xref: /freebsd/sys/kern/kern_resource.c (revision d8ffc21c5ca6f7d4f2d9a65dc6308699af0b6a01)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_resource.c	8.5 (Berkeley) 1/21/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysproto.h>
45 #include <sys/file.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/refcount.h>
53 #include <sys/racct.h>
54 #include <sys/resourcevar.h>
55 #include <sys/rwlock.h>
56 #include <sys/sched.h>
57 #include <sys/sx.h>
58 #include <sys/syscallsubr.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysent.h>
61 #include <sys/time.h>
62 #include <sys/umtx.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/pmap.h>
67 #include <vm/vm_map.h>
68 
69 
70 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
71 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
72 #define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
73 static struct rwlock uihashtbl_lock;
74 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
75 static u_long uihash;		/* size of hash table - 1 */
76 
77 static void	calcru1(struct proc *p, struct rusage_ext *ruxp,
78 		    struct timeval *up, struct timeval *sp);
79 static int	donice(struct thread *td, struct proc *chgp, int n);
80 static struct uidinfo *uilookup(uid_t uid);
81 static void	ruxagg_ext_locked(struct rusage_ext *rux, struct thread *td);
82 
83 /*
84  * Resource controls and accounting.
85  */
86 #ifndef _SYS_SYSPROTO_H_
87 struct getpriority_args {
88 	int	which;
89 	int	who;
90 };
91 #endif
92 int
93 sys_getpriority(struct thread *td, struct getpriority_args *uap)
94 {
95 
96 	return (kern_getpriority(td, uap->which, uap->who));
97 }
98 
99 int
100 kern_getpriority(struct thread *td, int which, int who)
101 {
102 	struct proc *p;
103 	struct pgrp *pg;
104 	int error, low;
105 
106 	error = 0;
107 	low = PRIO_MAX + 1;
108 	switch (which) {
109 
110 	case PRIO_PROCESS:
111 		if (who == 0)
112 			low = td->td_proc->p_nice;
113 		else {
114 			p = pfind(who);
115 			if (p == NULL)
116 				break;
117 			if (p_cansee(td, p) == 0)
118 				low = p->p_nice;
119 			PROC_UNLOCK(p);
120 		}
121 		break;
122 
123 	case PRIO_PGRP:
124 		sx_slock(&proctree_lock);
125 		if (who == 0) {
126 			pg = td->td_proc->p_pgrp;
127 			PGRP_LOCK(pg);
128 		} else {
129 			pg = pgfind(who);
130 			if (pg == NULL) {
131 				sx_sunlock(&proctree_lock);
132 				break;
133 			}
134 		}
135 		sx_sunlock(&proctree_lock);
136 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
137 			PROC_LOCK(p);
138 			if (p->p_state == PRS_NORMAL &&
139 			    p_cansee(td, p) == 0) {
140 				if (p->p_nice < low)
141 					low = p->p_nice;
142 			}
143 			PROC_UNLOCK(p);
144 		}
145 		PGRP_UNLOCK(pg);
146 		break;
147 
148 	case PRIO_USER:
149 		if (who == 0)
150 			who = td->td_ucred->cr_uid;
151 		sx_slock(&allproc_lock);
152 		FOREACH_PROC_IN_SYSTEM(p) {
153 			PROC_LOCK(p);
154 			if (p->p_state == PRS_NORMAL &&
155 			    p_cansee(td, p) == 0 &&
156 			    p->p_ucred->cr_uid == who) {
157 				if (p->p_nice < low)
158 					low = p->p_nice;
159 			}
160 			PROC_UNLOCK(p);
161 		}
162 		sx_sunlock(&allproc_lock);
163 		break;
164 
165 	default:
166 		error = EINVAL;
167 		break;
168 	}
169 	if (low == PRIO_MAX + 1 && error == 0)
170 		error = ESRCH;
171 	td->td_retval[0] = low;
172 	return (error);
173 }
174 
175 #ifndef _SYS_SYSPROTO_H_
176 struct setpriority_args {
177 	int	which;
178 	int	who;
179 	int	prio;
180 };
181 #endif
182 int
183 sys_setpriority(struct thread *td, struct setpriority_args *uap)
184 {
185 
186 	return (kern_setpriority(td, uap->which, uap->who, uap->prio));
187 }
188 
189 int
190 kern_setpriority(struct thread *td, int which, int who, int prio)
191 {
192 	struct proc *curp, *p;
193 	struct pgrp *pg;
194 	int found = 0, error = 0;
195 
196 	curp = td->td_proc;
197 	switch (which) {
198 	case PRIO_PROCESS:
199 		if (who == 0) {
200 			PROC_LOCK(curp);
201 			error = donice(td, curp, prio);
202 			PROC_UNLOCK(curp);
203 		} else {
204 			p = pfind(who);
205 			if (p == NULL)
206 				break;
207 			error = p_cansee(td, p);
208 			if (error == 0)
209 				error = donice(td, p, prio);
210 			PROC_UNLOCK(p);
211 		}
212 		found++;
213 		break;
214 
215 	case PRIO_PGRP:
216 		sx_slock(&proctree_lock);
217 		if (who == 0) {
218 			pg = curp->p_pgrp;
219 			PGRP_LOCK(pg);
220 		} else {
221 			pg = pgfind(who);
222 			if (pg == NULL) {
223 				sx_sunlock(&proctree_lock);
224 				break;
225 			}
226 		}
227 		sx_sunlock(&proctree_lock);
228 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
229 			PROC_LOCK(p);
230 			if (p->p_state == PRS_NORMAL &&
231 			    p_cansee(td, p) == 0) {
232 				error = donice(td, p, prio);
233 				found++;
234 			}
235 			PROC_UNLOCK(p);
236 		}
237 		PGRP_UNLOCK(pg);
238 		break;
239 
240 	case PRIO_USER:
241 		if (who == 0)
242 			who = td->td_ucred->cr_uid;
243 		sx_slock(&allproc_lock);
244 		FOREACH_PROC_IN_SYSTEM(p) {
245 			PROC_LOCK(p);
246 			if (p->p_state == PRS_NORMAL &&
247 			    p->p_ucred->cr_uid == who &&
248 			    p_cansee(td, p) == 0) {
249 				error = donice(td, p, prio);
250 				found++;
251 			}
252 			PROC_UNLOCK(p);
253 		}
254 		sx_sunlock(&allproc_lock);
255 		break;
256 
257 	default:
258 		error = EINVAL;
259 		break;
260 	}
261 	if (found == 0 && error == 0)
262 		error = ESRCH;
263 	return (error);
264 }
265 
266 /*
267  * Set "nice" for a (whole) process.
