xref: /freebsd/sys/kern/kern_resource.c (revision c6a33c8e88c5684876e670c8189d03ad25108d8a)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_resource.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysproto.h>
45 #include <sys/file.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/refcount.h>
53 #include <sys/racct.h>
54 #include <sys/resourcevar.h>
55 #include <sys/rwlock.h>
56 #include <sys/sched.h>
57 #include <sys/sx.h>
58 #include <sys/syscallsubr.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysent.h>
61 #include <sys/time.h>
62 #include <sys/umtx.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/pmap.h>
67 #include <vm/vm_map.h>
68 
69 
70 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
71 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
72 #define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
73 static struct rwlock uihashtbl_lock;
74 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
75 static u_long uihash;		/* size of hash table - 1 */
76 
77 static void	calcru1(struct proc *p, struct rusage_ext *ruxp,
78 		    struct timeval *up, struct timeval *sp);
79 static int	donice(struct thread *td, struct proc *chgp, int n);
80 static struct uidinfo *uilookup(uid_t uid);
81 static void	ruxagg_locked(struct rusage_ext *rux, struct thread *td);
82 
83 static __inline int	lim_shared(struct plimit *limp);
84 
85 /*
86  * Resource controls and accounting.
87  */
88 #ifndef _SYS_SYSPROTO_H_
89 struct getpriority_args {
90 	int	which;
91 	int	who;
92 };
93 #endif
94 int
95 sys_getpriority(struct thread *td, register struct getpriority_args *uap)
96 {
97 	struct proc *p;
98 	struct pgrp *pg;
99 	int error, low;
100 
101 	error = 0;
102 	low = PRIO_MAX + 1;
103 	switch (uap->which) {
104 
105 	case PRIO_PROCESS:
106 		if (uap->who == 0)
107 			low = td->td_proc->p_nice;
108 		else {
109 			p = pfind(uap->who);
110 			if (p == NULL)
111 				break;
112 			if (p_cansee(td, p) == 0)
113 				low = p->p_nice;
114 			PROC_UNLOCK(p);
115 		}
116 		break;
117 
118 	case PRIO_PGRP:
119 		sx_slock(&proctree_lock);
120 		if (uap->who == 0) {
121 			pg = td->td_proc->p_pgrp;
122 			PGRP_LOCK(pg);
123 		} else {
124 			pg = pgfind(uap->who);
125 			if (pg == NULL) {
126 				sx_sunlock(&proctree_lock);
127 				break;
128 			}
129 		}
130 		sx_sunlock(&proctree_lock);
131 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
132 			PROC_LOCK(p);
133 			if (p->p_state == PRS_NORMAL &&
134 			    p_cansee(td, p) == 0) {
135 				if (p->p_nice < low)
136 					low = p->p_nice;
137 			}
138 			PROC_UNLOCK(p);
139 		}
140 		PGRP_UNLOCK(pg);
141 		break;
142 
143 	case PRIO_USER:
144 		if (uap->who == 0)
145 			uap->who = td->td_ucred->cr_uid;
146 		sx_slock(&allproc_lock);
147 		FOREACH_PROC_IN_SYSTEM(p) {
148 			PROC_LOCK(p);
149 			if (p->p_state == PRS_NORMAL &&
150 			    p_cansee(td, p) == 0 &&
151 			    p->p_ucred->cr_uid == uap->who) {
152 				if (p->p_nice < low)
153 					low = p->p_nice;
154 			}
155 			PROC_UNLOCK(p);
156 		}
157 		sx_sunlock(&allproc_lock);
158 		break;
159 
160 	default:
161 		error = EINVAL;
162 		break;
163 	}
164 	if (low == PRIO_MAX + 1 && error == 0)
165 		error = ESRCH;
166 	td->td_retval[0] = low;
167 	return (error);
168 }
169 
170 #ifndef _SYS_SYSPROTO_H_
171 struct setpriority_args {
172 	int	which;
173 	int	who;
174 	int	prio;
175 };
176 #endif
177 int
178 sys_setpriority(struct thread *td, struct setpriority_args *uap)
179 {
180 	struct proc *curp, *p;
181 	struct pgrp *pg;
182 	int found = 0, error = 0;
183 
184 	curp = td->td_proc;
185 	switch (uap->which) {
186 	case PRIO_PROCESS:
187 		if (uap->who == 0) {
188 			PROC_LOCK(curp);
189 			error = donice(td, curp, uap->prio);
190 			PROC_UNLOCK(curp);
191 		} else {
192 			p = pfind(uap->who);
193 			if (p == NULL)
194 				break;
195 			error = p_cansee(td, p);
196 			if (error == 0)
197 				error = donice(td, p, uap->prio);
198 			PROC_UNLOCK(p);
199 		}
200 		found++;
201 		break;
202 
203 	case PRIO_PGRP:
204 		sx_slock(&proctree_lock);
205 		if (uap->who == 0) {
206 			pg = curp->p_pgrp;
207 			PGRP_LOCK(pg);
208 		} else {
209 			pg = pgfind(uap->who);
210 			if (pg == NULL) {
211 				sx_sunlock(&proctree_lock);
212 				break;
213 			}
214 		}
215 		sx_sunlock(&proctree_lock);
216 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
217 			PROC_LOCK(p);
218 			if (p->p_state == PRS_NORMAL &&
219 			    p_cansee(td, p) == 0) {
220 				error = donice(td, p, uap->prio);
221 				found++;
222 			}
223 			PROC_UNLOCK(p);
224 		}
225 		PGRP_UNLOCK(pg);
226 		break;
227 
228 	case PRIO_USER:
229 		if (uap->who == 0)
230 			uap->who = td->td_ucred->cr_uid;
231 		sx_slock(&allproc_lock);
232 		FOREACH_PROC_IN_SYSTEM(p) {
233 			PROC_LOCK(p);
234 			if (p->p_state == PRS_NORMAL &&
235 			    p->p_ucred->cr_uid == uap->who &&
236 			    p_cansee(td, p) == 0) {
237 				error = donice(td, p, uap->prio);
238 				found++;
239 			}
240 			PROC_UNLOCK(p);
241 		}
242 		sx_sunlock(&allproc_lock);
243 		break;
244 
245 	default:
246 		error = EINVAL;
247 		break;
248 	}
249 	if (found == 0 && error == 0)
250 		error = ESRCH;
251 	return (error);
252 }
253 
254 /*
255  * Set "nice" for a (whole) process.
