1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/sysproto.h> 45 #include <sys/file.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mutex.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/refcount.h> 53 #include <sys/racct.h> 54 #include <sys/resourcevar.h> 55 #include <sys/rwlock.h> 56 #include <sys/sched.h> 57 #include <sys/sx.h> 58 #include <sys/syscallsubr.h> 59 #include <sys/sysctl.h> 60 #include <sys/sysent.h> 61 #include <sys/time.h> 62 #include <sys/umtx.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_param.h> 66 #include <vm/pmap.h> 67 #include <vm/vm_map.h> 68 69 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures"); 70 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 71 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 72 static struct rwlock uihashtbl_lock; 73 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 74 static u_long uihash; /* size of hash table - 1 */ 75 76 static void calcru1(struct proc *p, struct rusage_ext *ruxp, 77 struct timeval *up, struct timeval *sp); 78 static int donice(struct thread *td, struct proc *chgp, int n); 79 static struct uidinfo *uilookup(uid_t uid); 80 static void ruxagg_ext_locked(struct rusage_ext *rux, struct thread *td); 81 82 /* 83 * Resource controls and accounting. 84 */ 85 #ifndef _SYS_SYSPROTO_H_ 86 struct getpriority_args { 87 int which; 88 int who; 89 }; 90 #endif 91 int 92 sys_getpriority(struct thread *td, struct getpriority_args *uap) 93 { 94 95 return (kern_getpriority(td, uap->which, uap->who)); 96 } 97 98 int 99 kern_getpriority(struct thread *td, int which, int who) 100 { 101 struct proc *p; 102 struct pgrp *pg; 103 int error, low; 104 105 error = 0; 106 low = PRIO_MAX + 1; 107 switch (which) { 108 case PRIO_PROCESS: 109 if (who == 0) 110 low = td->td_proc->p_nice; 111 else { 112 p = pfind(who); 113 if (p == NULL) 114 break; 115 if (p_cansee(td, p) == 0) 116 low = p->p_nice; 117 PROC_UNLOCK(p); 118 } 119 break; 120 121 case PRIO_PGRP: 122 sx_slock(&proctree_lock); 123 if (who == 0) { 124 pg = td->td_proc->p_pgrp; 125 PGRP_LOCK(pg); 126 } else { 127 pg = pgfind(who); 128 if (pg == NULL) { 129 sx_sunlock(&proctree_lock); 130 break; 131 } 132 } 133 sx_sunlock(&proctree_lock); 134 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 135 PROC_LOCK(p); 136 if (p->p_state == PRS_NORMAL && 137 p_cansee(td, p) == 0) { 138 if (p->p_nice < low) 139 low = p->p_nice; 140 } 141 PROC_UNLOCK(p); 142 } 143 PGRP_UNLOCK(pg); 144 break; 145 146 case PRIO_USER: 147 if (who == 0) 148 who = td->td_ucred->cr_uid; 149 sx_slock(&allproc_lock); 150 FOREACH_PROC_IN_SYSTEM(p) { 151 PROC_LOCK(p); 152 if (p->p_state == PRS_NORMAL && 153 p_cansee(td, p) == 0 && 154 p->p_ucred->cr_uid == who) { 155 if (p->p_nice < low) 156 low = p->p_nice; 157 } 158 PROC_UNLOCK(p); 159 } 160 sx_sunlock(&allproc_lock); 161 break; 162 163 default: 164 error = EINVAL; 165 break; 166 } 167 if (low == PRIO_MAX + 1 && error == 0) 168 error = ESRCH; 169 td->td_retval[0] = low; 170 return (error); 171 } 172 173 #ifndef _SYS_SYSPROTO_H_ 174 struct setpriority_args { 175 int which; 176 int who; 177 int prio; 178 }; 179 #endif 180 int 181 sys_setpriority(struct thread *td, struct setpriority_args *uap) 182 { 183 184 return (kern_setpriority(td, uap->which, uap->who, uap->prio)); 185 } 186 187 int 188 kern_setpriority(struct thread *td, int which, int who, int prio) 189 { 190 struct proc *curp, *p; 191 struct pgrp *pg; 192 int found = 0, error = 0; 193 194 curp = td->td_proc; 195 switch (which) { 196 case PRIO_PROCESS: 197 if (who == 0) { 198 PROC_LOCK(curp); 199 error = donice(td, curp, prio); 200 PROC_UNLOCK(curp); 201 } else { 202 p = pfind(who); 203 if (p == NULL) 204 break; 205 error = p_cansee(td, p); 206 if (error == 0) 207 error = donice(td, p, prio); 208 PROC_UNLOCK(p); 209 } 210 found++; 211 break; 212 213 case PRIO_PGRP: 214 sx_slock(&proctree_lock); 215 if (who == 0) { 216 pg = curp->p_pgrp; 217 PGRP_LOCK(pg); 218 } else { 219 pg = pgfind(who); 220 if (pg == NULL) { 221 sx_sunlock(&proctree_lock); 222 break; 223 } 224 } 225 sx_sunlock(&proctree_lock); 226 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 227 PROC_LOCK(p); 228 if (p->p_state == PRS_NORMAL && 229 p_cansee(td, p) == 0) { 230 error = donice(td, p, prio); 231 found++; 232 } 233 PROC_UNLOCK(p); 234 } 235 PGRP_UNLOCK(pg); 236 break; 237 238 case PRIO_USER: 239 if (who == 0) 240 who = td->td_ucred->cr_uid; 241 sx_slock(&allproc_lock); 242 FOREACH_PROC_IN_SYSTEM(p) { 243 PROC_LOCK(p); 244 if (p->p_state == PRS_NORMAL && 245 p->p_ucred->cr_uid == who && 246 p_cansee(td, p) == 0) { 247 error = donice(td, p, prio); 248 found++; 249 } 250 PROC_UNLOCK(p); 251 } 252 sx_sunlock(&allproc_lock); 253 break; 254 255 default: 256 error = EINVAL; 257 break; 258 } 259 if (found == 0 && error == 0) 260 error = ESRCH; 261 return (error); 262 } 263 264 /* 265 * Set "nice" for a (whole) process. 