xref: /freebsd/sys/kern/kern_resource.c (revision d056fa046c6a91b90cd98165face0e42a33a5173)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_resource.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysproto.h>
45 #include <sys/file.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/proc.h>
51 #include <sys/refcount.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/sx.h>
55 #include <sys/syscallsubr.h>
56 #include <sys/sysent.h>
57 #include <sys/time.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_param.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_map.h>
63 
64 
65 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
66 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
67 #define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
68 static struct mtx uihashtbl_mtx;
69 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
70 static u_long uihash;		/* size of hash table - 1 */
71 
72 static void	calcru1(struct proc *p, struct rusage_ext *ruxp,
73 		    struct timeval *up, struct timeval *sp);
74 static int	donice(struct thread *td, struct proc *chgp, int n);
75 static struct uidinfo *uilookup(uid_t uid);
76 
77 /*
78  * Resource controls and accounting.
79  */
80 
81 #ifndef _SYS_SYSPROTO_H_
82 struct getpriority_args {
83 	int	which;
84 	int	who;
85 };
86 #endif
87 /*
88  * MPSAFE
89  */
90 int
91 getpriority(td, uap)
92 	struct thread *td;
93 	register struct getpriority_args *uap;
94 {
95 	struct proc *p;
96 	struct pgrp *pg;
97 	int error, low;
98 
99 	error = 0;
100 	low = PRIO_MAX + 1;
101 	switch (uap->which) {
102 
103 	case PRIO_PROCESS:
104 		if (uap->who == 0)
105 			low = td->td_proc->p_nice;
106 		else {
107 			p = pfind(uap->who);
108 			if (p == NULL)
109 				break;
110 			if (p_cansee(td, p) == 0)
111 				low = p->p_nice;
112 			PROC_UNLOCK(p);
113 		}
114 		break;
115 
116 	case PRIO_PGRP:
117 		sx_slock(&proctree_lock);
118 		if (uap->who == 0) {
119 			pg = td->td_proc->p_pgrp;
120 			PGRP_LOCK(pg);
121 		} else {
122 			pg = pgfind(uap->who);
123 			if (pg == NULL) {
124 				sx_sunlock(&proctree_lock);
125 				break;
126 			}
127 		}
128 		sx_sunlock(&proctree_lock);
129 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
130 			PROC_LOCK(p);
131 			if (!p_cansee(td, p)) {
132 				if (p->p_nice < low)
133 					low = p->p_nice;
134 			}
135 			PROC_UNLOCK(p);
136 		}
137 		PGRP_UNLOCK(pg);
138 		break;
139 
140 	case PRIO_USER:
141 		if (uap->who == 0)
142 			uap->who = td->td_ucred->cr_uid;
143 		sx_slock(&allproc_lock);
144 		LIST_FOREACH(p, &allproc, p_list) {
145 			PROC_LOCK(p);
146 			if (!p_cansee(td, p) &&
147 			    p->p_ucred->cr_uid == uap->who) {
148 				if (p->p_nice < low)
149 					low = p->p_nice;
150 			}
151 			PROC_UNLOCK(p);
152 		}
153 		sx_sunlock(&allproc_lock);
154 		break;
155 
156 	default:
157 		error = EINVAL;
158 		break;
159 	}
160 	if (low == PRIO_MAX + 1 && error == 0)
161 		error = ESRCH;
162 	td->td_retval[0] = low;
163 	return (error);
164 }
165 
166 #ifndef _SYS_SYSPROTO_H_
167 struct setpriority_args {
168 	int	which;
169 	int	who;
170 	int	prio;
171 };
172 #endif
173 /*
174  * MPSAFE
175  */
176 int
177 setpriority(td, uap)
178 	struct thread *td;
179 	struct setpriority_args *uap;
180 {
181 	struct proc *curp, *p;
182 	struct pgrp *pg;
183 	int found = 0, error = 0;
184 
185 	curp = td->td_proc;
186 	switch (uap->which) {
187 	case PRIO_PROCESS:
188 		if (uap->who == 0) {
189 			PROC_LOCK(curp);
190 			error = donice(td, curp, uap->prio);
191 			PROC_UNLOCK(curp);
192 		} else {
193 			p = pfind(uap->who);
194 			if (p == 0)
195 				break;
196 			if (p_cansee(td, p) == 0)
197 				error = donice(td, p, uap->prio);
198 			PROC_UNLOCK(p);
199 		}
200 		found++;
201 		break;
202 
203 	case PRIO_PGRP:
204 		sx_slock(&proctree_lock);
205 		if (uap->who == 0) {
206 			pg = curp->p_pgrp;
207 			PGRP_LOCK(pg);
208 		} else {
209 			pg = pgfind(uap->who);
210 			if (pg == NULL) {
211 				sx_sunlock(&proctree_lock);
212 				break;
213 			}
214 		}
215 		sx_sunlock(&proctree_lock);
216 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
217 			PROC_LOCK(p);
218 			if (!p_cansee(td, p)) {
219 				error = donice(td, p, uap->prio);
220 				found++;
221 			}
222 			PROC_UNLOCK(p);
223 		}
224 		PGRP_UNLOCK(pg);
225 		break;
226 
227 	case PRIO_USER:
228 		if (uap->who == 0)
229 			uap->who = td->td_ucred->cr_uid;
230 		sx_slock(&allproc_lock);
231 		FOREACH_PROC_IN_SYSTEM(p) {
232 			PROC_LOCK(p);
233 			if (p->p_ucred->cr_uid == uap->who &&
234 			    !p_cansee(td, p)) {
235 				error = donice(td, p, uap->prio);
236 				found++;
237 			}
238 			PROC_UNLOCK(p);
239 		}
240 		sx_sunlock(&allproc_lock);
241 		break;
242 
243 	default:
244 		error = EINVAL;
245 		break;
246 	}
247 	if (found == 0 && error == 0)
248 		error = ESRCH;
249 	return (error);
250 }
251 
252 /*
253  * Set "nice" for a (whole) process.
