1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/sysproto.h> 45 #include <sys/file.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mutex.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/refcount.h> 53 #include <sys/racct.h> 54 #include <sys/resourcevar.h> 55 #include <sys/rwlock.h> 56 #include <sys/sched.h> 57 #include <sys/sx.h> 58 #include <sys/syscallsubr.h> 59 #include <sys/sysctl.h> 60 #include <sys/sysent.h> 61 #include <sys/time.h> 62 #include <sys/umtx.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_param.h> 66 #include <vm/pmap.h> 67 #include <vm/vm_map.h> 68 69 70 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures"); 71 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 72 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 73 static struct rwlock uihashtbl_lock; 74 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 75 static u_long uihash; /* size of hash table - 1 */ 76 77 static void calcru1(struct proc *p, struct rusage_ext *ruxp, 78 struct timeval *up, struct timeval *sp); 79 static int donice(struct thread *td, struct proc *chgp, int n); 80 static struct uidinfo *uilookup(uid_t uid); 81 static void ruxagg_ext_locked(struct rusage_ext *rux, struct thread *td); 82 83 /* 84 * Resource controls and accounting. 85 */ 86 #ifndef _SYS_SYSPROTO_H_ 87 struct getpriority_args { 88 int which; 89 int who; 90 }; 91 #endif 92 int 93 sys_getpriority(struct thread *td, struct getpriority_args *uap) 94 { 95 96 return (kern_getpriority(td, uap->which, uap->who)); 97 } 98 99 int 100 kern_getpriority(struct thread *td, int which, int who) 101 { 102 struct proc *p; 103 struct pgrp *pg; 104 int error, low; 105 106 error = 0; 107 low = PRIO_MAX + 1; 108 switch (which) { 109 110 case PRIO_PROCESS: 111 if (who == 0) 112 low = td->td_proc->p_nice; 113 else { 114 p = pfind(who); 115 if (p == NULL) 116 break; 117 if (p_cansee(td, p) == 0) 118 low = p->p_nice; 119 PROC_UNLOCK(p); 120 } 121 break; 122 123 case PRIO_PGRP: 124 sx_slock(&proctree_lock); 125 if (who == 0) { 126 pg = td->td_proc->p_pgrp; 127 PGRP_LOCK(pg); 128 } else { 129 pg = pgfind(who); 130 if (pg == NULL) { 131 sx_sunlock(&proctree_lock); 132 break; 133 } 134 } 135 sx_sunlock(&proctree_lock); 136 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 137 PROC_LOCK(p); 138 if (p->p_state == PRS_NORMAL && 139 p_cansee(td, p) == 0) { 140 if (p->p_nice < low) 141 low = p->p_nice; 142 } 143 PROC_UNLOCK(p); 144 } 145 PGRP_UNLOCK(pg); 146 break; 147 148 case PRIO_USER: 149 if (who == 0) 150 who = td->td_ucred->cr_uid; 151 sx_slock(&allproc_lock); 152 FOREACH_PROC_IN_SYSTEM(p) { 153 PROC_LOCK(p); 154 if (p->p_state == PRS_NORMAL && 155 p_cansee(td, p) == 0 && 156 p->p_ucred->cr_uid == who) { 157 if (p->p_nice < low) 158 low = p->p_nice; 159 } 160 PROC_UNLOCK(p); 161 } 162 sx_sunlock(&allproc_lock); 163 break; 164 165 default: 166 error = EINVAL; 167 break; 168 } 169 if (low == PRIO_MAX + 1 && error == 0) 170 error = ESRCH; 171 td->td_retval[0] = low; 172 return (error); 173 } 174 175 #ifndef _SYS_SYSPROTO_H_ 176 struct setpriority_args { 177 int which; 178 int who; 179 int prio; 180 }; 181 #endif 182 int 183 sys_setpriority(struct thread *td, struct setpriority_args *uap) 184 { 185 186 return (kern_setpriority(td, uap->which, uap->who, uap->prio)); 187 } 188 189 int 190 kern_setpriority(struct thread *td, int which, int who, int prio) 191 { 192 struct proc *curp, *p; 193 struct pgrp *pg; 194 int found = 0, error = 0; 195 196 curp = td->td_proc; 197 switch (which) { 198 case PRIO_PROCESS: 199 if (who == 0) { 200 PROC_LOCK(curp); 201 error = donice(td, curp, prio); 202 PROC_UNLOCK(curp); 203 } else { 204 p = pfind(who); 205 if (p == NULL) 206 break; 207 error = p_cansee(td, p); 208 if (error == 0) 209 error = donice(td, p, prio); 210 PROC_UNLOCK(p); 211 } 212 found++; 213 break; 214 215 case PRIO_PGRP: 216 sx_slock(&proctree_lock); 217 if (who == 0) { 218 pg = curp->p_pgrp; 219 PGRP_LOCK(pg); 220 } else { 221 pg = pgfind(who); 222 if (pg == NULL) { 223 sx_sunlock(&proctree_lock); 224 break; 225 } 226 } 227 sx_sunlock(&proctree_lock); 228 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 229 PROC_LOCK(p); 230 if (p->p_state == PRS_NORMAL && 231 p_cansee(td, p) == 0) { 232 error = donice(td, p, prio); 233 found++; 234 } 235 PROC_UNLOCK(p); 236 } 237 PGRP_UNLOCK(pg); 238 break; 239 240 case PRIO_USER: 241 if (who == 0) 242 who = td->td_ucred->cr_uid; 243 sx_slock(&allproc_lock); 244 FOREACH_PROC_IN_SYSTEM(p) { 245 PROC_LOCK(p); 246 if (p->p_state == PRS_NORMAL && 247 p->p_ucred->cr_uid == who && 248 p_cansee(td, p) == 0) { 249 error = donice(td, p, prio); 250 found++; 251 } 252 PROC_UNLOCK(p); 253 } 254 sx_sunlock(&allproc_lock); 255 break; 256 257 default: 258 error = EINVAL; 259 break; 260 } 261 if (found == 0 && error == 0) 262 error = ESRCH; 263 return (error); 264 } 265 266 /* 267 * Set "nice" for a (whole) process. 