266 */ 267 static int 268 donice(struct thread *td, struct proc *p, int n) 269 { 270 int error; 271 272 PROC_LOCK_ASSERT(p, MA_OWNED); 273 if ((error = p_cansched(td, p))) 274 return (error); 275 if (n > PRIO_MAX) 276 n = PRIO_MAX; 277 if (n < PRIO_MIN) 278 n = PRIO_MIN; 279 if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0) 280 return (EACCES); 281 sched_nice(p, n); 282 return (0); 283 } 284 285 static int unprivileged_idprio; 286 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW, 287 &unprivileged_idprio, 0, "Allow non-root users to set an idle priority"); 288 289 /* 290 * Set realtime priority for LWP. 291 */ 292 #ifndef _SYS_SYSPROTO_H_ 293 struct rtprio_thread_args { 294 int function; 295 lwpid_t lwpid; 296 struct rtprio *rtp; 297 }; 298 #endif 299 int 300 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap) 301 { 302 struct proc *p; 303 struct rtprio rtp; 304 struct thread *td1; 305 int cierror, error; 306 307 /* Perform copyin before acquiring locks if needed. */ 308 if (uap->function == RTP_SET) 309 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 310 else 311 cierror = 0; 312 313 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) { 314 p = td->td_proc; 315 td1 = td; 316 PROC_LOCK(p); 317 } else { 318 td1 = tdfind(uap->lwpid, -1); 319 if (td1 == NULL) 320 return (ESRCH); 321 p = td1->td_proc; 322 } 323 324 switch (uap->function) { 325 case RTP_LOOKUP: 326 if ((error = p_cansee(td, p))) 327 break; 328 pri_to_rtp(td1, &rtp); 329 PROC_UNLOCK(p); 330 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 331 case RTP_SET: 332 if ((error = p_cansched(td, p)) || (error = cierror)) 333 break; 334 335 /* Disallow setting rtprio in most cases if not superuser. */ 336 337 /* 338 * Realtime priority has to be restricted for reasons which 339 * should be obvious. However, for idleprio processes, there is 340 * a potential for system deadlock if an idleprio process gains 341 * a lock on a resource that other processes need (and the 342 * idleprio process can't run due to a CPU-bound normal 343 * process). Fix me! XXX 344 * 345 * This problem is not only related to idleprio process. 346 * A user level program can obtain a file lock and hold it 347 * indefinitely. Additionally, without idleprio processes it is 348 * still conceivable that a program with low priority will never 349 * get to run. In short, allowing this feature might make it 350 * easier to lock a resource indefinitely, but it is not the 351 * only thing that makes it possible. 352 */ 353 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME || 354 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 355 unprivileged_idprio == 0)) { 356 error = priv_check(td, PRIV_SCHED_RTPRIO); 357 if (error) 358 break; 359 } 360 error = rtp_to_pri(&rtp, td1); 361 break; 362 default: 363 error = EINVAL; 364 break; 365 } 366 PROC_UNLOCK(p); 367 return (error); 368 } 369 370 /* 371 * Set realtime priority. 372 */ 373 #ifndef _SYS_SYSPROTO_H_ 374 struct rtprio_args { 375 int function; 376 pid_t pid; 377 struct rtprio *rtp; 378 }; 379 #endif 380 int 381 sys_rtprio(struct thread *td, struct rtprio_args *uap) 382 { 383 struct proc *p; 384 struct thread *tdp; 385 struct rtprio rtp; 386 int cierror, error; 387 388 /* Perform copyin before acquiring locks if needed. */ 389 if (uap->function == RTP_SET) 390 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 391 else 392 cierror = 0; 393 394 if (uap->pid == 0) { 395 p = td->td_proc; 396 PROC_LOCK(p); 397 } else { 398 p = pfind(uap->pid); 399 if (p == NULL) 400 return (ESRCH); 401 } 402 403 switch (uap->function) { 404 case RTP_LOOKUP: 405 if ((error = p_cansee(td, p))) 406 break; 407 /* 408 * Return OUR priority if no pid specified, 409 * or if one is, report the highest priority 410 * in the process. There isn't much more you can do as 411 * there is only room to return a single priority. 412 * Note: specifying our own pid is not the same 413 * as leaving it zero. 414 */ 415 if (uap->pid == 0) { 416 pri_to_rtp(td, &rtp); 417 } else { 418 struct rtprio rtp2; 419 420 rtp.type = RTP_PRIO_IDLE; 421 rtp.prio = RTP_PRIO_MAX; 422 FOREACH_THREAD_IN_PROC(p, tdp) { 423 pri_to_rtp(tdp, &rtp2); 424 if (rtp2.type < rtp.type || 425 (rtp2.type == rtp.type && 426 rtp2.prio < rtp.prio)) { 427 rtp.type = rtp2.type; 428 rtp.prio = rtp2.prio; 429 } 430 } 431 } 432 PROC_UNLOCK(p); 433 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 434 case RTP_SET: 435 if ((error = p_cansched(td, p)) || (error = cierror)) 436 break; 437 438 /* 439 * Disallow setting rtprio in most cases if not superuser. 440 * See the comment in sys_rtprio_thread about idprio 441 * threads holding a lock. 442 */ 443 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME || 444 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 445 !unprivileged_idprio)) { 446 error = priv_check(td, PRIV_SCHED_RTPRIO); 447 if (error) 448 break; 449 } 450 451 /* 452 * If we are setting our own priority, set just our 453 * thread but if we are doing another process, 454 * do all the threads on that process. If we 455 * specify our own pid we do the latter. 