254  */
255 static int
256 donice(struct thread *td, struct proc *p, int n)
257 {
258 	int error;
259 
260 	PROC_LOCK_ASSERT(p, MA_OWNED);
261 	if ((error = p_cansched(td, p)))
262 		return (error);
263 	if (n > PRIO_MAX)
264 		n = PRIO_MAX;
265 	if (n < PRIO_MIN)
266 		n = PRIO_MIN;
267  	if (n < p->p_nice && suser(td) != 0)
268 		return (EACCES);
269 	mtx_lock_spin(&sched_lock);
270 	sched_nice(p, n);
271 	mtx_unlock_spin(&sched_lock);
272 	return (0);
273 }
274 
275 /*
276  * Set realtime priority.
277  *
278  * MPSAFE
279  */
280 #ifndef _SYS_SYSPROTO_H_
281 struct rtprio_args {
282 	int		function;
283 	pid_t		pid;
284 	struct rtprio	*rtp;
285 };
286 #endif
287 
288 int
289 rtprio(td, uap)
290 	struct thread *td;		/* curthread */
291 	register struct rtprio_args *uap;
292 {
293 	struct proc *curp;
294 	struct proc *p;
295 	struct ksegrp *kg;
296 	struct rtprio rtp;
297 	int cierror, error;
298 
299 	/* Perform copyin before acquiring locks if needed. */
300 	if (uap->function == RTP_SET)
301 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
302 	else
303 		cierror = 0;
304 
305 	curp = td->td_proc;
306 	if (uap->pid == 0) {
307 		p = curp;
308 		PROC_LOCK(p);
309 	} else {
310 		p = pfind(uap->pid);
311 		if (p == NULL)
312 			return (ESRCH);
313 	}
314 
315 	switch (uap->function) {
316 	case RTP_LOOKUP:
317 		if ((error = p_cansee(td, p)))
318 			break;
319 		mtx_lock_spin(&sched_lock);
320 		/*
321 		 * Return OUR priority if no pid specified,
322 		 * or if one is, report the highest priority
323 		 * in the process.  There isn't much more you can do as
324 		 * there is only room to return a single priority.
325 		 * XXXKSE: maybe need a new interface to report
326 		 * priorities of multiple system scope threads.
327 		 * Note: specifying our own pid is not the same
328 		 * as leaving it zero.