268 */ 269 static int 270 donice(struct thread *td, struct proc *p, int n) 271 { 272 int error; 273 274 PROC_LOCK_ASSERT(p, MA_OWNED); 275 if ((error = p_cansched(td, p))) 276 return (error); 277 if (n > PRIO_MAX) 278 n = PRIO_MAX; 279 if (n < PRIO_MIN) 280 n = PRIO_MIN; 281 if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0) 282 return (EACCES); 283 sched_nice(p, n); 284 return (0); 285 } 286 287 static int unprivileged_idprio; 288 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW, 289 &unprivileged_idprio, 0, "Allow non-root users to set an idle priority"); 290 291 /* 292 * Set realtime priority for LWP. 293 */ 294 #ifndef _SYS_SYSPROTO_H_ 295 struct rtprio_thread_args { 296 int function; 297 lwpid_t lwpid; 298 struct rtprio *rtp; 299 }; 300 #endif 301 int 302 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap) 303 { 304 struct proc *p; 305 struct rtprio rtp; 306 struct thread *td1; 307 int cierror, error; 308 309 /* Perform copyin before acquiring locks if needed. */ 310 if (uap->function == RTP_SET) 311 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 312 else 313 cierror = 0; 314 315 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) { 316 p = td->td_proc; 317 td1 = td; 318 PROC_LOCK(p); 319 } else { 320 /* Only look up thread in current process */ 321 td1 = tdfind(uap->lwpid, curproc->p_pid); 322 if (td1 == NULL) 323 return (ESRCH); 324 p = td1->td_proc; 325 } 326 327 switch (uap->function) { 328 case RTP_LOOKUP: 329 if ((error = p_cansee(td, p))) 330 break; 331 pri_to_rtp(td1, &rtp); 332 PROC_UNLOCK(p); 333 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 334 case RTP_SET: 335 if ((error = p_cansched(td, p)) || (error = cierror)) 336 break; 337 338 /* Disallow setting rtprio in most cases if not superuser. */ 339 340 /* 341 * Realtime priority has to be restricted for reasons which 342 * should be obvious. However, for idleprio processes, there is 343 * a potential for system deadlock if an idleprio process gains 344 * a lock on a resource that other processes need (and the 345 * idleprio process can't run due to a CPU-bound normal 346 * process). Fix me! XXX 347 * 348 * This problem is not only related to idleprio process. 349 * A user level program can obtain a file lock and hold it 350 * indefinitely. Additionally, without idleprio processes it is 351 * still conceivable that a program with low priority will never 352 * get to run. In short, allowing this feature might make it 353 * easier to lock a resource indefinitely, but it is not the 354 * only thing that makes it possible. 355 */ 356 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME || 357 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 358 unprivileged_idprio == 0)) { 359 error = priv_check(td, PRIV_SCHED_RTPRIO); 360 if (error) 361 break; 362 } 363 error = rtp_to_pri(&rtp, td1); 364 break; 365 default: 366 error = EINVAL; 367 break; 368 } 369 PROC_UNLOCK(p); 370 return (error); 371 } 372 373 /* 374 * Set realtime priority. 375 */ 376 #ifndef _SYS_SYSPROTO_H_ 377 struct rtprio_args { 378 int function; 379 pid_t pid; 380 struct rtprio *rtp; 381 }; 382 #endif 383 int 384 sys_rtprio(struct thread *td, struct rtprio_args *uap) 385 { 386 struct proc *p; 387 struct thread *tdp; 388 struct rtprio rtp; 389 int cierror, error; 390 391 /* Perform copyin before acquiring locks if needed. */ 392 if (uap->function == RTP_SET) 393 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 394 else 395 cierror = 0; 396 397 if (uap->pid == 0) { 398 p = td->td_proc; 399 PROC_LOCK(p); 400 } else { 401 p = pfind(uap->pid); 402 if (p == NULL) 403 return (ESRCH); 404 } 405 406 switch (uap->function) { 407 case RTP_LOOKUP: 408 if ((error = p_cansee(td, p))) 409 break; 410 /* 411 * Return OUR priority if no pid specified, 412 * or if one is, report the highest priority 413 * in the process. There isn't much more you can do as 414 * there is only room to return a single priority. 415 * Note: specifying our own pid is not the same 416 * as leaving it zero. 417 */ 418 if (uap->pid == 0) { 419 pri_to_rtp(td, &rtp); 420 } else { 421 struct rtprio rtp2; 422 423 rtp.type = RTP_PRIO_IDLE; 424 rtp.prio = RTP_PRIO_MAX; 425 FOREACH_THREAD_IN_PROC(p, tdp) { 426 pri_to_rtp(tdp, &rtp2); 427 if (rtp2.type < rtp.type || 428 (rtp2.type == rtp.type && 429 rtp2.prio < rtp.prio)) { 430 rtp.type = rtp2.type; 431 rtp.prio = rtp2.prio; 432 } 433 } 434 } 435 PROC_UNLOCK(p); 436 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 437 case RTP_SET: 438 if ((error = p_cansched(td, p)) || (error = cierror)) 439 break; 440 441 /* 442 * Disallow setting rtprio in most cases if not superuser. 443 * See the comment in sys_rtprio_thread about idprio 444 * threads holding a lock. 445 */ 446 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME || 447 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 448 !unprivileged_idprio)) { 449 error = priv_check(td, PRIV_SCHED_RTPRIO); 450 if (error) 451 break; 452 } 453 454 /* 455 * If we are setting our own priority, set just our 456 * thread but if we are doing another process, 457 * do all the threads on that process. If we 458 * specify our own pid we do the latter. 