1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 */ 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/sysproto.h> 40 #include <sys/file.h> 41 #include <sys/filedesc.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mutex.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/refcount.h> 49 #include <sys/racct.h> 50 #include <sys/resourcevar.h> 51 #include <sys/rwlock.h> 52 #include <sys/sched.h> 53 #include <sys/sx.h> 54 #include <sys/syscallsubr.h> 55 #include <sys/sysctl.h> 56 #include <sys/sysent.h> 57 #include <sys/time.h> 58 #include <sys/umtxvar.h> 59 60 #include <vm/vm.h> 61 #include <vm/vm_param.h> 62 #include <vm/pmap.h> 63 #include <vm/vm_map.h> 64 #include <vm/vm_extern.h> 65 66 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures"); 67 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 68 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 69 static struct rwlock uihashtbl_lock; 70 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 71 static u_long uihash; /* size of hash table - 1 */ 72 73 static void calcru1(struct proc *p, struct rusage_ext *ruxp, 74 struct timeval *up, struct timeval *sp); 75 static int donice(struct thread *td, struct proc *chgp, int n); 76 static struct uidinfo *uilookup(uid_t uid); 77 static void ruxagg_ext_locked(struct rusage_ext *rux, struct thread *td); 78 79 /* 80 * Resource controls and accounting. 81 */ 82 #ifndef _SYS_SYSPROTO_H_ 83 struct getpriority_args { 84 int which; 85 int who; 86 }; 87 #endif 88 int 89 sys_getpriority(struct thread *td, struct getpriority_args *uap) 90 { 91 92 return (kern_getpriority(td, uap->which, uap->who)); 93 } 94 95 int 96 kern_getpriority(struct thread *td, int which, int who) 97 { 98 struct proc *p; 99 struct pgrp *pg; 100 int error, low; 101 102 error = 0; 103 low = PRIO_MAX + 1; 104 switch (which) { 105 case PRIO_PROCESS: 106 if (who == 0) 107 low = td->td_proc->p_nice; 108 else { 109 p = pfind(who); 110 if (p == NULL) 111 break; 112 if (p_cansee(td, p) == 0) 113 low = p->p_nice; 114 PROC_UNLOCK(p); 115 } 116 break; 117 118 case PRIO_PGRP: 119 sx_slock(&proctree_lock); 120 if (who == 0) { 121 pg = td->td_proc->p_pgrp; 122 PGRP_LOCK(pg); 123 } else { 124 pg = pgfind(who); 125 if (pg == NULL) { 126 sx_sunlock(&proctree_lock); 127 break; 128 } 129 } 130 sx_sunlock(&proctree_lock); 131 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 132 PROC_LOCK(p); 133 if (p->p_state == PRS_NORMAL && 134 p_cansee(td, p) == 0) { 135 if (p->p_nice < low) 136 low = p->p_nice; 137 } 138 PROC_UNLOCK(p); 139 } 140 PGRP_UNLOCK(pg); 141 break; 142 143 case PRIO_USER: 144 if (who == 0) 145 who = td->td_ucred->cr_uid; 146 sx_slock(&allproc_lock); 147 FOREACH_PROC_IN_SYSTEM(p) { 148 PROC_LOCK(p); 149 if (p->p_state == PRS_NORMAL && 150 p_cansee(td, p) == 0 && 151 p->p_ucred->cr_uid == who) { 152 if (p->p_nice < low) 153 low = p->p_nice; 154 } 155 PROC_UNLOCK(p); 156 } 157 sx_sunlock(&allproc_lock); 158 break; 159 160 default: 161 error = EINVAL; 162 break; 163 } 164 if (low == PRIO_MAX + 1 && error == 0) 165 error = ESRCH; 166 td->td_retval[0] = low; 167 return (error); 168 } 169 170 #ifndef _SYS_SYSPROTO_H_ 171 struct setpriority_args { 172 int which; 173 int who; 174 int prio; 175 }; 176 #endif 177 int 178 sys_setpriority(struct thread *td, struct setpriority_args *uap) 179 { 180 181 return (kern_setpriority(td, uap->which, uap->who, uap->prio)); 182 } 183 184 int 185 kern_setpriority(struct thread *td, int which, int who, int prio) 186 { 187 struct proc *curp, *p; 188 struct pgrp *pg; 189 int found = 0, error = 0; 190 191 curp = td->td_proc; 192 switch (which) { 193 case PRIO_PROCESS: 194 if (who == 0) { 195 PROC_LOCK(curp); 196 error = donice(td, curp, prio); 197 PROC_UNLOCK(curp); 198 } else { 199 p = pfind(who); 200 if (p == NULL) 201 break; 202 error = p_cansee(td, p); 203 if (error == 0) 204 error = donice(td, p, prio); 205 PROC_UNLOCK(p); 206 } 207 found++; 208 break; 209 210 case PRIO_PGRP: 211 sx_slock(&proctree_lock); 212 if (who == 0) { 213 pg = curp->p_pgrp; 214 PGRP_LOCK(pg); 215 } else { 216 pg = pgfind(who); 217 if (pg == NULL) { 218 sx_sunlock(&proctree_lock); 219 break; 220 } 221 } 222 sx_sunlock(&proctree_lock); 223 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 224 PROC_LOCK(p); 225 if (p->p_state == PRS_NORMAL && 226 p_cansee(td, p) == 0) { 227 error = donice(td, p, prio); 228 found++; 229 } 230 PROC_UNLOCK(p); 231 } 232 PGRP_UNLOCK(pg); 233 break; 234 235 case PRIO_USER: 236 if (who == 0) 237 who = td->td_ucred->cr_uid; 238 sx_slock(&allproc_lock); 239 FOREACH_PROC_IN_SYSTEM(p) { 240 PROC_LOCK(p); 241 if (p->p_state == PRS_NORMAL && 242 p->p_ucred->cr_uid == who && 243 p_cansee(td, p) == 0) { 244 error = donice(td, p, prio); 245 found++; 246 } 247 PROC_UNLOCK(p); 248 } 249 sx_sunlock(&allproc_lock); 250 break; 251 252 default: 253 error = EINVAL; 254 break; 255 } 256 if (found == 0 && error == 0) 257 error = ESRCH; 258 return (error); 259 } 260 261 /* 262 * Set "nice" for a (whole) process. 