376 #ifndef _SYS_SYSPROTO_H_ 377 struct rtprio_args { 378 int function; 379 pid_t pid; 380 struct rtprio *rtp; 381 }; 382 #endif 383 384 int 385 rtprio(td, uap) 386 struct thread *td; /* curthread */ 387 register struct rtprio_args *uap; 388 { 389 struct proc *curp; 390 struct proc *p; 391 struct thread *tdp; 392 struct rtprio rtp; 393 int cierror, error; 394 395 /* Perform copyin before acquiring locks if needed. */ 396 if (uap->function == RTP_SET) 397 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 398 else 399 cierror = 0; 400 401 curp = td->td_proc; 402 if (uap->pid == 0) { 403 p = curp; 404 PROC_LOCK(p); 405 } else { 406 p = pfind(uap->pid); 407 if (p == NULL) 408 return (ESRCH); 409 } 410 411 switch (uap->function) { 412 case RTP_LOOKUP: 413 if ((error = p_cansee(td, p))) 414 break; 415 mtx_lock_spin(&sched_lock); 416 /* 417 * Return OUR priority if no pid specified, 418 * or if one is, report the highest priority 419 * in the process. There isn't much more you can do as 420 * there is only room to return a single priority. 421 * XXXKSE: maybe need a new interface to report 422 * priorities of multiple system scope threads. 423 * Note: specifying our own pid is not the same 424 * as leaving it zero. 425 */ 426 if (uap->pid == 0) { 427 pri_to_rtp(td, &rtp); 428 } else { 429 struct rtprio rtp2; 430 431 rtp.type = RTP_PRIO_IDLE; 432 rtp.prio = RTP_PRIO_MAX; 433 FOREACH_THREAD_IN_PROC(p, tdp) { 434 pri_to_rtp(tdp, &rtp2); 435 if (rtp2.type < rtp.type || 436 (rtp2.type == rtp.type && 437 rtp2.prio < rtp.prio)) { 438 rtp.type = rtp2.type; 439 rtp.prio = rtp2.prio; 440 } 441 } 442 } 443 mtx_unlock_spin(&sched_lock); 444 PROC_UNLOCK(p); 445 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 446 case RTP_SET: 447 if ((error = p_cansched(td, p)) || (error = cierror)) 448 break; 449 450 /* Disallow setting rtprio in most cases if not superuser. */ 451 if (priv_check(td, PRIV_SCHED_RTPRIO) != 0) { 452 /* can't set someone else's */ 453 if (uap->pid) { 454 error = EPERM; 455 break; 456 } 457 /* can't set realtime priority */ 458 /* 459 * Realtime priority has to be restricted for reasons which should be 460 * obvious. However, for idle priority, there is a potential for 461 * system deadlock if an idleprio process gains a lock on a resource 462 * that other processes need (and the idleprio process can't run 463 * due to a CPU-bound normal process). Fix me! XXX 464 */ 465 #if 0 466 if (RTP_PRIO_IS_REALTIME(rtp.type)) { 467 #else 468 if (rtp.type != RTP_PRIO_NORMAL) { 469 #endif 470 error = EPERM; 471 break; 472 } 473 } 474 475 /* 476 * If we are setting our own priority, set just our 477 * thread but if we are doing another process, 478 * do all the threads on that process. If we 479 * specify our own pid we do the latter. 480 */ 481 mtx_lock_spin(&sched_lock); 482 if (uap->pid == 0) { 483 error = rtp_to_pri(&rtp, td); 484 } else { 485 FOREACH_THREAD_IN_PROC(p, td) { 486 if ((error = rtp_to_pri(&rtp, td)) != 0) 487 break; 488 } 489 } 490 mtx_unlock_spin(&sched_lock); 491 break; 492 default: 493 error = EINVAL; 494 break; 495 } 496 PROC_UNLOCK(p); 497 return (error); 498 } 499 500 int 501 rtp_to_pri(struct rtprio *rtp, struct thread *td) 502 { 503 u_char newpri; 504 505 mtx_assert(&sched_lock, MA_OWNED); 506 if (rtp->prio > RTP_PRIO_MAX) 507 return (EINVAL); 