268  */
269 static int
270 donice(struct thread *td, struct proc *p, int n)
271 {
272 	int error;
273 
274 	PROC_LOCK_ASSERT(p, MA_OWNED);
275 	if ((error = p_cansched(td, p)))
276 		return (error);
277 	if (n > PRIO_MAX)
278 		n = PRIO_MAX;
279 	if (n < PRIO_MIN)
280 		n = PRIO_MIN;
281 	if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
282 		return (EACCES);
283 	sched_nice(p, n);
284 	return (0);
285 }
286 
287 static int unprivileged_idprio;
288 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW,
289     &unprivileged_idprio, 0, "Allow non-root users to set an idle priority");
290 
291 /*
292  * Set realtime priority for LWP.
293  */
294 #ifndef _SYS_SYSPROTO_H_
295 struct rtprio_thread_args {
296 	int		function;
297 	lwpid_t		lwpid;
298 	struct rtprio	*rtp;
299 };
300 #endif
301 int
302 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
303 {
304 	struct proc *p;
305 	struct rtprio rtp;
306 	struct thread *td1;
307 	int cierror, error;
308 
309 	/* Perform copyin before acquiring locks if needed. */
310 	if (uap->function == RTP_SET)
311 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
312 	else
313 		cierror = 0;
314 
315 	if (uap->lwpid == 0 || uap->lwpid == td->td_tid) {
316 		p = td->td_proc;
317 		td1 = td;
318 		PROC_LOCK(p);
319 	} else {
320 		/* Only look up thread in current process */
321 		td1 = tdfind(uap->lwpid, curproc->p_pid);
322 		if (td1 == NULL)
323 			return (ESRCH);
324 		p = td1->td_proc;
325 	}
326 
327 	switch (uap->function) {
328 	case RTP_LOOKUP:
329 		if ((error = p_cansee(td, p)))
330 			break;
331 		pri_to_rtp(td1, &rtp);
332 		PROC_UNLOCK(p);
333 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
334 	case RTP_SET:
335 		if ((error = p_cansched(td, p)) || (error = cierror))
336 			break;
337 
338 		/* Disallow setting rtprio in most cases if not superuser. */
339 
340 		/*
341 		 * Realtime priority has to be restricted for reasons which
342 		 * should be obvious.  However, for idleprio processes, there is
343 		 * a potential for system deadlock if an idleprio process gains
344 		 * a lock on a resource that other processes need (and the
345 		 * idleprio process can't run due to a CPU-bound normal
346 		 * process).  Fix me!  XXX
347 		 *
348 		 * This problem is not only related to idleprio process.
349 		 * A user level program can obtain a file lock and hold it
350 		 * indefinitely.  Additionally, without idleprio processes it is
351 		 * still conceivable that a program with low priority will never
352 		 * get to run.  In short, allowing this feature might make it
353 		 * easier to lock a resource indefinitely, but it is not the
354 		 * only thing that makes it possible.
355 		 */
356 		if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
357 		    (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
358 		    unprivileged_idprio == 0)) {
359 			error = priv_check(td, PRIV_SCHED_RTPRIO);
360 			if (error)
361 				break;
362 		}
363 		error = rtp_to_pri(&rtp, td1);
364 		break;
365 	default:
366 		error = EINVAL;
367 		break;
368 	}
369 	PROC_UNLOCK(p);
370 	return (error);
371 }
372 
373 /*
374  * Set realtime priority.
375  */
376 #ifndef _SYS_SYSPROTO_H_
377 struct rtprio_args {
378 	int		function;
379 	pid_t		pid;
380 	struct rtprio	*rtp;
381 };
382 #endif
383 int
384 sys_rtprio(struct thread *td, struct rtprio_args *uap)
385 {
386 	struct proc *p;
387 	struct thread *tdp;
388 	struct rtprio rtp;
389 	int cierror, error;
390 
391 	/* Perform copyin before acquiring locks if needed. */
392 	if (uap->function == RTP_SET)
393 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
394 	else
395 		cierror = 0;
396 
397 	if (uap->pid == 0) {
398 		p = td->td_proc;
399 		PROC_LOCK(p);
400 	} else {
401 		p = pfind(uap->pid);
402 		if (p == NULL)
403 			return (ESRCH);
404 	}
405 
406 	switch (uap->function) {
407 	case RTP_LOOKUP:
408 		if ((error = p_cansee(td, p)))
409 			break;
410 		/*
411 		 * Return OUR priority if no pid specified,
412 		 * or if one is, report the highest priority
413 		 * in the process.  There isn't much more you can do as
414 		 * there is only room to return a single priority.
415 		 * Note: specifying our own pid is not the same
416 		 * as leaving it zero.
417 		 */
418 		if (uap->pid == 0) {
419 			pri_to_rtp(td, &rtp);
420 		} else {
421 			struct rtprio rtp2;
422 
423 			rtp.type = RTP_PRIO_IDLE;
424 			rtp.prio = RTP_PRIO_MAX;
425 			FOREACH_THREAD_IN_PROC(p, tdp) {
426 				pri_to_rtp(tdp, &rtp2);
427 				if (rtp2.type <  rtp.type ||
428 				    (rtp2.type == rtp.type &&
429 				    rtp2.prio < rtp.prio)) {
430 					rtp.type = rtp2.type;
431 					rtp.prio = rtp2.prio;
432 				}
433 			}
434 		}
435 		PROC_UNLOCK(p);
436 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
437 	case RTP_SET:
438 		if ((error = p_cansched(td, p)) || (error = cierror))
439 			break;
440 
441 		/*
442 		 * Disallow setting rtprio in most cases if not superuser.
443 		 * See the comment in sys_rtprio_thread about idprio
444 		 * threads holding a lock.
445 		 */
446 		if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
447 		    (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
448 		    !unprivileged_idprio)) {
449 			error = priv_check(td, PRIV_SCHED_RTPRIO);
450 			if (error)
451 				break;
452 		}
453 
454 		/*
455 		 * If we are setting our own priority, set just our
456 		 * thread but if we are doing another process,
457 		 * do all the threads on that process. If we
458 		 * specify our own pid we do the latter.