263 */ 264 static int 265 donice(struct thread *td, struct proc *p, int n) 266 { 267 int error; 268 269 PROC_LOCK_ASSERT(p, MA_OWNED); 270 if ((error = p_cansched(td, p))) 271 return (error); 272 if (n > PRIO_MAX) 273 n = PRIO_MAX; 274 if (n < PRIO_MIN) 275 n = PRIO_MIN; 276 if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0) 277 return (EACCES); 278 sched_nice(p, n); 279 return (0); 280 } 281 282 static int unprivileged_idprio; 283 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW, 284 &unprivileged_idprio, 0, 285 "Allow non-root users to set an idle priority (deprecated)"); 286 287 /* 288 * Set realtime priority for LWP. 289 */ 290 #ifndef _SYS_SYSPROTO_H_ 291 struct rtprio_thread_args { 292 int function; 293 lwpid_t lwpid; 294 struct rtprio *rtp; 295 }; 296 #endif 297 int 298 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap) 299 { 300 struct proc *p; 301 struct rtprio rtp; 302 struct thread *td1; 303 int cierror, error; 304 305 /* Perform copyin before acquiring locks if needed. */ 306 if (uap->function == RTP_SET) 307 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 308 else 309 cierror = 0; 310 311 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) { 312 p = td->td_proc; 313 td1 = td; 314 PROC_LOCK(p); 315 } else { 316 td1 = tdfind(uap->lwpid, -1); 317 if (td1 == NULL) 318 return (ESRCH); 319 p = td1->td_proc; 320 } 321 322 switch (uap->function) { 323 case RTP_LOOKUP: 324 if ((error = p_cansee(td, p))) 325 break; 326 pri_to_rtp(td1, &rtp); 327 PROC_UNLOCK(p); 328 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 329 case RTP_SET: 330 if ((error = p_cansched(td, p)) || (error = cierror)) 331 break; 332 333 /* Disallow setting rtprio in most cases if not superuser. */ 334 335 /* 336 * Realtime priority has to be restricted for reasons which 337 * should be obvious. However, for idleprio processes, there is 338 * a potential for system deadlock if an idleprio process gains 339 * a lock on a resource that other processes need (and the 340 * idleprio process can't run due to a CPU-bound normal 341 * process). Fix me! XXX 342 * 343 * This problem is not only related to idleprio process. 344 * A user level program can obtain a file lock and hold it 345 * indefinitely. Additionally, without idleprio processes it is 346 * still conceivable that a program with low priority will never 347 * get to run. In short, allowing this feature might make it 348 * easier to lock a resource indefinitely, but it is not the 349 * only thing that makes it possible. 350 */ 351 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME && 352 (error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0) 353 break; 354 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 355 unprivileged_idprio == 0 && 356 (error = priv_check(td, PRIV_SCHED_IDPRIO)) != 0) 357 break; 358 error = rtp_to_pri(&rtp, td1); 359 break; 360 default: 361 error = EINVAL; 362 break; 363 } 364 PROC_UNLOCK(p); 365 return (error); 366 } 367 368 /* 369 * Set realtime priority. 370 */ 371 #ifndef _SYS_SYSPROTO_H_ 372 struct rtprio_args { 373 int function; 374 pid_t pid; 375 struct rtprio *rtp; 376 }; 377 #endif 378 int 379 sys_rtprio(struct thread *td, struct rtprio_args *uap) 380 { 381 struct proc *p; 382 struct thread *tdp; 383 struct rtprio rtp; 384 int cierror, error; 385 386 /* Perform copyin before acquiring locks if needed. */ 387 if (uap->function == RTP_SET) 388 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 389 else 390 cierror = 0; 391 392 if (uap->pid == 0) { 393 p = td->td_proc; 394 PROC_LOCK(p); 395 } else { 396 p = pfind(uap->pid); 397 if (p == NULL) 398 return (ESRCH); 399 } 400 401 switch (uap->function) { 402 case RTP_LOOKUP: 403 if ((error = p_cansee(td, p))) 404 break; 405 /* 406 * Return OUR priority if no pid specified, 407 * or if one is, report the highest priority 408 * in the process. There isn't much more you can do as 409 * there is only room to return a single priority. 410 * Note: specifying our own pid is not the same 411 * as leaving it zero. 412 */ 413 if (uap->pid == 0) { 414 pri_to_rtp(td, &rtp); 415 } else { 416 struct rtprio rtp2; 417 418 rtp.type = RTP_PRIO_IDLE; 419 rtp.prio = RTP_PRIO_MAX; 420 FOREACH_THREAD_IN_PROC(p, tdp) { 421 pri_to_rtp(tdp, &rtp2); 422 if (rtp2.type < rtp.type || 423 (rtp2.type == rtp.type && 424 rtp2.prio < rtp.prio)) { 425 rtp.type = rtp2.type; 426 rtp.prio = rtp2.prio; 427 } 428 } 429 } 430 PROC_UNLOCK(p); 431 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 432 case RTP_SET: 433 if ((error = p_cansched(td, p)) || (error = cierror)) 434 break; 435 436 /* 437 * Disallow setting rtprio in most cases if not superuser. 438 * See the comment in sys_rtprio_thread about idprio 439 * threads holding a lock. 440 */ 441 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME && 442 (error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0) 443 break; 444 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 445 unprivileged_idprio == 0 && 446 (error = priv_check(td, PRIV_SCHED_IDPRIO)) != 0) 447 break; 448 449 /* 450 * If we are setting our own priority, set just our 451 * thread but if we are doing another process, 452 * do all the threads on that process. If we 453 * specify our own pid we do the latter. 454 */ 455 if (uap->pid == 0) { 456 error = rtp_to_pri(&rtp, td); 457 } else { 458 FOREACH_THREAD_IN_PROC(p, td) { 459 if ((error = rtp_to_pri(&rtp, td)) != 0) 460 break; 461 } 462 } 463 break; 464 default: 465 error = EINVAL; 466 break; 467 } 468 PROC_UNLOCK(p); 469 return (error); 470 } 471 472 int 473 rtp_to_pri(struct rtprio *rtp, struct thread *td) 474 { 475 u_char newpri, oldclass, oldpri; 476 477 switch (RTP_PRIO_BASE(rtp->type)) { 478 case RTP_PRIO_REALTIME: 479 if (rtp->prio > RTP_PRIO_MAX) 480 return (EINVAL); 481 newpri = PRI_MIN_REALTIME + rtp->prio; 482 break; 483 case RTP_PRIO_NORMAL: 484 if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE)) 485 return (EINVAL); 486 newpri = PRI_MIN_TIMESHARE + rtp->prio; 487 break; 488 case RTP_PRIO_IDLE: 489 if (rtp->prio > RTP_PRIO_MAX) 490 return (EINVAL); 491 newpri = PRI_MIN_IDLE + rtp->prio; 492 break; 493 default: 494 return (EINVAL); 495 } 496 497 thread_lock(td); 498 oldclass = td->td_pri_class; 499 sched_class(td, rtp->type); /* XXX fix */ 500 oldpri = td->td_user_pri; 501 sched_user_prio(td, newpri); 502 if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL || 503 td->td_pri_class != RTP_PRIO_NORMAL)) 504 sched_prio(td, td->td_user_pri); 505 if (TD_ON_UPILOCK(td) && oldpri != newpri) { 506 critical_enter(); 507 thread_unlock(td); 508 umtx_pi_adjust(td, oldpri); 509 critical_exit(); 