256  */
257 static int
258 donice(struct thread *td, struct proc *p, int n)
259 {
260 	int error;
261 
262 	PROC_LOCK_ASSERT(p, MA_OWNED);
263 	if ((error = p_cansched(td, p)))
264 		return (error);
265 	if (n > PRIO_MAX)
266 		n = PRIO_MAX;
267 	if (n < PRIO_MIN)
268 		n = PRIO_MIN;
269 	if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
270 		return (EACCES);
271 	sched_nice(p, n);
272 	return (0);
273 }
274 
275 static int unprivileged_idprio;
276 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW,
277     &unprivileged_idprio, 0, "Allow non-root users to set an idle priority");
278 
279 /*
280  * Set realtime priority for LWP.
281  */
282 #ifndef _SYS_SYSPROTO_H_
283 struct rtprio_thread_args {
284 	int		function;
285 	lwpid_t		lwpid;
286 	struct rtprio	*rtp;
287 };
288 #endif
289 int
290 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
291 {
292 	struct proc *p;
293 	struct rtprio rtp;
294 	struct thread *td1;
295 	int cierror, error;
296 
297 	/* Perform copyin before acquiring locks if needed. */
298 	if (uap->function == RTP_SET)
299 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
300 	else
301 		cierror = 0;
302 
303 	if (uap->lwpid == 0 || uap->lwpid == td->td_tid) {
304 		p = td->td_proc;
305 		td1 = td;
306 		PROC_LOCK(p);
307 	} else {
308 		/* Only look up thread in current process */
309 		td1 = tdfind(uap->lwpid, curproc->p_pid);
310 		if (td1 == NULL)
311 			return (ESRCH);
312 		p = td1->td_proc;
313 	}
314 
315 	switch (uap->function) {
316 	case RTP_LOOKUP:
317 		if ((error = p_cansee(td, p)))
318 			break;
319 		pri_to_rtp(td1, &rtp);
320 		PROC_UNLOCK(p);
321 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
322 	case RTP_SET:
323 		if ((error = p_cansched(td, p)) || (error = cierror))
324 			break;
325 
326 		/* Disallow setting rtprio in most cases if not superuser. */
327 
328 		/*
329 		 * Realtime priority has to be restricted for reasons which
330 		 * should be obvious.  However, for idleprio processes, there is
331 		 * a potential for system deadlock if an idleprio process gains
332 		 * a lock on a resource that other processes need (and the
333 		 * idleprio process can't run due to a CPU-bound normal
334 		 * process).  Fix me!  XXX
335 		 *
336 		 * This problem is not only related to idleprio process.
337 		 * A user level program can obtain a file lock and hold it
338 		 * indefinitely.  Additionally, without idleprio processes it is
339 		 * still conceivable that a program with low priority will never
340 		 * get to run.  In short, allowing this feature might make it
341 		 * easier to lock a resource indefinitely, but it is not the
342 		 * only thing that makes it possible.
343 		 */
344 		if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
345 		    (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
346 		    unprivileged_idprio == 0)) {
347 			error = priv_check(td, PRIV_SCHED_RTPRIO);
348 			if (error)
349 				break;
350 		}
351 		error = rtp_to_pri(&rtp, td1);
352 		break;
353 	default:
354 		error = EINVAL;
355 		break;
356 	}
357 	PROC_UNLOCK(p);
358 	return (error);
359 }
360 
361 /*
362  * Set realtime priority.
363  */
364 #ifndef _SYS_SYSPROTO_H_
365 struct rtprio_args {
366 	int		function;
367 	pid_t		pid;
368 	struct rtprio	*rtp;
369 };
370 #endif
371 int
372 sys_rtprio(struct thread *td, register struct rtprio_args *uap)
373 {
374 	struct proc *p;
375 	struct thread *tdp;
376 	struct rtprio rtp;
377 	int cierror, error;
378 
379 	/* Perform copyin before acquiring locks if needed. */
380 	if (uap->function == RTP_SET)
381 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
382 	else
383 		cierror = 0;
384 
385 	if (uap->pid == 0) {
386 		p = td->td_proc;
387 		PROC_LOCK(p);
388 	} else {
389 		p = pfind(uap->pid);
390 		if (p == NULL)
391 			return (ESRCH);
392 	}
393 
394 	switch (uap->function) {
395 	case RTP_LOOKUP:
396 		if ((error = p_cansee(td, p)))
397 			break;
398 		/*
399 		 * Return OUR priority if no pid specified,
400 		 * or if one is, report the highest priority
401 		 * in the process.  There isn't much more you can do as
402 		 * there is only room to return a single priority.
403 		 * Note: specifying our own pid is not the same
404 		 * as leaving it zero.
405 		 */
406 		if (uap->pid == 0) {
407 			pri_to_rtp(td, &rtp);
408 		} else {
409 			struct rtprio rtp2;
410 
411 			rtp.type = RTP_PRIO_IDLE;
412 			rtp.prio = RTP_PRIO_MAX;
413 			FOREACH_THREAD_IN_PROC(p, tdp) {
414 				pri_to_rtp(tdp, &rtp2);
415 				if (rtp2.type <  rtp.type ||
416 				    (rtp2.type == rtp.type &&
417 				    rtp2.prio < rtp.prio)) {
418 					rtp.type = rtp2.type;
419 					rtp.prio = rtp2.prio;
420 				}
421 			}
422 		}
423 		PROC_UNLOCK(p);
424 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
425 	case RTP_SET:
426 		if ((error = p_cansched(td, p)) || (error = cierror))
427 			break;
428 
429 		/*
430 		 * Disallow setting rtprio in most cases if not superuser.