329 		 */
330 		if (uap->pid == 0) {
331 			pri_to_rtp(td->td_ksegrp, &rtp);
332 		} else {
333 			struct rtprio rtp2;
334 
335 			rtp.type = RTP_PRIO_IDLE;
336 			rtp.prio = RTP_PRIO_MAX;
337 			FOREACH_KSEGRP_IN_PROC(p, kg) {
338 				pri_to_rtp(kg, &rtp2);
339 				if (rtp2.type <  rtp.type ||
340 				    (rtp2.type == rtp.type &&
341 				    rtp2.prio < rtp.prio)) {
342 					rtp.type = rtp2.type;
343 					rtp.prio = rtp2.prio;
344 				}
345 			}
346 		}
347 		mtx_unlock_spin(&sched_lock);
348 		PROC_UNLOCK(p);
349 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
350 	case RTP_SET:
351 		if ((error = p_cansched(td, p)) || (error = cierror))
352 			break;
353 
354 		/* Disallow setting rtprio in most cases if not superuser. */
355 		if (suser(td) != 0) {
356 			/* can't set someone else's */
357 			if (uap->pid) {
358 				error = EPERM;
359 				break;
360 			}
361 			/* can't set realtime priority */
362 /*
363  * Realtime priority has to be restricted for reasons which should be
364  * obvious.  However, for idle priority, there is a potential for
365  * system deadlock if an idleprio process gains a lock on a resource
366  * that other processes need (and the idleprio process can't run
367  * due to a CPU-bound normal process).  Fix me!  XXX
368  */
369 #if 0
370  			if (RTP_PRIO_IS_REALTIME(rtp.type)) {
371 #else
372 			if (rtp.type != RTP_PRIO_NORMAL) {
373 #endif
374 				error = EPERM;
375 				break;
376 			}
377 		}
378 
379 		/*
380 		 * If we are setting our own priority, set just our
381 		 * KSEGRP but if we are doing another process,
382 		 * do all the groups on that process. If we
383 		 * specify our own pid we do the latter.
384 		 */
385 		mtx_lock_spin(&sched_lock);
386 		if (uap->pid == 0) {
387 			error = rtp_to_pri(&rtp, td->td_ksegrp);
388 		} else {
389 			FOREACH_KSEGRP_IN_PROC(p, kg) {
390 				if ((error = rtp_to_pri(&rtp, kg)) != 0) {
391 					break;
392 				}
393 			}
394 		}
395 		mtx_unlock_spin(&sched_lock);
396 		break;
397 	default:
398 		error = EINVAL;
399 		break;
400 	}
401 	PROC_UNLOCK(p);
402 	return (error);
403 }
404 
405 int
406 rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg)
407 {
408 
409 	mtx_assert(&sched_lock, MA_OWNED);
410 	if (rtp->prio > RTP_PRIO_MAX)
411 		return (EINVAL);
412 	switch (RTP_PRIO_BASE(rtp->type)) {
413 	case RTP_PRIO_REALTIME:
414 		kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio;
415 		break;
416 	case RTP_PRIO_NORMAL:
417 		kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio;
418 		break;
419 	case RTP_PRIO_IDLE:
420 		kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio;
421 		break;
422 	default:
423 		return (EINVAL);
424 	}
425 	sched_class(kg, rtp->type);
426 	if (curthread->td_ksegrp == kg) {
427 		sched_prio(curthread, kg->kg_user_pri); /* XXX dubious */
428 	}
429 	return (0);
430 }
431 
432 void
433 pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp)
434 {
435 
436 	mtx_assert(&sched_lock, MA_OWNED);
437 	switch (PRI_BASE(kg->kg_pri_class)) {
438 	case PRI_REALTIME:
439 		rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME;
440 		break;
441 	case PRI_TIMESHARE:
442 		rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE;
443 		break;
444 	case PRI_IDLE:
445 		rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE;
446 		break;
447 	default:
448 		break;
449 	}
450 	rtp->type = kg->kg_pri_class;
451 }
452 
453 #if defined(COMPAT_43)
454 #ifndef _SYS_SYSPROTO_H_
455 struct osetrlimit_args {
456 	u_int	which;
457 	struct	orlimit *rlp;
458 };
459 #endif
460 /*
461  * MPSAFE
462  */
463 int
464 osetrlimit(td, uap)
465 	struct thread *td;
466 	register struct osetrlimit_args *uap;
467 {
468 	struct orlimit olim;
469 	struct rlimit lim;
470 	int error;
471 
472 	if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
473 		return (error);
474 	lim.rlim_cur = olim.rlim_cur;
475 	lim.rlim_max = olim.rlim_max;
476 	error = kern_setrlimit(td, uap->which, &lim);
477 	return (error);
478 }
479 
480 #ifndef _SYS_SYSPROTO_H_
481 struct ogetrlimit_args {
482 	u_int	which;
483 	struct	orlimit *rlp;
484 };
485 #endif
486 /*
487  * MPSAFE
488  */
489 int
490 ogetrlimit(td, uap)
491 	struct thread *td;
492 	register struct ogetrlimit_args *uap;
493 {
494 	struct orlimit olim;
495 	struct rlimit rl;
496 	struct proc *p;
497 	int error;
498 
499 	if (uap->which >= RLIM_NLIMITS)
500 		return (EINVAL);
501 	p = td->td_proc;
502 	PROC_LOCK(p);
503 	lim_rlimit(p, uap->which, &rl);
504 	PROC_UNLOCK(p);
505 
506 	/*
507 	 * XXX would be more correct to convert only RLIM_INFINITY to the
508 	 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
509 	 * values.  Most 64->32 and 32->16 conversions, including not
510 	 * unimportant ones of uids are even more broken than what we
511 	 * do here (they blindly truncate).  We don't do this correctly
512 	 * here since we have little experience with EOVERFLOW yet.