456 */ 457 if (uap->pid == 0) { 458 error = rtp_to_pri(&rtp, td); 459 } else { 460 FOREACH_THREAD_IN_PROC(p, td) { 461 if ((error = rtp_to_pri(&rtp, td)) != 0) 462 break; 463 } 464 } 465 break; 466 default: 467 error = EINVAL; 468 break; 469 } 470 PROC_UNLOCK(p); 471 return (error); 472 } 473 474 int 475 rtp_to_pri(struct rtprio *rtp, struct thread *td) 476 { 477 u_char newpri, oldclass, oldpri; 478 479 switch (RTP_PRIO_BASE(rtp->type)) { 480 case RTP_PRIO_REALTIME: 481 if (rtp->prio > RTP_PRIO_MAX) 482 return (EINVAL); 483 newpri = PRI_MIN_REALTIME + rtp->prio; 484 break; 485 case RTP_PRIO_NORMAL: 486 if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE)) 487 return (EINVAL); 488 newpri = PRI_MIN_TIMESHARE + rtp->prio; 489 break; 490 case RTP_PRIO_IDLE: 491 if (rtp->prio > RTP_PRIO_MAX) 492 return (EINVAL); 493 newpri = PRI_MIN_IDLE + rtp->prio; 494 break; 495 default: 496 return (EINVAL); 497 } 498 499 thread_lock(td); 500 oldclass = td->td_pri_class; 501 sched_class(td, rtp->type); /* XXX fix */ 502 oldpri = td->td_user_pri; 503 sched_user_prio(td, newpri); 504 if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL || 505 td->td_pri_class != RTP_PRIO_NORMAL)) 506 sched_prio(td, td->td_user_pri); 507 if (TD_ON_UPILOCK(td) && oldpri != newpri) { 508 critical_enter(); 509 thread_unlock(td); 510 umtx_pi_adjust(td, oldpri); 511 critical_exit(); 512 } else 513 thread_unlock(td); 514 return (0); 515 } 516 517 void 518 pri_to_rtp(struct thread *td, struct rtprio *rtp) 519 { 520 521 thread_lock(td); 522 switch (PRI_BASE(td->td_pri_class)) { 523 case PRI_REALTIME: 524 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME; 525 break; 526 case PRI_TIMESHARE: 527 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE; 528 break; 529 case PRI_IDLE: 530 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE; 531 break; 532 default: 533 break; 534 } 535 rtp->type = td->td_pri_class; 536 thread_unlock(td); 537 } 538 539 #if defined(COMPAT_43) 540 #ifndef _SYS_SYSPROTO_H_ 541 struct osetrlimit_args { 542 u_int which; 543 struct orlimit *rlp; 544 }; 545 #endif 546 int 547 osetrlimit(struct thread *td, struct osetrlimit_args *uap) 548 { 549 struct orlimit olim; 550 struct rlimit lim; 551 int error; 552 553 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 554 return (error); 555 lim.rlim_cur = olim.rlim_cur; 556 lim.rlim_max = olim.rlim_max; 557 error = kern_setrlimit(td, uap->which, &lim); 558 return (error); 559 } 560 561 #ifndef _SYS_SYSPROTO_H_ 562 struct ogetrlimit_args { 563 u_int which; 564 struct orlimit *rlp; 565 }; 566 #endif 567 int 568 ogetrlimit(struct thread *td, struct ogetrlimit_args *uap) 569 { 570 struct orlimit olim; 571 struct rlimit rl; 572 int error; 573 574 if (uap->which >= RLIM_NLIMITS) 575 return (EINVAL); 576 lim_rlimit(td, uap->which, &rl); 577 578 /* 579 * XXX would be more correct to convert only RLIM_INFINITY to the 580 * old RLIM_INFINITY and fail with EOVERFLOW for other larger 581 * values. Most 64->32 and 32->16 conversions, including not 582 * unimportant ones of uids are even more broken than what we 583 * do here (they blindly truncate). We don't do this correctly 584 * here since we have little experience with EOVERFLOW yet. 585 * Elsewhere, getuid() can't fail... 586 */ 587 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur; 588 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max; 589 error = copyout(&olim, uap->rlp, sizeof(olim)); 590 return (error); 591 } 592 #endif /* COMPAT_43 */ 593 594 #ifndef _SYS_SYSPROTO_H_ 595 struct __setrlimit_args { 596 u_int which; 597 struct rlimit *rlp; 598 }; 599 #endif 600 int 601 sys_setrlimit(struct thread *td, struct __setrlimit_args *uap) 602 { 603 struct rlimit alim; 604 int error; 605 606 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit)))) 607 return (error); 608 error = kern_setrlimit(td, uap->which, &alim); 609 return (error); 610 } 611 612 static void 613 lim_cb(void *arg) 614 { 615 struct rlimit rlim; 616 struct thread *td; 617 struct proc *p; 618 619 p = arg; 620 PROC_LOCK_ASSERT(p, MA_OWNED); 621 /* 622 * Check if the process exceeds its cpu resource allocation. If 623 * it reaches the max, arrange to kill the process in ast(). 624 */ 625 if (p->p_cpulimit == RLIM_INFINITY) 626 return; 627 PROC_STATLOCK(p); 628 FOREACH_THREAD_IN_PROC(p, td) { 629 ruxagg(p, td); 630 } 631 PROC_STATUNLOCK(p); 632 if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) { 633 lim_rlimit_proc(p, RLIMIT_CPU, &rlim); 634 if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) { 635 killproc(p, "exceeded maximum CPU limit"); 636 } else { 637 if (p->p_cpulimit < rlim.rlim_max) 638 p->p_cpulimit += 5; 639 kern_psignal(p, SIGXCPU); 640 } 641 } 642 if ((p->p_flag & P_WEXIT) == 0) 643 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 644 lim_cb, p, C_PREL(1)); 645 } 646 647 int 648 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp) 649 { 650 651 return (kern_proc_setrlimit(td, td->td_proc, which, limp)); 652 } 653 654 int 655 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which, 656 struct rlimit *limp) 657 { 658 struct plimit *newlim, *oldlim; 659 struct rlimit *alimp; 660 struct rlimit oldssiz; 661 int error; 662 663 if (which >= RLIM_NLIMITS) 664 return (EINVAL); 665 666 /* 667 * Preserve historical bugs by treating negative limits as unsigned. 