459 		 */
460 		if (uap->pid == 0) {
461 			error = rtp_to_pri(&rtp, td);
462 		} else {
463 			FOREACH_THREAD_IN_PROC(p, td) {
464 				if ((error = rtp_to_pri(&rtp, td)) != 0)
465 					break;
466 			}
467 		}
468 		break;
469 	default:
470 		error = EINVAL;
471 		break;
472 	}
473 	PROC_UNLOCK(p);
474 	return (error);
475 }
476 
477 int
478 rtp_to_pri(struct rtprio *rtp, struct thread *td)
479 {
480 	u_char  newpri, oldclass, oldpri;
481 
482 	switch (RTP_PRIO_BASE(rtp->type)) {
483 	case RTP_PRIO_REALTIME:
484 		if (rtp->prio > RTP_PRIO_MAX)
485 			return (EINVAL);
486 		newpri = PRI_MIN_REALTIME + rtp->prio;
487 		break;
488 	case RTP_PRIO_NORMAL:
489 		if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE))
490 			return (EINVAL);
491 		newpri = PRI_MIN_TIMESHARE + rtp->prio;
492 		break;
493 	case RTP_PRIO_IDLE:
494 		if (rtp->prio > RTP_PRIO_MAX)
495 			return (EINVAL);
496 		newpri = PRI_MIN_IDLE + rtp->prio;
497 		break;
498 	default:
499 		return (EINVAL);
500 	}
501 
502 	thread_lock(td);
503 	oldclass = td->td_pri_class;
504 	sched_class(td, rtp->type);	/* XXX fix */
505 	oldpri = td->td_user_pri;
506 	sched_user_prio(td, newpri);
507 	if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL ||
508 	    td->td_pri_class != RTP_PRIO_NORMAL))
509 		sched_prio(td, td->td_user_pri);
510 	if (TD_ON_UPILOCK(td) && oldpri != newpri) {
511 		critical_enter();
512 		thread_unlock(td);
513 		umtx_pi_adjust(td, oldpri);
514 		critical_exit();
515 	} else
516 		thread_unlock(td);
517 	return (0);
518 }
519 
520 void
521 pri_to_rtp(struct thread *td, struct rtprio *rtp)
522 {
523 
524 	thread_lock(td);
525 	switch (PRI_BASE(td->td_pri_class)) {
526 	case PRI_REALTIME:
527 		rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
528 		break;
529 	case PRI_TIMESHARE:
530 		rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
531 		break;
532 	case PRI_IDLE:
533 		rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
534 		break;
535 	default:
536 		break;
537 	}
538 	rtp->type = td->td_pri_class;
539 	thread_unlock(td);
540 }
541 
542 #if defined(COMPAT_43)
543 #ifndef _SYS_SYSPROTO_H_
544 struct osetrlimit_args {
545 	u_int	which;
546 	struct	orlimit *rlp;
547 };
548 #endif
549 int
550 osetrlimit(struct thread *td, struct osetrlimit_args *uap)
551 {
552 	struct orlimit olim;
553 	struct rlimit lim;
554 	int error;
555 
556 	if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
557 		return (error);
558 	lim.rlim_cur = olim.rlim_cur;
559 	lim.rlim_max = olim.rlim_max;
560 	error = kern_setrlimit(td, uap->which, &lim);
561 	return (error);
562 }
563 
564 #ifndef _SYS_SYSPROTO_H_
565 struct ogetrlimit_args {
566 	u_int	which;
567 	struct	orlimit *rlp;
568 };
569 #endif
570 int
571 ogetrlimit(struct thread *td, struct ogetrlimit_args *uap)
572 {
573 	struct orlimit olim;
574 	struct rlimit rl;
575 	int error;
576 
577 	if (uap->which >= RLIM_NLIMITS)
578 		return (EINVAL);
579 	lim_rlimit(td, uap->which, &rl);
580 
581 	/*
582 	 * XXX would be more correct to convert only RLIM_INFINITY to the
583 	 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
584 	 * values.  Most 64->32 and 32->16 conversions, including not
585 	 * unimportant ones of uids are even more broken than what we
586 	 * do here (they blindly truncate).  We don't do this correctly
587 	 * here since we have little experience with EOVERFLOW yet.
588 	 * Elsewhere, getuid() can't fail...
589 	 */
590 	olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
591 	olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
592 	error = copyout(&olim, uap->rlp, sizeof(olim));
593 	return (error);
594 }
595 #endif /* COMPAT_43 */
596 
597 #ifndef _SYS_SYSPROTO_H_
598 struct __setrlimit_args {
599 	u_int	which;
600 	struct	rlimit *rlp;
601 };
602 #endif
603 int
604 sys_setrlimit(struct thread *td, struct __setrlimit_args *uap)
605 {
606 	struct rlimit alim;
607 	int error;
608 
609 	if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
610 		return (error);
611 	error = kern_setrlimit(td, uap->which, &alim);
612 	return (error);
613 }
614 
615 static void
616 lim_cb(void *arg)
617 {
618 	struct rlimit rlim;
619 	struct thread *td;
620 	struct proc *p;
621 
622 	p = arg;
623 	PROC_LOCK_ASSERT(p, MA_OWNED);
624 	/*
625 	 * Check if the process exceeds its cpu resource allocation.  If
626 	 * it reaches the max, arrange to kill the process in ast().
627 	 */
628 	if (p->p_cpulimit == RLIM_INFINITY)
629 		return;
630 	PROC_STATLOCK(p);
631 	FOREACH_THREAD_IN_PROC(p, td) {
632 		ruxagg(p, td);
633 	}
634 	PROC_STATUNLOCK(p);
635 	if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
636 		lim_rlimit_proc(p, RLIMIT_CPU, &rlim);
637 		if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
638 			killproc(p, "exceeded maximum CPU limit");
639 		} else {
640 			if (p->p_cpulimit < rlim.rlim_max)
641 				p->p_cpulimit += 5;
642 			kern_psignal(p, SIGXCPU);
643 		}
644 	}
645 	if ((p->p_flag & P_WEXIT) == 0)
646 		callout_reset_sbt(&p->p_limco, SBT_1S, 0,
647 		    lim_cb, p, C_PREL(1));
648 }
649 
650 int
651 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp)
652 {
653 
654 	return (kern_proc_setrlimit(td, td->td_proc, which, limp));
655 }
656 
657 int
658 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which,
659     struct rlimit *limp)
660 {
661 	struct plimit *newlim, *oldlim;
662 	struct rlimit *alimp;
663 	struct rlimit oldssiz;
664 	int error;
665 
666 	if (which >= RLIM_NLIMITS)
667 		return (EINVAL);
668 
669 	/*
670 	 * Preserve historical bugs by treating negative limits as unsigned.