459 */ 460 if (uap->pid == 0) { 461 error = rtp_to_pri(&rtp, td); 462 } else { 463 FOREACH_THREAD_IN_PROC(p, td) { 464 if ((error = rtp_to_pri(&rtp, td)) != 0) 465 break; 466 } 467 } 468 break; 469 default: 470 error = EINVAL; 471 break; 472 } 473 PROC_UNLOCK(p); 474 return (error); 475 } 476 477 int 478 rtp_to_pri(struct rtprio *rtp, struct thread *td) 479 { 480 u_char newpri, oldclass, oldpri; 481 482 switch (RTP_PRIO_BASE(rtp->type)) { 483 case RTP_PRIO_REALTIME: 484 if (rtp->prio > RTP_PRIO_MAX) 485 return (EINVAL); 486 newpri = PRI_MIN_REALTIME + rtp->prio; 487 break; 488 case RTP_PRIO_NORMAL: 489 if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE)) 490 return (EINVAL); 491 newpri = PRI_MIN_TIMESHARE + rtp->prio; 492 break; 493 case RTP_PRIO_IDLE: 494 if (rtp->prio > RTP_PRIO_MAX) 495 return (EINVAL); 496 newpri = PRI_MIN_IDLE + rtp->prio; 497 break; 498 default: 499 return (EINVAL); 500 } 501 502 thread_lock(td); 503 oldclass = td->td_pri_class; 504 sched_class(td, rtp->type); /* XXX fix */ 505 oldpri = td->td_user_pri; 506 sched_user_prio(td, newpri); 507 if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL || 508 td->td_pri_class != RTP_PRIO_NORMAL)) 509 sched_prio(td, td->td_user_pri); 510 if (TD_ON_UPILOCK(td) && oldpri != newpri) { 511 critical_enter(); 512 thread_unlock(td); 513 umtx_pi_adjust(td, oldpri); 514 critical_exit(); 515 } else 516 thread_unlock(td); 517 return (0); 518 } 519 520 void 521 pri_to_rtp(struct thread *td, struct rtprio *rtp) 522 { 523 524 thread_lock(td); 525 switch (PRI_BASE(td->td_pri_class)) { 526 case PRI_REALTIME: 527 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME; 528 break; 529 case PRI_TIMESHARE: 530 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE; 531 break; 532 case PRI_IDLE: 533 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE; 534 break; 535 default: 536 break; 537 } 538 rtp->type = td->td_pri_class; 539 thread_unlock(td); 540 } 541 542 #if defined(COMPAT_43) 543 #ifndef _SYS_SYSPROTO_H_ 544 struct osetrlimit_args { 545 u_int which; 546 struct orlimit *rlp; 547 }; 548 #endif 549 int 550 osetrlimit(struct thread *td, struct osetrlimit_args *uap) 551 { 552 struct orlimit olim; 553 struct rlimit lim; 554 int error; 555 556 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 557 return (error); 558 lim.rlim_cur = olim.rlim_cur; 559 lim.rlim_max = olim.rlim_max; 560 error = kern_setrlimit(td, uap->which, &lim); 561 return (error); 562 } 563 564 #ifndef _SYS_SYSPROTO_H_ 565 struct ogetrlimit_args { 566 u_int which; 567 struct orlimit *rlp; 568 }; 569 #endif 570 int 571 ogetrlimit(struct thread *td, struct ogetrlimit_args *uap) 572 { 573 struct orlimit olim; 574 struct rlimit rl; 575 int error; 576 577 if (uap->which >= RLIM_NLIMITS) 578 return (EINVAL); 579 lim_rlimit(td, uap->which, &rl); 580 581 /* 582 * XXX would be more correct to convert only RLIM_INFINITY to the 583 * old RLIM_INFINITY and fail with EOVERFLOW for other larger 584 * values. Most 64->32 and 32->16 conversions, including not 585 * unimportant ones of uids are even more broken than what we 586 * do here (they blindly truncate). We don't do this correctly 587 * here since we have little experience with EOVERFLOW yet. 588 * Elsewhere, getuid() can't fail... 589 */ 590 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur; 591 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max; 592 error = copyout(&olim, uap->rlp, sizeof(olim)); 593 return (error); 594 } 595 #endif /* COMPAT_43 */ 596 597 #ifndef _SYS_SYSPROTO_H_ 598 struct __setrlimit_args { 599 u_int which; 600 struct rlimit *rlp; 601 }; 602 #endif 603 int 604 sys_setrlimit(struct thread *td, struct __setrlimit_args *uap) 605 { 606 struct rlimit alim; 607 int error; 608 609 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit)))) 610 return (error); 611 error = kern_setrlimit(td, uap->which, &alim); 612 return (error); 613 } 614 615 static void 616 lim_cb(void *arg) 617 { 618 struct rlimit rlim; 619 struct thread *td; 620 struct proc *p; 621 622 p = arg; 623 PROC_LOCK_ASSERT(p, MA_OWNED); 624 /* 625 * Check if the process exceeds its cpu resource allocation. If 626 * it reaches the max, arrange to kill the process in ast(). 627 */ 628 if (p->p_cpulimit == RLIM_INFINITY) 629 return; 630 PROC_STATLOCK(p); 631 FOREACH_THREAD_IN_PROC(p, td) { 632 ruxagg(p, td); 633 } 634 PROC_STATUNLOCK(p); 635 if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) { 636 lim_rlimit_proc(p, RLIMIT_CPU, &rlim); 637 if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) { 638 killproc(p, "exceeded maximum CPU limit"); 639 } else { 640 if (p->p_cpulimit < rlim.rlim_max) 641 p->p_cpulimit += 5; 642 kern_psignal(p, SIGXCPU); 643 } 644 } 645 if ((p->p_flag & P_WEXIT) == 0) 646 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 647 lim_cb, p, C_PREL(1)); 648 } 649 650 int 651 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp) 652 { 653 654 return (kern_proc_setrlimit(td, td->td_proc, which, limp)); 655 } 656 657 int 658 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which, 659 struct rlimit *limp) 660 { 661 struct plimit *newlim, *oldlim; 662 struct rlimit *alimp; 663 struct rlimit oldssiz; 664 int error; 665 666 if (which >= RLIM_NLIMITS) 667 return (EINVAL); 668 669 /* 670 * Preserve historical bugs by treating negative limits as unsigned. 