668 */ 669 if (limp->rlim_cur < 0) 670 limp->rlim_cur = RLIM_INFINITY; 671 if (limp->rlim_max < 0) 672 limp->rlim_max = RLIM_INFINITY; 673 674 oldssiz.rlim_cur = 0; 675 newlim = lim_alloc(); 676 PROC_LOCK(p); 677 oldlim = p->p_limit; 678 alimp = &oldlim->pl_rlimit[which]; 679 if (limp->rlim_cur > alimp->rlim_max || 680 limp->rlim_max > alimp->rlim_max) 681 if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) { 682 PROC_UNLOCK(p); 683 lim_free(newlim); 684 return (error); 685 } 686 if (limp->rlim_cur > limp->rlim_max) 687 limp->rlim_cur = limp->rlim_max; 688 lim_copy(newlim, oldlim); 689 alimp = &newlim->pl_rlimit[which]; 690 691 switch (which) { 692 case RLIMIT_CPU: 693 if (limp->rlim_cur != RLIM_INFINITY && 694 p->p_cpulimit == RLIM_INFINITY) 695 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 696 lim_cb, p, C_PREL(1)); 697 p->p_cpulimit = limp->rlim_cur; 698 break; 699 case RLIMIT_DATA: 700 if (limp->rlim_cur > maxdsiz) 701 limp->rlim_cur = maxdsiz; 702 if (limp->rlim_max > maxdsiz) 703 limp->rlim_max = maxdsiz; 704 break; 705 706 case RLIMIT_STACK: 707 if (limp->rlim_cur > maxssiz) 708 limp->rlim_cur = maxssiz; 709 if (limp->rlim_max > maxssiz) 710 limp->rlim_max = maxssiz; 711 oldssiz = *alimp; 712 if (p->p_sysent->sv_fixlimit != NULL) 713 p->p_sysent->sv_fixlimit(&oldssiz, 714 RLIMIT_STACK); 715 break; 716 717 case RLIMIT_NOFILE: 718 if (limp->rlim_cur > maxfilesperproc) 719 limp->rlim_cur = maxfilesperproc; 720 if (limp->rlim_max > maxfilesperproc) 721 limp->rlim_max = maxfilesperproc; 722 break; 723 724 case RLIMIT_NPROC: 725 if (limp->rlim_cur > maxprocperuid) 726 limp->rlim_cur = maxprocperuid; 727 if (limp->rlim_max > maxprocperuid) 728 limp->rlim_max = maxprocperuid; 729 if (limp->rlim_cur < 1) 730 limp->rlim_cur = 1; 731 if (limp->rlim_max < 1) 732 limp->rlim_max = 1; 733 break; 734 } 735 if (p->p_sysent->sv_fixlimit != NULL) 736 p->p_sysent->sv_fixlimit(limp, which); 737 *alimp = *limp; 738 p->p_limit = newlim; 739 PROC_UPDATE_COW(p); 740 PROC_UNLOCK(p); 741 lim_free(oldlim); 742 743 if (which == RLIMIT_STACK && 744 /* 745 * Skip calls from exec_new_vmspace(), done when stack is 746 * not mapped yet. 747 */ 748 (td != curthread || (p->p_flag & P_INEXEC) == 0)) { 749 /* 750 * Stack is allocated to the max at exec time with only 751 * "rlim_cur" bytes accessible. If stack limit is going 752 * up make more accessible, if going down make inaccessible. 753 */ 754 if (limp->rlim_cur != oldssiz.rlim_cur) { 755 vm_offset_t addr; 756 vm_size_t size; 757 vm_prot_t prot; 758 759 if (limp->rlim_cur > oldssiz.rlim_cur) { 760 prot = p->p_sysent->sv_stackprot; 761 size = limp->rlim_cur - oldssiz.rlim_cur; 762 addr = p->p_sysent->sv_usrstack - 763 limp->rlim_cur; 764 } else { 765 prot = VM_PROT_NONE; 766 size = oldssiz.rlim_cur - limp->rlim_cur; 767 addr = p->p_sysent->sv_usrstack - 768 oldssiz.rlim_cur; 769 } 770 addr = trunc_page(addr); 771 size = round_page(size); 772 (void)vm_map_protect(&p->p_vmspace->vm_map, 773 addr, addr + size, prot, 0, 774 VM_MAP_PROTECT_SET_PROT); 775 } 776 } 777 778 return (0); 779 } 780 781 #ifndef _SYS_SYSPROTO_H_ 782 struct __getrlimit_args { 783 u_int which; 784 struct rlimit *rlp; 785 }; 786 #endif 787 /* ARGSUSED */ 788 int 789 sys_getrlimit(struct thread *td, struct __getrlimit_args *uap) 790 { 791 struct rlimit rlim; 792 int error; 793 794 if (uap->which >= RLIM_NLIMITS) 795 return (EINVAL); 796 lim_rlimit(td, uap->which, &rlim); 797 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit)); 798 return (error); 799 } 800 801 /* 802 * Transform the running time and tick information for children of proc p 803 * into user and system time usage. 804 */ 805 void 806 calccru(struct proc *p, struct timeval *up, struct timeval *sp) 807 { 808 809 PROC_LOCK_ASSERT(p, MA_OWNED); 810 calcru1(p, &p->p_crux, up, sp); 811 } 812 813 /* 814 * Transform the running time and tick information in proc p into user 815 * and system time usage. If appropriate, include the current time slice 816 * on this CPU. 817 */ 818 void 819 calcru(struct proc *p, struct timeval *up, struct timeval *sp) 820 { 821 struct thread *td; 822 uint64_t runtime, u; 823 824 PROC_LOCK_ASSERT(p, MA_OWNED); 825 PROC_STATLOCK_ASSERT(p, MA_OWNED); 826 /* 827 * If we are getting stats for the current process, then add in the 828 * stats that this thread has accumulated in its current time slice. 