508 switch (RTP_PRIO_BASE(rtp->type)) { 509 case RTP_PRIO_REALTIME: 510 newpri = PRI_MIN_REALTIME + rtp->prio; 511 break; 512 case RTP_PRIO_NORMAL: 513 newpri = PRI_MIN_TIMESHARE + rtp->prio; 514 break; 515 case RTP_PRIO_IDLE: 516 newpri = PRI_MIN_IDLE + rtp->prio; 517 break; 518 default: 519 return (EINVAL); 520 } 521 sched_class(td, rtp->type); /* XXX fix */ 522 sched_user_prio(td, newpri); 523 if (curthread == td) 524 sched_prio(curthread, td->td_user_pri); /* XXX dubious */ 525 return (0); 526 } 527 528 void 529 pri_to_rtp(struct thread *td, struct rtprio *rtp) 530 { 531 532 mtx_assert(&sched_lock, MA_OWNED); 533 switch (PRI_BASE(td->td_pri_class)) { 534 case PRI_REALTIME: 535 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME; 536 break; 537 case PRI_TIMESHARE: 538 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE; 539 break; 540 case PRI_IDLE: 541 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE; 542 break; 543 default: 544 break; 545 } 546 rtp->type = td->td_pri_class; 547 } 548 549 #if defined(COMPAT_43) 550 #ifndef _SYS_SYSPROTO_H_ 551 struct osetrlimit_args { 552 u_int which; 553 struct orlimit *rlp; 554 }; 555 #endif 556 /* 557 * MPSAFE 558 */ 559 int 560 osetrlimit(td, uap) 561 struct thread *td; 562 register struct osetrlimit_args *uap; 563 { 564 struct orlimit olim; 565 struct rlimit lim; 566 int error; 567 568 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 569 return (error); 570 lim.rlim_cur = olim.rlim_cur; 571 lim.rlim_max = olim.rlim_max; 572 error = kern_setrlimit(td, uap->which, &lim); 573 return (error); 574 } 575 576 #ifndef _SYS_SYSPROTO_H_ 577 struct ogetrlimit_args { 578 u_int which; 579 struct orlimit *rlp; 580 }; 581 #endif 582 /* 583 * MPSAFE 584 */ 585 int 586 ogetrlimit(td, uap) 587 struct thread *td; 588 register struct ogetrlimit_args *uap; 589 { 590 struct orlimit olim; 591 struct rlimit rl; 592 struct proc *p; 593 int error; 594 595 if (uap->which >= RLIM_NLIMITS) 596 return (EINVAL); 597 p = td->td_proc; 598 PROC_LOCK(p); 599 lim_rlimit(p, uap->which, &rl); 600 PROC_UNLOCK(p); 601 602 /* 603 * XXX would be more correct to convert only RLIM_INFINITY to the 604 * old RLIM_INFINITY and fail with EOVERFLOW for other larger 605 * values. Most 64->32 and 32->16 conversions, including not 606 * unimportant ones of uids are even more broken than what we 607 * do here (they blindly truncate). We don't do this correctly 608 * here since we have little experience with EOVERFLOW yet. 609 * Elsewhere, getuid() can't fail... 610 */ 611 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur; 612 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max; 613 error = copyout(&olim, uap->rlp, sizeof(olim)); 614 return (error); 615 } 616 #endif /* COMPAT_43 */ 617 618 #ifndef _SYS_SYSPROTO_H_ 619 struct __setrlimit_args { 620 u_int which; 621 struct rlimit *rlp; 622 }; 623 #endif 624 /* 625 * MPSAFE 626 */ 627 int 628 setrlimit(td, uap) 629 struct thread *td; 630 register struct __setrlimit_args *uap; 631 { 632 struct rlimit alim; 633 int error; 634 635 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit)))) 636 return (error); 637 error = kern_setrlimit(td, uap->which, &alim); 638 return (error); 639 } 640 641 int 642 kern_setrlimit(td, which, limp) 643 struct thread *td; 644 u_int which; 645 struct rlimit *limp; 646 { 647 struct plimit *newlim, *oldlim; 648 struct proc *p; 649 register struct rlimit *alimp; 650 rlim_t oldssiz; 651 int error; 652 653 if (which >= RLIM_NLIMITS) 654 return (EINVAL); 655 656 /* 657 * Preserve historical bugs by treating negative limits as unsigned. 