xref: /freebsd/sys/kern/kern_resource.c (revision dca400f3522719f77763cd751904815605f7ea95)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_resource.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysproto.h>
45 #include <sys/file.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/refcount.h>
53 #include <sys/racct.h>
54 #include <sys/resourcevar.h>
55 #include <sys/rwlock.h>
56 #include <sys/sched.h>
57 #include <sys/sx.h>
58 #include <sys/syscallsubr.h>
59 #include <sys/sysent.h>
60 #include <sys/time.h>
61 #include <sys/umtx.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/pmap.h>
66 #include <vm/vm_map.h>
67 
68 
69 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
70 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
71 #define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
72 static struct rwlock uihashtbl_lock;
73 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
74 static u_long uihash;		/* size of hash table - 1 */
75 
76 static void	calcru1(struct proc *p, struct rusage_ext *ruxp,
77 		    struct timeval *up, struct timeval *sp);
78 static int	donice(struct thread *td, struct proc *chgp, int n);
79 static struct uidinfo *uilookup(uid_t uid);
80 static void	ruxagg_locked(struct rusage_ext *rux, struct thread *td);
81 
82 /*
83  * Resource controls and accounting.
84  */
85 #ifndef _SYS_SYSPROTO_H_
86 struct getpriority_args {
87 	int	which;
88 	int	who;
89 };
90 #endif
91 int
92 sys_getpriority(td, uap)
93 	struct thread *td;
94 	register struct getpriority_args *uap;
95 {
96 	struct proc *p;
97 	struct pgrp *pg;
98 	int error, low;
99 
100 	error = 0;
101 	low = PRIO_MAX + 1;
102 	switch (uap->which) {
103 
104 	case PRIO_PROCESS:
105 		if (uap->who == 0)
106 			low = td->td_proc->p_nice;
107 		else {
108 			p = pfind(uap->who);
109 			if (p == NULL)
110 				break;
111 			if (p_cansee(td, p) == 0)
112 				low = p->p_nice;
113 			PROC_UNLOCK(p);
114 		}
115 		break;
116 
117 	case PRIO_PGRP:
118 		sx_slock(&proctree_lock);
119 		if (uap->who == 0) {
120 			pg = td->td_proc->p_pgrp;
121 			PGRP_LOCK(pg);
122 		} else {
123 			pg = pgfind(uap->who);
124 			if (pg == NULL) {
125 				sx_sunlock(&proctree_lock);
126 				break;
127 			}
128 		}
129 		sx_sunlock(&proctree_lock);
130 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
131 			PROC_LOCK(p);
132 			if (p->p_state == PRS_NORMAL &&
133 			    p_cansee(td, p) == 0) {
134 				if (p->p_nice < low)
135 					low = p->p_nice;
136 			}
137 			PROC_UNLOCK(p);
138 		}
139 		PGRP_UNLOCK(pg);
140 		break;
141 
142 	case PRIO_USER:
143 		if (uap->who == 0)
144 			uap->who = td->td_ucred->cr_uid;
145 		sx_slock(&allproc_lock);
146 		FOREACH_PROC_IN_SYSTEM(p) {
147 			PROC_LOCK(p);
148 			if (p->p_state == PRS_NORMAL &&
149 			    p_cansee(td, p) == 0 &&
150 			    p->p_ucred->cr_uid == uap->who) {
151 				if (p->p_nice < low)
152 					low = p->p_nice;
153 			}
154 			PROC_UNLOCK(p);
155 		}
156 		sx_sunlock(&allproc_lock);
157 		break;
158 
159 	default:
160 		error = EINVAL;
161 		break;
162 	}
163 	if (low == PRIO_MAX + 1 && error == 0)
164 		error = ESRCH;
165 	td->td_retval[0] = low;
166 	return (error);
167 }
168 
169 #ifndef _SYS_SYSPROTO_H_
170 struct setpriority_args {
171 	int	which;
172 	int	who;
173 	int	prio;
174 };
175 #endif
176 int
177 sys_setpriority(td, uap)
178 	struct thread *td;
179 	struct setpriority_args *uap;
180 {
181 	struct proc *curp, *p;
182 	struct pgrp *pg;
183 	int found = 0, error = 0;
184 
185 	curp = td->td_proc;
186 	switch (uap->which) {
187 	case PRIO_PROCESS:
188 		if (uap->who == 0) {
189 			PROC_LOCK(curp);
190 			error = donice(td, curp, uap->prio);
191 			PROC_UNLOCK(curp);
192 		} else {
193 			p = pfind(uap->who);
194 			if (p == NULL)
195 				break;
196 			error = p_cansee(td, p);
197 			if (error == 0)
198 				error = donice(td, p, uap->prio);
199 			PROC_UNLOCK(p);
200 		}
201 		found++;
202 		break;
203 
204 	case PRIO_PGRP:
205 		sx_slock(&proctree_lock);
206 		if (uap->who == 0) {
207 			pg = curp->p_pgrp;
208 			PGRP_LOCK(pg);
209 		} else {
210 			pg = pgfind(uap->who);
211 			if (pg == NULL) {
212 				sx_sunlock(&proctree_lock);
213 				break;
214 			}
215 		}
216 		sx_sunlock(&proctree_lock);
217 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
218 			PROC_LOCK(p);
219 			if (p->p_state == PRS_NORMAL &&
220 			    p_cansee(td, p) == 0) {
221 				error = donice(td, p, uap->prio);
222 				found++;
223 			}
224 			PROC_UNLOCK(p);
225 		}
226 		PGRP_UNLOCK(pg);
227 		break;
228 
229 	case PRIO_USER:
230 		if (uap->who == 0)
231 			uap->who = td->td_ucred->cr_uid;
232 		sx_slock(&allproc_lock);
233 		FOREACH_PROC_IN_SYSTEM(p) {
234 			PROC_LOCK(p);
235 			if (p->p_state == PRS_NORMAL &&
236 			    p->p_ucred->cr_uid == uap->who &&
237 			    p_cansee(td, p) == 0) {
238 				error = donice(td, p, uap->prio);
239 				found++;
240 			}
241 			PROC_UNLOCK(p);
242 		}
243 		sx_sunlock(&allproc_lock);
244 		break;
245 
246 	default:
247 		error = EINVAL;
248 		break;
249 	}
250 	if (found == 0 && error == 0)
251 		error = ESRCH;
252 	return (error);
253 }
254 
255 /*
256  * Set "nice" for a (whole) process.