671 	 */
672 	if (limp->rlim_cur < 0)
673 		limp->rlim_cur = RLIM_INFINITY;
674 	if (limp->rlim_max < 0)
675 		limp->rlim_max = RLIM_INFINITY;
676 
677 	oldssiz.rlim_cur = 0;
678 	newlim = lim_alloc();
679 	PROC_LOCK(p);
680 	oldlim = p->p_limit;
681 	alimp = &oldlim->pl_rlimit[which];
682 	if (limp->rlim_cur > alimp->rlim_max ||
683 	    limp->rlim_max > alimp->rlim_max)
684 		if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
685 			PROC_UNLOCK(p);
686 			lim_free(newlim);
687 			return (error);
688 		}
689 	if (limp->rlim_cur > limp->rlim_max)
690 		limp->rlim_cur = limp->rlim_max;
691 	lim_copy(newlim, oldlim);
692 	alimp = &newlim->pl_rlimit[which];
693 
694 	switch (which) {
695 
696 	case RLIMIT_CPU:
697 		if (limp->rlim_cur != RLIM_INFINITY &&
698 		    p->p_cpulimit == RLIM_INFINITY)
699 			callout_reset_sbt(&p->p_limco, SBT_1S, 0,
700 			    lim_cb, p, C_PREL(1));
701 		p->p_cpulimit = limp->rlim_cur;
702 		break;
703 	case RLIMIT_DATA:
704 		if (limp->rlim_cur > maxdsiz)
705 			limp->rlim_cur = maxdsiz;
706 		if (limp->rlim_max > maxdsiz)
707 			limp->rlim_max = maxdsiz;
708 		break;
709 
710 	case RLIMIT_STACK:
711 		if (limp->rlim_cur > maxssiz)
712 			limp->rlim_cur = maxssiz;
713 		if (limp->rlim_max > maxssiz)
714 			limp->rlim_max = maxssiz;
715 		oldssiz = *alimp;
716 		if (p->p_sysent->sv_fixlimit != NULL)
717 			p->p_sysent->sv_fixlimit(&oldssiz,
718 			    RLIMIT_STACK);
719 		break;
720 
721 	case RLIMIT_NOFILE:
722 		if (limp->rlim_cur > maxfilesperproc)
723 			limp->rlim_cur = maxfilesperproc;
724 		if (limp->rlim_max > maxfilesperproc)
725 			limp->rlim_max = maxfilesperproc;
726 		break;
727 
728 	case RLIMIT_NPROC:
729 		if (limp->rlim_cur > maxprocperuid)
730 			limp->rlim_cur = maxprocperuid;
731 		if (limp->rlim_max > maxprocperuid)
732 			limp->rlim_max = maxprocperuid;
733 		if (limp->rlim_cur < 1)
734 			limp->rlim_cur = 1;
735 		if (limp->rlim_max < 1)
736 			limp->rlim_max = 1;
737 		break;
738 	}
739 	if (p->p_sysent->sv_fixlimit != NULL)
740 		p->p_sysent->sv_fixlimit(limp, which);
741 	*alimp = *limp;
742 	p->p_limit = newlim;
743 	PROC_UPDATE_COW(p);
744 	PROC_UNLOCK(p);
745 	lim_free(oldlim);
746 
747 	if (which == RLIMIT_STACK &&
748 	    /*
749 	     * Skip calls from exec_new_vmspace(), done when stack is
750 	     * not mapped yet.
751 	     */
752 	    (td != curthread || (p->p_flag & P_INEXEC) == 0)) {
753 		/*
754 		 * Stack is allocated to the max at exec time with only
755 		 * "rlim_cur" bytes accessible.  If stack limit is going
756 		 * up make more accessible, if going down make inaccessible.
757 		 */
758 		if (limp->rlim_cur != oldssiz.rlim_cur) {
759 			vm_offset_t addr;
760 			vm_size_t size;
761 			vm_prot_t prot;
762 
763 			if (limp->rlim_cur > oldssiz.rlim_cur) {
764 				prot = p->p_sysent->sv_stackprot;
765 				size = limp->rlim_cur - oldssiz.rlim_cur;
766 				addr = p->p_sysent->sv_usrstack -
767 				    limp->rlim_cur;
768 			} else {
769 				prot = VM_PROT_NONE;
770 				size = oldssiz.rlim_cur - limp->rlim_cur;
771 				addr = p->p_sysent->sv_usrstack -
772 				    oldssiz.rlim_cur;
773 			}
774 			addr = trunc_page(addr);
775 			size = round_page(size);
776 			(void)vm_map_protect(&p->p_vmspace->vm_map,
777 			    addr, addr + size, prot, FALSE);
778 		}
779 	}
780 
781 	return (0);
782 }
783 
784 #ifndef _SYS_SYSPROTO_H_
785 struct __getrlimit_args {
786 	u_int	which;
787 	struct	rlimit *rlp;
788 };
789 #endif
790 /* ARGSUSED */
791 int
792 sys_getrlimit(struct thread *td, struct __getrlimit_args *uap)
793 {
794 	struct rlimit rlim;
795 	int error;
796 
797 	if (uap->which >= RLIM_NLIMITS)
798 		return (EINVAL);
799 	lim_rlimit(td, uap->which, &rlim);
800 	error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
801 	return (error);
802 }
803 
804 /*
805  * Transform the running time and tick information for children of proc p
806  * into user and system time usage.
807  */
808 void
809 calccru(struct proc *p, struct timeval *up, struct timeval *sp)
810 {
811 
812 	PROC_LOCK_ASSERT(p, MA_OWNED);
813 	calcru1(p, &p->p_crux, up, sp);
814 }
815 
816 /*
817  * Transform the running time and tick information in proc p into user
818  * and system time usage.  If appropriate, include the current time slice
819  * on this CPU.
820  */
821 void
822 calcru(struct proc *p, struct timeval *up, struct timeval *sp)
823 {
824 	struct thread *td;
825 	uint64_t runtime, u;
826 
827 	PROC_LOCK_ASSERT(p, MA_OWNED);
828 	PROC_STATLOCK_ASSERT(p, MA_OWNED);
829 	/*
830 	 * If we are getting stats for the current process, then add in the
831 	 * stats that this thread has accumulated in its current time slice.