829 * We reset the thread and CPU state as if we had performed a context 830 * switch right here. 831 */ 832 td = curthread; 833 if (td->td_proc == p) { 834 u = cpu_ticks(); 835 runtime = u - PCPU_GET(switchtime); 836 td->td_runtime += runtime; 837 td->td_incruntime += runtime; 838 PCPU_SET(switchtime, u); 839 } 840 /* Make sure the per-thread stats are current. */ 841 FOREACH_THREAD_IN_PROC(p, td) { 842 if (td->td_incruntime == 0) 843 continue; 844 ruxagg(p, td); 845 } 846 calcru1(p, &p->p_rux, up, sp); 847 } 848 849 /* Collect resource usage for a single thread. */ 850 void 851 rufetchtd(struct thread *td, struct rusage *ru) 852 { 853 struct proc *p; 854 uint64_t runtime, u; 855 856 p = td->td_proc; 857 PROC_STATLOCK_ASSERT(p, MA_OWNED); 858 THREAD_LOCK_ASSERT(td, MA_OWNED); 859 /* 860 * If we are getting stats for the current thread, then add in the 861 * stats that this thread has accumulated in its current time slice. 862 * We reset the thread and CPU state as if we had performed a context 863 * switch right here. 864 */ 865 if (td == curthread) { 866 u = cpu_ticks(); 867 runtime = u - PCPU_GET(switchtime); 868 td->td_runtime += runtime; 869 td->td_incruntime += runtime; 870 PCPU_SET(switchtime, u); 871 } 872 ruxagg_locked(p, td); 873 *ru = td->td_ru; 874 calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime); 875 } 876 877 /* XXX: the MI version is too slow to use: */ 878 #ifndef __HAVE_INLINE_FLSLL 879 #define flsll(x) (fls((x) >> 32) != 0 ? fls((x) >> 32) + 32 : fls(x)) 880 #endif 881 882 static uint64_t 883 mul64_by_fraction(uint64_t a, uint64_t b, uint64_t c) 884 { 885 uint64_t acc, bh, bl; 886 int i, s, sa, sb; 887 888 /* 889 * Calculate (a * b) / c accurately enough without overflowing. c 890 * must be nonzero, and its top bit must be 0. a or b must be 891 * <= c, and the implementation is tuned for b <= c. 892 * 893 * The comments about times are for use in calcru1() with units of 894 * microseconds for 'a' and stathz ticks at 128 Hz for b and c. 895 * 896 * Let n be the number of top zero bits in c. Each iteration 897 * either returns, or reduces b by right shifting it by at least n. 898 * The number of iterations is at most 1 + 64 / n, and the error is 899 * at most the number of iterations. 900 * 901 * It is very unusual to need even 2 iterations. Previous 902 * implementations overflowed essentially by returning early in the 903 * first iteration, with n = 38 giving overflow at 105+ hours and 904 * n = 32 giving overlow at at 388+ days despite a more careful 905 * calculation. 388 days is a reasonable uptime, and the calculation 906 * needs to work for the uptime times the number of CPUs since 'a' 907 * is per-process. 908 */ 909 if (a >= (uint64_t)1 << 63) 910 return (0); /* Unsupported arg -- can't happen. */ 911 acc = 0; 912 for (i = 0; i < 128; i++) { 913 sa = flsll(a); 914 sb = flsll(b); 915 if (sa + sb <= 64) 916 /* Up to 105 hours on first iteration. */ 917 return (acc + (a * b) / c); 918 if (a >= c) { 919 /* 920 * This reduction is based on a = q * c + r, with the 921 * remainder r < c. 'a' may be large to start, and 922 * moving bits from b into 'a' at the end of the loop 923 * sets the top bit of 'a', so the reduction makes 924 * significant progress. 925 */ 926 acc += (a / c) * b; 927 a %= c; 928 sa = flsll(a); 929 if (sa + sb <= 64) 930 /* Up to 388 days on first iteration. */ 931 return (acc + (a * b) / c); 932 } 933 934 /* 935 * This step writes a * b as a * ((bh << s) + bl) = 936 * a * (bh << s) + a * bl = (a << s) * bh + a * bl. The 2 937 * additive terms are handled separately. Splitting in 938 * this way is linear except for rounding errors. 939 * 940 * s = 64 - sa is the maximum such that a << s fits in 64 941 * bits. Since a < c and c has at least 1 zero top bit, 942 * sa < 64 and s > 0. Thus this step makes progress by 943 * reducing b (it increases 'a', but taking remainders on 944 * the next iteration completes the reduction). 945 * 946 * Finally, the choice for s is just what is needed to keep 947 * a * bl from overflowing, so we don't need complications 948 * like a recursive call mul64_by_fraction(a, bl, c) to 949 * handle the second additive term. 950 */ 951 s = 64 - sa; 952 bh = b >> s; 953 bl = b - (bh << s); 954 acc += (a * bl) / c; 955 a <<= s; 956 b = bh; 957 } 958 return (0); /* Algorithm failure -- can't happen. */ 959 } 960 961 static void 962 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up, 963 struct timeval *sp) 964 { 965 /* {user, system, interrupt, total} {ticks, usec}: */ 966 uint64_t ut, uu, st, su, it, tt, tu; 967 968 ut = ruxp->rux_uticks; 969 st = ruxp->rux_sticks; 970 it = ruxp->rux_iticks; 971 tt = ut + st + it; 972 if (tt == 0) { 973 /* Avoid divide by zero */ 974 st = 1; 975 tt = 1; 976 } 977 tu = cputick2usec(ruxp->rux_runtime); 978 if ((int64_t)tu < 0) { 979 /* XXX: this should be an assert /phk */ 980 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n", 981 (intmax_t)tu, p->p_pid, p->p_comm); 982 tu = ruxp->rux_tu; 983 } 984 985 /* Subdivide tu. Avoid overflow in the multiplications. */ 986 if (__predict_true(tu <= ((uint64_t)1 << 38) && tt <= (1 << 26))) { 987 /* Up to 76 hours when stathz is 128. */ 988 uu = (tu * ut) / tt; 989 su = (tu * st) / tt; 990 } else { 991 uu = mul64_by_fraction(tu, ut, tt); 992 su = mul64_by_fraction(tu, st, tt); 993 } 994 995 if (tu >= ruxp->rux_tu) { 996 /* 997 * The normal case, time increased. 