510 } else 511 thread_unlock(td); 512 return (0); 513 } 514 515 void 516 pri_to_rtp(struct thread *td, struct rtprio *rtp) 517 { 518 519 thread_lock(td); 520 switch (PRI_BASE(td->td_pri_class)) { 521 case PRI_REALTIME: 522 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME; 523 break; 524 case PRI_TIMESHARE: 525 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE; 526 break; 527 case PRI_IDLE: 528 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE; 529 break; 530 default: 531 break; 532 } 533 rtp->type = td->td_pri_class; 534 thread_unlock(td); 535 } 536 537 #if defined(COMPAT_43) 538 #ifndef _SYS_SYSPROTO_H_ 539 struct osetrlimit_args { 540 u_int which; 541 struct orlimit *rlp; 542 }; 543 #endif 544 int 545 osetrlimit(struct thread *td, struct osetrlimit_args *uap) 546 { 547 struct orlimit olim; 548 struct rlimit lim; 549 int error; 550 551 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 552 return (error); 553 lim.rlim_cur = olim.rlim_cur; 554 lim.rlim_max = olim.rlim_max; 555 error = kern_setrlimit(td, uap->which, &lim); 556 return (error); 557 } 558 559 #ifndef _SYS_SYSPROTO_H_ 560 struct ogetrlimit_args { 561 u_int which; 562 struct orlimit *rlp; 563 }; 564 #endif 565 int 566 ogetrlimit(struct thread *td, struct ogetrlimit_args *uap) 567 { 568 struct orlimit olim; 569 struct rlimit rl; 570 int error; 571 572 if (uap->which >= RLIM_NLIMITS) 573 return (EINVAL); 574 lim_rlimit(td, uap->which, &rl); 575 576 /* 577 * XXX would be more correct to convert only RLIM_INFINITY to the 578 * old RLIM_INFINITY and fail with EOVERFLOW for other larger 579 * values. Most 64->32 and 32->16 conversions, including not 580 * unimportant ones of uids are even more broken than what we 581 * do here (they blindly truncate). We don't do this correctly 582 * here since we have little experience with EOVERFLOW yet. 583 * Elsewhere, getuid() can't fail... 584 */ 585 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur; 586 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max; 587 error = copyout(&olim, uap->rlp, sizeof(olim)); 588 return (error); 589 } 590 #endif /* COMPAT_43 */ 591 592 #ifndef _SYS_SYSPROTO_H_ 593 struct setrlimit_args { 594 u_int which; 595 struct rlimit *rlp; 596 }; 597 #endif 598 int 599 sys_setrlimit(struct thread *td, struct setrlimit_args *uap) 600 { 601 struct rlimit alim; 602 int error; 603 604 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit)))) 605 return (error); 606 error = kern_setrlimit(td, uap->which, &alim); 607 return (error); 608 } 609 610 static void 611 lim_cb(void *arg) 612 { 613 struct rlimit rlim; 614 struct thread *td; 615 struct proc *p; 616 617 p = arg; 618 PROC_LOCK_ASSERT(p, MA_OWNED); 619 /* 620 * Check if the process exceeds its cpu resource allocation. If 621 * it reaches the max, arrange to kill the process in ast(). 622 */ 623 if (p->p_cpulimit == RLIM_INFINITY) 624 return; 625 PROC_STATLOCK(p); 626 FOREACH_THREAD_IN_PROC(p, td) { 627 ruxagg(p, td); 628 } 629 PROC_STATUNLOCK(p); 630 if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) { 631 lim_rlimit_proc(p, RLIMIT_CPU, &rlim); 632 if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) { 633 killproc(p, "exceeded maximum CPU limit"); 634 } else { 635 if (p->p_cpulimit < rlim.rlim_max) 636 p->p_cpulimit += 5; 637 kern_psignal(p, SIGXCPU); 638 } 639 } 640 if ((p->p_flag & P_WEXIT) == 0) 641 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 642 lim_cb, p, C_PREL(1)); 643 } 644 645 int 646 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp) 647 { 648 649 return (kern_proc_setrlimit(td, td->td_proc, which, limp)); 650 } 651 652 int 653 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which, 654 struct rlimit *limp) 655 { 656 struct plimit *newlim, *oldlim, *oldlim_td; 657 struct rlimit *alimp; 658 struct rlimit oldssiz; 659 int error; 660 661 if (which >= RLIM_NLIMITS) 662 return (EINVAL); 663 664 /* 665 * Preserve historical bugs by treating negative limits as unsigned. 666 */ 667 if (limp->rlim_cur < 0) 668 limp->rlim_cur = RLIM_INFINITY; 669 if (limp->rlim_max < 0) 670 limp->rlim_max = RLIM_INFINITY; 671 672 oldssiz.rlim_cur = 0; 673 newlim = lim_alloc(); 674 PROC_LOCK(p); 675 oldlim = p->p_limit; 676 alimp = &oldlim->pl_rlimit[which]; 677 if (limp->rlim_cur > alimp->rlim_max || 678 limp->rlim_max > alimp->rlim_max) 679 if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) { 680 PROC_UNLOCK(p); 681 lim_free(newlim); 682 return (error); 683 } 684 if (limp->rlim_cur > limp->rlim_max) 685 limp->rlim_cur = limp->rlim_max; 686 lim_copy(newlim, oldlim); 687 alimp = &newlim->pl_rlimit[which]; 688 689 switch (which) { 690 case RLIMIT_CPU: 691 if (limp->rlim_cur != RLIM_INFINITY && 692 p->p_cpulimit == RLIM_INFINITY) 693 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 694 lim_cb, p, C_PREL(1)); 695 p->p_cpulimit = limp->rlim_cur; 696 break; 697 case RLIMIT_DATA: 698 if (limp->rlim_cur > maxdsiz) 699 limp->rlim_cur = maxdsiz; 700 if (limp->rlim_max > maxdsiz) 701 limp->rlim_max = maxdsiz; 702 break; 703 704 case RLIMIT_STACK: 705 if (limp->rlim_cur > maxssiz) 706 limp->rlim_cur = maxssiz; 707 if (limp->rlim_max > maxssiz) 708 limp->rlim_max = maxssiz; 709 oldssiz = *alimp; 710 if (p->p_sysent->sv_fixlimit != NULL) 711 p->p_sysent->sv_fixlimit(&oldssiz, 712 RLIMIT_STACK); 713 break; 714 715 case RLIMIT_NOFILE: 716 if (limp->rlim_cur > maxfilesperproc) 717 limp->rlim_cur = maxfilesperproc; 718 if (limp->rlim_max > maxfilesperproc) 719 limp->rlim_max = maxfilesperproc; 720 break; 721 722 case RLIMIT_NPROC: 723 if (limp->rlim_cur > maxprocperuid) 724 limp->rlim_cur = maxprocperuid; 725 if (limp->rlim_max > maxprocperuid) 726 limp->rlim_max = maxprocperuid; 727 if (limp->rlim_cur < 1) 728 limp->rlim_cur = 1; 729 if (limp->rlim_max < 1) 730 limp->rlim_max = 1; 731 break; 732 } 733 if (p->p_sysent->sv_fixlimit != NULL) 734 p->p_sysent->sv_fixlimit(limp, which); 735 *alimp = *limp; 736 p->p_limit = newlim; 737 PROC_UPDATE_COW(p); 738 oldlim_td = NULL; 739 if (td == curthread && PROC_COW_CHANGECOUNT(td, p) == 1) { 740 oldlim_td = lim_cowsync(); 741 thread_cow_synced(td); 742 } 743 PROC_UNLOCK(p); 744 if (oldlim_td != NULL) { 745 MPASS(oldlim_td == oldlim); 746 lim_freen(oldlim, 2); 747 } else { 748 lim_free(oldlim); 749 } 750 751 if (which == RLIMIT_STACK && 752 /* 753 * Skip calls from exec_new_vmspace(), done when stack is 754 * not mapped yet. 755 */ 756 (td != curthread || (p->p_flag & P_INEXEC) == 0)) { 757 /* 758 * Stack is allocated to the max at exec time with only 759 * "rlim_cur" bytes accessible. If stack limit is going 760 * up make more accessible, if going down make inaccessible. 