671 */ 672 if (limp->rlim_cur < 0) 673 limp->rlim_cur = RLIM_INFINITY; 674 if (limp->rlim_max < 0) 675 limp->rlim_max = RLIM_INFINITY; 676 677 oldssiz.rlim_cur = 0; 678 newlim = lim_alloc(); 679 PROC_LOCK(p); 680 oldlim = p->p_limit; 681 alimp = &oldlim->pl_rlimit[which]; 682 if (limp->rlim_cur > alimp->rlim_max || 683 limp->rlim_max > alimp->rlim_max) 684 if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) { 685 PROC_UNLOCK(p); 686 lim_free(newlim); 687 return (error); 688 } 689 if (limp->rlim_cur > limp->rlim_max) 690 limp->rlim_cur = limp->rlim_max; 691 lim_copy(newlim, oldlim); 692 alimp = &newlim->pl_rlimit[which]; 693 694 switch (which) { 695 696 case RLIMIT_CPU: 697 if (limp->rlim_cur != RLIM_INFINITY && 698 p->p_cpulimit == RLIM_INFINITY) 699 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 700 lim_cb, p, C_PREL(1)); 701 p->p_cpulimit = limp->rlim_cur; 702 break; 703 case RLIMIT_DATA: 704 if (limp->rlim_cur > maxdsiz) 705 limp->rlim_cur = maxdsiz; 706 if (limp->rlim_max > maxdsiz) 707 limp->rlim_max = maxdsiz; 708 break; 709 710 case RLIMIT_STACK: 711 if (limp->rlim_cur > maxssiz) 712 limp->rlim_cur = maxssiz; 713 if (limp->rlim_max > maxssiz) 714 limp->rlim_max = maxssiz; 715 oldssiz = *alimp; 716 if (p->p_sysent->sv_fixlimit != NULL) 717 p->p_sysent->sv_fixlimit(&oldssiz, 718 RLIMIT_STACK); 719 break; 720 721 case RLIMIT_NOFILE: 722 if (limp->rlim_cur > maxfilesperproc) 723 limp->rlim_cur = maxfilesperproc; 724 if (limp->rlim_max > maxfilesperproc) 725 limp->rlim_max = maxfilesperproc; 726 break; 727 728 case RLIMIT_NPROC: 729 if (limp->rlim_cur > maxprocperuid) 730 limp->rlim_cur = maxprocperuid; 731 if (limp->rlim_max > maxprocperuid) 732 limp->rlim_max = maxprocperuid; 733 if (limp->rlim_cur < 1) 734 limp->rlim_cur = 1; 735 if (limp->rlim_max < 1) 736 limp->rlim_max = 1; 737 break; 738 } 739 if (p->p_sysent->sv_fixlimit != NULL) 740 p->p_sysent->sv_fixlimit(limp, which); 741 *alimp = *limp; 742 p->p_limit = newlim; 743 PROC_UPDATE_COW(p); 744 PROC_UNLOCK(p); 745 lim_free(oldlim); 746 747 if (which == RLIMIT_STACK && 748 /* 749 * Skip calls from exec_new_vmspace(), done when stack is 750 * not mapped yet. 751 */ 752 (td != curthread || (p->p_flag & P_INEXEC) == 0)) { 753 /* 754 * Stack is allocated to the max at exec time with only 755 * "rlim_cur" bytes accessible. If stack limit is going 756 * up make more accessible, if going down make inaccessible. 757 */ 758 if (limp->rlim_cur != oldssiz.rlim_cur) { 759 vm_offset_t addr; 760 vm_size_t size; 761 vm_prot_t prot; 762 763 if (limp->rlim_cur > oldssiz.rlim_cur) { 764 prot = p->p_sysent->sv_stackprot; 765 size = limp->rlim_cur - oldssiz.rlim_cur; 766 addr = p->p_sysent->sv_usrstack - 767 limp->rlim_cur; 768 } else { 769 prot = VM_PROT_NONE; 770 size = oldssiz.rlim_cur - limp->rlim_cur; 771 addr = p->p_sysent->sv_usrstack - 772 oldssiz.rlim_cur; 773 } 774 addr = trunc_page(addr); 775 size = round_page(size); 776 (void)vm_map_protect(&p->p_vmspace->vm_map, 777 addr, addr + size, prot, FALSE); 778 } 779 } 780 781 return (0); 782 } 783 784 #ifndef _SYS_SYSPROTO_H_ 785 struct __getrlimit_args { 786 u_int which; 787 struct rlimit *rlp; 788 }; 789 #endif 790 /* ARGSUSED */ 791 int 792 sys_getrlimit(struct thread *td, struct __getrlimit_args *uap) 793 { 794 struct rlimit rlim; 795 int error; 796 797 if (uap->which >= RLIM_NLIMITS) 798 return (EINVAL); 799 lim_rlimit(td, uap->which, &rlim); 800 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit)); 801 return (error); 802 } 803 804 /* 805 * Transform the running time and tick information for children of proc p 806 * into user and system time usage. 807 */ 808 void 809 calccru(struct proc *p, struct timeval *up, struct timeval *sp) 810 { 811 812 PROC_LOCK_ASSERT(p, MA_OWNED); 813 calcru1(p, &p->p_crux, up, sp); 814 } 815 816 /* 817 * Transform the running time and tick information in proc p into user 818 * and system time usage. If appropriate, include the current time slice 819 * on this CPU. 820 */ 821 void 822 calcru(struct proc *p, struct timeval *up, struct timeval *sp) 823 { 824 struct thread *td; 825 uint64_t runtime, u; 826 827 PROC_LOCK_ASSERT(p, MA_OWNED); 828 PROC_STATLOCK_ASSERT(p, MA_OWNED); 829 /* 830 * If we are getting stats for the current process, then add in the 831 * stats that this thread has accumulated in its current time slice. 