658 */ 659 if (limp->rlim_cur < 0) 660 limp->rlim_cur = RLIM_INFINITY; 661 if (limp->rlim_max < 0) 662 limp->rlim_max = RLIM_INFINITY; 663 664 oldssiz = 0; 665 p = td->td_proc; 666 newlim = lim_alloc(); 667 PROC_LOCK(p); 668 oldlim = p->p_limit; 669 alimp = &oldlim->pl_rlimit[which]; 670 if (limp->rlim_cur > alimp->rlim_max || 671 limp->rlim_max > alimp->rlim_max) 672 if ((error = priv_check_cred(td->td_ucred, 673 PRIV_PROC_SETRLIMIT, SUSER_ALLOWJAIL))) { 674 PROC_UNLOCK(p); 675 lim_free(newlim); 676 return (error); 677 } 678 if (limp->rlim_cur > limp->rlim_max) 679 limp->rlim_cur = limp->rlim_max; 680 lim_copy(newlim, oldlim); 681 alimp = &newlim->pl_rlimit[which]; 682 683 switch (which) { 684 685 case RLIMIT_CPU: 686 mtx_lock_spin(&sched_lock); 687 p->p_cpulimit = limp->rlim_cur; 688 mtx_unlock_spin(&sched_lock); 689 break; 690 case RLIMIT_DATA: 691 if (limp->rlim_cur > maxdsiz) 692 limp->rlim_cur = maxdsiz; 693 if (limp->rlim_max > maxdsiz) 694 limp->rlim_max = maxdsiz; 695 break; 696 697 case RLIMIT_STACK: 698 if (limp->rlim_cur > maxssiz) 699 limp->rlim_cur = maxssiz; 700 if (limp->rlim_max > maxssiz) 701 limp->rlim_max = maxssiz; 702 oldssiz = alimp->rlim_cur; 703 break; 704 705 case RLIMIT_NOFILE: 706 if (limp->rlim_cur > maxfilesperproc) 707 limp->rlim_cur = maxfilesperproc; 708 if (limp->rlim_max > maxfilesperproc) 709 limp->rlim_max = maxfilesperproc; 710 break; 711 712 case RLIMIT_NPROC: 713 if (limp->rlim_cur > maxprocperuid) 714 limp->rlim_cur = maxprocperuid; 715 if (limp->rlim_max > maxprocperuid) 716 limp->rlim_max = maxprocperuid; 717 if (limp->rlim_cur < 1) 718 limp->rlim_cur = 1; 719 if (limp->rlim_max < 1) 720 limp->rlim_max = 1; 721 break; 722 } 723 *alimp = *limp; 724 p->p_limit = newlim; 725 PROC_UNLOCK(p); 726 lim_free(oldlim); 727 728 if (which == RLIMIT_STACK) { 729 /* 730 * Stack is allocated to the max at exec time with only 731 * "rlim_cur" bytes accessible. If stack limit is going 732 * up make more accessible, if going down make inaccessible. 733 */ 734 if (limp->rlim_cur != oldssiz) { 735 vm_offset_t addr; 736 vm_size_t size; 737 vm_prot_t prot; 738 739 if (limp->rlim_cur > oldssiz) { 740 prot = p->p_sysent->sv_stackprot; 741 size = limp->rlim_cur - oldssiz; 742 addr = p->p_sysent->sv_usrstack - 743 limp->rlim_cur; 744 } else { 745 prot = VM_PROT_NONE; 746 size = oldssiz - limp->rlim_cur; 747 addr = p->p_sysent->sv_usrstack - oldssiz; 748 } 749 addr = trunc_page(addr); 750 size = round_page(size); 751 (void)vm_map_protect(&p->p_vmspace->vm_map, 752 addr, addr + size, prot, FALSE); 753 } 754 } 755 756 /* 757 * The data size limit may need to be changed to a value 758 * that makes sense for the 32 bit binary. 