761 */ 762 if (limp->rlim_cur != oldssiz.rlim_cur) { 763 vm_offset_t addr; 764 vm_size_t size; 765 vm_prot_t prot; 766 767 if (limp->rlim_cur > oldssiz.rlim_cur) { 768 prot = p->p_sysent->sv_stackprot; 769 size = limp->rlim_cur - oldssiz.rlim_cur; 770 addr = round_page(p->p_vmspace->vm_stacktop) - 771 limp->rlim_cur; 772 } else { 773 prot = VM_PROT_NONE; 774 size = oldssiz.rlim_cur - limp->rlim_cur; 775 addr = round_page(p->p_vmspace->vm_stacktop) - 776 oldssiz.rlim_cur; 777 } 778 addr = trunc_page(addr); 779 size = round_page(size); 780 (void)vm_map_protect(&p->p_vmspace->vm_map, 781 addr, addr + size, prot, 0, 782 VM_MAP_PROTECT_SET_PROT); 783 } 784 } 785 786 return (0); 787 } 788 789 #ifndef _SYS_SYSPROTO_H_ 790 struct getrlimit_args { 791 u_int which; 792 struct rlimit *rlp; 793 }; 794 #endif 795 /* ARGSUSED */ 796 int 797 sys_getrlimit(struct thread *td, struct getrlimit_args *uap) 798 { 799 struct rlimit rlim; 800 int error; 801 802 if (uap->which >= RLIM_NLIMITS) 803 return (EINVAL); 804 lim_rlimit(td, uap->which, &rlim); 805 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit)); 806 return (error); 807 } 808 809 static int 810 getrlimitusage_one(struct proc *p, u_int which, int flags, rlim_t *res) 811 { 812 struct thread *td; 813 struct uidinfo *ui; 814 struct vmspace *vm; 815 uid_t uid; 816 int error; 817 818 error = 0; 819 PROC_LOCK(p); 820 uid = (flags & GETRLIMITUSAGE_EUID) == 0 ? p->p_ucred->cr_ruid : 821 p->p_ucred->cr_uid; 822 PROC_UNLOCK(p); 823 824 ui = uifind(uid); 825 vm = vmspace_acquire_ref(p); 826 827 switch (which) { 828 case RLIMIT_CPU: 829 PROC_LOCK(p); 830 PROC_STATLOCK(p); 831 FOREACH_THREAD_IN_PROC(p, td) 832 ruxagg(p, td); 833 *res = p->p_rux.rux_runtime; 834 PROC_STATUNLOCK(p); 835 PROC_UNLOCK(p); 836 *res /= cpu_tickrate(); 837 break; 838 case RLIMIT_FSIZE: 839 error = ENXIO; 840 break; 841 case RLIMIT_DATA: 842 if (vm == NULL) 843 error = ENXIO; 844 else 845 *res = vm->vm_dsize * PAGE_SIZE; 846 break; 847 case RLIMIT_STACK: 848 if (vm == NULL) 849 error = ENXIO; 850 else 851 *res = vm->vm_ssize * PAGE_SIZE; 852 break; 853 case RLIMIT_CORE: 854 error = ENXIO; 855 break; 856 case RLIMIT_RSS: 857 if (vm == NULL) 858 error = ENXIO; 859 else 860 *res = vmspace_resident_count(vm) * PAGE_SIZE; 861 break; 862 case RLIMIT_MEMLOCK: 863 if (vm == NULL) 864 error = ENXIO; 865 else 866 *res = pmap_wired_count(vmspace_pmap(vm)) * PAGE_SIZE; 867 break; 868 case RLIMIT_NPROC: 869 *res = ui->ui_proccnt; 870 break; 871 case RLIMIT_NOFILE: 872 *res = proc_nfiles(p); 873 break; 874 case RLIMIT_SBSIZE: 875 *res = ui->ui_sbsize; 876 break; 877 case RLIMIT_VMEM: 878 if (vm == NULL) 879 error = ENXIO; 880 else 881 *res = vm->vm_map.size; 882 break; 883 case RLIMIT_NPTS: 884 *res = ui->ui_ptscnt; 885 break; 886 case RLIMIT_SWAP: 887 *res = ui->ui_vmsize; 888 break; 889 case RLIMIT_KQUEUES: 890 *res = ui->ui_kqcnt; 891 break; 892 case RLIMIT_UMTXP: 893 *res = ui->ui_umtxcnt; 894 break; 895 case RLIMIT_PIPEBUF: 896 *res = ui->ui_pipecnt; 897 break; 898 case RLIMIT_VMM: 899 *res = ui->ui_vmmcnt; 900 break; 901 default: 902 error = EINVAL; 903 break; 904 } 905 906 vmspace_free(vm); 907 uifree(ui); 908 return (error); 909 } 910 911 int 912 sys_getrlimitusage(struct thread *td, struct getrlimitusage_args *uap) 913 { 914 rlim_t res; 915 int error; 916 917 if ((uap->flags & ~(GETRLIMITUSAGE_EUID)) != 0) 918 return (EINVAL); 919 error = getrlimitusage_one(curproc, uap->which, uap->flags, &res); 920 if (error == 0) 921 error = copyout(&res, uap->res, sizeof(res)); 922 return (error); 923 } 924 925 /* 926 * Transform the running time and tick information for children of proc p 927 * into user and system time usage. 928 */ 929 void 930 calccru(struct proc *p, struct timeval *up, struct timeval *sp) 931 { 932 933 PROC_LOCK_ASSERT(p, MA_OWNED); 934 calcru1(p, &p->p_crux, up, sp); 935 } 936 937 /* 938 * Transform the running time and tick information in proc p into user 939 * and system time usage. If appropriate, include the current time slice 940 * on this CPU. 941 */ 942 void 943 calcru(struct proc *p, struct timeval *up, struct timeval *sp) 944 { 945 struct thread *td; 946 uint64_t runtime, u; 947 948 PROC_LOCK_ASSERT(p, MA_OWNED); 949 PROC_STATLOCK_ASSERT(p, MA_OWNED); 950 /* 951 * If we are getting stats for the current process, then add in the 952 * stats that this thread has accumulated in its current time slice. 953 * We reset the thread and CPU state as if we had performed a context 954 * switch right here. 955 */ 956 td = curthread; 957 if (td->td_proc == p) { 958 u = cpu_ticks(); 959 runtime = u - PCPU_GET(switchtime); 960 td->td_runtime += runtime; 961 td->td_incruntime += runtime; 962 PCPU_SET(switchtime, u); 963 } 964 /* Make sure the per-thread stats are current. */ 965 FOREACH_THREAD_IN_PROC(p, td) { 966 if (td->td_incruntime == 0) 967 continue; 968 ruxagg(p, td); 969 } 970 calcru1(p, &p->p_rux, up, sp); 971 } 972 973 /* Collect resource usage for a single thread. */ 974 void 975 rufetchtd(struct thread *td, struct rusage *ru) 976 { 977 struct proc *p; 978 uint64_t runtime, u; 979 980 p = td->td_proc; 981 PROC_STATLOCK_ASSERT(p, MA_OWNED); 982 THREAD_LOCK_ASSERT(td, MA_OWNED); 983 /* 984 * If we are getting stats for the current thread, then add in the 985 * stats that this thread has accumulated in its current time slice. 