257  */
258 static int
259 donice(struct thread *td, struct proc *p, int n)
260 {
261 	int error;
262 
263 	PROC_LOCK_ASSERT(p, MA_OWNED);
264 	if ((error = p_cansched(td, p)))
265 		return (error);
266 	if (n > PRIO_MAX)
267 		n = PRIO_MAX;
268 	if (n < PRIO_MIN)
269 		n = PRIO_MIN;
270 	if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
271 		return (EACCES);
272 	sched_nice(p, n);
273 	return (0);
274 }
275 
276 /*
277  * Set realtime priority for LWP.
278  */
279 #ifndef _SYS_SYSPROTO_H_
280 struct rtprio_thread_args {
281 	int		function;
282 	lwpid_t		lwpid;
283 	struct rtprio	*rtp;
284 };
285 #endif
286 int
287 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
288 {
289 	struct proc *p;
290 	struct rtprio rtp;
291 	struct thread *td1;
292 	int cierror, error;
293 
294 	/* Perform copyin before acquiring locks if needed. */
295 	if (uap->function == RTP_SET)
296 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
297 	else
298 		cierror = 0;
299 
300 	if (uap->lwpid == 0 || uap->lwpid == td->td_tid) {
301 		p = td->td_proc;
302 		td1 = td;
303 		PROC_LOCK(p);
304 	} else {
305 		/* Only look up thread in current process */
306 		td1 = tdfind(uap->lwpid, curproc->p_pid);
307 		if (td1 == NULL)
308 			return (ESRCH);
309 		p = td1->td_proc;
310 	}
311 
312 	switch (uap->function) {
313 	case RTP_LOOKUP:
314 		if ((error = p_cansee(td, p)))
315 			break;
316 		pri_to_rtp(td1, &rtp);
317 		PROC_UNLOCK(p);
318 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
319 	case RTP_SET:
320 		if ((error = p_cansched(td, p)) || (error = cierror))
321 			break;
322 
323 		/* Disallow setting rtprio in most cases if not superuser. */
324 /*
325  * Realtime priority has to be restricted for reasons which should be
326  * obvious.  However, for idle priority, there is a potential for
327  * system deadlock if an idleprio process gains a lock on a resource
328  * that other processes need (and the idleprio process can't run
329  * due to a CPU-bound normal process).  Fix me!  XXX
330  */
331 #if 0
332 		if (RTP_PRIO_IS_REALTIME(rtp.type)) {
333 #else
334 		if (rtp.type != RTP_PRIO_NORMAL) {
335 #endif
336 			error = priv_check(td, PRIV_SCHED_RTPRIO);
337 			if (error)
338 				break;
339 		}
340 		error = rtp_to_pri(&rtp, td1);
341 		break;
342 	default:
343 		error = EINVAL;
344 		break;
345 	}
346 	PROC_UNLOCK(p);
347 	return (error);
348 }
349 
350 /*
351  * Set realtime priority.
352  */
353 #ifndef _SYS_SYSPROTO_H_
354 struct rtprio_args {
355 	int		function;
356 	pid_t		pid;
357 	struct rtprio	*rtp;
358 };
359 #endif
360 int
361 sys_rtprio(td, uap)
362 	struct thread *td;		/* curthread */
363 	register struct rtprio_args *uap;
364 {
365 	struct proc *p;
366 	struct thread *tdp;
367 	struct rtprio rtp;
368 	int cierror, error;
369 
370 	/* Perform copyin before acquiring locks if needed. */
371 	if (uap->function == RTP_SET)
372 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
373 	else
374 		cierror = 0;
375 
376 	if (uap->pid == 0) {
377 		p = td->td_proc;
378 		PROC_LOCK(p);
379 	} else {
380 		p = pfind(uap->pid);
381 		if (p == NULL)
382 			return (ESRCH);
383 	}
384 
385 	switch (uap->function) {
386 	case RTP_LOOKUP:
387 		if ((error = p_cansee(td, p)))
388 			break;
389 		/*
390 		 * Return OUR priority if no pid specified,
391 		 * or if one is, report the highest priority
392 		 * in the process.  There isn't much more you can do as
393 		 * there is only room to return a single priority.
394 		 * Note: specifying our own pid is not the same
395 		 * as leaving it zero.