759 */ 760 if (p->p_sysent->sv_fixlimits != NULL) 761 p->p_sysent->sv_fixlimits(p); 762 return (0); 763 } 764 765 #ifndef _SYS_SYSPROTO_H_ 766 struct __getrlimit_args { 767 u_int which; 768 struct rlimit *rlp; 769 }; 770 #endif 771 /* 772 * MPSAFE 773 */ 774 /* ARGSUSED */ 775 int 776 getrlimit(td, uap) 777 struct thread *td; 778 register struct __getrlimit_args *uap; 779 { 780 struct rlimit rlim; 781 struct proc *p; 782 int error; 783 784 if (uap->which >= RLIM_NLIMITS) 785 return (EINVAL); 786 p = td->td_proc; 787 PROC_LOCK(p); 788 lim_rlimit(p, uap->which, &rlim); 789 PROC_UNLOCK(p); 790 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit)); 791 return (error); 792 } 793 794 /* 795 * Transform the running time and tick information for children of proc p 796 * into user and system time usage. 797 */ 798 void 799 calccru(p, up, sp) 800 struct proc *p; 801 struct timeval *up; 802 struct timeval *sp; 803 { 804 805 PROC_LOCK_ASSERT(p, MA_OWNED); 806 calcru1(p, &p->p_crux, up, sp); 807 } 808 809 /* 810 * Transform the running time and tick information in proc p into user 811 * and system time usage. If appropriate, include the current time slice 812 * on this CPU. 813 */ 814 void 815 calcru(struct proc *p, struct timeval *up, struct timeval *sp) 816 { 817 struct rusage_ext rux; 818 struct thread *td; 819 uint64_t u; 820 821 PROC_LOCK_ASSERT(p, MA_OWNED); 822 mtx_assert(&sched_lock, MA_NOTOWNED); 823 mtx_lock_spin(&sched_lock); 824 825 /* 826 * If we are getting stats for the current process, then add in the 827 * stats that this thread has accumulated in its current time slice. 828 * We reset the thread and CPU state as if we had performed a context 829 * switch right here. 830 */ 831 if (curthread->td_proc == p) { 832 td = curthread; 833 u = cpu_ticks(); 834 p->p_rux.rux_runtime += u - PCPU_GET(switchtime); 835 PCPU_SET(switchtime, u); 836 p->p_rux.rux_uticks += td->td_uticks; 837 td->td_uticks = 0; 838 p->p_rux.rux_iticks += td->td_iticks; 839 td->td_iticks = 0; 840 p->p_rux.rux_sticks += td->td_sticks; 841 td->td_sticks = 0; 842 } 843 /* Work on a copy of p_rux so we can let go of sched_lock */ 844 rux = p->p_rux; 845 mtx_unlock_spin(&sched_lock); 846 calcru1(p, &rux, up, sp); 847 /* Update the result from the p_rux copy */ 848 p->p_rux.rux_uu = rux.rux_uu; 849 p->p_rux.rux_su = rux.rux_su; 850 p->p_rux.rux_tu = rux.rux_tu; 851 } 852 853 static void 854 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up, 855 struct timeval *sp) 856 { 857 /* {user, system, interrupt, total} {ticks, usec}: */ 858 u_int64_t ut, uu, st, su, it, tt, tu; 859 860 ut = ruxp->rux_uticks; 861 st = ruxp->rux_sticks; 862 it = ruxp->rux_iticks; 863 tt = ut + st + it; 864 if (tt == 0) { 865 /* Avoid divide by zero */ 866 st = 1; 867 tt = 1; 868 } 869 tu = cputick2usec(ruxp->rux_runtime); 870 if ((int64_t)tu < 0) { 871 /* XXX: this should be an assert /phk */ 872 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n", 873 (intmax_t)tu, p->p_pid, p->p_comm); 874 tu = ruxp->rux_tu; 875 } 876 877 if (tu >= ruxp->rux_tu) { 878 /* 879 * The normal case, time increased. 880 * Enforce monotonicity of bucketed numbers. 881 */ 882 uu = (tu * ut) / tt; 883 if (uu < ruxp->rux_uu) 884 uu = ruxp->rux_uu; 885 su = (tu * st) / tt; 886 if (su < ruxp->rux_su) 887 su = ruxp->rux_su; 888 } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) { 889 /* 890 * When we calibrate the cputicker, it is not uncommon to 891 * see the presumably fixed frequency increase slightly over 892 * time as a result of thermal stabilization and NTP 893 * discipline (of the reference clock). We therefore ignore 894 * a bit of backwards slop because we expect to catch up 895 * shortly. We use a 3 microsecond limit to catch low 896 * counts and a 1% limit for high counts. 