431 		 * See the comment in sys_rtprio_thread about idprio
432 		 * threads holding a lock.
433 		 */
434 		if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
435 		    (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
436 		    !unprivileged_idprio)) {
437 			error = priv_check(td, PRIV_SCHED_RTPRIO);
438 			if (error)
439 				break;
440 		}
441 
442 		/*
443 		 * If we are setting our own priority, set just our
444 		 * thread but if we are doing another process,
445 		 * do all the threads on that process. If we
446 		 * specify our own pid we do the latter.
447 		 */
448 		if (uap->pid == 0) {
449 			error = rtp_to_pri(&rtp, td);
450 		} else {
451 			FOREACH_THREAD_IN_PROC(p, td) {
452 				if ((error = rtp_to_pri(&rtp, td)) != 0)
453 					break;
454 			}
455 		}
456 		break;
457 	default:
458 		error = EINVAL;
459 		break;
460 	}
461 	PROC_UNLOCK(p);
462 	return (error);
463 }
464 
465 int
466 rtp_to_pri(struct rtprio *rtp, struct thread *td)
467 {
468 	u_char  newpri, oldclass, oldpri;
469 
470 	switch (RTP_PRIO_BASE(rtp->type)) {
471 	case RTP_PRIO_REALTIME:
472 		if (rtp->prio > RTP_PRIO_MAX)
473 			return (EINVAL);
474 		newpri = PRI_MIN_REALTIME + rtp->prio;
475 		break;
476 	case RTP_PRIO_NORMAL:
477 		if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE))
478 			return (EINVAL);
479 		newpri = PRI_MIN_TIMESHARE + rtp->prio;
480 		break;
481 	case RTP_PRIO_IDLE:
482 		if (rtp->prio > RTP_PRIO_MAX)
483 			return (EINVAL);
484 		newpri = PRI_MIN_IDLE + rtp->prio;
485 		break;
486 	default:
487 		return (EINVAL);
488 	}
489 
490 	thread_lock(td);
491 	oldclass = td->td_pri_class;
492 	sched_class(td, rtp->type);	/* XXX fix */
493 	oldpri = td->td_user_pri;
494 	sched_user_prio(td, newpri);
495 	if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL ||
496 	    td->td_pri_class != RTP_PRIO_NORMAL))
497 		sched_prio(td, td->td_user_pri);
498 	if (TD_ON_UPILOCK(td) && oldpri != newpri) {
499 		critical_enter();
500 		thread_unlock(td);
501 		umtx_pi_adjust(td, oldpri);
502 		critical_exit();
503 	} else
504 		thread_unlock(td);
505 	return (0);
506 }
507 
508 void
509 pri_to_rtp(struct thread *td, struct rtprio *rtp)
510 {
511 
512 	thread_lock(td);
513 	switch (PRI_BASE(td->td_pri_class)) {
514 	case PRI_REALTIME:
515 		rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
516 		break;
517 	case PRI_TIMESHARE:
518 		rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
519 		break;
520 	case PRI_IDLE:
521 		rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
522 		break;
523 	default:
524 		break;
525 	}
526 	rtp->type = td->td_pri_class;
527 	thread_unlock(td);
528 }
529 
530 #if defined(COMPAT_43)
531 #ifndef _SYS_SYSPROTO_H_
532 struct osetrlimit_args {
533 	u_int	which;
534 	struct	orlimit *rlp;
535 };
536 #endif
537 int
538 osetrlimit(struct thread *td, register struct osetrlimit_args *uap)
539 {
540 	struct orlimit olim;
541 	struct rlimit lim;
542 	int error;
543 
544 	if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
545 		return (error);
546 	lim.rlim_cur = olim.rlim_cur;
547 	lim.rlim_max = olim.rlim_max;
548 	error = kern_setrlimit(td, uap->which, &lim);
549 	return (error);
550 }
551 
552 #ifndef _SYS_SYSPROTO_H_
553 struct ogetrlimit_args {
554 	u_int	which;
555 	struct	orlimit *rlp;
556 };
557 #endif
558 int
559 ogetrlimit(struct thread *td, register struct ogetrlimit_args *uap)
560 {
561 	struct orlimit olim;
562 	struct rlimit rl;
563 	int error;
564 
565 	if (uap->which >= RLIM_NLIMITS)
566 		return (EINVAL);
567 	lim_rlimit(td, uap->which, &rl);
568 
569 	/*
570 	 * XXX would be more correct to convert only RLIM_INFINITY to the
571 	 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
572 	 * values.  Most 64->32 and 32->16 conversions, including not
573 	 * unimportant ones of uids are even more broken than what we
574 	 * do here (they blindly truncate).  We don't do this correctly
575 	 * here since we have little experience with EOVERFLOW yet.
576 	 * Elsewhere, getuid() can't fail...
577 	 */
578 	olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
579 	olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
580 	error = copyout(&olim, uap->rlp, sizeof(olim));
581 	return (error);
582 }
583 #endif /* COMPAT_43 */
584 
585 #ifndef _SYS_SYSPROTO_H_
586 struct __setrlimit_args {
587 	u_int	which;
588 	struct	rlimit *rlp;
589 };
590 #endif
591 int
592 sys_setrlimit(struct thread *td, register struct __setrlimit_args *uap)
593 {
594 	struct rlimit alim;
595 	int error;
596 
597 	if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
598 		return (error);
599 	error = kern_setrlimit(td, uap->which, &alim);
600 	return (error);
601 }
602 
603 static void
604 lim_cb(void *arg)
605 {
606 	struct rlimit rlim;
607 	struct thread *td;
608 	struct proc *p;
609 
610 	p = arg;
611 	PROC_LOCK_ASSERT(p, MA_OWNED);
612 	/*
613 	 * Check if the process exceeds its cpu resource allocation.  If
614 	 * it reaches the max, arrange to kill the process in ast().