396 		 */
397 		if (uap->pid == 0) {
398 			pri_to_rtp(td, &rtp);
399 		} else {
400 			struct rtprio rtp2;
401 
402 			rtp.type = RTP_PRIO_IDLE;
403 			rtp.prio = RTP_PRIO_MAX;
404 			FOREACH_THREAD_IN_PROC(p, tdp) {
405 				pri_to_rtp(tdp, &rtp2);
406 				if (rtp2.type <  rtp.type ||
407 				    (rtp2.type == rtp.type &&
408 				    rtp2.prio < rtp.prio)) {
409 					rtp.type = rtp2.type;
410 					rtp.prio = rtp2.prio;
411 				}
412 			}
413 		}
414 		PROC_UNLOCK(p);
415 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
416 	case RTP_SET:
417 		if ((error = p_cansched(td, p)) || (error = cierror))
418 			break;
419 
420 		/* Disallow setting rtprio in most cases if not superuser. */
421 /*
422  * Realtime priority has to be restricted for reasons which should be
423  * obvious.  However, for idle priority, there is a potential for
424  * system deadlock if an idleprio process gains a lock on a resource
425  * that other processes need (and the idleprio process can't run
426  * due to a CPU-bound normal process).  Fix me!  XXX
427  */
428 #if 0
429 		if (RTP_PRIO_IS_REALTIME(rtp.type)) {
430 #else
431 		if (rtp.type != RTP_PRIO_NORMAL) {
432 #endif
433 			error = priv_check(td, PRIV_SCHED_RTPRIO);
434 			if (error)
435 				break;
436 		}
437 
438 		/*
439 		 * If we are setting our own priority, set just our
440 		 * thread but if we are doing another process,
441 		 * do all the threads on that process. If we
442 		 * specify our own pid we do the latter.
443 		 */
444 		if (uap->pid == 0) {
445 			error = rtp_to_pri(&rtp, td);
446 		} else {
447 			FOREACH_THREAD_IN_PROC(p, td) {
448 				if ((error = rtp_to_pri(&rtp, td)) != 0)
449 					break;
450 			}
451 		}
452 		break;
453 	default:
454 		error = EINVAL;
455 		break;
456 	}
457 	PROC_UNLOCK(p);
458 	return (error);
459 }
460 
461 int
462 rtp_to_pri(struct rtprio *rtp, struct thread *td)
463 {
464 	u_char	newpri;
465 	u_char	oldpri;
466 
467 	switch (RTP_PRIO_BASE(rtp->type)) {
468 	case RTP_PRIO_REALTIME:
469 		if (rtp->prio > RTP_PRIO_MAX)
470 			return (EINVAL);
471 		newpri = PRI_MIN_REALTIME + rtp->prio;
472 		break;
473 	case RTP_PRIO_NORMAL:
474 		if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE))
475 			return (EINVAL);
476 		newpri = PRI_MIN_TIMESHARE + rtp->prio;
477 		break;
478 	case RTP_PRIO_IDLE:
479 		if (rtp->prio > RTP_PRIO_MAX)
480 			return (EINVAL);
481 		newpri = PRI_MIN_IDLE + rtp->prio;
482 		break;
483 	default:
484 		return (EINVAL);
485 	}
486 
487 	thread_lock(td);
488 	sched_class(td, rtp->type);	/* XXX fix */
489 	oldpri = td->td_user_pri;
490 	sched_user_prio(td, newpri);
491 	if (td->td_user_pri != oldpri && (td == curthread ||
492 	    td->td_priority == oldpri || td->td_user_pri >= PRI_MAX_REALTIME))
493 		sched_prio(td, td->td_user_pri);
494 	if (TD_ON_UPILOCK(td) && oldpri != newpri) {
495 		critical_enter();
496 		thread_unlock(td);
497 		umtx_pi_adjust(td, oldpri);
498 		critical_exit();
499 	} else
500 		thread_unlock(td);
501 	return (0);
502 }
503 
504 void
505 pri_to_rtp(struct thread *td, struct rtprio *rtp)
506 {
507 
508 	thread_lock(td);
509 	switch (PRI_BASE(td->td_pri_class)) {
510 	case PRI_REALTIME:
511 		rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
512 		break;
513 	case PRI_TIMESHARE:
514 		rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
515 		break;
516 	case PRI_IDLE:
517 		rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
518 		break;
519 	default:
520 		break;
521 	}
522 	rtp->type = td->td_pri_class;
523 	thread_unlock(td);
524 }
525 
526 #if defined(COMPAT_43)
527 #ifndef _SYS_SYSPROTO_H_
528 struct osetrlimit_args {
529 	u_int	which;
530 	struct	orlimit *rlp;
531 };
532 #endif
533 int
534 osetrlimit(td, uap)
535 	struct thread *td;
536 	register struct osetrlimit_args *uap;
537 {
538 	struct orlimit olim;
539 	struct rlimit lim;
540 	int error;
541 
542 	if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
543 		return (error);
544 	lim.rlim_cur = olim.rlim_cur;
545 	lim.rlim_max = olim.rlim_max;
546 	error = kern_setrlimit(td, uap->which, &lim);
547 	return (error);
548 }
549 
550 #ifndef _SYS_SYSPROTO_H_
551 struct ogetrlimit_args {
552 	u_int	which;
553 	struct	orlimit *rlp;
554 };
555 #endif
556 int
557 ogetrlimit(td, uap)
558 	struct thread *td;
559 	register struct ogetrlimit_args *uap;
560 {
561 	struct orlimit olim;
562 	struct rlimit rl;
563 	struct proc *p;
564 	int error;
565 
566 	if (uap->which >= RLIM_NLIMITS)
567 		return (EINVAL);
568 	p = td->td_proc;
569 	PROC_LOCK(p);
570 	lim_rlimit(p, uap->which, &rl);
571 	PROC_UNLOCK(p);
572 
573 	/*
574 	 * XXX would be more correct to convert only RLIM_INFINITY to the
575 	 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
576 	 * values.  Most 64->32 and 32->16 conversions, including not
577 	 * unimportant ones of uids are even more broken than what we
578 	 * do here (they blindly truncate).  We don't do this correctly
579 	 * here since we have little experience with EOVERFLOW yet.
580 	 * Elsewhere, getuid() can't fail...