998 * Enforce monotonicity of bucketed numbers. 999 */ 1000 if (uu < ruxp->rux_uu) 1001 uu = ruxp->rux_uu; 1002 if (su < ruxp->rux_su) 1003 su = ruxp->rux_su; 1004 } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) { 1005 /* 1006 * When we calibrate the cputicker, it is not uncommon to 1007 * see the presumably fixed frequency increase slightly over 1008 * time as a result of thermal stabilization and NTP 1009 * discipline (of the reference clock). We therefore ignore 1010 * a bit of backwards slop because we expect to catch up 1011 * shortly. We use a 3 microsecond limit to catch low 1012 * counts and a 1% limit for high counts. 1013 */ 1014 uu = ruxp->rux_uu; 1015 su = ruxp->rux_su; 1016 tu = ruxp->rux_tu; 1017 } else { /* tu < ruxp->rux_tu */ 1018 /* 1019 * What happened here was likely that a laptop, which ran at 1020 * a reduced clock frequency at boot, kicked into high gear. 1021 * The wisdom of spamming this message in that case is 1022 * dubious, but it might also be indicative of something 1023 * serious, so lets keep it and hope laptops can be made 1024 * more truthful about their CPU speed via ACPI. 1025 */ 1026 printf("calcru: runtime went backwards from %ju usec " 1027 "to %ju usec for pid %d (%s)\n", 1028 (uintmax_t)ruxp->rux_tu, (uintmax_t)tu, 1029 p->p_pid, p->p_comm); 1030 } 1031 1032 ruxp->rux_uu = uu; 1033 ruxp->rux_su = su; 1034 ruxp->rux_tu = tu; 1035 1036 up->tv_sec = uu / 1000000; 1037 up->tv_usec = uu % 1000000; 1038 sp->tv_sec = su / 1000000; 1039 sp->tv_usec = su % 1000000; 1040 } 1041 1042 #ifndef _SYS_SYSPROTO_H_ 1043 struct getrusage_args { 1044 int who; 1045 struct rusage *rusage; 1046 }; 1047 #endif 1048 int 1049 sys_getrusage(struct thread *td, struct getrusage_args *uap) 1050 { 1051 struct rusage ru; 1052 int error; 1053 1054 error = kern_getrusage(td, uap->who, &ru); 1055 if (error == 0) 1056 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 1057 return (error); 1058 } 1059 1060 int 1061 kern_getrusage(struct thread *td, int who, struct rusage *rup) 1062 { 1063 struct proc *p; 1064 int error; 1065 1066 error = 0; 1067 p = td->td_proc; 1068 PROC_LOCK(p); 1069 switch (who) { 1070 case RUSAGE_SELF: 1071 rufetchcalc(p, rup, &rup->ru_utime, 1072 &rup->ru_stime); 1073 break; 1074 1075 case RUSAGE_CHILDREN: 1076 *rup = p->p_stats->p_cru; 1077 calccru(p, &rup->ru_utime, &rup->ru_stime); 1078 break; 1079 1080 case RUSAGE_THREAD: 1081 PROC_STATLOCK(p); 1082 thread_lock(td); 1083 rufetchtd(td, rup); 1084 thread_unlock(td); 1085 PROC_STATUNLOCK(p); 1086 break; 1087 1088 default: 1089 error = EINVAL; 1090 } 1091 PROC_UNLOCK(p); 1092 return (error); 1093 } 1094 1095 void 1096 rucollect(struct rusage *ru, struct rusage *ru2) 1097 { 1098 long *ip, *ip2; 1099 int i; 1100 1101 if (ru->ru_maxrss < ru2->ru_maxrss) 1102 ru->ru_maxrss = ru2->ru_maxrss; 1103 ip = &ru->ru_first; 1104 ip2 = &ru2->ru_first; 1105 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 1106 *ip++ += *ip2++; 1107 } 1108 1109 void 1110 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2, 1111 struct rusage_ext *rux2) 1112 { 1113 1114 rux->rux_runtime += rux2->rux_runtime; 1115 rux->rux_uticks += rux2->rux_uticks; 1116 rux->rux_sticks += rux2->rux_sticks; 1117 rux->rux_iticks += rux2->rux_iticks; 1118 rux->rux_uu += rux2->rux_uu; 1119 rux->rux_su += rux2->rux_su; 1120 rux->rux_tu += rux2->rux_tu; 1121 rucollect(ru, ru2); 1122 } 1123 1124 /* 1125 * Aggregate tick counts into the proc's rusage_ext. 1126 */ 1127 static void 1128 ruxagg_ext_locked(struct rusage_ext *rux, struct thread *td) 1129 { 1130 1131 rux->rux_runtime += td->td_incruntime; 1132 rux->rux_uticks += td->td_uticks; 1133 rux->rux_sticks += td->td_sticks; 1134 rux->rux_iticks += td->td_iticks; 1135 } 1136 1137 void 1138 ruxagg_locked(struct proc *p, struct thread *td) 1139 { 1140 THREAD_LOCK_ASSERT(td, MA_OWNED); 1141 PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED); 1142 1143 ruxagg_ext_locked(&p->p_rux, td); 1144 ruxagg_ext_locked(&td->td_rux, td); 1145 td->td_incruntime = 0; 1146 td->td_uticks = 0; 1147 td->td_iticks = 0; 1148 td->td_sticks = 0; 1149 } 1150 1151 void 1152 ruxagg(struct proc *p, struct thread *td) 1153 { 1154 1155 thread_lock(td); 1156 ruxagg_locked(p, td); 1157 thread_unlock(td); 1158 } 1159 1160 /* 1161 * Update the rusage_ext structure and fetch a valid aggregate rusage 1162 * for proc p if storage for one is supplied. 1163 */ 1164 void 1165 rufetch(struct proc *p, struct rusage *ru) 1166 { 1167 struct thread *td; 1168 1169 PROC_STATLOCK_ASSERT(p, MA_OWNED); 1170 1171 *ru = p->p_ru; 1172 if (p->p_numthreads > 0) { 1173 FOREACH_THREAD_IN_PROC(p, td) { 1174 ruxagg(p, td); 1175 rucollect(ru, &td->td_ru); 1176 } 1177 } 1178 } 1179 1180 /* 1181 * Atomically perform a rufetch and a calcru together. 