1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 39 * $FreeBSD$ 40 */ 41 42 #include "opt_compat.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/sysproto.h> 47 #include <sys/file.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/malloc.h> 51 #include <sys/mutex.h> 52 #include <sys/proc.h> 53 #include <sys/resourcevar.h> 54 #include <sys/sx.h> 55 #include <sys/time.h> 56 57 #include <vm/vm.h> 58 #include <vm/vm_param.h> 59 #include <vm/pmap.h> 60 #include <vm/vm_map.h> 61 62 static int donice(struct thread *td, struct proc *chgp, int n); 63 64 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 65 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 66 static struct mtx uihashtbl_mtx; 67 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 68 static u_long uihash; /* size of hash table - 1 */ 69 70 static struct uidinfo *uilookup(uid_t uid); 71 72 /* 73 * Resource controls and accounting. 74 */ 75 76 #ifndef _SYS_SYSPROTO_H_ 77 struct getpriority_args { 78 int which; 79 int who; 80 }; 81 #endif 82 /* 83 * MPSAFE 84 */ 85 int 86 getpriority(td, uap) 87 struct thread *td; 88 register struct getpriority_args *uap; 89 { 90 register struct proc *p; 91 register int low = PRIO_MAX + 1; 92 int error = 0; 93 94 mtx_lock(&Giant); 95 96 switch (uap->which) { 97 case PRIO_PROCESS: 98 if (uap->who == 0) 99 low = td->td_ksegrp->kg_nice; 100 else { 101 p = pfind(uap->who); 102 if (p == NULL) 103 break; 104 if (p_cansee(td, p) == 0) 105 low = p->p_ksegrp.kg_nice /* XXXKSE */ ; 106 PROC_UNLOCK(p); 107 } 108 break; 109 110 case PRIO_PGRP: { 111 register struct pgrp *pg; 112 113 sx_slock(&proctree_lock); 114 if (uap->who == 0) { 115 pg = td->td_proc->p_pgrp; 116 PGRP_LOCK(pg); 117 } else { 118 pg = pgfind(uap->who); 119 if (pg == NULL) { 120 sx_sunlock(&proctree_lock); 121 break; 122 } 123 } 124 sx_sunlock(&proctree_lock); 125 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 126 PROC_LOCK(p); 127 if (!p_cansee(td, p) && p->p_ksegrp.kg_nice /* XXXKSE */ < low) 128 low = p->p_ksegrp.kg_nice /* XXXKSE */ ; 129 PROC_UNLOCK(p); 130 } 131 PGRP_UNLOCK(pg); 132 break; 133 } 134 135 case PRIO_USER: 136 if (uap->who == 0) 137 uap->who = td->td_ucred->cr_uid; 138 sx_slock(&allproc_lock); 139 LIST_FOREACH(p, &allproc, p_list) { 140 PROC_LOCK(p); 141 if (!p_cansee(td, p) && 142 p->p_ucred->cr_uid == uap->who && 143 p->p_ksegrp.kg_nice /* XXXKSE */ < low) 144 low = p->p_ksegrp.kg_nice /* XXXKSE */ ; 145 PROC_UNLOCK(p); 146 } 147 sx_sunlock(&allproc_lock); 148 break; 149 150 default: 151 error = EINVAL; 152 break; 153 } 154 if (low == PRIO_MAX + 1 && error == 0) 155 error = ESRCH; 156 td->td_retval[0] = low; 157 mtx_unlock(&Giant); 158 return (error); 159 } 160 161 #ifndef _SYS_SYSPROTO_H_ 162 struct setpriority_args { 163 int which; 164 int who; 165 int prio; 166 }; 167 #endif 168 /* 169 * MPSAFE 170 */ 171 /* ARGSUSED */ 172 int 173 setpriority(td, uap) 174 struct thread *td; 175 register struct setpriority_args *uap; 176 { 177 struct proc *curp = td->td_proc; 178 register struct proc *p; 179 int found = 0, error = 0; 180 181 mtx_lock(&Giant); 182 183 switch (uap->which) { 184 case PRIO_PROCESS: 185 if (uap->who == 0) { 186 PROC_LOCK(curp); 187 error = donice(td, curp, uap->prio); 188 PROC_UNLOCK(curp); 189 } else { 190 p = pfind(uap->who); 191 if (p == 0) 192 break; 193 if (p_cansee(td, p) == 0) 194 error = donice(td, p, uap->prio); 195 PROC_UNLOCK(p); 196 } 197 found++; 198 break; 199 200 case PRIO_PGRP: { 201 register struct pgrp *pg; 202 203 sx_slock(&proctree_lock); 204 if (uap->who == 0) { 205 pg = curp->p_pgrp; 206 PGRP_LOCK(pg); 207 } else { 208 pg = pgfind(uap->who); 209 if (pg == NULL) { 210 sx_sunlock(&proctree_lock); 211 break; 212 } 213 } 214 sx_sunlock(&proctree_lock); 215 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 216 PROC_LOCK(p); 217 if (!p_cansee(td, p)) { 218 error = donice(td, p, uap->prio); 219 found++; 220 } 221 PROC_UNLOCK(p); 222 } 223 PGRP_UNLOCK(pg); 224 break; 225 } 226 227 case PRIO_USER: 228 if (uap->who == 0) 229 uap->who = td->td_ucred->cr_uid; 230 sx_slock(&allproc_lock); 231 FOREACH_PROC_IN_SYSTEM(p) { 232 PROC_LOCK(p); 233 if (p->p_ucred->cr_uid == uap->who && 234 !p_cansee(td, p)) { 235 error = donice(td, p, uap->prio); 236 found++; 237 } 238 PROC_UNLOCK(p); 239 } 240 sx_sunlock(&allproc_lock); 241 break; 242 243 default: 244 error = EINVAL; 245 break; 246 } 247 if (found == 0 && error == 0) 248 error = ESRCH; 249 mtx_unlock(&Giant); 250 return (error); 251 } 252 253 static int 254 donice(td, chgp, n) 255 struct thread *td; 256 register struct proc *chgp; 257 register int n; 258 { 259 int error; 260 261 PROC_LOCK_ASSERT(chgp, MA_OWNED); 262 if ((error = p_cansched(td, chgp))) 263 return (error); 264 if (n > PRIO_MAX) 265 n = PRIO_MAX; 266 if (n < PRIO_MIN) 267 n = PRIO_MIN; 268 if (n < chgp->p_ksegrp.kg_nice /* XXXKSE */ && suser(td)) 269 return (EACCES); 270 chgp->p_ksegrp.kg_nice /* XXXKSE */ = n; 271 (void)resetpriority(&chgp->p_ksegrp); /* XXXKSE */ 272 return (0); 273 } 274 275 /* rtprio system call */ 276 #ifndef _SYS_SYSPROTO_H_ 277 struct rtprio_args { 278 int function; 279 pid_t pid; 280 struct rtprio *rtp; 281 }; 282 #endif 283 284 /* 285 * Set realtime priority 286 */ 287 288 /* 289 * MPSAFE 290 */ 291 /* ARGSUSED */ 292 int 293 rtprio(td, uap) 294 struct thread *td; 295 register struct rtprio_args *uap; 296 { 297 struct proc *curp = td->td_proc; 298 register struct proc *p; 299 struct rtprio rtp; 300 int error, cierror = 0; 301 302 /* Perform copyin before acquiring locks if needed. */ 303 if (uap->function == RTP_SET) 304 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 305 306 if (uap->pid == 0) { 307 p = curp; 308 PROC_LOCK(p); 309 } else { 310 p = pfind(uap->pid); 311 if (p == NULL) 312 return (ESRCH); 313 } 314 315 switch (uap->function) { 316 case RTP_LOOKUP: 317 if ((error = p_cansee(td, p))) 318 break; 319 mtx_lock_spin(&sched_lock); 320 pri_to_rtp(&p->p_ksegrp /* XXXKSE */ , &rtp); 321 mtx_unlock_spin(&sched_lock); 322 PROC_UNLOCK(p); 323 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 324 case RTP_SET: 325 if ((error = p_cansched(td, p)) || (error = cierror)) 326 break; 327 /* disallow setting rtprio in most cases if not