832 * We reset the thread and CPU state as if we had performed a context 833 * switch right here. 834 */ 835 td = curthread; 836 if (td->td_proc == p) { 837 u = cpu_ticks(); 838 runtime = u - PCPU_GET(switchtime); 839 td->td_runtime += runtime; 840 td->td_incruntime += runtime; 841 PCPU_SET(switchtime, u); 842 } 843 /* Make sure the per-thread stats are current. */ 844 FOREACH_THREAD_IN_PROC(p, td) { 845 if (td->td_incruntime == 0) 846 continue; 847 ruxagg(p, td); 848 } 849 calcru1(p, &p->p_rux, up, sp); 850 } 851 852 /* Collect resource usage for a single thread. */ 853 void 854 rufetchtd(struct thread *td, struct rusage *ru) 855 { 856 struct proc *p; 857 uint64_t runtime, u; 858 859 p = td->td_proc; 860 PROC_STATLOCK_ASSERT(p, MA_OWNED); 861 THREAD_LOCK_ASSERT(td, MA_OWNED); 862 /* 863 * If we are getting stats for the current thread, then add in the 864 * stats that this thread has accumulated in its current time slice. 865 * We reset the thread and CPU state as if we had performed a context 866 * switch right here. 867 */ 868 if (td == curthread) { 869 u = cpu_ticks(); 870 runtime = u - PCPU_GET(switchtime); 871 td->td_runtime += runtime; 872 td->td_incruntime += runtime; 873 PCPU_SET(switchtime, u); 874 } 875 ruxagg_locked(p, td); 876 *ru = td->td_ru; 877 calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime); 878 } 879 880 /* XXX: the MI version is too slow to use: */ 881 #ifndef __HAVE_INLINE_FLSLL 882 #define flsll(x) (fls((x) >> 32) != 0 ? fls((x) >> 32) + 32 : fls(x)) 883 #endif 884 885 static uint64_t 886 mul64_by_fraction(uint64_t a, uint64_t b, uint64_t c) 887 { 888 uint64_t acc, bh, bl; 889 int i, s, sa, sb; 890 891 /* 892 * Calculate (a * b) / c accurately enough without overflowing. c 893 * must be nonzero, and its top bit must be 0. a or b must be 894 * <= c, and the implementation is tuned for b <= c. 895 * 896 * The comments about times are for use in calcru1() with units of 897 * microseconds for 'a' and stathz ticks at 128 Hz for b and c. 898 * 899 * Let n be the number of top zero bits in c. Each iteration 900 * either returns, or reduces b by right shifting it by at least n. 901 * The number of iterations is at most 1 + 64 / n, and the error is 902 * at most the number of iterations. 903 * 904 * It is very unusual to need even 2 iterations. Previous 905 * implementations overflowed essentially by returning early in the 906 * first iteration, with n = 38 giving overflow at 105+ hours and 907 * n = 32 giving overlow at at 388+ days despite a more careful 908 * calculation. 388 days is a reasonable uptime, and the calculation 909 * needs to work for the uptime times the number of CPUs since 'a' 910 * is per-process. 911 */ 912 if (a >= (uint64_t)1 << 63) 913 return (0); /* Unsupported arg -- can't happen. */ 914 acc = 0; 915 for (i = 0; i < 128; i++) { 916 sa = flsll(a); 917 sb = flsll(b); 918 if (sa + sb <= 64) 919 /* Up to 105 hours on first iteration. */ 920 return (acc + (a * b) / c); 921 if (a >= c) { 922 /* 923 * This reduction is based on a = q * c + r, with the 924 * remainder r < c. 'a' may be large to start, and 925 * moving bits from b into 'a' at the end of the loop 926 * sets the top bit of 'a', so the reduction makes 927 * significant progress. 928 */ 929 acc += (a / c) * b; 930 a %= c; 931 sa = flsll(a); 932 if (sa + sb <= 64) 933 /* Up to 388 days on first iteration. */ 934 return (acc + (a * b) / c); 935 } 936 937 /* 938 * This step writes a * b as a * ((bh << s) + bl) = 939 * a * (bh << s) + a * bl = (a << s) * bh + a * bl. The 2 940 * additive terms are handled separately. Splitting in 941 * this way is linear except for rounding errors. 942 * 943 * s = 64 - sa is the maximum such that a << s fits in 64 944 * bits. Since a < c and c has at least 1 zero top bit, 945 * sa < 64 and s > 0. Thus this step makes progress by 946 * reducing b (it increases 'a', but taking remainders on 947 * the next iteration completes the reduction). 948 * 949 * Finally, the choice for s is just what is needed to keep 950 * a * bl from overflowing, so we don't need complications 951 * like a recursive call mul64_by_fraction(a, bl, c) to 952 * handle the second additive term. 953 */ 954 s = 64 - sa; 955 bh = b >> s; 956 bl = b - (bh << s); 957 acc += (a * bl) / c; 958 a <<= s; 959 b = bh; 960 } 961 return (0); /* Algorithm failure -- can't happen. */ 962 } 963 964 static void 965 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up, 966 struct timeval *sp) 967 { 968 /* {user, system, interrupt, total} {ticks, usec}: */ 969 uint64_t ut, uu, st, su, it, tt, tu; 970 971 ut = ruxp->rux_uticks; 972 st = ruxp->rux_sticks; 973 it = ruxp->rux_iticks; 974 tt = ut + st + it; 975 if (tt == 0) { 976 /* Avoid divide by zero */ 977 st = 1; 978 tt = 1; 979 } 980 tu = cputick2usec(ruxp->rux_runtime); 981 if ((int64_t)tu < 0) { 982 /* XXX: this should be an assert /phk */ 983 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n", 984 (intmax_t)tu, p->p_pid, p->p_comm); 985 tu = ruxp->rux_tu; 986 } 987 988 /* Subdivide tu. Avoid overflow in the multiplications. */ 989 if (__predict_true(tu <= ((uint64_t)1 << 38) && tt <= (1 << 26))) { 990 /* Up to 76 hours when stathz is 128. */ 991 uu = (tu * ut) / tt; 992 su = (tu * st) / tt; 993 } else { 994 uu = mul64_by_fraction(tu, ut, tt); 995 su = mul64_by_fraction(tu, st, tt); 996 } 997 998 if (tu >= ruxp->rux_tu) { 999 /* 1000 * The normal case, time increased. 