986 * We reset the thread and CPU state as if we had performed a context 987 * switch right here. 988 */ 989 if (td == curthread) { 990 u = cpu_ticks(); 991 runtime = u - PCPU_GET(switchtime); 992 td->td_runtime += runtime; 993 td->td_incruntime += runtime; 994 PCPU_SET(switchtime, u); 995 } 996 ruxagg_locked(p, td); 997 *ru = td->td_ru; 998 calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime); 999 } 1000 1001 static uint64_t 1002 mul64_by_fraction(uint64_t a, uint64_t b, uint64_t c) 1003 { 1004 uint64_t acc, bh, bl; 1005 int i, s, sa, sb; 1006 1007 /* 1008 * Calculate (a * b) / c accurately enough without overflowing. c 1009 * must be nonzero, and its top bit must be 0. a or b must be 1010 * <= c, and the implementation is tuned for b <= c. 1011 * 1012 * The comments about times are for use in calcru1() with units of 1013 * microseconds for 'a' and stathz ticks at 128 Hz for b and c. 1014 * 1015 * Let n be the number of top zero bits in c. Each iteration 1016 * either returns, or reduces b by right shifting it by at least n. 1017 * The number of iterations is at most 1 + 64 / n, and the error is 1018 * at most the number of iterations. 1019 * 1020 * It is very unusual to need even 2 iterations. Previous 1021 * implementations overflowed essentially by returning early in the 1022 * first iteration, with n = 38 giving overflow at 105+ hours and 1023 * n = 32 giving overlow at at 388+ days despite a more careful 1024 * calculation. 388 days is a reasonable uptime, and the calculation 1025 * needs to work for the uptime times the number of CPUs since 'a' 1026 * is per-process. 1027 */ 1028 if (a >= (uint64_t)1 << 63) 1029 return (0); /* Unsupported arg -- can't happen. */ 1030 acc = 0; 1031 for (i = 0; i < 128; i++) { 1032 sa = flsll(a); 1033 sb = flsll(b); 1034 if (sa + sb <= 64) 1035 /* Up to 105 hours on first iteration. */ 1036 return (acc + (a * b) / c); 1037 if (a >= c) { 1038 /* 1039 * This reduction is based on a = q * c + r, with the 1040 * remainder r < c. 'a' may be large to start, and 1041 * moving bits from b into 'a' at the end of the loop 1042 * sets the top bit of 'a', so the reduction makes 1043 * significant progress. 1044 */ 1045 acc += (a / c) * b; 1046 a %= c; 1047 sa = flsll(a); 1048 if (sa + sb <= 64) 1049 /* Up to 388 days on first iteration. */ 1050 return (acc + (a * b) / c); 1051 } 1052 1053 /* 1054 * This step writes a * b as a * ((bh << s) + bl) = 1055 * a * (bh << s) + a * bl = (a << s) * bh + a * bl. The 2 1056 * additive terms are handled separately. Splitting in 1057 * this way is linear except for rounding errors. 1058 * 1059 * s = 64 - sa is the maximum such that a << s fits in 64 1060 * bits. Since a < c and c has at least 1 zero top bit, 1061 * sa < 64 and s > 0. Thus this step makes progress by 1062 * reducing b (it increases 'a', but taking remainders on 1063 * the next iteration completes the reduction). 1064 * 1065 * Finally, the choice for s is just what is needed to keep 1066 * a * bl from overflowing, so we don't need complications 1067 * like a recursive call mul64_by_fraction(a, bl, c) to 1068 * handle the second additive term. 1069 */ 1070 s = 64 - sa; 1071 bh = b >> s; 1072 bl = b - (bh << s); 1073 acc += (a * bl) / c; 1074 a <<= s; 1075 b = bh; 1076 } 1077 return (0); /* Algorithm failure -- can't happen. */ 1078 } 1079 1080 static void 1081 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up, 1082 struct timeval *sp) 1083 { 1084 /* {user, system, interrupt, total} {ticks, usec}: */ 1085 uint64_t ut, uu, st, su, it, tt, tu; 1086 1087 ut = ruxp->rux_uticks; 1088 st = ruxp->rux_sticks; 1089 it = ruxp->rux_iticks; 1090 tt = ut + st + it; 1091 if (tt == 0) { 1092 /* Avoid divide by zero */ 1093 st = 1; 1094 tt = 1; 1095 } 1096 tu = cputick2usec(ruxp->rux_runtime); 1097 if ((int64_t)tu < 0) { 1098 /* XXX: this should be an assert /phk */ 1099 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n", 1100 (intmax_t)tu, p->p_pid, p->p_comm); 1101 tu = ruxp->rux_tu; 1102 } 1103 1104 /* Subdivide tu. Avoid overflow in the multiplications. */ 1105 if (__predict_true(tu <= ((uint64_t)1 << 38) && tt <= (1 << 26))) { 1106 /* Up to 76 hours when stathz is 128. */ 1107 uu = (tu * ut) / tt; 1108 su = (tu * st) / tt; 1109 } else { 1110 uu = mul64_by_fraction(tu, ut, tt); 1111 su = mul64_by_fraction(tu, st, tt); 1112 } 1113 1114 if (tu >= ruxp->rux_tu) { 1115 /* 1116 * The normal case, time increased. 1117 * Enforce monotonicity of bucketed numbers. 1118 */ 1119 if (uu < ruxp->rux_uu) 1120 uu = ruxp->rux_uu; 1121 if (su < ruxp->rux_su) 1122 su = ruxp->rux_su; 1123 } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) { 1124 /* 1125 * When we calibrate the cputicker, it is not uncommon to 1126 * see the presumably fixed frequency increase slightly over 1127 * time as a result of thermal stabilization and NTP 1128 * discipline (of the reference clock). We therefore ignore 1129 * a bit of backwards slop because we expect to catch up 1130 * shortly. We use a 3 microsecond limit to catch low 1131 * counts and a 1% limit for high counts. 