615 	 */
616 	if (p->p_cpulimit == RLIM_INFINITY)
617 		return;
618 	PROC_STATLOCK(p);
619 	FOREACH_THREAD_IN_PROC(p, td) {
620 		ruxagg(p, td);
621 	}
622 	PROC_STATUNLOCK(p);
623 	if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
624 		lim_rlimit_proc(p, RLIMIT_CPU, &rlim);
625 		if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
626 			killproc(p, "exceeded maximum CPU limit");
627 		} else {
628 			if (p->p_cpulimit < rlim.rlim_max)
629 				p->p_cpulimit += 5;
630 			kern_psignal(p, SIGXCPU);
631 		}
632 	}
633 	if ((p->p_flag & P_WEXIT) == 0)
634 		callout_reset_sbt(&p->p_limco, SBT_1S, 0,
635 		    lim_cb, p, C_PREL(1));
636 }
637 
638 int
639 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp)
640 {
641 
642 	return (kern_proc_setrlimit(td, td->td_proc, which, limp));
643 }
644 
645 int
646 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which,
647     struct rlimit *limp)
648 {
649 	struct plimit *newlim, *oldlim;
650 	register struct rlimit *alimp;
651 	struct rlimit oldssiz;
652 	int error;
653 
654 	if (which >= RLIM_NLIMITS)
655 		return (EINVAL);
656 
657 	/*
658 	 * Preserve historical bugs by treating negative limits as unsigned.
659 	 */
660 	if (limp->rlim_cur < 0)
661 		limp->rlim_cur = RLIM_INFINITY;
662 	if (limp->rlim_max < 0)
663 		limp->rlim_max = RLIM_INFINITY;
664 
665 	oldssiz.rlim_cur = 0;
666 	newlim = lim_alloc();
667 	PROC_LOCK(p);
668 	oldlim = p->p_limit;
669 	alimp = &oldlim->pl_rlimit[which];
670 	if (limp->rlim_cur > alimp->rlim_max ||
671 	    limp->rlim_max > alimp->rlim_max)
672 		if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
673 			PROC_UNLOCK(p);
674 			lim_free(newlim);
675 			return (error);
676 		}
677 	if (limp->rlim_cur > limp->rlim_max)
678 		limp->rlim_cur = limp->rlim_max;
679 	lim_copy(newlim, oldlim);
680 	alimp = &newlim->pl_rlimit[which];
681 
682 	switch (which) {
683 
684 	case RLIMIT_CPU:
685 		if (limp->rlim_cur != RLIM_INFINITY &&
686 		    p->p_cpulimit == RLIM_INFINITY)
687 			callout_reset_sbt(&p->p_limco, SBT_1S, 0,
688 			    lim_cb, p, C_PREL(1));
689 		p->p_cpulimit = limp->rlim_cur;
690 		break;
691 	case RLIMIT_DATA:
692 		if (limp->rlim_cur > maxdsiz)
693 			limp->rlim_cur = maxdsiz;
694 		if (limp->rlim_max > maxdsiz)
695 			limp->rlim_max = maxdsiz;
696 		break;
697 
698 	case RLIMIT_STACK:
699 		if (limp->rlim_cur > maxssiz)
700 			limp->rlim_cur = maxssiz;
701 		if (limp->rlim_max > maxssiz)
702 			limp->rlim_max = maxssiz;
703 		oldssiz = *alimp;
704 		if (p->p_sysent->sv_fixlimit != NULL)
705 			p->p_sysent->sv_fixlimit(&oldssiz,
706 			    RLIMIT_STACK);
707 		break;
708 
709 	case RLIMIT_NOFILE:
710 		if (limp->rlim_cur > maxfilesperproc)
711 			limp->rlim_cur = maxfilesperproc;
712 		if (limp->rlim_max > maxfilesperproc)
713 			limp->rlim_max = maxfilesperproc;
714 		break;
715 
716 	case RLIMIT_NPROC:
717 		if (limp->rlim_cur > maxprocperuid)
718 			limp->rlim_cur = maxprocperuid;
719 		if (limp->rlim_max > maxprocperuid)
720 			limp->rlim_max = maxprocperuid;
721 		if (limp->rlim_cur < 1)
722 			limp->rlim_cur = 1;
723 		if (limp->rlim_max < 1)
724 			limp->rlim_max = 1;
725 		break;
726 	}
727 	if (p->p_sysent->sv_fixlimit != NULL)
728 		p->p_sysent->sv_fixlimit(limp, which);
729 	*alimp = *limp;
730 	p->p_limit = newlim;
731 	PROC_UPDATE_COW(p);
732 	PROC_UNLOCK(p);
733 	lim_free(oldlim);
734 
735 	if (which == RLIMIT_STACK &&
736 	    /*
737 	     * Skip calls from exec_new_vmspace(), done when stack is
738 	     * not mapped yet.
739 	     */
740 	    (td != curthread || (p->p_flag & P_INEXEC) == 0)) {
741 		/*
742 		 * Stack is allocated to the max at exec time with only
743 		 * "rlim_cur" bytes accessible.  If stack limit is going
744 		 * up make more accessible, if going down make inaccessible.