1001 * Enforce monotonicity of bucketed numbers. 1002 */ 1003 if (uu < ruxp->rux_uu) 1004 uu = ruxp->rux_uu; 1005 if (su < ruxp->rux_su) 1006 su = ruxp->rux_su; 1007 } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) { 1008 /* 1009 * When we calibrate the cputicker, it is not uncommon to 1010 * see the presumably fixed frequency increase slightly over 1011 * time as a result of thermal stabilization and NTP 1012 * discipline (of the reference clock). We therefore ignore 1013 * a bit of backwards slop because we expect to catch up 1014 * shortly. We use a 3 microsecond limit to catch low 1015 * counts and a 1% limit for high counts. 1016 */ 1017 uu = ruxp->rux_uu; 1018 su = ruxp->rux_su; 1019 tu = ruxp->rux_tu; 1020 } else { /* tu < ruxp->rux_tu */ 1021 /* 1022 * What happened here was likely that a laptop, which ran at 1023 * a reduced clock frequency at boot, kicked into high gear. 1024 * The wisdom of spamming this message in that case is 1025 * dubious, but it might also be indicative of something 1026 * serious, so lets keep it and hope laptops can be made 1027 * more truthful about their CPU speed via ACPI. 1028 */ 1029 printf("calcru: runtime went backwards from %ju usec " 1030 "to %ju usec for pid %d (%s)\n", 1031 (uintmax_t)ruxp->rux_tu, (uintmax_t)tu, 1032 p->p_pid, p->p_comm); 1033 } 1034 1035 ruxp->rux_uu = uu; 1036 ruxp->rux_su = su; 1037 ruxp->rux_tu = tu; 1038 1039 up->tv_sec = uu / 1000000; 1040 up->tv_usec = uu % 1000000; 1041 sp->tv_sec = su / 1000000; 1042 sp->tv_usec = su % 1000000; 1043 } 1044 1045 #ifndef _SYS_SYSPROTO_H_ 1046 struct getrusage_args { 1047 int who; 1048 struct rusage *rusage; 1049 }; 1050 #endif 1051 int 1052 sys_getrusage(struct thread *td, struct getrusage_args *uap) 1053 { 1054 struct rusage ru; 1055 int error; 1056 1057 error = kern_getrusage(td, uap->who, &ru); 1058 if (error == 0) 1059 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 1060 return (error); 1061 } 1062 1063 int 1064 kern_getrusage(struct thread *td, int who, struct rusage *rup) 1065 { 1066 struct proc *p; 1067 int error; 1068 1069 error = 0; 1070 p = td->td_proc; 1071 PROC_LOCK(p); 1072 switch (who) { 1073 case RUSAGE_SELF: 1074 rufetchcalc(p, rup, &rup->ru_utime, 1075 &rup->ru_stime); 1076 break; 1077 1078 case RUSAGE_CHILDREN: 1079 *rup = p->p_stats->p_cru; 1080 calccru(p, &rup->ru_utime, &rup->ru_stime); 1081 break; 1082 1083 case RUSAGE_THREAD: 1084 PROC_STATLOCK(p); 1085 thread_lock(td); 1086 rufetchtd(td, rup); 1087 thread_unlock(td); 1088 PROC_STATUNLOCK(p); 1089 break; 1090 1091 default: 1092 error = EINVAL; 1093 } 1094 PROC_UNLOCK(p); 1095 return (error); 1096 } 1097 1098 void 1099 rucollect(struct rusage *ru, struct rusage *ru2) 1100 { 1101 long *ip, *ip2; 1102 int i; 1103 1104 if (ru->ru_maxrss < ru2->ru_maxrss) 1105 ru->ru_maxrss = ru2->ru_maxrss; 1106 ip = &ru->ru_first; 1107 ip2 = &ru2->ru_first; 1108 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 1109 *ip++ += *ip2++; 1110 } 1111 1112 void 1113 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2, 1114 struct rusage_ext *rux2) 1115 { 1116 1117 rux->rux_runtime += rux2->rux_runtime; 1118 rux->rux_uticks += rux2->rux_uticks; 1119 rux->rux_sticks += rux2->rux_sticks; 1120 rux->rux_iticks += rux2->rux_iticks; 1121 rux->rux_uu += rux2->rux_uu; 1122 rux->rux_su += rux2->rux_su; 1123 rux->rux_tu += rux2->rux_tu; 1124 rucollect(ru, ru2); 1125 } 1126 1127 /* 1128 * Aggregate tick counts into the proc's rusage_ext. 1129 */ 1130 static void 1131 ruxagg_ext_locked(struct rusage_ext *rux, struct thread *td) 1132 { 1133 1134 rux->rux_runtime += td->td_incruntime; 1135 rux->rux_uticks += td->td_uticks; 1136 rux->rux_sticks += td->td_sticks; 1137 rux->rux_iticks += td->td_iticks; 1138 } 1139 1140 void 1141 ruxagg_locked(struct proc *p, struct thread *td) 1142 { 1143 THREAD_LOCK_ASSERT(td, MA_OWNED); 1144 PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED); 1145 1146 ruxagg_ext_locked(&p->p_rux, td); 1147 ruxagg_ext_locked(&td->td_rux, td); 1148 td->td_incruntime = 0; 1149 td->td_uticks = 0; 1150 td->td_iticks = 0; 1151 td->td_sticks = 0; 1152 } 1153 1154 void 1155 ruxagg(struct proc *p, struct thread *td) 1156 { 1157 1158 thread_lock(td); 1159 ruxagg_locked(p, td); 1160 thread_unlock(td); 1161 } 1162 1163 /* 1164 * Update the rusage_ext structure and fetch a valid aggregate rusage 1165 * for proc p if storage for one is supplied. 