1132 */ 1133 uu = ruxp->rux_uu; 1134 su = ruxp->rux_su; 1135 tu = ruxp->rux_tu; 1136 } else if (vm_guest == VM_GUEST_NO) { /* tu < ruxp->rux_tu */ 1137 /* 1138 * What happened here was likely that a laptop, which ran at 1139 * a reduced clock frequency at boot, kicked into high gear. 1140 * The wisdom of spamming this message in that case is 1141 * dubious, but it might also be indicative of something 1142 * serious, so lets keep it and hope laptops can be made 1143 * more truthful about their CPU speed via ACPI. 1144 */ 1145 printf("calcru: runtime went backwards from %ju usec " 1146 "to %ju usec for pid %d (%s)\n", 1147 (uintmax_t)ruxp->rux_tu, (uintmax_t)tu, 1148 p->p_pid, p->p_comm); 1149 } 1150 1151 ruxp->rux_uu = uu; 1152 ruxp->rux_su = su; 1153 ruxp->rux_tu = tu; 1154 1155 up->tv_sec = uu / 1000000; 1156 up->tv_usec = uu % 1000000; 1157 sp->tv_sec = su / 1000000; 1158 sp->tv_usec = su % 1000000; 1159 } 1160 1161 #ifndef _SYS_SYSPROTO_H_ 1162 struct getrusage_args { 1163 int who; 1164 struct rusage *rusage; 1165 }; 1166 #endif 1167 int 1168 sys_getrusage(struct thread *td, struct getrusage_args *uap) 1169 { 1170 struct rusage ru; 1171 int error; 1172 1173 error = kern_getrusage(td, uap->who, &ru); 1174 if (error == 0) 1175 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 1176 return (error); 1177 } 1178 1179 int 1180 kern_getrusage(struct thread *td, int who, struct rusage *rup) 1181 { 1182 struct proc *p; 1183 int error; 1184 1185 error = 0; 1186 p = td->td_proc; 1187 PROC_LOCK(p); 1188 switch (who) { 1189 case RUSAGE_SELF: 1190 rufetchcalc(p, rup, &rup->ru_utime, 1191 &rup->ru_stime); 1192 break; 1193 1194 case RUSAGE_CHILDREN: 1195 *rup = p->p_stats->p_cru; 1196 calccru(p, &rup->ru_utime, &rup->ru_stime); 1197 break; 1198 1199 case RUSAGE_THREAD: 1200 PROC_STATLOCK(p); 1201 thread_lock(td); 1202 rufetchtd(td, rup); 1203 thread_unlock(td); 1204 PROC_STATUNLOCK(p); 1205 break; 1206 1207 default: 1208 error = EINVAL; 1209 } 1210 PROC_UNLOCK(p); 1211 return (error); 1212 } 1213 1214 void 1215 rucollect(struct rusage *ru, struct rusage *ru2) 1216 { 1217 long *ip, *ip2; 1218 int i; 1219 1220 if (ru->ru_maxrss < ru2->ru_maxrss) 1221 ru->ru_maxrss = ru2->ru_maxrss; 1222 ip = &ru->ru_first; 1223 ip2 = &ru2->ru_first; 1224 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 1225 *ip++ += *ip2++; 1226 } 1227 1228 void 1229 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2, 1230 struct rusage_ext *rux2) 1231 { 1232 1233 rux->rux_runtime += rux2->rux_runtime; 1234 rux->rux_uticks += rux2->rux_uticks; 1235 rux->rux_sticks += rux2->rux_sticks; 1236 rux->rux_iticks += rux2->rux_iticks; 1237 rux->rux_uu += rux2->rux_uu; 1238 rux->rux_su += rux2->rux_su; 1239 rux->rux_tu += rux2->rux_tu; 1240 rucollect(ru, ru2); 1241 } 1242 1243 /* 1244 * Aggregate tick counts into the proc's rusage_ext. 1245 */ 1246 static void 1247 ruxagg_ext_locked(struct rusage_ext *rux, struct thread *td) 1248 { 1249 1250 rux->rux_runtime += td->td_incruntime; 1251 rux->rux_uticks += td->td_uticks; 1252 rux->rux_sticks += td->td_sticks; 1253 rux->rux_iticks += td->td_iticks; 1254 } 1255 1256 void 1257 ruxagg_locked(struct proc *p, struct thread *td) 1258 { 1259 THREAD_LOCK_ASSERT(td, MA_OWNED); 1260 PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED); 1261 1262 ruxagg_ext_locked(&p->p_rux, td); 1263 ruxagg_ext_locked(&td->td_rux, td); 1264 td->td_incruntime = 0; 1265 td->td_uticks = 0; 1266 td->td_iticks = 0; 1267 td->td_sticks = 0; 1268 } 1269 1270 void 1271 ruxagg(struct proc *p, struct thread *td) 1272 { 1273 1274 thread_lock(td); 1275 ruxagg_locked(p, td); 1276 thread_unlock(td); 1277 } 1278 1279 /* 1280 * Update the rusage_ext structure and fetch a valid aggregate rusage 1281 * for proc p if storage for one is supplied. 1282 */ 1283 void 1284 rufetch(struct proc *p, struct rusage *ru) 1285 { 1286 struct thread *td; 1287 1288 PROC_STATLOCK_ASSERT(p, MA_OWNED); 1289 1290 *ru = p->p_ru; 1291 if (p->p_numthreads > 0) { 1292 FOREACH_THREAD_IN_PROC(p, td) { 1293 ruxagg(p, td); 1294 rucollect(ru, &td->td_ru); 1295 } 1296 } 1297 } 1298 1299 /* 1300 * Atomically perform a rufetch and a calcru together. 1301 * Consumers, can safely assume the calcru is executed only once 1302 * rufetch is completed. 1303 */ 1304 void 1305 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up, 1306 struct timeval *sp) 1307 { 1308 1309 PROC_STATLOCK(p); 1310 rufetch(p, ru); 1311 calcru(p, up, sp); 1312 PROC_STATUNLOCK(p); 1313 } 1314 1315 /* 1316 * Allocate a new resource limits structure and initialize its 1317 * reference count and mutex pointer. 1318 */ 1319 struct plimit * 1320 lim_alloc(void) 1321 { 1322 struct plimit *limp; 1323 1324 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK); 1325 refcount_init(&limp->pl_refcnt, 1); 1326 return (limp); 1327 } 1328 1329 struct plimit * 1330 lim_hold(struct plimit *limp) 1331 { 1332 1333 refcount_acquire(&limp->pl_refcnt); 1334 return (limp); 1335 } 1336 1337 struct plimit * 1338 lim_cowsync(void) 1339 { 1340 struct thread *td; 1341 struct proc *p; 1342 struct plimit *oldlimit; 1343 1344 td = curthread; 1345 p = td->td_proc; 1346 PROC_LOCK_ASSERT(p, MA_OWNED); 1347 1348 if (td->td_limit == p->p_limit) 1349 return (NULL); 1350 1351 oldlimit = td->td_limit; 1352 td->td_limit = lim_hold(p->p_limit); 1353 1354 return (oldlimit); 1355 } 1356 1357 void 1358 lim_fork(struct proc *p1, struct proc *p2) 1359 { 1360 1361 PROC_LOCK_ASSERT(p1, MA_OWNED); 1362 PROC_LOCK_ASSERT(p2, MA_OWNED); 1363 1364 p2->p_limit = lim_hold(p1->p_limit); 1365 callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0); 1366 if (p1->p_cpulimit != RLIM_INFINITY) 1367 callout_reset_sbt(&p2->p_limco, SBT_1S, 0, 1368 lim_cb, p2, C_PREL(1)); 1369 } 1370 1371 void 1372 lim_free(struct plimit *limp) 1373 { 1374 1375 if (refcount_release(&limp->pl_refcnt)) 1376 free((void *)limp, M_PLIMIT); 1377 } 1378 1379 void 1380 lim_freen(struct plimit *limp, int n) 1381 { 1382 1383 if (refcount_releasen(&limp->pl_refcnt, n)) 1384 free((void *)limp, M_PLIMIT); 1385 } 1386 1387 void 1388 limbatch_add(struct limbatch *lb, struct thread *td) 1389 { 1390 struct plimit *limp; 1391 1392 MPASS(td->td_limit != NULL); 1393 limp = td->td_limit; 1394 1395 if (lb->limp != limp) { 1396 if (lb->count != 0) { 1397 lim_freen(lb->limp, lb->count); 1398 lb->count = 0; 1399 } 1400 lb->limp = limp; 1401 } 1402 1403 lb->count++; 1404 } 1405 1406 void 1407 limbatch_final(struct limbatch *lb) 1408 { 1409 1410 MPASS(lb->count != 0); 1411 lim_freen(lb->limp, lb->count); 1412 } 1413 1414 /* 1415 * Make a copy of the plimit structure. 