832 	 * We reset the thread and CPU state as if we had performed a context
833 	 * switch right here.
834 	 */
835 	td = curthread;
836 	if (td->td_proc == p) {
837 		u = cpu_ticks();
838 		runtime = u - PCPU_GET(switchtime);
839 		td->td_runtime += runtime;
840 		td->td_incruntime += runtime;
841 		PCPU_SET(switchtime, u);
842 	}
843 	/* Make sure the per-thread stats are current. */
844 	FOREACH_THREAD_IN_PROC(p, td) {
845 		if (td->td_incruntime == 0)
846 			continue;
847 		ruxagg(p, td);
848 	}
849 	calcru1(p, &p->p_rux, up, sp);
850 }
851 
852 /* Collect resource usage for a single thread. */
853 void
854 rufetchtd(struct thread *td, struct rusage *ru)
855 {
856 	struct proc *p;
857 	uint64_t runtime, u;
858 
859 	p = td->td_proc;
860 	PROC_STATLOCK_ASSERT(p, MA_OWNED);
861 	THREAD_LOCK_ASSERT(td, MA_OWNED);
862 	/*
863 	 * If we are getting stats for the current thread, then add in the
864 	 * stats that this thread has accumulated in its current time slice.
865 	 * We reset the thread and CPU state as if we had performed a context
866 	 * switch right here.
867 	 */
868 	if (td == curthread) {
869 		u = cpu_ticks();
870 		runtime = u - PCPU_GET(switchtime);
871 		td->td_runtime += runtime;
872 		td->td_incruntime += runtime;
873 		PCPU_SET(switchtime, u);
874 	}
875 	ruxagg_locked(p, td);
876 	*ru = td->td_ru;
877 	calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime);
878 }
879 
880 /* XXX: the MI version is too slow to use: */
881 #ifndef __HAVE_INLINE_FLSLL
882 #define	flsll(x)	(fls((x) >> 32) != 0 ? fls((x) >> 32) + 32 : fls(x))
883 #endif
884 
885 static uint64_t
886 mul64_by_fraction(uint64_t a, uint64_t b, uint64_t c)
887 {
888 	uint64_t acc, bh, bl;
889 	int i, s, sa, sb;
890 
891 	/*
892 	 * Calculate (a * b) / c accurately enough without overflowing.  c
893 	 * must be nonzero, and its top bit must be 0.  a or b must be
894 	 * <= c, and the implementation is tuned for b <= c.
895 	 *
896 	 * The comments about times are for use in calcru1() with units of
897 	 * microseconds for 'a' and stathz ticks at 128 Hz for b and c.
898 	 *
899 	 * Let n be the number of top zero bits in c.  Each iteration
900 	 * either returns, or reduces b by right shifting it by at least n.
901 	 * The number of iterations is at most 1 + 64 / n, and the error is
902 	 * at most the number of iterations.
903 	 *
904 	 * It is very unusual to need even 2 iterations.  Previous
905 	 * implementations overflowed essentially by returning early in the
906 	 * first iteration, with n = 38 giving overflow at 105+ hours and
907 	 * n = 32 giving overlow at at 388+ days despite a more careful
908 	 * calculation.  388 days is a reasonable uptime, and the calculation
909 	 * needs to work for the uptime times the number of CPUs since 'a'
910 	 * is per-process.
911 	 */
912 	if (a >= (uint64_t)1 << 63)
913 		return (0);		/* Unsupported arg -- can't happen. */
914 	acc = 0;
915 	for (i = 0; i < 128; i++) {
916 		sa = flsll(a);
917 		sb = flsll(b);
918 		if (sa + sb <= 64)
919 			/* Up to 105 hours on first iteration. */
920 			return (acc + (a * b) / c);
921 		if (a >= c) {
922 			/*
923 			 * This reduction is based on a = q * c + r, with the
924 			 * remainder r < c.  'a' may be large to start, and
925 			 * moving bits from b into 'a' at the end of the loop
926 			 * sets the top bit of 'a', so the reduction makes
927 			 * significant progress.
928 			 */
929 			acc += (a / c) * b;
930 			a %= c;
931 			sa = flsll(a);
932 			if (sa + sb <= 64)
933 				/* Up to 388 days on first iteration. */
934 				return (acc + (a * b) / c);
935 		}
936 
937 		/*
938 		 * This step writes a * b as a * ((bh << s) + bl) =
939 		 * a * (bh << s) + a * bl = (a << s) * bh + a * bl.  The 2
940 		 * additive terms are handled separately.  Splitting in
941 		 * this way is linear except for rounding errors.
942 		 *
943 		 * s = 64 - sa is the maximum such that a << s fits in 64
944 		 * bits.  Since a < c and c has at least 1 zero top bit,
945 		 * sa < 64 and s > 0.  Thus this step makes progress by
946 		 * reducing b (it increases 'a', but taking remainders on
947 		 * the next iteration completes the reduction).
948 		 *
949 		 * Finally, the choice for s is just what is needed to keep
950 		 * a * bl from overflowing, so we don't need complications
951 		 * like a recursive call mul64_by_fraction(a, bl, c) to
952 		 * handle the second additive term.
953 		 */
954 		s = 64 - sa;
955 		bh = b >> s;
956 		bl = b - (bh << s);
957 		acc += (a * bl) / c;
958 		a <<= s;
959 		b = bh;
960 	}
961 	return (0);		/* Algorithm failure -- can't happen. */
962 }
963 
964 static void
965 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
966     struct timeval *sp)
967 {
968 	/* {user, system, interrupt, total} {ticks, usec}: */
969 	uint64_t ut, uu, st, su, it, tt, tu;
970 
971 	ut = ruxp->rux_uticks;
972 	st = ruxp->rux_sticks;
973 	it = ruxp->rux_iticks;
974 	tt = ut + st + it;
975 	if (tt == 0) {
976 		/* Avoid divide by zero */
977 		st = 1;
978 		tt = 1;
979 	}
980 	tu = cputick2usec(ruxp->rux_runtime);
981 	if ((int64_t)tu < 0) {
982 		/* XXX: this should be an assert /phk */
983 		printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
984 		    (intmax_t)tu, p->p_pid, p->p_comm);
985 		tu = ruxp->rux_tu;
986 	}
987 
988 	/* Subdivide tu.  Avoid overflow in the multiplications. */
989 	if (__predict_true(tu <= ((uint64_t)1 << 38) && tt <= (1 << 26))) {
990 		/* Up to 76 hours when stathz is 128. */
991 		uu = (tu * ut) / tt;
992 		su = (tu * st) / tt;
993 	} else {
994 		uu = mul64_by_fraction(tu, ut, tt);
995 		su = mul64_by_fraction(tu, st, tt);
996 	}
997 
998 	if (tu >= ruxp->rux_tu) {
999 		/*
1000 		 * The normal case, time increased.