745 		 */
746 		if (limp->rlim_cur != oldssiz.rlim_cur) {
747 			vm_offset_t addr;
748 			vm_size_t size;
749 			vm_prot_t prot;
750 
751 			if (limp->rlim_cur > oldssiz.rlim_cur) {
752 				prot = p->p_sysent->sv_stackprot;
753 				size = limp->rlim_cur - oldssiz.rlim_cur;
754 				addr = p->p_sysent->sv_usrstack -
755 				    limp->rlim_cur;
756 			} else {
757 				prot = VM_PROT_NONE;
758 				size = oldssiz.rlim_cur - limp->rlim_cur;
759 				addr = p->p_sysent->sv_usrstack -
760 				    oldssiz.rlim_cur;
761 			}
762 			addr = trunc_page(addr);
763 			size = round_page(size);
764 			(void)vm_map_protect(&p->p_vmspace->vm_map,
765 			    addr, addr + size, prot, FALSE);
766 		}
767 	}
768 
769 	return (0);
770 }
771 
772 #ifndef _SYS_SYSPROTO_H_
773 struct __getrlimit_args {
774 	u_int	which;
775 	struct	rlimit *rlp;
776 };
777 #endif
778 /* ARGSUSED */
779 int
780 sys_getrlimit(struct thread *td, register struct __getrlimit_args *uap)
781 {
782 	struct rlimit rlim;
783 	int error;
784 
785 	if (uap->which >= RLIM_NLIMITS)
786 		return (EINVAL);
787 	lim_rlimit(td, uap->which, &rlim);
788 	error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
789 	return (error);
790 }
791 
792 /*
793  * Transform the running time and tick information for children of proc p
794  * into user and system time usage.
795  */
796 void
797 calccru(struct proc *p, struct timeval *up, struct timeval *sp)
798 {
799 
800 	PROC_LOCK_ASSERT(p, MA_OWNED);
801 	calcru1(p, &p->p_crux, up, sp);
802 }
803 
804 /*
805  * Transform the running time and tick information in proc p into user
806  * and system time usage.  If appropriate, include the current time slice
807  * on this CPU.
808  */
809 void
810 calcru(struct proc *p, struct timeval *up, struct timeval *sp)
811 {
812 	struct thread *td;
813 	uint64_t runtime, u;
814 
815 	PROC_LOCK_ASSERT(p, MA_OWNED);
816 	PROC_STATLOCK_ASSERT(p, MA_OWNED);
817 	/*
818 	 * If we are getting stats for the current process, then add in the
819 	 * stats that this thread has accumulated in its current time slice.
820 	 * We reset the thread and CPU state as if we had performed a context
821 	 * switch right here.
822 	 */
823 	td = curthread;
824 	if (td->td_proc == p) {
825 		u = cpu_ticks();
826 		runtime = u - PCPU_GET(switchtime);
827 		td->td_runtime += runtime;
828 		td->td_incruntime += runtime;
829 		PCPU_SET(switchtime, u);
830 	}
831 	/* Make sure the per-thread stats are current. */
832 	FOREACH_THREAD_IN_PROC(p, td) {
833 		if (td->td_incruntime == 0)
834 			continue;
835 		ruxagg(p, td);
836 	}
837 	calcru1(p, &p->p_rux, up, sp);
838 }
839 
840 /* Collect resource usage for a single thread. */
841 void
842 rufetchtd(struct thread *td, struct rusage *ru)
843 {
844 	struct proc *p;
845 	uint64_t runtime, u;
846 
847 	p = td->td_proc;
848 	PROC_STATLOCK_ASSERT(p, MA_OWNED);
849 	THREAD_LOCK_ASSERT(td, MA_OWNED);
850 	/*
851 	 * If we are getting stats for the current thread, then add in the
852 	 * stats that this thread has accumulated in its current time slice.
853 	 * We reset the thread and CPU state as if we had performed a context
854 	 * switch right here.
855 	 */
856 	if (td == curthread) {
857 		u = cpu_ticks();
858 		runtime = u - PCPU_GET(switchtime);
859 		td->td_runtime += runtime;
860 		td->td_incruntime += runtime;
861 		PCPU_SET(switchtime, u);
862 	}
863 	ruxagg(p, td);
864 	*ru = td->td_ru;
865 	calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime);
866 }
867 
868 static void
869 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
870     struct timeval *sp)
871 {
872 	/* {user, system, interrupt, total} {ticks, usec}: */
873 	uint64_t ut, uu, st, su, it, tt, tu;
874 
875 	ut = ruxp->rux_uticks;
876 	st = ruxp->rux_sticks;
877 	it = ruxp->rux_iticks;
878 	tt = ut + st + it;
879 	if (tt == 0) {
880 		/* Avoid divide by zero */
881 		st = 1;
882 		tt = 1;
883 	}
884 	tu = cputick2usec(ruxp->rux_runtime);
885 	if ((int64_t)tu < 0) {
886 		/* XXX: this should be an assert /phk */
887 		printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
888 		    (intmax_t)tu, p->p_pid, p->p_comm);
889 		tu = ruxp->rux_tu;
890 	}
891 
892 	if (tu >= ruxp->rux_tu) {
893 		/*
894 		 * The normal case, time increased.
895 		 * Enforce monotonicity of bucketed numbers.
896 		 */
897 		uu = (tu * ut) / tt;
898 		if (uu < ruxp->rux_uu)
899 			uu = ruxp->rux_uu;
900 		su = (tu * st) / tt;
901 		if (su < ruxp->rux_su)
902 			su = ruxp->rux_su;
903 	} else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
904 		/*
905 		 * When we calibrate the cputicker, it is not uncommon to
906 		 * see the presumably fixed frequency increase slightly over
907 		 * time as a result of thermal stabilization and NTP
908 		 * discipline (of the reference clock).  We therefore ignore
909 		 * a bit of backwards slop because we  expect to catch up
910 		 * shortly.  We use a 3 microsecond limit to catch low
911 		 * counts and a 1% limit for high counts.