1182 * Consumers, can safely assume the calcru is executed only once 1183 * rufetch is completed. 1184 */ 1185 void 1186 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up, 1187 struct timeval *sp) 1188 { 1189 1190 PROC_STATLOCK(p); 1191 rufetch(p, ru); 1192 calcru(p, up, sp); 1193 PROC_STATUNLOCK(p); 1194 } 1195 1196 /* 1197 * Allocate a new resource limits structure and initialize its 1198 * reference count and mutex pointer. 1199 */ 1200 struct plimit * 1201 lim_alloc() 1202 { 1203 struct plimit *limp; 1204 1205 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK); 1206 refcount_init(&limp->pl_refcnt, 1); 1207 return (limp); 1208 } 1209 1210 struct plimit * 1211 lim_hold(struct plimit *limp) 1212 { 1213 1214 refcount_acquire(&limp->pl_refcnt); 1215 return (limp); 1216 } 1217 1218 void 1219 lim_fork(struct proc *p1, struct proc *p2) 1220 { 1221 1222 PROC_LOCK_ASSERT(p1, MA_OWNED); 1223 PROC_LOCK_ASSERT(p2, MA_OWNED); 1224 1225 p2->p_limit = lim_hold(p1->p_limit); 1226 callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0); 1227 if (p1->p_cpulimit != RLIM_INFINITY) 1228 callout_reset_sbt(&p2->p_limco, SBT_1S, 0, 1229 lim_cb, p2, C_PREL(1)); 1230 } 1231 1232 void 1233 lim_free(struct plimit *limp) 1234 { 1235 1236 if (refcount_release(&limp->pl_refcnt)) 1237 free((void *)limp, M_PLIMIT); 1238 } 1239 1240 void 1241 lim_freen(struct plimit *limp, int n) 1242 { 1243 1244 if (refcount_releasen(&limp->pl_refcnt, n)) 1245 free((void *)limp, M_PLIMIT); 1246 } 1247 1248 /* 1249 * Make a copy of the plimit structure. 1250 * We share these structures copy-on-write after fork. 1251 */ 1252 void 1253 lim_copy(struct plimit *dst, struct plimit *src) 1254 { 1255 1256 KASSERT(dst->pl_refcnt <= 1, ("lim_copy to shared limit")); 1257 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit)); 1258 } 1259 1260 /* 1261 * Return the hard limit for a particular system resource. The 1262 * which parameter specifies the index into the rlimit array. 1263 */ 1264 rlim_t 1265 lim_max(struct thread *td, int which) 1266 { 1267 struct rlimit rl; 1268 1269 lim_rlimit(td, which, &rl); 1270 return (rl.rlim_max); 1271 } 1272 1273 rlim_t 1274 lim_max_proc(struct proc *p, int which) 1275 { 1276 struct rlimit rl; 1277 1278 lim_rlimit_proc(p, which, &rl); 1279 return (rl.rlim_max); 1280 } 1281 1282 /* 1283 * Return the current (soft) limit for a particular system resource. 1284 * The which parameter which specifies the index into the rlimit array 1285 */ 1286 rlim_t 1287 (lim_cur)(struct thread *td, int which) 1288 { 1289 struct rlimit rl; 1290 1291 lim_rlimit(td, which, &rl); 1292 return (rl.rlim_cur); 1293 } 1294 1295 rlim_t 1296 lim_cur_proc(struct proc *p, int which) 1297 { 1298 struct rlimit rl; 1299 1300 lim_rlimit_proc(p, which, &rl); 1301 return (rl.rlim_cur); 1302 } 1303 1304 /* 1305 * Return a copy of the entire rlimit structure for the system limit 1306 * specified by 'which' in the rlimit structure pointed to by 'rlp'. 1307 */ 1308 void 1309 lim_rlimit(struct thread *td, int which, struct rlimit *rlp) 1310 { 1311 struct proc *p = td->td_proc; 1312 1313 MPASS(td == curthread); 1314 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1315 ("request for invalid resource limit")); 1316 *rlp = td->td_limit->pl_rlimit[which]; 1317 if (p->p_sysent->sv_fixlimit != NULL) 1318 p->p_sysent->sv_fixlimit(rlp, which); 1319 } 1320 1321 void 1322 lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp) 1323 { 1324 1325 PROC_LOCK_ASSERT(p, MA_OWNED); 1326 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1327 ("request for invalid resource limit")); 1328 *rlp = p->p_limit->pl_rlimit[which]; 1329 if (p->p_sysent->sv_fixlimit != NULL) 1330 p->p_sysent->sv_fixlimit(rlp, which); 1331 } 1332 1333 void 1334 uihashinit() 1335 { 1336 1337 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 1338 rw_init(&uihashtbl_lock, "uidinfo hash"); 1339 } 1340 1341 /* 1342 * Look up a uidinfo struct for the parameter uid. 1343 * uihashtbl_lock must be locked. 1344 * Increase refcount on uidinfo struct returned. 1345 */ 1346 static struct uidinfo * 1347 uilookup(uid_t uid) 1348 { 1349 struct uihashhead *uipp; 1350 struct uidinfo *uip; 1351 1352 rw_assert(&uihashtbl_lock, RA_LOCKED); 1353 uipp = UIHASH(uid); 1354 LIST_FOREACH(uip, uipp, ui_hash) 1355 if (uip->ui_uid == uid) { 1356 uihold(uip); 1357 break; 1358 } 1359 1360 return (uip); 1361 } 1362 1363 /* 1364 * Find or allocate a struct uidinfo for a particular uid. 1365 * Returns with uidinfo struct referenced. 1366 * uifree() should be called on a struct uidinfo when released. 