897 */ 898 uu = ruxp->rux_uu; 899 su = ruxp->rux_su; 900 tu = ruxp->rux_tu; 901 } else { /* tu < ruxp->rux_tu */ 902 /* 903 * What happene here was likely that a laptop, which ran at 904 * a reduced clock frequency at boot, kicked into high gear. 905 * The wisdom of spamming this message in that case is 906 * dubious, but it might also be indicative of something 907 * serious, so lets keep it and hope laptops can be made 908 * more truthful about their CPU speed via ACPI. 909 */ 910 printf("calcru: runtime went backwards from %ju usec " 911 "to %ju usec for pid %d (%s)\n", 912 (uintmax_t)ruxp->rux_tu, (uintmax_t)tu, 913 p->p_pid, p->p_comm); 914 uu = (tu * ut) / tt; 915 su = (tu * st) / tt; 916 } 917 918 ruxp->rux_uu = uu; 919 ruxp->rux_su = su; 920 ruxp->rux_tu = tu; 921 922 up->tv_sec = uu / 1000000; 923 up->tv_usec = uu % 1000000; 924 sp->tv_sec = su / 1000000; 925 sp->tv_usec = su % 1000000; 926 } 927 928 #ifndef _SYS_SYSPROTO_H_ 929 struct getrusage_args { 930 int who; 931 struct rusage *rusage; 932 }; 933 #endif 934 /* 935 * MPSAFE 936 */ 937 int 938 getrusage(td, uap) 939 register struct thread *td; 940 register struct getrusage_args *uap; 941 { 942 struct rusage ru; 943 int error; 944 945 error = kern_getrusage(td, uap->who, &ru); 946 if (error == 0) 947 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 948 return (error); 949 } 950 951 int 952 kern_getrusage(td, who, rup) 953 struct thread *td; 954 int who; 955 struct rusage *rup; 956 { 957 struct proc *p; 958 959 p = td->td_proc; 960 PROC_LOCK(p); 961 switch (who) { 962 963 case RUSAGE_SELF: 964 *rup = p->p_stats->p_ru; 965 calcru(p, &rup->ru_utime, &rup->ru_stime); 966 break; 967 968 case RUSAGE_CHILDREN: 969 *rup = p->p_stats->p_cru; 970 calccru(p, &rup->ru_utime, &rup->ru_stime); 971 break; 972 973 default: 974 PROC_UNLOCK(p); 975 return (EINVAL); 976 } 977 PROC_UNLOCK(p); 978 return (0); 979 } 980 981 void 982 ruadd(ru, rux, ru2, rux2) 983 struct rusage *ru; 984 struct rusage_ext *rux; 985 struct rusage *ru2; 986 struct rusage_ext *rux2; 987 { 988 register long *ip, *ip2; 989 register int i; 990 991 rux->rux_runtime += rux2->rux_runtime; 992 rux->rux_uticks += rux2->rux_uticks; 993 rux->rux_sticks += rux2->rux_sticks; 994 rux->rux_iticks += rux2->rux_iticks; 995 rux->rux_uu += rux2->rux_uu; 996 rux->rux_su += rux2->rux_su; 997 rux->rux_tu += rux2->rux_tu; 998 if (ru->ru_maxrss < ru2->ru_maxrss) 999 ru->ru_maxrss = ru2->ru_maxrss; 1000 ip = &ru->ru_first; 1001 ip2 = &ru2->ru_first; 1002 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 1003 *ip++ += *ip2++; 1004 } 1005 1006 /* 1007 * Allocate a new resource limits structure and initialize its 1008 * reference count and mutex pointer. 1009 */ 1010 struct plimit * 1011 lim_alloc() 1012 { 1013 struct plimit *limp; 1014 1015 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK); 1016 refcount_init(&limp->pl_refcnt, 1); 1017 return (limp); 1018 } 1019 1020 struct plimit * 1021 lim_hold(limp) 1022 struct plimit *limp; 1023 { 1024 1025 refcount_acquire(&limp->pl_refcnt); 1026 return (limp); 1027 } 1028 1029 void 1030 lim_free(limp) 1031 struct plimit *limp; 1032 { 1033 1034 KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow")); 1035 if (refcount_release(&limp->pl_refcnt)) 1036 free((void *)limp, M_PLIMIT); 1037 } 1038 1039 /* 1040 * Make a copy of the plimit structure. 