581 	 */
582 	olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
583 	olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
584 	error = copyout(&olim, uap->rlp, sizeof(olim));
585 	return (error);
586 }
587 #endif /* COMPAT_43 */
588 
589 #ifndef _SYS_SYSPROTO_H_
590 struct __setrlimit_args {
591 	u_int	which;
592 	struct	rlimit *rlp;
593 };
594 #endif
595 int
596 sys_setrlimit(td, uap)
597 	struct thread *td;
598 	register struct __setrlimit_args *uap;
599 {
600 	struct rlimit alim;
601 	int error;
602 
603 	if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
604 		return (error);
605 	error = kern_setrlimit(td, uap->which, &alim);
606 	return (error);
607 }
608 
609 static void
610 lim_cb(void *arg)
611 {
612 	struct rlimit rlim;
613 	struct thread *td;
614 	struct proc *p;
615 
616 	p = arg;
617 	PROC_LOCK_ASSERT(p, MA_OWNED);
618 	/*
619 	 * Check if the process exceeds its cpu resource allocation.  If
620 	 * it reaches the max, arrange to kill the process in ast().
621 	 */
622 	if (p->p_cpulimit == RLIM_INFINITY)
623 		return;
624 	PROC_SLOCK(p);
625 	FOREACH_THREAD_IN_PROC(p, td) {
626 		ruxagg(p, td);
627 	}
628 	PROC_SUNLOCK(p);
629 	if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
630 		lim_rlimit(p, RLIMIT_CPU, &rlim);
631 		if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
632 			killproc(p, "exceeded maximum CPU limit");
633 		} else {
634 			if (p->p_cpulimit < rlim.rlim_max)
635 				p->p_cpulimit += 5;
636 			kern_psignal(p, SIGXCPU);
637 		}
638 	}
639 	if ((p->p_flag & P_WEXIT) == 0)
640 		callout_reset(&p->p_limco, hz, lim_cb, p);
641 }
642 
643 int
644 kern_setrlimit(td, which, limp)
645 	struct thread *td;
646 	u_int which;
647 	struct rlimit *limp;
648 {
649 	struct plimit *newlim, *oldlim;
650 	struct proc *p;
651 	register struct rlimit *alimp;
652 	struct rlimit oldssiz;
653 	int error;
654 
655 	if (which >= RLIM_NLIMITS)
656 		return (EINVAL);
657 
658 	/*
659 	 * Preserve historical bugs by treating negative limits as unsigned.
660 	 */
661 	if (limp->rlim_cur < 0)
662 		limp->rlim_cur = RLIM_INFINITY;
663 	if (limp->rlim_max < 0)
664 		limp->rlim_max = RLIM_INFINITY;
665 
666 	oldssiz.rlim_cur = 0;
667 	p = td->td_proc;
668 	newlim = lim_alloc();
669 	PROC_LOCK(p);
670 	oldlim = p->p_limit;
671 	alimp = &oldlim->pl_rlimit[which];
672 	if (limp->rlim_cur > alimp->rlim_max ||
673 	    limp->rlim_max > alimp->rlim_max)
674 		if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
675 			PROC_UNLOCK(p);
676 			lim_free(newlim);
677 			return (error);
678 		}
679 	if (limp->rlim_cur > limp->rlim_max)
680 		limp->rlim_cur = limp->rlim_max;
681 	lim_copy(newlim, oldlim);
682 	alimp = &newlim->pl_rlimit[which];
683 
684 	switch (which) {
685 
686 	case RLIMIT_CPU:
687 		if (limp->rlim_cur != RLIM_INFINITY &&
688 		    p->p_cpulimit == RLIM_INFINITY)
689 			callout_reset(&p->p_limco, hz, lim_cb, p);
690 		p->p_cpulimit = limp->rlim_cur;
691 		break;
692 	case RLIMIT_DATA:
693 		if (limp->rlim_cur > maxdsiz)
694 			limp->rlim_cur = maxdsiz;
695 		if (limp->rlim_max > maxdsiz)
696 			limp->rlim_max = maxdsiz;
697 		break;
698 
699 	case RLIMIT_STACK:
700 		if (limp->rlim_cur > maxssiz)
701 			limp->rlim_cur = maxssiz;
702 		if (limp->rlim_max > maxssiz)
703 			limp->rlim_max = maxssiz;
704 		oldssiz = *alimp;
705 		if (p->p_sysent->sv_fixlimit != NULL)
706 			p->p_sysent->sv_fixlimit(&oldssiz,
707 			    RLIMIT_STACK);
708 		break;
709 
710 	case RLIMIT_NOFILE:
711 		if (limp->rlim_cur > maxfilesperproc)
712 			limp->rlim_cur = maxfilesperproc;
713 		if (limp->rlim_max > maxfilesperproc)
714 			limp->rlim_max = maxfilesperproc;
715 		break;
716 
717 	case RLIMIT_NPROC:
718 		if (limp->rlim_cur > maxprocperuid)
719 			limp->rlim_cur = maxprocperuid;
720 		if (limp->rlim_max > maxprocperuid)
721 			limp->rlim_max = maxprocperuid;
722 		if (limp->rlim_cur < 1)
723 			limp->rlim_cur = 1;
724 		if (limp->rlim_max < 1)
725 			limp->rlim_max = 1;
726 		break;
727 	}
728 	if (p->p_sysent->sv_fixlimit != NULL)
729 		p->p_sysent->sv_fixlimit(limp, which);
730 	*alimp = *limp;
731 	p->p_limit = newlim;
732 	PROC_UNLOCK(p);
733 	lim_free(oldlim);
734 
735 	if (which == RLIMIT_STACK) {
736 		/*
737 		 * Stack is allocated to the max at exec time with only
738 		 * "rlim_cur" bytes accessible.  If stack limit is going
739 		 * up make more accessible, if going down make inaccessible.