1001 		 * Enforce monotonicity of bucketed numbers.
1002 		 */
1003 		if (uu < ruxp->rux_uu)
1004 			uu = ruxp->rux_uu;
1005 		if (su < ruxp->rux_su)
1006 			su = ruxp->rux_su;
1007 	} else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
1008 		/*
1009 		 * When we calibrate the cputicker, it is not uncommon to
1010 		 * see the presumably fixed frequency increase slightly over
1011 		 * time as a result of thermal stabilization and NTP
1012 		 * discipline (of the reference clock).  We therefore ignore
1013 		 * a bit of backwards slop because we  expect to catch up
1014 		 * shortly.  We use a 3 microsecond limit to catch low
1015 		 * counts and a 1% limit for high counts.
1016 		 */
1017 		uu = ruxp->rux_uu;
1018 		su = ruxp->rux_su;
1019 		tu = ruxp->rux_tu;
1020 	} else { /* tu < ruxp->rux_tu */
1021 		/*
1022 		 * What happened here was likely that a laptop, which ran at
1023 		 * a reduced clock frequency at boot, kicked into high gear.
1024 		 * The wisdom of spamming this message in that case is
1025 		 * dubious, but it might also be indicative of something
1026 		 * serious, so lets keep it and hope laptops can be made
1027 		 * more truthful about their CPU speed via ACPI.
1028 		 */
1029 		printf("calcru: runtime went backwards from %ju usec "
1030 		    "to %ju usec for pid %d (%s)\n",
1031 		    (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
1032 		    p->p_pid, p->p_comm);
1033 	}
1034 
1035 	ruxp->rux_uu = uu;
1036 	ruxp->rux_su = su;
1037 	ruxp->rux_tu = tu;
1038 
1039 	up->tv_sec = uu / 1000000;
1040 	up->tv_usec = uu % 1000000;
1041 	sp->tv_sec = su / 1000000;
1042 	sp->tv_usec = su % 1000000;
1043 }
1044 
1045 #ifndef _SYS_SYSPROTO_H_
1046 struct getrusage_args {
1047 	int	who;
1048 	struct	rusage *rusage;
1049 };
1050 #endif
1051 int
1052 sys_getrusage(struct thread *td, struct getrusage_args *uap)
1053 {
1054 	struct rusage ru;
1055 	int error;
1056 
1057 	error = kern_getrusage(td, uap->who, &ru);
1058 	if (error == 0)
1059 		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
1060 	return (error);
1061 }
1062 
1063 int
1064 kern_getrusage(struct thread *td, int who, struct rusage *rup)
1065 {
1066 	struct proc *p;
1067 	int error;
1068 
1069 	error = 0;
1070 	p = td->td_proc;
1071 	PROC_LOCK(p);
1072 	switch (who) {
1073 	case RUSAGE_SELF:
1074 		rufetchcalc(p, rup, &rup->ru_utime,
1075 		    &rup->ru_stime);
1076 		break;
1077 
1078 	case RUSAGE_CHILDREN:
1079 		*rup = p->p_stats->p_cru;
1080 		calccru(p, &rup->ru_utime, &rup->ru_stime);
1081 		break;
1082 
1083 	case RUSAGE_THREAD:
1084 		PROC_STATLOCK(p);
1085 		thread_lock(td);
1086 		rufetchtd(td, rup);
1087 		thread_unlock(td);
1088 		PROC_STATUNLOCK(p);
1089 		break;
1090 
1091 	default:
1092 		error = EINVAL;
1093 	}
1094 	PROC_UNLOCK(p);
1095 	return (error);
1096 }
1097 
1098 void
1099 rucollect(struct rusage *ru, struct rusage *ru2)
1100 {
1101 	long *ip, *ip2;
1102 	int i;
1103 
1104 	if (ru->ru_maxrss < ru2->ru_maxrss)
1105 		ru->ru_maxrss = ru2->ru_maxrss;
1106 	ip = &ru->ru_first;
1107 	ip2 = &ru2->ru_first;
1108 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
1109 		*ip++ += *ip2++;
1110 }
1111 
1112 void
1113 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
1114     struct rusage_ext *rux2)
1115 {
1116 
1117 	rux->rux_runtime += rux2->rux_runtime;
1118 	rux->rux_uticks += rux2->rux_uticks;
1119 	rux->rux_sticks += rux2->rux_sticks;
1120 	rux->rux_iticks += rux2->rux_iticks;
1121 	rux->rux_uu += rux2->rux_uu;
1122 	rux->rux_su += rux2->rux_su;
1123 	rux->rux_tu += rux2->rux_tu;
1124 	rucollect(ru, ru2);
1125 }
1126 
1127 /*
1128  * Aggregate tick counts into the proc's rusage_ext.
1129  */
1130 static void
1131 ruxagg_ext_locked(struct rusage_ext *rux, struct thread *td)
1132 {
1133 
1134 	rux->rux_runtime += td->td_incruntime;
1135 	rux->rux_uticks += td->td_uticks;
1136 	rux->rux_sticks += td->td_sticks;
1137 	rux->rux_iticks += td->td_iticks;
1138 }
1139 
1140 void
1141 ruxagg_locked(struct proc *p, struct thread *td)
1142 {
1143 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1144 	PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED);
1145 
1146 	ruxagg_ext_locked(&p->p_rux, td);
1147 	ruxagg_ext_locked(&td->td_rux, td);
1148 	td->td_incruntime = 0;
1149 	td->td_uticks = 0;
1150 	td->td_iticks = 0;
1151 	td->td_sticks = 0;
1152 }
1153 
1154 void
1155 ruxagg(struct proc *p, struct thread *td)
1156 {
1157 
1158 	thread_lock(td);
1159 	ruxagg_locked(p, td);
1160 	thread_unlock(td);
1161 }
1162 
1163 /*
1164  * Update the rusage_ext structure and fetch a valid aggregate rusage
1165  * for proc p if storage for one is supplied.