513 	 * Elsewhere, getuid() can't fail...
514 	 */
515 	olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
516 	olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
517 	error = copyout(&olim, uap->rlp, sizeof(olim));
518 	return (error);
519 }
520 #endif /* COMPAT_43 */
521 
522 #ifndef _SYS_SYSPROTO_H_
523 struct __setrlimit_args {
524 	u_int	which;
525 	struct	rlimit *rlp;
526 };
527 #endif
528 /*
529  * MPSAFE
530  */
531 int
532 setrlimit(td, uap)
533 	struct thread *td;
534 	register struct __setrlimit_args *uap;
535 {
536 	struct rlimit alim;
537 	int error;
538 
539 	if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
540 		return (error);
541 	error = kern_setrlimit(td, uap->which, &alim);
542 	return (error);
543 }
544 
545 int
546 kern_setrlimit(td, which, limp)
547 	struct thread *td;
548 	u_int which;
549 	struct rlimit *limp;
550 {
551 	struct plimit *newlim, *oldlim;
552 	struct proc *p;
553 	register struct rlimit *alimp;
554 	rlim_t oldssiz;
555 	int error;
556 
557 	if (which >= RLIM_NLIMITS)
558 		return (EINVAL);
559 
560 	/*
561 	 * Preserve historical bugs by treating negative limits as unsigned.
562 	 */
563 	if (limp->rlim_cur < 0)
564 		limp->rlim_cur = RLIM_INFINITY;
565 	if (limp->rlim_max < 0)
566 		limp->rlim_max = RLIM_INFINITY;
567 
568 	oldssiz = 0;
569 	p = td->td_proc;
570 	newlim = lim_alloc();
571 	PROC_LOCK(p);
572 	oldlim = p->p_limit;
573 	alimp = &oldlim->pl_rlimit[which];
574 	if (limp->rlim_cur > alimp->rlim_max ||
575 	    limp->rlim_max > alimp->rlim_max)
576 		if ((error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL))) {
577 			PROC_UNLOCK(p);
578 			lim_free(newlim);
579 			return (error);
580 		}
581 	if (limp->rlim_cur > limp->rlim_max)
582 		limp->rlim_cur = limp->rlim_max;
583 	lim_copy(newlim, oldlim);
584 	alimp = &newlim->pl_rlimit[which];
585 
586 	switch (which) {
587 
588 	case RLIMIT_CPU:
589 		mtx_lock_spin(&sched_lock);
590 		p->p_cpulimit = limp->rlim_cur;
591 		mtx_unlock_spin(&sched_lock);
592 		break;
593 	case RLIMIT_DATA:
594 		if (limp->rlim_cur > maxdsiz)
595 			limp->rlim_cur = maxdsiz;
596 		if (limp->rlim_max > maxdsiz)
597 			limp->rlim_max = maxdsiz;
598 		break;
599 
600 	case RLIMIT_STACK:
601 		if (limp->rlim_cur > maxssiz)
602 			limp->rlim_cur = maxssiz;
603 		if (limp->rlim_max > maxssiz)
604 			limp->rlim_max = maxssiz;
605 		oldssiz = alimp->rlim_cur;
606 		break;
607 
608 	case RLIMIT_NOFILE:
609 		if (limp->rlim_cur > maxfilesperproc)
610 			limp->rlim_cur = maxfilesperproc;
611 		if (limp->rlim_max > maxfilesperproc)
612 			limp->rlim_max = maxfilesperproc;
613 		break;
614 
615 	case RLIMIT_NPROC:
616 		if (limp->rlim_cur > maxprocperuid)
617 			limp->rlim_cur = maxprocperuid;
618 		if (limp->rlim_max > maxprocperuid)
619 			limp->rlim_max = maxprocperuid;
620 		if (limp->rlim_cur < 1)
621 			limp->rlim_cur = 1;
622 		if (limp->rlim_max < 1)
623 			limp->rlim_max = 1;
624 		break;
625 	}
626 	*alimp = *limp;
627 	p->p_limit = newlim;
628 	PROC_UNLOCK(p);
629 	lim_free(oldlim);
630 
631 	if (which == RLIMIT_STACK) {
632 		/*
633 		 * Stack is allocated to the max at exec time with only
634 		 * "rlim_cur" bytes accessible.  If stack limit is going
635 		 * up make more accessible, if going down make inaccessible.