740 		 */
741 		if (limp->rlim_cur != oldssiz.rlim_cur) {
742 			vm_offset_t addr;
743 			vm_size_t size;
744 			vm_prot_t prot;
745 
746 			if (limp->rlim_cur > oldssiz.rlim_cur) {
747 				prot = p->p_sysent->sv_stackprot;
748 				size = limp->rlim_cur - oldssiz.rlim_cur;
749 				addr = p->p_sysent->sv_usrstack -
750 				    limp->rlim_cur;
751 			} else {
752 				prot = VM_PROT_NONE;
753 				size = oldssiz.rlim_cur - limp->rlim_cur;
754 				addr = p->p_sysent->sv_usrstack -
755 				    oldssiz.rlim_cur;
756 			}
757 			addr = trunc_page(addr);
758 			size = round_page(size);
759 			(void)vm_map_protect(&p->p_vmspace->vm_map,
760 			    addr, addr + size, prot, FALSE);
761 		}
762 	}
763 
764 	return (0);
765 }
766 
767 #ifndef _SYS_SYSPROTO_H_
768 struct __getrlimit_args {
769 	u_int	which;
770 	struct	rlimit *rlp;
771 };
772 #endif
773 /* ARGSUSED */
774 int
775 sys_getrlimit(td, uap)
776 	struct thread *td;
777 	register struct __getrlimit_args *uap;
778 {
779 	struct rlimit rlim;
780 	struct proc *p;
781 	int error;
782 
783 	if (uap->which >= RLIM_NLIMITS)
784 		return (EINVAL);
785 	p = td->td_proc;
786 	PROC_LOCK(p);
787 	lim_rlimit(p, uap->which, &rlim);
788 	PROC_UNLOCK(p);
789 	error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
790 	return (error);
791 }
792 
793 /*
794  * Transform the running time and tick information for children of proc p
795  * into user and system time usage.
796  */
797 void
798 calccru(p, up, sp)
799 	struct proc *p;
800 	struct timeval *up;
801 	struct timeval *sp;
802 {
803 
804 	PROC_LOCK_ASSERT(p, MA_OWNED);
805 	calcru1(p, &p->p_crux, up, sp);
806 }
807 
808 /*
809  * Transform the running time and tick information in proc p into user
810  * and system time usage.  If appropriate, include the current time slice
811  * on this CPU.
812  */
813 void
814 calcru(struct proc *p, struct timeval *up, struct timeval *sp)
815 {
816 	struct thread *td;
817 	uint64_t runtime, u;
818 
819 	PROC_LOCK_ASSERT(p, MA_OWNED);
820 	PROC_SLOCK_ASSERT(p, MA_OWNED);
821 	/*
822 	 * If we are getting stats for the current process, then add in the
823 	 * stats that this thread has accumulated in its current time slice.
824 	 * We reset the thread and CPU state as if we had performed a context
825 	 * switch right here.
826 	 */
827 	td = curthread;
828 	if (td->td_proc == p) {
829 		u = cpu_ticks();
830 		runtime = u - PCPU_GET(switchtime);
831 		td->td_runtime += runtime;
832 		td->td_incruntime += runtime;
833 		PCPU_SET(switchtime, u);
834 	}
835 	/* Make sure the per-thread stats are current. */
836 	FOREACH_THREAD_IN_PROC(p, td) {
837 		if (td->td_incruntime == 0)
838 			continue;
839 		ruxagg(p, td);
840 	}
841 	calcru1(p, &p->p_rux, up, sp);
842 }
843 
844 /* Collect resource usage for a single thread. */
845 void
846 rufetchtd(struct thread *td, struct rusage *ru)
847 {
848 	struct proc *p;
849 	uint64_t runtime, u;
850 
851 	p = td->td_proc;
852 	PROC_SLOCK_ASSERT(p, MA_OWNED);
853 	THREAD_LOCK_ASSERT(td, MA_OWNED);
854 	/*
855 	 * If we are getting stats for the current thread, then add in the
856 	 * stats that this thread has accumulated in its current time slice.
857 	 * We reset the thread and CPU state as if we had performed a context
858 	 * switch right here.
859 	 */
860 	if (td == curthread) {
861 		u = cpu_ticks();
862 		runtime = u - PCPU_GET(switchtime);
863 		td->td_runtime += runtime;
864 		td->td_incruntime += runtime;
865 		PCPU_SET(switchtime, u);
866 	}
867 	ruxagg(p, td);
868 	*ru = td->td_ru;
869 	calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime);
870 }
871 
872 static void
873 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
874     struct timeval *sp)
875 {
876 	/* {user, system, interrupt, total} {ticks, usec}: */
877 	uint64_t ut, uu, st, su, it, tt, tu;
878 
879 	ut = ruxp->rux_uticks;
880 	st = ruxp->rux_sticks;
881 	it = ruxp->rux_iticks;
882 	tt = ut + st + it;
883 	if (tt == 0) {
884 		/* Avoid divide by zero */
885 		st = 1;
886 		tt = 1;
887 	}
888 	tu = cputick2usec(ruxp->rux_runtime);
889 	if ((int64_t)tu < 0) {
890 		/* XXX: this should be an assert /phk */
891 		printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
892 		    (intmax_t)tu, p->p_pid, p->p_comm);
893 		tu = ruxp->rux_tu;
894 	}
895 
896 	if (tu >= ruxp->rux_tu) {
897 		/*
898 		 * The normal case, time increased.
899 		 * Enforce monotonicity of bucketed numbers.
900 		 */
901 		uu = (tu * ut) / tt;
902 		if (uu < ruxp->rux_uu)
903 			uu = ruxp->rux_uu;
904 		su = (tu * st) / tt;
905 		if (su < ruxp->rux_su)
906 			su = ruxp->rux_su;
907 	} else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
908 		/*
909 		 * When we calibrate the cputicker, it is not uncommon to
910 		 * see the presumably fixed frequency increase slightly over
911 		 * time as a result of thermal stabilization and NTP
912 		 * discipline (of the reference clock).  We therefore ignore
913 		 * a bit of backwards slop because we  expect to catch up
914 		 * shortly.  We use a 3 microsecond limit to catch low
915 		 * counts and a 1% limit for high counts.