1166 */ 1167 void 1168 rufetch(struct proc *p, struct rusage *ru) 1169 { 1170 struct thread *td; 1171 1172 PROC_STATLOCK_ASSERT(p, MA_OWNED); 1173 1174 *ru = p->p_ru; 1175 if (p->p_numthreads > 0) { 1176 FOREACH_THREAD_IN_PROC(p, td) { 1177 ruxagg(p, td); 1178 rucollect(ru, &td->td_ru); 1179 } 1180 } 1181 } 1182 1183 /* 1184 * Atomically perform a rufetch and a calcru together. 1185 * Consumers, can safely assume the calcru is executed only once 1186 * rufetch is completed. 1187 */ 1188 void 1189 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up, 1190 struct timeval *sp) 1191 { 1192 1193 PROC_STATLOCK(p); 1194 rufetch(p, ru); 1195 calcru(p, up, sp); 1196 PROC_STATUNLOCK(p); 1197 } 1198 1199 /* 1200 * Allocate a new resource limits structure and initialize its 1201 * reference count and mutex pointer. 1202 */ 1203 struct plimit * 1204 lim_alloc() 1205 { 1206 struct plimit *limp; 1207 1208 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK); 1209 refcount_init(&limp->pl_refcnt, 1); 1210 return (limp); 1211 } 1212 1213 struct plimit * 1214 lim_hold(struct plimit *limp) 1215 { 1216 1217 refcount_acquire(&limp->pl_refcnt); 1218 return (limp); 1219 } 1220 1221 void 1222 lim_fork(struct proc *p1, struct proc *p2) 1223 { 1224 1225 PROC_LOCK_ASSERT(p1, MA_OWNED); 1226 PROC_LOCK_ASSERT(p2, MA_OWNED); 1227 1228 p2->p_limit = lim_hold(p1->p_limit); 1229 callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0); 1230 if (p1->p_cpulimit != RLIM_INFINITY) 1231 callout_reset_sbt(&p2->p_limco, SBT_1S, 0, 1232 lim_cb, p2, C_PREL(1)); 1233 } 1234 1235 void 1236 lim_free(struct plimit *limp) 1237 { 1238 1239 if (refcount_release(&limp->pl_refcnt)) 1240 free((void *)limp, M_PLIMIT); 1241 } 1242 1243 /* 1244 * Make a copy of the plimit structure. 1245 * We share these structures copy-on-write after fork. 1246 */ 1247 void 1248 lim_copy(struct plimit *dst, struct plimit *src) 1249 { 1250 1251 KASSERT(dst->pl_refcnt <= 1, ("lim_copy to shared limit")); 1252 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit)); 1253 } 1254 1255 /* 1256 * Return the hard limit for a particular system resource. The 1257 * which parameter specifies the index into the rlimit array. 1258 */ 1259 rlim_t 1260 lim_max(struct thread *td, int which) 1261 { 1262 struct rlimit rl; 1263 1264 lim_rlimit(td, which, &rl); 1265 return (rl.rlim_max); 1266 } 1267 1268 rlim_t 1269 lim_max_proc(struct proc *p, int which) 1270 { 1271 struct rlimit rl; 1272 1273 lim_rlimit_proc(p, which, &rl); 1274 return (rl.rlim_max); 1275 } 1276 1277 /* 1278 * Return the current (soft) limit for a particular system resource. 1279 * The which parameter which specifies the index into the rlimit array 1280 */ 1281 rlim_t 1282 (lim_cur)(struct thread *td, int which) 1283 { 1284 struct rlimit rl; 1285 1286 lim_rlimit(td, which, &rl); 1287 return (rl.rlim_cur); 1288 } 1289 1290 rlim_t 1291 lim_cur_proc(struct proc *p, int which) 1292 { 1293 struct rlimit rl; 1294 1295 lim_rlimit_proc(p, which, &rl); 1296 return (rl.rlim_cur); 1297 } 1298 1299 /* 1300 * Return a copy of the entire rlimit structure for the system limit 1301 * specified by 'which' in the rlimit structure pointed to by 'rlp'. 1302 */ 1303 void 1304 lim_rlimit(struct thread *td, int which, struct rlimit *rlp) 1305 { 1306 struct proc *p = td->td_proc; 1307 1308 MPASS(td == curthread); 1309 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1310 ("request for invalid resource limit")); 1311 *rlp = td->td_limit->pl_rlimit[which]; 1312 if (p->p_sysent->sv_fixlimit != NULL) 1313 p->p_sysent->sv_fixlimit(rlp, which); 1314 } 1315 1316 void 1317 lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp) 1318 { 1319 1320 PROC_LOCK_ASSERT(p, MA_OWNED); 1321 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1322 ("request for invalid resource limit")); 1323 *rlp = p->p_limit->pl_rlimit[which]; 1324 if (p->p_sysent->sv_fixlimit != NULL) 1325 p->p_sysent->sv_fixlimit(rlp, which); 1326 } 1327 1328 void 1329 uihashinit() 1330 { 1331 1332 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 1333 rw_init(&uihashtbl_lock, "uidinfo hash"); 1334 } 1335 1336 /* 1337 * Look up a uidinfo struct for the parameter uid. 1338 * uihashtbl_lock must be locked. 1339 * Increase refcount on uidinfo struct returned. 1340 */ 1341 static struct uidinfo * 1342 uilookup(uid_t uid) 1343 { 1344 struct uihashhead *uipp; 1345 struct uidinfo *uip; 1346 1347 rw_assert(&uihashtbl_lock, RA_LOCKED); 1348 uipp = UIHASH(uid); 1349 LIST_FOREACH(uip, uipp, ui_hash) 1350 if (uip->ui_uid == uid) { 1351 uihold(uip); 1352 break; 1353 } 1354 1355 return (uip); 1356 } 1357 1358 /* 1359 * Find or allocate a struct uidinfo for a particular uid. 1360 * Returns with uidinfo struct referenced. 1361 * uifree() should be called on a struct uidinfo when released. 