912 		 */
913 		uu = ruxp->rux_uu;
914 		su = ruxp->rux_su;
915 		tu = ruxp->rux_tu;
916 	} else { /* tu < ruxp->rux_tu */
917 		/*
918 		 * What happened here was likely that a laptop, which ran at
919 		 * a reduced clock frequency at boot, kicked into high gear.
920 		 * The wisdom of spamming this message in that case is
921 		 * dubious, but it might also be indicative of something
922 		 * serious, so lets keep it and hope laptops can be made
923 		 * more truthful about their CPU speed via ACPI.
924 		 */
925 		printf("calcru: runtime went backwards from %ju usec "
926 		    "to %ju usec for pid %d (%s)\n",
927 		    (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
928 		    p->p_pid, p->p_comm);
929 		uu = (tu * ut) / tt;
930 		su = (tu * st) / tt;
931 	}
932 
933 	ruxp->rux_uu = uu;
934 	ruxp->rux_su = su;
935 	ruxp->rux_tu = tu;
936 
937 	up->tv_sec = uu / 1000000;
938 	up->tv_usec = uu % 1000000;
939 	sp->tv_sec = su / 1000000;
940 	sp->tv_usec = su % 1000000;
941 }
942 
943 #ifndef _SYS_SYSPROTO_H_
944 struct getrusage_args {
945 	int	who;
946 	struct	rusage *rusage;
947 };
948 #endif
949 int
950 sys_getrusage(register struct thread *td, register struct getrusage_args *uap)
951 {
952 	struct rusage ru;
953 	int error;
954 
955 	error = kern_getrusage(td, uap->who, &ru);
956 	if (error == 0)
957 		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
958 	return (error);
959 }
960 
961 int
962 kern_getrusage(struct thread *td, int who, struct rusage *rup)
963 {
964 	struct proc *p;
965 	int error;
966 
967 	error = 0;
968 	p = td->td_proc;
969 	PROC_LOCK(p);
970 	switch (who) {
971 	case RUSAGE_SELF:
972 		rufetchcalc(p, rup, &rup->ru_utime,
973 		    &rup->ru_stime);
974 		break;
975 
976 	case RUSAGE_CHILDREN:
977 		*rup = p->p_stats->p_cru;
978 		calccru(p, &rup->ru_utime, &rup->ru_stime);
979 		break;
980 
981 	case RUSAGE_THREAD:
982 		PROC_STATLOCK(p);
983 		thread_lock(td);
984 		rufetchtd(td, rup);
985 		thread_unlock(td);
986 		PROC_STATUNLOCK(p);
987 		break;
988 
989 	default:
990 		error = EINVAL;
991 	}
992 	PROC_UNLOCK(p);
993 	return (error);
994 }
995 
996 void
997 rucollect(struct rusage *ru, struct rusage *ru2)
998 {
999 	long *ip, *ip2;
1000 	int i;
1001 
1002 	if (ru->ru_maxrss < ru2->ru_maxrss)
1003 		ru->ru_maxrss = ru2->ru_maxrss;
1004 	ip = &ru->ru_first;
1005 	ip2 = &ru2->ru_first;
1006 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
1007 		*ip++ += *ip2++;
1008 }
1009 
1010 void
1011 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
1012     struct rusage_ext *rux2)
1013 {
1014 
1015 	rux->rux_runtime += rux2->rux_runtime;
1016 	rux->rux_uticks += rux2->rux_uticks;
1017 	rux->rux_sticks += rux2->rux_sticks;
1018 	rux->rux_iticks += rux2->rux_iticks;
1019 	rux->rux_uu += rux2->rux_uu;
1020 	rux->rux_su += rux2->rux_su;
1021 	rux->rux_tu += rux2->rux_tu;
1022 	rucollect(ru, ru2);
1023 }
1024 
1025 /*
1026  * Aggregate tick counts into the proc's rusage_ext.
1027  */
1028 static void
1029 ruxagg_locked(struct rusage_ext *rux, struct thread *td)
1030 {
1031 
1032 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1033 	PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED);
1034 	rux->rux_runtime += td->td_incruntime;
1035 	rux->rux_uticks += td->td_uticks;
1036 	rux->rux_sticks += td->td_sticks;
1037 	rux->rux_iticks += td->td_iticks;
1038 }
1039 
1040 void
1041 ruxagg(struct proc *p, struct thread *td)
1042 {
1043 
1044 	thread_lock(td);
1045 	ruxagg_locked(&p->p_rux, td);
1046 	ruxagg_locked(&td->td_rux, td);
1047 	td->td_incruntime = 0;
1048 	td->td_uticks = 0;
1049 	td->td_iticks = 0;
1050 	td->td_sticks = 0;
1051 	thread_unlock(td);
1052 }
1053 
1054 /*
1055  * Update the rusage_ext structure and fetch a valid aggregate rusage
1056  * for proc p if storage for one is supplied.
1057  */
1058 void
1059 rufetch(struct proc *p, struct rusage *ru)
1060 {
1061 	struct thread *td;
1062 
1063 	PROC_STATLOCK_ASSERT(p, MA_OWNED);
1064 
1065 	*ru = p->p_ru;
1066 	if (p->p_numthreads > 0)  {
1067 		FOREACH_THREAD_IN_PROC(p, td) {
1068 			ruxagg(p, td);
1069 			rucollect(ru, &td->td_ru);
1070 		}
1071 	}
1072 }
1073 
1074 /*
1075  * Atomically perform a rufetch and a calcru together.
1076  * Consumers, can safely assume the calcru is executed only once
1077  * rufetch is completed.
1078  */
1079 void
1080 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
1081     struct timeval *sp)
1082 {
1083 
1084 	PROC_STATLOCK(p);
1085 	rufetch(p, ru);
1086 	calcru(p, up, sp);
1087 	PROC_STATUNLOCK(p);
1088 }
1089 
1090 /*
1091  * Allocate a new resource limits structure and initialize its
1092  * reference count and mutex pointer.