1416 * We share these structures copy-on-write after fork. 1417 */ 1418 void 1419 lim_copy(struct plimit *dst, struct plimit *src) 1420 { 1421 1422 KASSERT(dst->pl_refcnt <= 1, ("lim_copy to shared limit")); 1423 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit)); 1424 } 1425 1426 /* 1427 * Return the hard limit for a particular system resource. The 1428 * which parameter specifies the index into the rlimit array. 1429 */ 1430 rlim_t 1431 lim_max(struct thread *td, int which) 1432 { 1433 struct rlimit rl; 1434 1435 lim_rlimit(td, which, &rl); 1436 return (rl.rlim_max); 1437 } 1438 1439 rlim_t 1440 lim_max_proc(struct proc *p, int which) 1441 { 1442 struct rlimit rl; 1443 1444 lim_rlimit_proc(p, which, &rl); 1445 return (rl.rlim_max); 1446 } 1447 1448 /* 1449 * Return the current (soft) limit for a particular system resource. 1450 * The which parameter which specifies the index into the rlimit array 1451 */ 1452 rlim_t 1453 (lim_cur)(struct thread *td, int which) 1454 { 1455 struct rlimit rl; 1456 1457 lim_rlimit(td, which, &rl); 1458 return (rl.rlim_cur); 1459 } 1460 1461 rlim_t 1462 lim_cur_proc(struct proc *p, int which) 1463 { 1464 struct rlimit rl; 1465 1466 lim_rlimit_proc(p, which, &rl); 1467 return (rl.rlim_cur); 1468 } 1469 1470 /* 1471 * Return a copy of the entire rlimit structure for the system limit 1472 * specified by 'which' in the rlimit structure pointed to by 'rlp'. 1473 */ 1474 void 1475 lim_rlimit(struct thread *td, int which, struct rlimit *rlp) 1476 { 1477 struct proc *p = td->td_proc; 1478 1479 MPASS(td == curthread); 1480 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1481 ("request for invalid resource limit")); 1482 *rlp = td->td_limit->pl_rlimit[which]; 1483 if (p->p_sysent->sv_fixlimit != NULL) 1484 p->p_sysent->sv_fixlimit(rlp, which); 1485 } 1486 1487 void 1488 lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp) 1489 { 1490 1491 PROC_LOCK_ASSERT(p, MA_OWNED); 1492 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1493 ("request for invalid resource limit")); 1494 *rlp = p->p_limit->pl_rlimit[which]; 1495 if (p->p_sysent->sv_fixlimit != NULL) 1496 p->p_sysent->sv_fixlimit(rlp, which); 1497 } 1498 1499 void 1500 uihashinit(void) 1501 { 1502 1503 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 1504 rw_init(&uihashtbl_lock, "uidinfo hash"); 1505 } 1506 1507 /* 1508 * Look up a uidinfo struct for the parameter uid. 1509 * uihashtbl_lock must be locked. 1510 * Increase refcount on uidinfo struct returned. 1511 */ 1512 static struct uidinfo * 1513 uilookup(uid_t uid) 1514 { 1515 struct uihashhead *uipp; 1516 struct uidinfo *uip; 1517 1518 rw_assert(&uihashtbl_lock, RA_LOCKED); 1519 uipp = UIHASH(uid); 1520 LIST_FOREACH(uip, uipp, ui_hash) 1521 if (uip->ui_uid == uid) { 1522 uihold(uip); 1523 break; 1524 } 1525 1526 return (uip); 1527 } 1528 1529 /* 1530 * Find or allocate a struct uidinfo for a particular uid. 1531 * Returns with uidinfo struct referenced. 1532 * uifree() should be called on a struct uidinfo when released. 1533 */ 1534 struct uidinfo * 1535 uifind(uid_t uid) 1536 { 1537 struct uidinfo *new_uip, *uip; 1538 struct ucred *cred; 1539 1540 cred = curthread->td_ucred; 1541 if (cred->cr_uidinfo->ui_uid == uid) { 1542 uip = cred->cr_uidinfo; 1543 uihold(uip); 1544 return (uip); 1545 } else if (cred->cr_ruidinfo->ui_uid == uid) { 1546 uip = cred->cr_ruidinfo; 1547 uihold(uip); 1548 return (uip); 1549 } 1550 1551 rw_rlock(&uihashtbl_lock); 1552 uip = uilookup(uid); 1553 rw_runlock(&uihashtbl_lock); 1554 if (uip != NULL) 1555 return (uip); 1556 1557 new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO); 1558 racct_create(&new_uip->ui_racct); 1559 refcount_init(&new_uip->ui_ref, 1); 1560 new_uip->ui_uid = uid; 1561 1562 rw_wlock(&uihashtbl_lock); 1563 /* 1564 * There's a chance someone created our uidinfo while we 1565 * were in malloc and not holding the lock, so we have to 1566 * make sure we don't insert a duplicate uidinfo. 1567 */ 1568 if ((uip = uilookup(uid)) == NULL) { 1569 LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash); 1570 rw_wunlock(&uihashtbl_lock); 1571 uip = new_uip; 1572 } else { 1573 rw_wunlock(&uihashtbl_lock); 1574 racct_destroy(&new_uip->ui_racct); 1575 free(new_uip, M_UIDINFO); 1576 } 1577 return (uip); 1578 } 1579 1580 /* 1581 * Place another refcount on a uidinfo struct. 1582 */ 1583 void 1584 uihold(struct uidinfo *uip) 1585 { 1586 1587 refcount_acquire(&uip->ui_ref); 1588 } 1589 1590 /*- 1591 * Since uidinfo structs have a long lifetime, we use an 1592 * opportunistic refcounting scheme to avoid locking the lookup hash 1593 * for each release. 1594 * 1595 * If the refcount hits 0, we need to free the structure, 1596 * which means we need to lock the hash. 1597 * Optimal case: 1598 * After locking the struct and lowering the refcount, if we find 1599 * that we don't need to free, simply unlock and return. 1600 * Suboptimal case: 1601 * If refcount lowering results in need to free, bump the count 1602 * back up, lose the lock and acquire the locks in the proper 1603 * order to try again. 