1367 */ 1368 struct uidinfo * 1369 uifind(uid_t uid) 1370 { 1371 struct uidinfo *new_uip, *uip; 1372 struct ucred *cred; 1373 1374 cred = curthread->td_ucred; 1375 if (cred->cr_uidinfo->ui_uid == uid) { 1376 uip = cred->cr_uidinfo; 1377 uihold(uip); 1378 return (uip); 1379 } else if (cred->cr_ruidinfo->ui_uid == uid) { 1380 uip = cred->cr_ruidinfo; 1381 uihold(uip); 1382 return (uip); 1383 } 1384 1385 rw_rlock(&uihashtbl_lock); 1386 uip = uilookup(uid); 1387 rw_runlock(&uihashtbl_lock); 1388 if (uip != NULL) 1389 return (uip); 1390 1391 new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO); 1392 racct_create(&new_uip->ui_racct); 1393 refcount_init(&new_uip->ui_ref, 1); 1394 new_uip->ui_uid = uid; 1395 1396 rw_wlock(&uihashtbl_lock); 1397 /* 1398 * There's a chance someone created our uidinfo while we 1399 * were in malloc and not holding the lock, so we have to 1400 * make sure we don't insert a duplicate uidinfo. 1401 */ 1402 if ((uip = uilookup(uid)) == NULL) { 1403 LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash); 1404 rw_wunlock(&uihashtbl_lock); 1405 uip = new_uip; 1406 } else { 1407 rw_wunlock(&uihashtbl_lock); 1408 racct_destroy(&new_uip->ui_racct); 1409 free(new_uip, M_UIDINFO); 1410 } 1411 return (uip); 1412 } 1413 1414 /* 1415 * Place another refcount on a uidinfo struct. 1416 */ 1417 void 1418 uihold(struct uidinfo *uip) 1419 { 1420 1421 refcount_acquire(&uip->ui_ref); 1422 } 1423 1424 /*- 1425 * Since uidinfo structs have a long lifetime, we use an 1426 * opportunistic refcounting scheme to avoid locking the lookup hash 1427 * for each release. 1428 * 1429 * If the refcount hits 0, we need to free the structure, 1430 * which means we need to lock the hash. 1431 * Optimal case: 1432 * After locking the struct and lowering the refcount, if we find 1433 * that we don't need to free, simply unlock and return. 1434 * Suboptimal case: 1435 * If refcount lowering results in need to free, bump the count 1436 * back up, lose the lock and acquire the locks in the proper 1437 * order to try again. 1438 */ 1439 void 1440 uifree(struct uidinfo *uip) 1441 { 1442 1443 if (refcount_release_if_not_last(&uip->ui_ref)) 1444 return; 1445 1446 rw_wlock(&uihashtbl_lock); 1447 if (refcount_release(&uip->ui_ref) == 0) { 1448 rw_wunlock(&uihashtbl_lock); 1449 return; 1450 } 1451 1452 racct_destroy(&uip->ui_racct); 1453 LIST_REMOVE(uip, ui_hash); 1454 rw_wunlock(&uihashtbl_lock); 1455 1456 if (uip->ui_sbsize != 0) 1457 printf("freeing uidinfo: uid = %d, sbsize = %ld\n", 1458 uip->ui_uid, uip->ui_sbsize); 1459 if (uip->ui_proccnt != 0) 1460 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 1461 uip->ui_uid, uip->ui_proccnt); 1462 if (uip->ui_vmsize != 0) 1463 printf("freeing uidinfo: uid = %d, swapuse = %lld\n", 1464 uip->ui_uid, (unsigned long long)uip->ui_vmsize); 1465 free(uip, M_UIDINFO); 1466 } 1467 1468 #ifdef RACCT 1469 void 1470 ui_racct_foreach(void (*callback)(struct racct *racct, 1471 void *arg2, void *arg3), void (*pre)(void), void (*post)(void), 1472 void *arg2, void *arg3) 1473 { 1474 struct uidinfo *uip; 1475 struct uihashhead *uih; 1476 1477 rw_rlock(&uihashtbl_lock); 1478 if (pre != NULL) 1479 (pre)(); 1480 for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) { 1481 LIST_FOREACH(uip, uih, ui_hash) { 1482 (callback)(uip->ui_racct, arg2, arg3); 1483 } 1484 } 1485 if (post != NULL) 1486 (post)(); 1487 rw_runlock(&uihashtbl_lock); 1488 } 1489 #endif 1490 1491 static inline int 1492 chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name) 1493 { 1494 long new; 1495 1496 /* Don't allow them to exceed max, but allow subtraction. */ 1497 new = atomic_fetchadd_long(limit, (long)diff) + diff; 1498 if (diff > 0 && max != 0) { 1499 if (new < 0 || new > max) { 1500 atomic_subtract_long(limit, (long)diff); 1501 return (0); 1502 } 1503 } else if (new < 0) 1504 printf("negative %s for uid = %d\n", name, uip->ui_uid); 1505 return (1); 1506 } 1507 1508 /* 1509 * Change the count associated with number of processes 1510 * a given user is using. When 'max' is 0, don't enforce a limit 1511 */ 1512 int 1513 chgproccnt(struct uidinfo *uip, int diff, rlim_t max) 1514 { 1515 1516 return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt")); 1517 } 1518 1519 /* 1520 * Change the total socket buffer size a user has used. 1521 */ 1522 int 1523 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max) 1524 { 1525 int diff, rv; 1526 1527 diff = to - *hiwat; 1528 if (diff > 0 && max == 0) { 1529 rv = 0; 1530 } else { 1531 rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize"); 1532 if (rv != 0) 1533 *hiwat = to; 1534 } 1535 return (rv); 1536 } 1537 1538 /* 1539 * Change the count associated with number of pseudo-terminals 1540 * a given user is using. When 'max' is 0, don't enforce a limit 1541 */ 1542 int 1543 chgptscnt(struct uidinfo *uip, int diff, rlim_t max) 1544 { 1545 1546 return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt")); 1547 } 1548 1549 int 1550 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max) 1551 { 1552 1553 return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt")); 1554 } 1555 1556 int 1557 chgumtxcnt(struct uidinfo *uip, int diff, rlim_t max) 1558 { 1559 1560 return (chglimit(uip, &uip->ui_umtxcnt, diff, max, "umtxcnt")); 1561 } 1562