1166  */
1167 void
1168 rufetch(struct proc *p, struct rusage *ru)
1169 {
1170 	struct thread *td;
1171 
1172 	PROC_STATLOCK_ASSERT(p, MA_OWNED);
1173 
1174 	*ru = p->p_ru;
1175 	if (p->p_numthreads > 0)  {
1176 		FOREACH_THREAD_IN_PROC(p, td) {
1177 			ruxagg(p, td);
1178 			rucollect(ru, &td->td_ru);
1179 		}
1180 	}
1181 }
1182 
1183 /*
1184  * Atomically perform a rufetch and a calcru together.
1185  * Consumers, can safely assume the calcru is executed only once
1186  * rufetch is completed.
1187  */
1188 void
1189 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
1190     struct timeval *sp)
1191 {
1192 
1193 	PROC_STATLOCK(p);
1194 	rufetch(p, ru);
1195 	calcru(p, up, sp);
1196 	PROC_STATUNLOCK(p);
1197 }
1198 
1199 /*
1200  * Allocate a new resource limits structure and initialize its
1201  * reference count and mutex pointer.
1202  */
1203 struct plimit *
1204 lim_alloc()
1205 {
1206 	struct plimit *limp;
1207 
1208 	limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
1209 	refcount_init(&limp->pl_refcnt, 1);
1210 	return (limp);
1211 }
1212 
1213 struct plimit *
1214 lim_hold(struct plimit *limp)
1215 {
1216 
1217 	refcount_acquire(&limp->pl_refcnt);
1218 	return (limp);
1219 }
1220 
1221 void
1222 lim_fork(struct proc *p1, struct proc *p2)
1223 {
1224 
1225 	PROC_LOCK_ASSERT(p1, MA_OWNED);
1226 	PROC_LOCK_ASSERT(p2, MA_OWNED);
1227 
1228 	p2->p_limit = lim_hold(p1->p_limit);
1229 	callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
1230 	if (p1->p_cpulimit != RLIM_INFINITY)
1231 		callout_reset_sbt(&p2->p_limco, SBT_1S, 0,
1232 		    lim_cb, p2, C_PREL(1));
1233 }
1234 
1235 void
1236 lim_free(struct plimit *limp)
1237 {
1238 
1239 	if (refcount_release(&limp->pl_refcnt))
1240 		free((void *)limp, M_PLIMIT);
1241 }
1242 
1243 /*
1244  * Make a copy of the plimit structure.
1245  * We share these structures copy-on-write after fork.
1246  */
1247 void
1248 lim_copy(struct plimit *dst, struct plimit *src)
1249 {
1250 
1251 	KASSERT(dst->pl_refcnt <= 1, ("lim_copy to shared limit"));
1252 	bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
1253 }
1254 
1255 /*
1256  * Return the hard limit for a particular system resource.  The
1257  * which parameter specifies the index into the rlimit array.
1258  */
1259 rlim_t
1260 lim_max(struct thread *td, int which)
1261 {
1262 	struct rlimit rl;
1263 
1264 	lim_rlimit(td, which, &rl);
1265 	return (rl.rlim_max);
1266 }
1267 
1268 rlim_t
1269 lim_max_proc(struct proc *p, int which)
1270 {
1271 	struct rlimit rl;
1272 
1273 	lim_rlimit_proc(p, which, &rl);
1274 	return (rl.rlim_max);
1275 }
1276 
1277 /*
1278  * Return the current (soft) limit for a particular system resource.
1279  * The which parameter which specifies the index into the rlimit array
1280  */
1281 rlim_t
1282 (lim_cur)(struct thread *td, int which)
1283 {
1284 	struct rlimit rl;
1285 
1286 	lim_rlimit(td, which, &rl);
1287 	return (rl.rlim_cur);
1288 }
1289 
1290 rlim_t
1291 lim_cur_proc(struct proc *p, int which)
1292 {
1293 	struct rlimit rl;
1294 
1295 	lim_rlimit_proc(p, which, &rl);
1296 	return (rl.rlim_cur);
1297 }
1298 
1299 /*
1300  * Return a copy of the entire rlimit structure for the system limit
1301  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
1302  */
1303 void
1304 lim_rlimit(struct thread *td, int which, struct rlimit *rlp)
1305 {
1306 	struct proc *p = td->td_proc;
1307 
1308 	MPASS(td == curthread);
1309 	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1310 	    ("request for invalid resource limit"));
1311 	*rlp = td->td_limit->pl_rlimit[which];
1312 	if (p->p_sysent->sv_fixlimit != NULL)
1313 		p->p_sysent->sv_fixlimit(rlp, which);
1314 }
1315 
1316 void
1317 lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp)
1318 {
1319 
1320 	PROC_LOCK_ASSERT(p, MA_OWNED);
1321 	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1322 	    ("request for invalid resource limit"));
1323 	*rlp = p->p_limit->pl_rlimit[which];
1324 	if (p->p_sysent->sv_fixlimit != NULL)
1325 		p->p_sysent->sv_fixlimit(rlp, which);
1326 }
1327 
1328 void
1329 uihashinit()
1330 {
1331 
1332 	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
1333 	rw_init(&uihashtbl_lock, "uidinfo hash");
1334 }
1335 
1336 /*
1337  * Look up a uidinfo struct for the parameter uid.
1338  * uihashtbl_lock must be locked.
1339  * Increase refcount on uidinfo struct returned.
1340  */
1341 static struct uidinfo *
1342 uilookup(uid_t uid)
1343 {
1344 	struct uihashhead *uipp;
1345 	struct uidinfo *uip;
1346 
1347 	rw_assert(&uihashtbl_lock, RA_LOCKED);
1348 	uipp = UIHASH(uid);
1349 	LIST_FOREACH(uip, uipp, ui_hash)
1350 		if (uip->ui_uid == uid) {
1351 			uihold(uip);
1352 			break;
1353 		}
1354 
1355 	return (uip);
1356 }
1357 
1358 /*
1359  * Find or allocate a struct uidinfo for a particular uid.
1360  * Returns with uidinfo struct referenced.
1361  * uifree() should be called on a struct uidinfo when released.