916 		 */
917 		uu = ruxp->rux_uu;
918 		su = ruxp->rux_su;
919 		tu = ruxp->rux_tu;
920 	} else { /* tu < ruxp->rux_tu */
921 		/*
922 		 * What happened here was likely that a laptop, which ran at
923 		 * a reduced clock frequency at boot, kicked into high gear.
924 		 * The wisdom of spamming this message in that case is
925 		 * dubious, but it might also be indicative of something
926 		 * serious, so lets keep it and hope laptops can be made
927 		 * more truthful about their CPU speed via ACPI.
928 		 */
929 		printf("calcru: runtime went backwards from %ju usec "
930 		    "to %ju usec for pid %d (%s)\n",
931 		    (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
932 		    p->p_pid, p->p_comm);
933 		uu = (tu * ut) / tt;
934 		su = (tu * st) / tt;
935 	}
936 
937 	ruxp->rux_uu = uu;
938 	ruxp->rux_su = su;
939 	ruxp->rux_tu = tu;
940 
941 	up->tv_sec = uu / 1000000;
942 	up->tv_usec = uu % 1000000;
943 	sp->tv_sec = su / 1000000;
944 	sp->tv_usec = su % 1000000;
945 }
946 
947 #ifndef _SYS_SYSPROTO_H_
948 struct getrusage_args {
949 	int	who;
950 	struct	rusage *rusage;
951 };
952 #endif
953 int
954 sys_getrusage(td, uap)
955 	register struct thread *td;
956 	register struct getrusage_args *uap;
957 {
958 	struct rusage ru;
959 	int error;
960 
961 	error = kern_getrusage(td, uap->who, &ru);
962 	if (error == 0)
963 		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
964 	return (error);
965 }
966 
967 int
968 kern_getrusage(struct thread *td, int who, struct rusage *rup)
969 {
970 	struct proc *p;
971 	int error;
972 
973 	error = 0;
974 	p = td->td_proc;
975 	PROC_LOCK(p);
976 	switch (who) {
977 	case RUSAGE_SELF:
978 		rufetchcalc(p, rup, &rup->ru_utime,
979 		    &rup->ru_stime);
980 		break;
981 
982 	case RUSAGE_CHILDREN:
983 		*rup = p->p_stats->p_cru;
984 		calccru(p, &rup->ru_utime, &rup->ru_stime);
985 		break;
986 
987 	case RUSAGE_THREAD:
988 		PROC_SLOCK(p);
989 		thread_lock(td);
990 		rufetchtd(td, rup);
991 		thread_unlock(td);
992 		PROC_SUNLOCK(p);
993 		break;
994 
995 	default:
996 		error = EINVAL;
997 	}
998 	PROC_UNLOCK(p);
999 	return (error);
1000 }
1001 
1002 void
1003 rucollect(struct rusage *ru, struct rusage *ru2)
1004 {
1005 	long *ip, *ip2;
1006 	int i;
1007 
1008 	if (ru->ru_maxrss < ru2->ru_maxrss)
1009 		ru->ru_maxrss = ru2->ru_maxrss;
1010 	ip = &ru->ru_first;
1011 	ip2 = &ru2->ru_first;
1012 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
1013 		*ip++ += *ip2++;
1014 }
1015 
1016 void
1017 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
1018     struct rusage_ext *rux2)
1019 {
1020 
1021 	rux->rux_runtime += rux2->rux_runtime;
1022 	rux->rux_uticks += rux2->rux_uticks;
1023 	rux->rux_sticks += rux2->rux_sticks;
1024 	rux->rux_iticks += rux2->rux_iticks;
1025 	rux->rux_uu += rux2->rux_uu;
1026 	rux->rux_su += rux2->rux_su;
1027 	rux->rux_tu += rux2->rux_tu;
1028 	rucollect(ru, ru2);
1029 }
1030 
1031 /*
1032  * Aggregate tick counts into the proc's rusage_ext.
1033  */
1034 static void
1035 ruxagg_locked(struct rusage_ext *rux, struct thread *td)
1036 {
1037 
1038 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1039 	PROC_SLOCK_ASSERT(td->td_proc, MA_OWNED);
1040 	rux->rux_runtime += td->td_incruntime;
1041 	rux->rux_uticks += td->td_uticks;
1042 	rux->rux_sticks += td->td_sticks;
1043 	rux->rux_iticks += td->td_iticks;
1044 }
1045 
1046 void
1047 ruxagg(struct proc *p, struct thread *td)
1048 {
1049 
1050 	thread_lock(td);
1051 	ruxagg_locked(&p->p_rux, td);
1052 	ruxagg_locked(&td->td_rux, td);
1053 	td->td_incruntime = 0;
1054 	td->td_uticks = 0;
1055 	td->td_iticks = 0;
1056 	td->td_sticks = 0;
1057 	thread_unlock(td);
1058 }
1059 
1060 /*
1061  * Update the rusage_ext structure and fetch a valid aggregate rusage
1062  * for proc p if storage for one is supplied.
1063  */
1064 void
1065 rufetch(struct proc *p, struct rusage *ru)
1066 {
1067 	struct thread *td;
1068 
1069 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1070 
1071 	*ru = p->p_ru;
1072 	if (p->p_numthreads > 0)  {
1073 		FOREACH_THREAD_IN_PROC(p, td) {
1074 			ruxagg(p, td);
1075 			rucollect(ru, &td->td_ru);
1076 		}
1077 	}
1078 }
1079 
1080 /*
1081  * Atomically perform a rufetch and a calcru together.
1082  * Consumers, can safely assume the calcru is executed only once
1083  * rufetch is completed.