1362 */ 1363 struct uidinfo * 1364 uifind(uid_t uid) 1365 { 1366 struct uidinfo *new_uip, *uip; 1367 struct ucred *cred; 1368 1369 cred = curthread->td_ucred; 1370 if (cred->cr_uidinfo->ui_uid == uid) { 1371 uip = cred->cr_uidinfo; 1372 uihold(uip); 1373 return (uip); 1374 } else if (cred->cr_ruidinfo->ui_uid == uid) { 1375 uip = cred->cr_ruidinfo; 1376 uihold(uip); 1377 return (uip); 1378 } 1379 1380 rw_rlock(&uihashtbl_lock); 1381 uip = uilookup(uid); 1382 rw_runlock(&uihashtbl_lock); 1383 if (uip != NULL) 1384 return (uip); 1385 1386 new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO); 1387 racct_create(&new_uip->ui_racct); 1388 refcount_init(&new_uip->ui_ref, 1); 1389 new_uip->ui_uid = uid; 1390 1391 rw_wlock(&uihashtbl_lock); 1392 /* 1393 * There's a chance someone created our uidinfo while we 1394 * were in malloc and not holding the lock, so we have to 1395 * make sure we don't insert a duplicate uidinfo. 1396 */ 1397 if ((uip = uilookup(uid)) == NULL) { 1398 LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash); 1399 rw_wunlock(&uihashtbl_lock); 1400 uip = new_uip; 1401 } else { 1402 rw_wunlock(&uihashtbl_lock); 1403 racct_destroy(&new_uip->ui_racct); 1404 free(new_uip, M_UIDINFO); 1405 } 1406 return (uip); 1407 } 1408 1409 /* 1410 * Place another refcount on a uidinfo struct. 1411 */ 1412 void 1413 uihold(struct uidinfo *uip) 1414 { 1415 1416 refcount_acquire(&uip->ui_ref); 1417 } 1418 1419 /*- 1420 * Since uidinfo structs have a long lifetime, we use an 1421 * opportunistic refcounting scheme to avoid locking the lookup hash 1422 * for each release. 1423 * 1424 * If the refcount hits 0, we need to free the structure, 1425 * which means we need to lock the hash. 1426 * Optimal case: 1427 * After locking the struct and lowering the refcount, if we find 1428 * that we don't need to free, simply unlock and return. 1429 * Suboptimal case: 1430 * If refcount lowering results in need to free, bump the count 1431 * back up, lose the lock and acquire the locks in the proper 1432 * order to try again. 1433 */ 1434 void 1435 uifree(struct uidinfo *uip) 1436 { 1437 1438 if (refcount_release_if_not_last(&uip->ui_ref)) 1439 return; 1440 1441 rw_wlock(&uihashtbl_lock); 1442 if (refcount_release(&uip->ui_ref) == 0) { 1443 rw_wunlock(&uihashtbl_lock); 1444 return; 1445 } 1446 1447 racct_destroy(&uip->ui_racct); 1448 LIST_REMOVE(uip, ui_hash); 1449 rw_wunlock(&uihashtbl_lock); 1450 1451 if (uip->ui_sbsize != 0) 1452 printf("freeing uidinfo: uid = %d, sbsize = %ld\n", 1453 uip->ui_uid, uip->ui_sbsize); 1454 if (uip->ui_proccnt != 0) 1455 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 1456 uip->ui_uid, uip->ui_proccnt); 1457 if (uip->ui_vmsize != 0) 1458 printf("freeing uidinfo: uid = %d, swapuse = %lld\n", 1459 uip->ui_uid, (unsigned long long)uip->ui_vmsize); 1460 free(uip, M_UIDINFO); 1461 } 1462 1463 #ifdef RACCT 1464 void 1465 ui_racct_foreach(void (*callback)(struct racct *racct, 1466 void *arg2, void *arg3), void (*pre)(void), void (*post)(void), 1467 void *arg2, void *arg3) 1468 { 1469 struct uidinfo *uip; 1470 struct uihashhead *uih; 1471 1472 rw_rlock(&uihashtbl_lock); 1473 if (pre != NULL) 1474 (pre)(); 1475 for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) { 1476 LIST_FOREACH(uip, uih, ui_hash) { 1477 (callback)(uip->ui_racct, arg2, arg3); 1478 } 1479 } 1480 if (post != NULL) 1481 (post)(); 1482 rw_runlock(&uihashtbl_lock); 1483 } 1484 #endif 1485 1486 static inline int 1487 chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name) 1488 { 1489 long new; 1490 1491 /* Don't allow them to exceed max, but allow subtraction. */ 1492 new = atomic_fetchadd_long(limit, (long)diff) + diff; 1493 if (diff > 0 && max != 0) { 1494 if (new < 0 || new > max) { 1495 atomic_subtract_long(limit, (long)diff); 1496 return (0); 1497 } 1498 } else if (new < 0) 1499 printf("negative %s for uid = %d\n", name, uip->ui_uid); 1500 return (1); 1501 } 1502 1503 /* 1504 * Change the count associated with number of processes 1505 * a given user is using. When 'max' is 0, don't enforce a limit 1506 */ 1507 int 1508 chgproccnt(struct uidinfo *uip, int diff, rlim_t max) 1509 { 1510 1511 return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt")); 1512 } 1513 1514 /* 1515 * Change the total socket buffer size a user has used. 1516 */ 1517 int 1518 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max) 1519 { 1520 int diff, rv; 1521 1522 diff = to - *hiwat; 1523 if (diff > 0 && max == 0) { 1524 rv = 0; 1525 } else { 1526 rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize"); 1527 if (rv != 0) 1528 *hiwat = to; 1529 } 1530 return (rv); 1531 } 1532 1533 /* 1534 * Change the count associated with number of pseudo-terminals 1535 * a given user is using. When 'max' is 0, don't enforce a limit 1536 */ 1537 int 1538 chgptscnt(struct uidinfo *uip, int diff, rlim_t max) 1539 { 1540 1541 return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt")); 1542 } 1543 1544 int 1545 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max) 1546 { 1547 1548 return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt")); 1549 } 1550 1551 int 1552 chgumtxcnt(struct uidinfo *uip, int diff, rlim_t max) 1553 { 1554 1555 return (chglimit(uip, &uip->ui_umtxcnt, diff, max, "umtxcnt")); 1556 } 1557