1362  */
1363 struct uidinfo *
1364 uifind(uid_t uid)
1365 {
1366 	struct uidinfo *new_uip, *uip;
1367 	struct ucred *cred;
1368 
1369 	cred = curthread->td_ucred;
1370 	if (cred->cr_uidinfo->ui_uid == uid) {
1371 		uip = cred->cr_uidinfo;
1372 		uihold(uip);
1373 		return (uip);
1374 	} else if (cred->cr_ruidinfo->ui_uid == uid) {
1375 		uip = cred->cr_ruidinfo;
1376 		uihold(uip);
1377 		return (uip);
1378 	}
1379 
1380 	rw_rlock(&uihashtbl_lock);
1381 	uip = uilookup(uid);
1382 	rw_runlock(&uihashtbl_lock);
1383 	if (uip != NULL)
1384 		return (uip);
1385 
1386 	new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO);
1387 	racct_create(&new_uip->ui_racct);
1388 	refcount_init(&new_uip->ui_ref, 1);
1389 	new_uip->ui_uid = uid;
1390 
1391 	rw_wlock(&uihashtbl_lock);
1392 	/*
1393 	 * There's a chance someone created our uidinfo while we
1394 	 * were in malloc and not holding the lock, so we have to
1395 	 * make sure we don't insert a duplicate uidinfo.
1396 	 */
1397 	if ((uip = uilookup(uid)) == NULL) {
1398 		LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash);
1399 		rw_wunlock(&uihashtbl_lock);
1400 		uip = new_uip;
1401 	} else {
1402 		rw_wunlock(&uihashtbl_lock);
1403 		racct_destroy(&new_uip->ui_racct);
1404 		free(new_uip, M_UIDINFO);
1405 	}
1406 	return (uip);
1407 }
1408 
1409 /*
1410  * Place another refcount on a uidinfo struct.
1411  */
1412 void
1413 uihold(struct uidinfo *uip)
1414 {
1415 
1416 	refcount_acquire(&uip->ui_ref);
1417 }
1418 
1419 /*-
1420  * Since uidinfo structs have a long lifetime, we use an
1421  * opportunistic refcounting scheme to avoid locking the lookup hash
1422  * for each release.
1423  *
1424  * If the refcount hits 0, we need to free the structure,
1425  * which means we need to lock the hash.
1426  * Optimal case:
1427  *   After locking the struct and lowering the refcount, if we find
1428  *   that we don't need to free, simply unlock and return.
1429  * Suboptimal case:
1430  *   If refcount lowering results in need to free, bump the count
1431  *   back up, lose the lock and acquire the locks in the proper
1432  *   order to try again.
1433  */
1434 void
1435 uifree(struct uidinfo *uip)
1436 {
1437 
1438 	if (refcount_release_if_not_last(&uip->ui_ref))
1439 		return;
1440 
1441 	rw_wlock(&uihashtbl_lock);
1442 	if (refcount_release(&uip->ui_ref) == 0) {
1443 		rw_wunlock(&uihashtbl_lock);
1444 		return;
1445 	}
1446 
1447 	racct_destroy(&uip->ui_racct);
1448 	LIST_REMOVE(uip, ui_hash);
1449 	rw_wunlock(&uihashtbl_lock);
1450 
1451 	if (uip->ui_sbsize != 0)
1452 		printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
1453 		    uip->ui_uid, uip->ui_sbsize);
1454 	if (uip->ui_proccnt != 0)
1455 		printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1456 		    uip->ui_uid, uip->ui_proccnt);
1457 	if (uip->ui_vmsize != 0)
1458 		printf("freeing uidinfo: uid = %d, swapuse = %lld\n",
1459 		    uip->ui_uid, (unsigned long long)uip->ui_vmsize);
1460 	free(uip, M_UIDINFO);
1461 }
1462 
1463 #ifdef RACCT
1464 void
1465 ui_racct_foreach(void (*callback)(struct racct *racct,
1466     void *arg2, void *arg3), void (*pre)(void), void (*post)(void),
1467     void *arg2, void *arg3)
1468 {
1469 	struct uidinfo *uip;
1470 	struct uihashhead *uih;
1471 
1472 	rw_rlock(&uihashtbl_lock);
1473 	if (pre != NULL)
1474 		(pre)();
1475 	for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) {
1476 		LIST_FOREACH(uip, uih, ui_hash) {
1477 			(callback)(uip->ui_racct, arg2, arg3);
1478 		}
1479 	}
1480 	if (post != NULL)
1481 		(post)();
1482 	rw_runlock(&uihashtbl_lock);
1483 }
1484 #endif
1485 
1486 static inline int
1487 chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name)
1488 {
1489 	long new;
1490 
1491 	/* Don't allow them to exceed max, but allow subtraction. */
1492 	new = atomic_fetchadd_long(limit, (long)diff) + diff;
1493 	if (diff > 0 && max != 0) {
1494 		if (new < 0 || new > max) {
1495 			atomic_subtract_long(limit, (long)diff);
1496 			return (0);
1497 		}
1498 	} else if (new < 0)
1499 		printf("negative %s for uid = %d\n", name, uip->ui_uid);
1500 	return (1);
1501 }
1502 
1503 /*
1504  * Change the count associated with number of processes
1505  * a given user is using.  When 'max' is 0, don't enforce a limit
1506  */
1507 int
1508 chgproccnt(struct uidinfo *uip, int diff, rlim_t max)
1509 {
1510 
1511 	return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt"));
1512 }
1513 
1514 /*
1515  * Change the total socket buffer size a user has used.
1516  */
1517 int
1518 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max)
1519 {
1520 	int diff, rv;
1521 
1522 	diff = to - *hiwat;
1523 	if (diff > 0 && max == 0) {
1524 		rv = 0;
1525 	} else {
1526 		rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize");
1527 		if (rv != 0)
1528 			*hiwat = to;
1529 	}
1530 	return (rv);
1531 }
1532 
1533 /*
1534  * Change the count associated with number of pseudo-terminals
1535  * a given user is using.  When 'max' is 0, don't enforce a limit
1536  */
1537 int
1538 chgptscnt(struct uidinfo *uip, int diff, rlim_t max)
1539 {
1540 
1541 	return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt"));
1542 }
1543 
1544 int
1545 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max)
1546 {
1547 
1548 	return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt"));
1549 }
1550 
1551 int
1552 chgumtxcnt(struct uidinfo *uip, int diff, rlim_t max)
1553 {
1554 
1555 	return (chglimit(uip, &uip->ui_umtxcnt, diff, max, "umtxcnt"));
1556 }
1557