1041 * We share these structures copy-on-write after fork. 1042 */ 1043 void 1044 lim_copy(dst, src) 1045 struct plimit *dst, *src; 1046 { 1047 1048 KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit")); 1049 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit)); 1050 } 1051 1052 /* 1053 * Return the hard limit for a particular system resource. The 1054 * which parameter specifies the index into the rlimit array. 1055 */ 1056 rlim_t 1057 lim_max(struct proc *p, int which) 1058 { 1059 struct rlimit rl; 1060 1061 lim_rlimit(p, which, &rl); 1062 return (rl.rlim_max); 1063 } 1064 1065 /* 1066 * Return the current (soft) limit for a particular system resource. 1067 * The which parameter which specifies the index into the rlimit array 1068 */ 1069 rlim_t 1070 lim_cur(struct proc *p, int which) 1071 { 1072 struct rlimit rl; 1073 1074 lim_rlimit(p, which, &rl); 1075 return (rl.rlim_cur); 1076 } 1077 1078 /* 1079 * Return a copy of the entire rlimit structure for the system limit 1080 * specified by 'which' in the rlimit structure pointed to by 'rlp'. 1081 */ 1082 void 1083 lim_rlimit(struct proc *p, int which, struct rlimit *rlp) 1084 { 1085 1086 PROC_LOCK_ASSERT(p, MA_OWNED); 1087 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1088 ("request for invalid resource limit")); 1089 *rlp = p->p_limit->pl_rlimit[which]; 1090 } 1091 1092 /* 1093 * Find the uidinfo structure for a uid. This structure is used to 1094 * track the total resource consumption (process count, socket buffer 1095 * size, etc.) for the uid and impose limits. 1096 */ 1097 void 1098 uihashinit() 1099 { 1100 1101 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 1102 mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF); 1103 } 1104 1105 /* 1106 * Look up a uidinfo struct for the parameter uid. 1107 * uihashtbl_mtx must be locked. 1108 */ 1109 static struct uidinfo * 1110 uilookup(uid) 1111 uid_t uid; 1112 { 1113 struct uihashhead *uipp; 1114 struct uidinfo *uip; 1115 1116 mtx_assert(&uihashtbl_mtx, MA_OWNED); 1117 uipp = UIHASH(uid); 1118 LIST_FOREACH(uip, uipp, ui_hash) 1119 if (uip->ui_uid == uid) 1120 break; 1121 1122 return (uip); 1123 } 1124 1125 /* 1126 * Find or allocate a struct uidinfo for a particular uid. 1127 * Increase refcount on uidinfo struct returned. 1128 * uifree() should be called on a struct uidinfo when released. 1129 */ 1130 struct uidinfo * 1131 uifind(uid) 1132 uid_t uid; 1133 { 1134 struct uidinfo *old_uip, *uip; 1135 1136 mtx_lock(&uihashtbl_mtx); 1137 uip = uilookup(uid); 1138 if (uip == NULL) { 1139 mtx_unlock(&uihashtbl_mtx); 1140 uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO); 1141 mtx_lock(&uihashtbl_mtx); 1142 /* 1143 * There's a chance someone created our uidinfo while we 1144 * were in malloc and not holding the lock, so we have to 1145 * make sure we don't insert a duplicate uidinfo. 1146 */ 1147 if ((old_uip = uilookup(uid)) != NULL) { 1148 /* Someone else beat us to it. */ 1149 free(uip, M_UIDINFO); 1150 uip = old_uip; 1151 } else { 1152 uip->ui_mtxp = mtx_pool_alloc(mtxpool_sleep); 1153 uip->ui_uid = uid; 1154 LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash); 1155 } 1156 } 1157 uihold(uip); 1158 mtx_unlock(&uihashtbl_mtx); 1159 return (uip); 1160 } 1161 1162 /* 1163 * Place another refcount on a uidinfo struct. 