1604 */ 1605 void 1606 uifree(struct uidinfo *uip) 1607 { 1608 1609 if (refcount_release_if_not_last(&uip->ui_ref)) 1610 return; 1611 1612 rw_wlock(&uihashtbl_lock); 1613 if (refcount_release(&uip->ui_ref) == 0) { 1614 rw_wunlock(&uihashtbl_lock); 1615 return; 1616 } 1617 1618 racct_destroy(&uip->ui_racct); 1619 LIST_REMOVE(uip, ui_hash); 1620 rw_wunlock(&uihashtbl_lock); 1621 1622 if (uip->ui_sbsize != 0) 1623 printf("freeing uidinfo: uid = %d, sbsize = %ld\n", 1624 uip->ui_uid, uip->ui_sbsize); 1625 if (uip->ui_proccnt != 0) 1626 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 1627 uip->ui_uid, uip->ui_proccnt); 1628 if (uip->ui_vmsize != 0) 1629 printf("freeing uidinfo: uid = %d, swapuse = %lld\n", 1630 uip->ui_uid, (unsigned long long)uip->ui_vmsize); 1631 if (uip->ui_ptscnt != 0) 1632 printf("freeing uidinfo: uid = %d, ptscnt = %ld\n", 1633 uip->ui_uid, uip->ui_ptscnt); 1634 if (uip->ui_kqcnt != 0) 1635 printf("freeing uidinfo: uid = %d, kqcnt = %ld\n", 1636 uip->ui_uid, uip->ui_kqcnt); 1637 if (uip->ui_umtxcnt != 0) 1638 printf("freeing uidinfo: uid = %d, umtxcnt = %ld\n", 1639 uip->ui_uid, uip->ui_umtxcnt); 1640 if (uip->ui_pipecnt != 0) 1641 printf("freeing uidinfo: uid = %d, pipecnt = %ld\n", 1642 uip->ui_uid, uip->ui_pipecnt); 1643 if (uip->ui_inotifycnt != 0) 1644 printf("freeing uidinfo: uid = %d, inotifycnt = %ld\n", 1645 uip->ui_uid, uip->ui_inotifycnt); 1646 if (uip->ui_inotifywatchcnt != 0) 1647 printf("freeing uidinfo: uid = %d, inotifywatchcnt = %ld\n", 1648 uip->ui_uid, uip->ui_inotifywatchcnt); 1649 if (uip->ui_vmmcnt != 0) 1650 printf("freeing vmmcnt: uid = %d, vmmcnt = %ld\n", 1651 uip->ui_uid, uip->ui_vmmcnt); 1652 free(uip, M_UIDINFO); 1653 } 1654 1655 #ifdef RACCT 1656 void 1657 ui_racct_foreach(void (*callback)(struct racct *racct, 1658 void *arg2, void *arg3), void (*pre)(void), void (*post)(void), 1659 void *arg2, void *arg3) 1660 { 1661 struct uidinfo *uip; 1662 struct uihashhead *uih; 1663 1664 rw_rlock(&uihashtbl_lock); 1665 if (pre != NULL) 1666 (pre)(); 1667 for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) { 1668 LIST_FOREACH(uip, uih, ui_hash) { 1669 (callback)(uip->ui_racct, arg2, arg3); 1670 } 1671 } 1672 if (post != NULL) 1673 (post)(); 1674 rw_runlock(&uihashtbl_lock); 1675 } 1676 #endif 1677 1678 static inline int 1679 chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name) 1680 { 1681 long new; 1682 1683 /* Don't allow them to exceed max, but allow subtraction. */ 1684 new = atomic_fetchadd_long(limit, (long)diff) + diff; 1685 if (diff > 0 && max != 0) { 1686 if (new < 0 || new > max) { 1687 atomic_subtract_long(limit, (long)diff); 1688 return (0); 1689 } 1690 } else if (new < 0) 1691 printf("negative %s for uid = %d\n", name, uip->ui_uid); 1692 return (1); 1693 } 1694 1695 /* 1696 * Change the count associated with number of processes 1697 * a given user is using. When 'max' is 0, don't enforce a limit 1698 */ 1699 int 1700 chgproccnt(struct uidinfo *uip, int diff, rlim_t max) 1701 { 1702 1703 return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt")); 1704 } 1705 1706 /* 1707 * Change the total socket buffer size a user has used. 1708 */ 1709 int 1710 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max) 1711 { 1712 int diff, rv; 1713 1714 diff = to - *hiwat; 1715 if (diff > 0 && max == 0) { 1716 rv = 0; 1717 } else { 1718 rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize"); 1719 if (rv != 0) 1720 *hiwat = to; 1721 } 1722 return (rv); 1723 } 1724 1725 /* 1726 * Change the count associated with number of pseudo-terminals 1727 * a given user is using. When 'max' is 0, don't enforce a limit 1728 */ 1729 int 1730 chgptscnt(struct uidinfo *uip, int diff, rlim_t max) 1731 { 1732 1733 return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt")); 1734 } 1735 1736 int 1737 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max) 1738 { 1739 1740 return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt")); 1741 } 1742 1743 int 1744 chgumtxcnt(struct uidinfo *uip, int diff, rlim_t max) 1745 { 1746 1747 return (chglimit(uip, &uip->ui_umtxcnt, diff, max, "umtxcnt")); 1748 } 1749 1750 int 1751 chgpipecnt(struct uidinfo *uip, int diff, rlim_t max) 1752 { 1753 1754 return (chglimit(uip, &uip->ui_pipecnt, diff, max, "pipecnt")); 1755 } 1756 1757 int 1758 chginotifycnt(struct uidinfo *uip, int diff, rlim_t max) 1759 { 1760 1761 return (chglimit(uip, &uip->ui_inotifycnt, diff, max, "inotifycnt")); 1762 } 1763 1764 int 1765 chginotifywatchcnt(struct uidinfo *uip, int diff, rlim_t max) 1766 { 1767 1768 return (chglimit(uip, &uip->ui_inotifywatchcnt, diff, max, 1769 "inotifywatchcnt")); 1770 } 1771 1772 int 1773 chgvmmcnt(struct uidinfo *uip, int diff, rlim_t max) 1774 { 1775 1776 return (chglimit(uip, &uip->ui_vmmcnt, diff, max, "vmmcnt")); 1777 } 1778 1779 static int 1780 sysctl_kern_proc_rlimit_usage(SYSCTL_HANDLER_ARGS) 1781 { 1782 rlim_t resval[RLIM_NLIMITS]; 1783 struct proc *p; 1784 size_t len; 1785 int error, *name, i; 1786 1787 name = (int *)arg1; 1788 if ((u_int)arg2 != 1 && (u_int)arg2 != 2) 1789 return (EINVAL); 1790 if (req->newptr != NULL) 1791 return (EINVAL); 1792 1793 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1794 if (error != 0) 1795 return (error); 1796 1797 if ((u_int)arg2 == 1) { 1798 len = sizeof(resval); 1799 memset(resval, 0, sizeof(resval)); 1800 for (i = 0; i < RLIM_NLIMITS; i++) { 1801 error = getrlimitusage_one(p, (unsigned)i, 0, 1802 &resval[i]); 1803 if (error == ENXIO) { 1804 resval[i] = -1; 1805 error = 0; 1806 } else if (error != 0) { 1807 break; 1808 } 1809 } 1810 } else { 1811 len = sizeof(resval[0]); 1812 error = getrlimitusage_one(p, (unsigned)name[1], 0, 1813 &resval[0]); 1814 if (error == ENXIO) { 1815 resval[0] = -1; 1816 error = 0; 1817 } 1818 } 1819 if (error == 0) 1820 error = SYSCTL_OUT(req, resval, len); 1821 PRELE(p); 1822 return (error); 1823 } 1824 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT_USAGE, rlimit_usage, 1825 CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 1826 sysctl_kern_proc_rlimit_usage, 1827 "Process limited resources usage info"); 1828