636 		 */
637 		if (limp->rlim_cur != oldssiz) {
638 			vm_offset_t addr;
639 			vm_size_t size;
640 			vm_prot_t prot;
641 
642 			if (limp->rlim_cur > oldssiz) {
643 				prot = p->p_sysent->sv_stackprot;
644 				size = limp->rlim_cur - oldssiz;
645 				addr = p->p_sysent->sv_usrstack -
646 				    limp->rlim_cur;
647 			} else {
648 				prot = VM_PROT_NONE;
649 				size = oldssiz - limp->rlim_cur;
650 				addr = p->p_sysent->sv_usrstack - oldssiz;
651 			}
652 			addr = trunc_page(addr);
653 			size = round_page(size);
654 			(void)vm_map_protect(&p->p_vmspace->vm_map,
655 			    addr, addr + size, prot, FALSE);
656 		}
657 	}
658 
659 	/*
660 	 * The data size limit may need to be changed to a value
661 	 * that makes sense for the 32 bit binary.
662 	 */
663 	if (p->p_sysent->sv_fixlimits != NULL)
664 		p->p_sysent->sv_fixlimits(p);
665 	return (0);
666 }
667 
668 #ifndef _SYS_SYSPROTO_H_
669 struct __getrlimit_args {
670 	u_int	which;
671 	struct	rlimit *rlp;
672 };
673 #endif
674 /*
675  * MPSAFE
676  */
677 /* ARGSUSED */
678 int
679 getrlimit(td, uap)
680 	struct thread *td;
681 	register struct __getrlimit_args *uap;
682 {
683 	struct rlimit rlim;
684 	struct proc *p;
685 	int error;
686 
687 	if (uap->which >= RLIM_NLIMITS)
688 		return (EINVAL);
689 	p = td->td_proc;
690 	PROC_LOCK(p);
691 	lim_rlimit(p, uap->which, &rlim);
692 	PROC_UNLOCK(p);
693 	error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
694 	return (error);
695 }
696 
697 /*
698  * Transform the running time and tick information for children of proc p
699  * into user and system time usage.
700  */
701 void
702 calccru(p, up, sp)
703 	struct proc *p;
704 	struct timeval *up;
705 	struct timeval *sp;
706 {
707 
708 	PROC_LOCK_ASSERT(p, MA_OWNED);
709 	calcru1(p, &p->p_crux, up, sp);
710 }
711 
712 /*
713  * Transform the running time and tick information in proc p into user
714  * and system time usage.  If appropriate, include the current time slice
715  * on this CPU.
716  */
717 void
718 calcru(struct proc *p, struct timeval *up, struct timeval *sp)
719 {
720 	struct rusage_ext rux;
721 	struct thread *td;
722 	uint64_t u;
723 
724 	PROC_LOCK_ASSERT(p, MA_OWNED);
725 	mtx_assert(&sched_lock, MA_NOTOWNED);
726 	mtx_lock_spin(&sched_lock);
727 
728 	/*
729 	 * If we are getting stats for the current process, then add in the
730 	 * stats that this thread has accumulated in its current time slice.
731 	 * We reset the thread and CPU state as if we had performed a context
732 	 * switch right here.
733 	 */
734 	if (curthread->td_proc == p) {
735 		td = curthread;
736 		u = cpu_ticks();
737 		p->p_rux.rux_runtime += u - PCPU_GET(switchtime);
738 		PCPU_SET(switchtime, u);
739 		p->p_rux.rux_uticks += td->td_uticks;
740 		td->td_uticks = 0;
741 		p->p_rux.rux_iticks += td->td_iticks;
742 		td->td_iticks = 0;
743 		p->p_rux.rux_sticks += td->td_sticks;
744 		td->td_sticks = 0;
745 	}
746 	/* Work on a copy of p_rux so we can let go of sched_lock */
747 	rux = p->p_rux;
748 	mtx_unlock_spin(&sched_lock);
749 	calcru1(p, &rux, up, sp);
750 	/* Update the result from the p_rux copy */
751 	p->p_rux.rux_uu = rux.rux_uu;
752 	p->p_rux.rux_su = rux.rux_su;
753 	p->p_rux.rux_tu = rux.rux_tu;
754 }
755 
756 static void
757 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
758     struct timeval *sp)
759 {
760 	/* {user, system, interrupt, total} {ticks, usec}: */
761 	u_int64_t ut, uu, st, su, it, tt, tu;
762 
763 	ut = ruxp->rux_uticks;
764 	st = ruxp->rux_sticks;
765 	it = ruxp->rux_iticks;
766 	tt = ut + st + it;
767 	if (tt == 0) {
768 		/* Avoid divide by zero */
769 		st = 1;
770 		tt = 1;
771 	}
772 	tu = cputick2usec(ruxp->rux_runtime);
773 	if ((int64_t)tu < 0) {
774 		/* XXX: this should be an assert /phk */
775 		printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
776 		    (intmax_t)tu, p->p_pid, p->p_comm);
777 		tu = ruxp->rux_tu;
778 	}
779 
780 	if (tu >= ruxp->rux_tu) {
781 		/*
782 		 * The normal case, time increased.