1093  */
1094 struct plimit *
1095 lim_alloc()
1096 {
1097 	struct plimit *limp;
1098 
1099 	limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
1100 	refcount_init(&limp->pl_refcnt, 1);
1101 	return (limp);
1102 }
1103 
1104 struct plimit *
1105 lim_hold(struct plimit *limp)
1106 {
1107 
1108 	refcount_acquire(&limp->pl_refcnt);
1109 	return (limp);
1110 }
1111 
1112 static __inline int
1113 lim_shared(struct plimit *limp)
1114 {
1115 
1116 	return (limp->pl_refcnt > 1);
1117 }
1118 
1119 void
1120 lim_fork(struct proc *p1, struct proc *p2)
1121 {
1122 
1123 	PROC_LOCK_ASSERT(p1, MA_OWNED);
1124 	PROC_LOCK_ASSERT(p2, MA_OWNED);
1125 
1126 	p2->p_limit = lim_hold(p1->p_limit);
1127 	callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
1128 	if (p1->p_cpulimit != RLIM_INFINITY)
1129 		callout_reset_sbt(&p2->p_limco, SBT_1S, 0,
1130 		    lim_cb, p2, C_PREL(1));
1131 }
1132 
1133 void
1134 lim_free(struct plimit *limp)
1135 {
1136 
1137 	if (refcount_release(&limp->pl_refcnt))
1138 		free((void *)limp, M_PLIMIT);
1139 }
1140 
1141 /*
1142  * Make a copy of the plimit structure.
1143  * We share these structures copy-on-write after fork.
1144  */
1145 void
1146 lim_copy(struct plimit *dst, struct plimit *src)
1147 {
1148 
1149 	KASSERT(!lim_shared(dst), ("lim_copy to shared limit"));
1150 	bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
1151 }
1152 
1153 /*
1154  * Return the hard limit for a particular system resource.  The
1155  * which parameter specifies the index into the rlimit array.
1156  */
1157 rlim_t
1158 lim_max(struct thread *td, int which)
1159 {
1160 	struct rlimit rl;
1161 
1162 	lim_rlimit(td, which, &rl);
1163 	return (rl.rlim_max);
1164 }
1165 
1166 rlim_t
1167 lim_max_proc(struct proc *p, int which)
1168 {
1169 	struct rlimit rl;
1170 
1171 	lim_rlimit_proc(p, which, &rl);
1172 	return (rl.rlim_max);
1173 }
1174 
1175 /*
1176  * Return the current (soft) limit for a particular system resource.
1177  * The which parameter which specifies the index into the rlimit array
1178  */
1179 rlim_t
1180 lim_cur(struct thread *td, int which)
1181 {
1182 	struct rlimit rl;
1183 
1184 	lim_rlimit(td, which, &rl);
1185 	return (rl.rlim_cur);
1186 }
1187 
1188 rlim_t
1189 lim_cur_proc(struct proc *p, int which)
1190 {
1191 	struct rlimit rl;
1192 
1193 	lim_rlimit_proc(p, which, &rl);
1194 	return (rl.rlim_cur);
1195 }
1196 
1197 /*
1198  * Return a copy of the entire rlimit structure for the system limit
1199  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
1200  */
1201 void
1202 lim_rlimit(struct thread *td, int which, struct rlimit *rlp)
1203 {
1204 	struct proc *p = td->td_proc;
1205 
1206 	MPASS(td == curthread);
1207 	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1208 	    ("request for invalid resource limit"));
1209 	*rlp = td->td_limit->pl_rlimit[which];
1210 	if (p->p_sysent->sv_fixlimit != NULL)
1211 		p->p_sysent->sv_fixlimit(rlp, which);
1212 }
1213 
1214 void
1215 lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp)
1216 {
1217 
1218 	PROC_LOCK_ASSERT(p, MA_OWNED);
1219 	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1220 	    ("request for invalid resource limit"));
1221 	*rlp = p->p_limit->pl_rlimit[which];
1222 	if (p->p_sysent->sv_fixlimit != NULL)
1223 		p->p_sysent->sv_fixlimit(rlp, which);
1224 }
1225 
1226 void
1227 uihashinit()
1228 {
1229 
1230 	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
1231 	rw_init(&uihashtbl_lock, "uidinfo hash");
1232 }
1233 
1234 /*
1235  * Look up a uidinfo struct for the parameter uid.
1236  * uihashtbl_lock must be locked.
1237  * Increase refcount on uidinfo struct returned.
1238  */
1239 static struct uidinfo *
1240 uilookup(uid_t uid)
1241 {
1242 	struct uihashhead *uipp;
1243 	struct uidinfo *uip;
1244 
1245 	rw_assert(&uihashtbl_lock, RA_LOCKED);
1246 	uipp = UIHASH(uid);
1247 	LIST_FOREACH(uip, uipp, ui_hash)
1248 		if (uip->ui_uid == uid) {
1249 			uihold(uip);
1250 			break;
1251 		}
1252 
1253 	return (uip);
1254 }
1255 
1256 /*
1257  * Find or allocate a struct uidinfo for a particular uid.
1258  * Returns with uidinfo struct referenced.
1259  * uifree() should be called on a struct uidinfo when released.