1084  */
1085 void
1086 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
1087     struct timeval *sp)
1088 {
1089 
1090 	PROC_SLOCK(p);
1091 	rufetch(p, ru);
1092 	calcru(p, up, sp);
1093 	PROC_SUNLOCK(p);
1094 }
1095 
1096 /*
1097  * Allocate a new resource limits structure and initialize its
1098  * reference count and mutex pointer.
1099  */
1100 struct plimit *
1101 lim_alloc()
1102 {
1103 	struct plimit *limp;
1104 
1105 	limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
1106 	refcount_init(&limp->pl_refcnt, 1);
1107 	return (limp);
1108 }
1109 
1110 struct plimit *
1111 lim_hold(limp)
1112 	struct plimit *limp;
1113 {
1114 
1115 	refcount_acquire(&limp->pl_refcnt);
1116 	return (limp);
1117 }
1118 
1119 void
1120 lim_fork(struct proc *p1, struct proc *p2)
1121 {
1122 
1123 	PROC_LOCK_ASSERT(p1, MA_OWNED);
1124 	PROC_LOCK_ASSERT(p2, MA_OWNED);
1125 
1126 	p2->p_limit = lim_hold(p1->p_limit);
1127 	callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
1128 	if (p1->p_cpulimit != RLIM_INFINITY)
1129 		callout_reset(&p2->p_limco, hz, lim_cb, p2);
1130 }
1131 
1132 void
1133 lim_free(limp)
1134 	struct plimit *limp;
1135 {
1136 
1137 	KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
1138 	if (refcount_release(&limp->pl_refcnt))
1139 		free((void *)limp, M_PLIMIT);
1140 }
1141 
1142 /*
1143  * Make a copy of the plimit structure.
1144  * We share these structures copy-on-write after fork.
1145  */
1146 void
1147 lim_copy(dst, src)
1148 	struct plimit *dst, *src;
1149 {
1150 
1151 	KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
1152 	bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
1153 }
1154 
1155 /*
1156  * Return the hard limit for a particular system resource.  The
1157  * which parameter specifies the index into the rlimit array.
1158  */
1159 rlim_t
1160 lim_max(struct proc *p, int which)
1161 {
1162 	struct rlimit rl;
1163 
1164 	lim_rlimit(p, which, &rl);
1165 	return (rl.rlim_max);
1166 }
1167 
1168 /*
1169  * Return the current (soft) limit for a particular system resource.
1170  * The which parameter which specifies the index into the rlimit array
1171  */
1172 rlim_t
1173 lim_cur(struct proc *p, int which)
1174 {
1175 	struct rlimit rl;
1176 
1177 	lim_rlimit(p, which, &rl);
1178 	return (rl.rlim_cur);
1179 }
1180 
1181 /*
1182  * Return a copy of the entire rlimit structure for the system limit
1183  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
1184  */
1185 void
1186 lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
1187 {
1188 
1189 	PROC_LOCK_ASSERT(p, MA_OWNED);
1190 	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1191 	    ("request for invalid resource limit"));
1192 	*rlp = p->p_limit->pl_rlimit[which];
1193 	if (p->p_sysent->sv_fixlimit != NULL)
1194 		p->p_sysent->sv_fixlimit(rlp, which);
1195 }
1196 
1197 void
1198 uihashinit()
1199 {
1200 
1201 	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
1202 	rw_init(&uihashtbl_lock, "uidinfo hash");
1203 }
1204 
1205 /*
1206  * Look up a uidinfo struct for the parameter uid.
1207  * uihashtbl_lock must be locked.
1208  */
1209 static struct uidinfo *
1210 uilookup(uid)
1211 	uid_t uid;
1212 {
1213 	struct uihashhead *uipp;
1214 	struct uidinfo *uip;
1215 
1216 	rw_assert(&uihashtbl_lock, RA_LOCKED);
1217 	uipp = UIHASH(uid);
1218 	LIST_FOREACH(uip, uipp, ui_hash)
1219 		if (uip->ui_uid == uid)
1220 			break;
1221 
1222 	return (uip);
1223 }
1224 
1225 /*
1226  * Find or allocate a struct uidinfo for a particular uid.
1227  * Increase refcount on uidinfo struct returned.
1228  * uifree() should be called on a struct uidinfo when released.
1229  */
1230 struct uidinfo *
1231 uifind(uid)
1232 	uid_t uid;
1233 {
1234 	struct uidinfo *old_uip, *uip;
1235 
1236 	rw_rlock(&uihashtbl_lock);
1237 	uip = uilookup(uid);
1238 	if (uip == NULL) {
1239 		rw_runlock(&uihashtbl_lock);
1240 		uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
1241 		racct_create(&uip->ui_racct);
1242 		rw_wlock(&uihashtbl_lock);
1243 		/*
1244 		 * There's a chance someone created our uidinfo while we
1245 		 * were in malloc and not holding the lock, so we have to
1246 		 * make sure we don't insert a duplicate uidinfo.
1247 		 */
1248 		if ((old_uip = uilookup(uid)) != NULL) {
1249 			/* Someone else beat us to it. */
1250 			racct_destroy(&uip->ui_racct);
1251 			free(uip, M_UIDINFO);
1252 			uip = old_uip;
1253 		} else {
1254 			refcount_init(&uip->ui_ref, 0);
1255 			uip->ui_uid = uid;
1256 			mtx_init(&uip->ui_vmsize_mtx, "ui_vmsize", NULL,
1257 			    MTX_DEF);
1258 			LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
1259 		}
1260 	}
1261 	uihold(uip);
1262 	rw_unlock(&uihashtbl_lock);
1263 	return (uip);
1264 }
1265 
1266 /*
1267  * Place another refcount on a uidinfo struct.