783 		 * Enforce monotonicity of bucketed numbers.
784 		 */
785 		uu = (tu * ut) / tt;
786 		if (uu < ruxp->rux_uu)
787 			uu = ruxp->rux_uu;
788 		su = (tu * st) / tt;
789 		if (su < ruxp->rux_su)
790 			su = ruxp->rux_su;
791 	} else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
792 		/*
793 		 * When we calibrate the cputicker, it is not uncommon to
794 		 * see the presumably fixed frequency increase slightly over
795 		 * time as a result of thermal stabilization and NTP
796 		 * discipline (of the reference clock).  We therefore ignore
797 		 * a bit of backwards slop because we  expect to catch up
798  		 * shortly.  We use a 3 microsecond limit to catch low
799 		 * counts and a 1% limit for high counts.
800 		 */
801 		uu = ruxp->rux_uu;
802 		su = ruxp->rux_su;
803 		tu = ruxp->rux_tu;
804 	} else { /* tu < ruxp->rux_tu */
805 		/*
806 		 * What happene here was likely that a laptop, which ran at
807 		 * a reduced clock frequency at boot, kicked into high gear.
808 		 * The wisdom of spamming this message in that case is
809 		 * dubious, but it might also be indicative of something
810 		 * serious, so lets keep it and hope laptops can be made
811 		 * more truthful about their CPU speed via ACPI.
812 		 */
813 		printf("calcru: runtime went backwards from %ju usec "
814 		    "to %ju usec for pid %d (%s)\n",
815 		    (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
816 		    p->p_pid, p->p_comm);
817 		uu = (tu * ut) / tt;
818 		su = (tu * st) / tt;
819 	}
820 
821 	ruxp->rux_uu = uu;
822 	ruxp->rux_su = su;
823 	ruxp->rux_tu = tu;
824 
825 	up->tv_sec = uu / 1000000;
826 	up->tv_usec = uu % 1000000;
827 	sp->tv_sec = su / 1000000;
828 	sp->tv_usec = su % 1000000;
829 }
830 
831 #ifndef _SYS_SYSPROTO_H_
832 struct getrusage_args {
833 	int	who;
834 	struct	rusage *rusage;
835 };
836 #endif
837 /*
838  * MPSAFE
839  */
840 int
841 getrusage(td, uap)
842 	register struct thread *td;
843 	register struct getrusage_args *uap;
844 {
845 	struct rusage ru;
846 	int error;
847 
848 	error = kern_getrusage(td, uap->who, &ru);
849 	if (error == 0)
850 		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
851 	return (error);
852 }
853 
854 int
855 kern_getrusage(td, who, rup)
856 	struct thread *td;
857 	int who;
858 	struct rusage *rup;
859 {
860 	struct proc *p;
861 
862 	p = td->td_proc;
863 	PROC_LOCK(p);
864 	switch (who) {
865 
866 	case RUSAGE_SELF:
867 		*rup = p->p_stats->p_ru;
868 		calcru(p, &rup->ru_utime, &rup->ru_stime);
869 		break;
870 
871 	case RUSAGE_CHILDREN:
872 		*rup = p->p_stats->p_cru;
873 		calccru(p, &rup->ru_utime, &rup->ru_stime);
874 		break;
875 
876 	default:
877 		PROC_UNLOCK(p);
878 		return (EINVAL);
879 	}
880 	PROC_UNLOCK(p);
881 	return (0);
882 }
883 
884 void
885 ruadd(ru, rux, ru2, rux2)
886 	struct rusage *ru;
887 	struct rusage_ext *rux;
888 	struct rusage *ru2;
889 	struct rusage_ext *rux2;
890 {
891 	register long *ip, *ip2;
892 	register int i;
893 
894 	rux->rux_runtime += rux2->rux_runtime;
895 	rux->rux_uticks += rux2->rux_uticks;
896 	rux->rux_sticks += rux2->rux_sticks;
897 	rux->rux_iticks += rux2->rux_iticks;
898 	rux->rux_uu += rux2->rux_uu;
899 	rux->rux_su += rux2->rux_su;
900 	rux->rux_tu += rux2->rux_tu;
901 	if (ru->ru_maxrss < ru2->ru_maxrss)
902 		ru->ru_maxrss = ru2->ru_maxrss;
903 	ip = &ru->ru_first;
904 	ip2 = &ru2->ru_first;
905 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
906 		*ip++ += *ip2++;
907 }
908 
909 /*
910  * Allocate a new resource limits structure and initialize its
911  * reference count and mutex pointer.