1260  */
1261 struct uidinfo *
1262 uifind(uid_t uid)
1263 {
1264 	struct uidinfo *new_uip, *uip;
1265 
1266 	rw_rlock(&uihashtbl_lock);
1267 	uip = uilookup(uid);
1268 	rw_runlock(&uihashtbl_lock);
1269 	if (uip != NULL)
1270 		return (uip);
1271 
1272 	new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO);
1273 	racct_create(&new_uip->ui_racct);
1274 	refcount_init(&new_uip->ui_ref, 1);
1275 	new_uip->ui_uid = uid;
1276 	mtx_init(&new_uip->ui_vmsize_mtx, "ui_vmsize", NULL, MTX_DEF);
1277 
1278 	rw_wlock(&uihashtbl_lock);
1279 	/*
1280 	 * There's a chance someone created our uidinfo while we
1281 	 * were in malloc and not holding the lock, so we have to
1282 	 * make sure we don't insert a duplicate uidinfo.
1283 	 */
1284 	if ((uip = uilookup(uid)) == NULL) {
1285 		LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash);
1286 		rw_wunlock(&uihashtbl_lock);
1287 		uip = new_uip;
1288 	} else {
1289 		rw_wunlock(&uihashtbl_lock);
1290 		racct_destroy(&new_uip->ui_racct);
1291 		mtx_destroy(&new_uip->ui_vmsize_mtx);
1292 		free(new_uip, M_UIDINFO);
1293 	}
1294 	return (uip);
1295 }
1296 
1297 /*
1298  * Place another refcount on a uidinfo struct.
1299  */
1300 void
1301 uihold(struct uidinfo *uip)
1302 {
1303 
1304 	refcount_acquire(&uip->ui_ref);
1305 }
1306 
1307 /*-
1308  * Since uidinfo structs have a long lifetime, we use an
1309  * opportunistic refcounting scheme to avoid locking the lookup hash
1310  * for each release.
1311  *
1312  * If the refcount hits 0, we need to free the structure,
1313  * which means we need to lock the hash.
1314  * Optimal case:
1315  *   After locking the struct and lowering the refcount, if we find
1316  *   that we don't need to free, simply unlock and return.
1317  * Suboptimal case:
1318  *   If refcount lowering results in need to free, bump the count
1319  *   back up, lose the lock and acquire the locks in the proper
1320  *   order to try again.
1321  */
1322 void
1323 uifree(struct uidinfo *uip)
1324 {
1325 	int old;
1326 
1327 	/* Prepare for optimal case. */
1328 	old = uip->ui_ref;
1329 	if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1))
1330 		return;
1331 
1332 	/* Prepare for suboptimal case. */
1333 	rw_wlock(&uihashtbl_lock);
1334 	if (refcount_release(&uip->ui_ref) == 0) {
1335 		rw_wunlock(&uihashtbl_lock);
1336 		return;
1337 	}
1338 
1339 	racct_destroy(&uip->ui_racct);
1340 	LIST_REMOVE(uip, ui_hash);
1341 	rw_wunlock(&uihashtbl_lock);
1342 
1343 	if (uip->ui_sbsize != 0)
1344 		printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
1345 		    uip->ui_uid, uip->ui_sbsize);
1346 	if (uip->ui_proccnt != 0)
1347 		printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1348 		    uip->ui_uid, uip->ui_proccnt);
1349 	if (uip->ui_vmsize != 0)
1350 		printf("freeing uidinfo: uid = %d, swapuse = %lld\n",
1351 		    uip->ui_uid, (unsigned long long)uip->ui_vmsize);
1352 	mtx_destroy(&uip->ui_vmsize_mtx);
1353 	free(uip, M_UIDINFO);
1354 }
1355 
1356 #ifdef RACCT
1357 void
1358 ui_racct_foreach(void (*callback)(struct racct *racct,
1359     void *arg2, void *arg3), void (*pre)(void), void (*post)(void),
1360     void *arg2, void *arg3)
1361 {
1362 	struct uidinfo *uip;
1363 	struct uihashhead *uih;
1364 
1365 	rw_rlock(&uihashtbl_lock);
1366 	if (pre != NULL)
1367 		(pre)();
1368 	for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) {
1369 		LIST_FOREACH(uip, uih, ui_hash) {
1370 			(callback)(uip->ui_racct, arg2, arg3);
1371 		}
1372 	}
1373 	if (post != NULL)
1374 		(post)();
1375 	rw_runlock(&uihashtbl_lock);
1376 }
1377 #endif
1378 
1379 static inline int
1380 chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name)
1381 {
1382 
1383 	/* Don't allow them to exceed max, but allow subtraction. */
1384 	if (diff > 0 && max != 0) {
1385 		if (atomic_fetchadd_long(limit, (long)diff) + diff > max) {
1386 			atomic_subtract_long(limit, (long)diff);
1387 			return (0);
1388 		}
1389 	} else {
1390 		atomic_add_long(limit, (long)diff);
1391 		if (*limit < 0)
1392 			printf("negative %s for uid = %d\n", name, uip->ui_uid);
1393 	}
1394 	return (1);
1395 }
1396 
1397 /*
1398  * Change the count associated with number of processes
1399  * a given user is using.  When 'max' is 0, don't enforce a limit
1400  */
1401 int
1402 chgproccnt(struct uidinfo *uip, int diff, rlim_t max)
1403 {
1404 
1405 	return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt"));
1406 }
1407 
1408 /*
1409  * Change the total socket buffer size a user has used.
1410  */
1411 int
1412 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max)
1413 {
1414 	int diff, rv;
1415 
1416 	diff = to - *hiwat;
1417 	if (diff > 0 && max == 0) {
1418 		rv = 0;
1419 	} else {
1420 		rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize");
1421 		if (rv != 0)
1422 			*hiwat = to;
1423 	}
1424 	return (rv);
1425 }
1426 
1427 /*
1428  * Change the count associated with number of pseudo-terminals
1429  * a given user is using.  When 'max' is 0, don't enforce a limit
1430  */
1431 int
1432 chgptscnt(struct uidinfo *uip, int diff, rlim_t max)
1433 {
1434 
1435 	return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt"));
1436 }
1437 
1438 int
1439 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max)
1440 {
1441 
1442 	return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt"));
1443 }
1444