1268  */
1269 void
1270 uihold(uip)
1271 	struct uidinfo *uip;
1272 {
1273 
1274 	refcount_acquire(&uip->ui_ref);
1275 }
1276 
1277 /*-
1278  * Since uidinfo structs have a long lifetime, we use an
1279  * opportunistic refcounting scheme to avoid locking the lookup hash
1280  * for each release.
1281  *
1282  * If the refcount hits 0, we need to free the structure,
1283  * which means we need to lock the hash.
1284  * Optimal case:
1285  *   After locking the struct and lowering the refcount, if we find
1286  *   that we don't need to free, simply unlock and return.
1287  * Suboptimal case:
1288  *   If refcount lowering results in need to free, bump the count
1289  *   back up, lose the lock and acquire the locks in the proper
1290  *   order to try again.
1291  */
1292 void
1293 uifree(uip)
1294 	struct uidinfo *uip;
1295 {
1296 	int old;
1297 
1298 	/* Prepare for optimal case. */
1299 	old = uip->ui_ref;
1300 	if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1))
1301 		return;
1302 
1303 	/* Prepare for suboptimal case. */
1304 	rw_wlock(&uihashtbl_lock);
1305 	if (refcount_release(&uip->ui_ref)) {
1306 		racct_destroy(&uip->ui_racct);
1307 		LIST_REMOVE(uip, ui_hash);
1308 		rw_wunlock(&uihashtbl_lock);
1309 		if (uip->ui_sbsize != 0)
1310 			printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
1311 			    uip->ui_uid, uip->ui_sbsize);
1312 		if (uip->ui_proccnt != 0)
1313 			printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1314 			    uip->ui_uid, uip->ui_proccnt);
1315 		if (uip->ui_vmsize != 0)
1316 			printf("freeing uidinfo: uid = %d, swapuse = %lld\n",
1317 			    uip->ui_uid, (unsigned long long)uip->ui_vmsize);
1318 		mtx_destroy(&uip->ui_vmsize_mtx);
1319 		free(uip, M_UIDINFO);
1320 		return;
1321 	}
1322 	/*
1323 	 * Someone added a reference between atomic_cmpset_int() and
1324 	 * rw_wlock(&uihashtbl_lock).
1325 	 */
1326 	rw_wunlock(&uihashtbl_lock);
1327 }
1328 
1329 void
1330 ui_racct_foreach(void (*callback)(struct racct *racct,
1331     void *arg2, void *arg3), void *arg2, void *arg3)
1332 {
1333 	struct uidinfo *uip;
1334 	struct uihashhead *uih;
1335 
1336 	rw_rlock(&uihashtbl_lock);
1337 	for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) {
1338 		LIST_FOREACH(uip, uih, ui_hash) {
1339 			(callback)(uip->ui_racct, arg2, arg3);
1340 		}
1341 	}
1342 	rw_runlock(&uihashtbl_lock);
1343 }
1344 
1345 /*
1346  * Change the count associated with number of processes
1347  * a given user is using.  When 'max' is 0, don't enforce a limit
1348  */
1349 int
1350 chgproccnt(uip, diff, max)
1351 	struct	uidinfo	*uip;
1352 	int	diff;
1353 	rlim_t	max;
1354 {
1355 
1356 	/* Don't allow them to exceed max, but allow subtraction. */
1357 	if (diff > 0 && max != 0) {
1358 		if (atomic_fetchadd_long(&uip->ui_proccnt, (long)diff) + diff > max) {
1359 			atomic_subtract_long(&uip->ui_proccnt, (long)diff);
1360 			return (0);
1361 		}
1362 	} else {
1363 		atomic_add_long(&uip->ui_proccnt, (long)diff);
1364 		if (uip->ui_proccnt < 0)
1365 			printf("negative proccnt for uid = %d\n", uip->ui_uid);
1366 	}
1367 	return (1);
1368 }
1369 
1370 /*
1371  * Change the total socket buffer size a user has used.
1372  */
1373 int
1374 chgsbsize(uip, hiwat, to, max)
1375 	struct	uidinfo	*uip;
1376 	u_int  *hiwat;
1377 	u_int	to;
1378 	rlim_t	max;
1379 {
1380 	int diff;
1381 
1382 	diff = to - *hiwat;
1383 	if (diff > 0) {
1384 		if (atomic_fetchadd_long(&uip->ui_sbsize, (long)diff) + diff > max) {
1385 			atomic_subtract_long(&uip->ui_sbsize, (long)diff);
1386 			return (0);
1387 		}
1388 	} else {
1389 		atomic_add_long(&uip->ui_sbsize, (long)diff);
1390 		if (uip->ui_sbsize < 0)
1391 			printf("negative sbsize for uid = %d\n", uip->ui_uid);
1392 	}
1393 	*hiwat = to;
1394 	return (1);
1395 }
1396 
1397 /*
1398  * Change the count associated with number of pseudo-terminals
1399  * a given user is using.  When 'max' is 0, don't enforce a limit
1400  */
1401 int
1402 chgptscnt(uip, diff, max)
1403 	struct	uidinfo	*uip;
1404 	int	diff;
1405 	rlim_t	max;
1406 {
1407 
1408 	/* Don't allow them to exceed max, but allow subtraction. */
1409 	if (diff > 0 && max != 0) {
1410 		if (atomic_fetchadd_long(&uip->ui_ptscnt, (long)diff) + diff > max) {
1411 			atomic_subtract_long(&uip->ui_ptscnt, (long)diff);
1412 			return (0);
1413 		}
1414 	} else {
1415 		atomic_add_long(&uip->ui_ptscnt, (long)diff);
1416 		if (uip->ui_ptscnt < 0)
1417 			printf("negative ptscnt for uid = %d\n", uip->ui_uid);
1418 	}
1419 	return (1);
1420 }
1421