912  */
913 struct plimit *
914 lim_alloc()
915 {
916 	struct plimit *limp;
917 
918 	limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
919 	refcount_init(&limp->pl_refcnt, 1);
920 	return (limp);
921 }
922 
923 struct plimit *
924 lim_hold(limp)
925 	struct plimit *limp;
926 {
927 
928 	refcount_acquire(&limp->pl_refcnt);
929 	return (limp);
930 }
931 
932 void
933 lim_free(limp)
934 	struct plimit *limp;
935 {
936 
937 	KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
938 	if (refcount_release(&limp->pl_refcnt))
939 		free((void *)limp, M_PLIMIT);
940 }
941 
942 /*
943  * Make a copy of the plimit structure.
944  * We share these structures copy-on-write after fork.
945  */
946 void
947 lim_copy(dst, src)
948 	struct plimit *dst, *src;
949 {
950 
951 	KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
952 	bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
953 }
954 
955 /*
956  * Return the hard limit for a particular system resource.  The
957  * which parameter specifies the index into the rlimit array.
958  */
959 rlim_t
960 lim_max(struct proc *p, int which)
961 {
962 	struct rlimit rl;
963 
964 	lim_rlimit(p, which, &rl);
965 	return (rl.rlim_max);
966 }
967 
968 /*
969  * Return the current (soft) limit for a particular system resource.
970  * The which parameter which specifies the index into the rlimit array
971  */
972 rlim_t
973 lim_cur(struct proc *p, int which)
974 {
975 	struct rlimit rl;
976 
977 	lim_rlimit(p, which, &rl);
978 	return (rl.rlim_cur);
979 }
980 
981 /*
982  * Return a copy of the entire rlimit structure for the system limit
983  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
984  */
985 void
986 lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
987 {
988 
989 	PROC_LOCK_ASSERT(p, MA_OWNED);
990 	KASSERT(which >= 0 && which < RLIM_NLIMITS,
991 	    ("request for invalid resource limit"));
992 	*rlp = p->p_limit->pl_rlimit[which];
993 }
994 
995 /*
996  * Find the uidinfo structure for a uid.  This structure is used to
997  * track the total resource consumption (process count, socket buffer
998  * size, etc.) for the uid and impose limits.
999  */
1000 void
1001 uihashinit()
1002 {
1003 
1004 	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
1005 	mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF);
1006 }
1007 
1008 /*
1009  * Look up a uidinfo struct for the parameter uid.
1010  * uihashtbl_mtx must be locked.
1011  */
1012 static struct uidinfo *
1013 uilookup(uid)
1014 	uid_t uid;
1015 {
1016 	struct uihashhead *uipp;
1017 	struct uidinfo *uip;
1018 
1019 	mtx_assert(&uihashtbl_mtx, MA_OWNED);
1020 	uipp = UIHASH(uid);
1021 	LIST_FOREACH(uip, uipp, ui_hash)
1022 		if (uip->ui_uid == uid)
1023 			break;
1024 
1025 	return (uip);
1026 }
1027 
1028 /*
1029  * Find or allocate a struct uidinfo for a particular uid.
1030  * Increase refcount on uidinfo struct returned.
1031  * uifree() should be called on a struct uidinfo when released.
1032  */
1033 struct uidinfo *
1034 uifind(uid)
1035 	uid_t uid;
1036 {
1037 	struct uidinfo *old_uip, *uip;
1038 
1039 	mtx_lock(&uihashtbl_mtx);
1040 	uip = uilookup(uid);
1041 	if (uip == NULL) {
1042 		mtx_unlock(&uihashtbl_mtx);
1043 		uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
1044 		mtx_lock(&uihashtbl_mtx);
1045 		/*
1046 		 * There's a chance someone created our uidinfo while we
1047 		 * were in malloc and not holding the lock, so we have to
1048 		 * make sure we don't insert a duplicate uidinfo.
1049 		 */
1050 		if ((old_uip = uilookup(uid)) != NULL) {
1051 			/* Someone else beat us to it. */
1052 			free(uip, M_UIDINFO);
1053 			uip = old_uip;
1054 		} else {
1055 			uip->ui_mtxp = mtx_pool_alloc(mtxpool_sleep);
1056 			uip->ui_uid = uid;
1057 			LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
1058 		}
1059 	}
1060 	uihold(uip);
1061 	mtx_unlock(&uihashtbl_mtx);
1062 	return (uip);
1063 }
1064 
1065 /*
1066  * Place another refcount on a uidinfo struct.