1164 */ 1165 void 1166 uihold(uip) 1167 struct uidinfo *uip; 1168 { 1169 1170 UIDINFO_LOCK(uip); 1171 uip->ui_ref++; 1172 UIDINFO_UNLOCK(uip); 1173 } 1174 1175 /*- 1176 * Since uidinfo structs have a long lifetime, we use an 1177 * opportunistic refcounting scheme to avoid locking the lookup hash 1178 * for each release. 1179 * 1180 * If the refcount hits 0, we need to free the structure, 1181 * which means we need to lock the hash. 1182 * Optimal case: 1183 * After locking the struct and lowering the refcount, if we find 1184 * that we don't need to free, simply unlock and return. 1185 * Suboptimal case: 1186 * If refcount lowering results in need to free, bump the count 1187 * back up, lose the lock and aquire the locks in the proper 1188 * order to try again. 1189 */ 1190 void 1191 uifree(uip) 1192 struct uidinfo *uip; 1193 { 1194 1195 /* Prepare for optimal case. */ 1196 UIDINFO_LOCK(uip); 1197 1198 if (--uip->ui_ref != 0) { 1199 UIDINFO_UNLOCK(uip); 1200 return; 1201 } 1202 1203 /* Prepare for suboptimal case. */ 1204 uip->ui_ref++; 1205 UIDINFO_UNLOCK(uip); 1206 mtx_lock(&uihashtbl_mtx); 1207 UIDINFO_LOCK(uip); 1208 1209 /* 1210 * We must subtract one from the count again because we backed out 1211 * our initial subtraction before dropping the lock. 1212 * Since another thread may have added a reference after we dropped the 1213 * initial lock we have to test for zero again. 1214 */ 1215 if (--uip->ui_ref == 0) { 1216 LIST_REMOVE(uip, ui_hash); 1217 mtx_unlock(&uihashtbl_mtx); 1218 if (uip->ui_sbsize != 0) 1219 printf("freeing uidinfo: uid = %d, sbsize = %jd\n", 1220 uip->ui_uid, (intmax_t)uip->ui_sbsize); 1221 if (uip->ui_proccnt != 0) 1222 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 1223 uip->ui_uid, uip->ui_proccnt); 1224 UIDINFO_UNLOCK(uip); 1225 FREE(uip, M_UIDINFO); 1226 return; 1227 } 1228 1229 mtx_unlock(&uihashtbl_mtx); 1230 UIDINFO_UNLOCK(uip); 1231 } 1232 1233 /* 1234 * Change the count associated with number of processes 1235 * a given user is using. When 'max' is 0, don't enforce a limit 1236 */ 1237 int 1238 chgproccnt(uip, diff, max) 1239 struct uidinfo *uip; 1240 int diff; 1241 int max; 1242 { 1243 1244 UIDINFO_LOCK(uip); 1245 /* Don't allow them to exceed max, but allow subtraction. */ 1246 if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) { 1247 UIDINFO_UNLOCK(uip); 1248 return (0); 1249 } 1250 uip->ui_proccnt += diff; 1251 if (uip->ui_proccnt < 0) 1252 printf("negative proccnt for uid = %d\n", uip->ui_uid); 1253 UIDINFO_UNLOCK(uip); 1254 return (1); 1255 } 1256 1257 /* 1258 * Change the total socket buffer size a user has used. 1259 */ 1260 int 1261 chgsbsize(uip, hiwat, to, max) 1262 struct uidinfo *uip; 1263 u_int *hiwat; 1264 u_int to; 1265 rlim_t max; 1266 { 1267 rlim_t new; 1268 1269 UIDINFO_LOCK(uip); 1270 new = uip->ui_sbsize + to - *hiwat; 1271 /* Don't allow them to exceed max, but allow subtraction. */ 1272 if (to > *hiwat && new > max) { 1273 UIDINFO_UNLOCK(uip); 1274 return (0); 1275 } 1276 uip->ui_sbsize = new; 1277 UIDINFO_UNLOCK(uip); 1278 *hiwat = to; 1279 if (new < 0) 1280 printf("negative sbsize for uid = %d\n", uip->ui_uid); 1281 return (1); 1282 } 1283