1067  */
1068 void
1069 uihold(uip)
1070 	struct uidinfo *uip;
1071 {
1072 
1073 	UIDINFO_LOCK(uip);
1074 	uip->ui_ref++;
1075 	UIDINFO_UNLOCK(uip);
1076 }
1077 
1078 /*-
1079  * Since uidinfo structs have a long lifetime, we use an
1080  * opportunistic refcounting scheme to avoid locking the lookup hash
1081  * for each release.
1082  *
1083  * If the refcount hits 0, we need to free the structure,
1084  * which means we need to lock the hash.
1085  * Optimal case:
1086  *   After locking the struct and lowering the refcount, if we find
1087  *   that we don't need to free, simply unlock and return.
1088  * Suboptimal case:
1089  *   If refcount lowering results in need to free, bump the count
1090  *   back up, loose the lock and aquire the locks in the proper
1091  *   order to try again.
1092  */
1093 void
1094 uifree(uip)
1095 	struct uidinfo *uip;
1096 {
1097 
1098 	/* Prepare for optimal case. */
1099 	UIDINFO_LOCK(uip);
1100 
1101 	if (--uip->ui_ref != 0) {
1102 		UIDINFO_UNLOCK(uip);
1103 		return;
1104 	}
1105 
1106 	/* Prepare for suboptimal case. */
1107 	uip->ui_ref++;
1108 	UIDINFO_UNLOCK(uip);
1109 	mtx_lock(&uihashtbl_mtx);
1110 	UIDINFO_LOCK(uip);
1111 
1112 	/*
1113 	 * We must subtract one from the count again because we backed out
1114 	 * our initial subtraction before dropping the lock.
1115 	 * Since another thread may have added a reference after we dropped the
1116 	 * initial lock we have to test for zero again.
1117 	 */
1118 	if (--uip->ui_ref == 0) {
1119 		LIST_REMOVE(uip, ui_hash);
1120 		mtx_unlock(&uihashtbl_mtx);
1121 		if (uip->ui_sbsize != 0)
1122 			printf("freeing uidinfo: uid = %d, sbsize = %jd\n",
1123 			    uip->ui_uid, (intmax_t)uip->ui_sbsize);
1124 		if (uip->ui_proccnt != 0)
1125 			printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1126 			    uip->ui_uid, uip->ui_proccnt);
1127 		UIDINFO_UNLOCK(uip);
1128 		FREE(uip, M_UIDINFO);
1129 		return;
1130 	}
1131 
1132 	mtx_unlock(&uihashtbl_mtx);
1133 	UIDINFO_UNLOCK(uip);
1134 }
1135 
1136 /*
1137  * Change the count associated with number of processes
1138  * a given user is using.  When 'max' is 0, don't enforce a limit
1139  */
1140 int
1141 chgproccnt(uip, diff, max)
1142 	struct	uidinfo	*uip;
1143 	int	diff;
1144 	int	max;
1145 {
1146 
1147 	UIDINFO_LOCK(uip);
1148 	/* Don't allow them to exceed max, but allow subtraction. */
1149 	if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) {
1150 		UIDINFO_UNLOCK(uip);
1151 		return (0);
1152 	}
1153 	uip->ui_proccnt += diff;
1154 	if (uip->ui_proccnt < 0)
1155 		printf("negative proccnt for uid = %d\n", uip->ui_uid);
1156 	UIDINFO_UNLOCK(uip);
1157 	return (1);
1158 }
1159 
1160 /*
1161  * Change the total socket buffer size a user has used.
1162  */
1163 int
1164 chgsbsize(uip, hiwat, to, max)
1165 	struct	uidinfo	*uip;
1166 	u_int  *hiwat;
1167 	u_int	to;
1168 	rlim_t	max;
1169 {
1170 	rlim_t new;
1171 
1172 	UIDINFO_LOCK(uip);
1173 	new = uip->ui_sbsize + to - *hiwat;
1174 	/* Don't allow them to exceed max, but allow subtraction. */
1175 	if (to > *hiwat && new > max) {
1176 		UIDINFO_UNLOCK(uip);
1177 		return (0);
1178 	}
1179 	uip->ui_sbsize = new;
1180 	UIDINFO_UNLOCK(uip);
1181 	*hiwat = to;
1182 	if (new < 0)
1183 		printf("negative sbsize for uid = %d\n", uip->ui_uid);
1184 	return (1);
1185 }
1186