superuser */ 328 if (suser(td) != 0) { 329 /* can't set someone else's */ 330 if (uap->pid) { 331 error = EPERM; 332 break; 333 } 334 /* can't set realtime priority */ 335 /* 336 * Realtime priority has to be restricted for reasons which should be 337 * obvious. However, for idle priority, there is a potential for 338 * system deadlock if an idleprio process gains a lock on a resource 339 * that other processes need (and the idleprio process can't run 340 * due to a CPU-bound normal process). Fix me! XXX 341 */ 342 #if 0 343 if (RTP_PRIO_IS_REALTIME(rtp.type)) 344 #endif 345 if (rtp.type != RTP_PRIO_NORMAL) { 346 error = EPERM; 347 break; 348 } 349 } 350 mtx_lock_spin(&sched_lock); 351 error = rtp_to_pri(&rtp, &p->p_ksegrp); 352 mtx_unlock_spin(&sched_lock); 353 break; 354 default: 355 error = EINVAL; 356 break; 357 } 358 PROC_UNLOCK(p); 359 return (error); 360 } 361 362 int 363 rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg) 364 { 365 366 if (rtp->prio > RTP_PRIO_MAX) 367 return (EINVAL); 368 switch (RTP_PRIO_BASE(rtp->type)) { 369 case RTP_PRIO_REALTIME: 370 kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio; 371 break; 372 case RTP_PRIO_NORMAL: 373 kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio; 374 break; 375 case RTP_PRIO_IDLE: 376 kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio; 377 break; 378 default: 379 return (EINVAL); 380 } 381 kg->kg_pri_class = rtp->type; 382 if (curthread->td_ksegrp == kg) { 383 curthread->td_base_pri = kg->kg_user_pri; 384 curthread->td_priority = kg->kg_user_pri; /* XXX dubious */ 385 } 386 return (0); 387 } 388 389 void 390 pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp) 391 { 392 393 switch (PRI_BASE(kg->kg_pri_class)) { 394 case PRI_REALTIME: 395 rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME; 396 break; 397 case PRI_TIMESHARE: 398 rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE; 399 break; 400 case PRI_IDLE: 401 rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE; 402 break; 403 default: 404 break; 405 } 406 rtp->type = kg->kg_pri_class; 407 } 408 409 #if defined(COMPAT_43) || defined(COMPAT_SUNOS) 410 #ifndef _SYS_SYSPROTO_H_ 411 struct osetrlimit_args { 412 u_int which; 413 struct orlimit *rlp; 414 }; 415 #endif 416 /* 417 * MPSAFE 418 */ 419 /* ARGSUSED */ 420 int 421 osetrlimit(td, uap) 422 struct thread *td; 423 register struct osetrlimit_args *uap; 424 { 425 struct orlimit olim; 426 struct rlimit lim; 427 int error; 428 429 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 430 return (error); 431 lim.rlim_cur = olim.rlim_cur; 432 lim.rlim_max = olim.rlim_max; 433 mtx_lock(&Giant); 434 error = dosetrlimit(td, uap->which, &lim); 435 mtx_unlock(&Giant); 436 return (error); 437 } 438 439 #ifndef _SYS_SYSPROTO_H_ 440 struct ogetrlimit_args { 441 u_int which; 442 struct orlimit *rlp; 443 }; 444 #endif 445 /* 446 * MPSAFE 447 */ 448 /* ARGSUSED */ 449 int 450 ogetrlimit(td, uap) 451 struct thread *td; 452 register struct ogetrlimit_args *uap; 453 { 454 struct proc *p = td->td_proc; 455 struct orlimit olim; 456 int error; 457 458 if (uap->which >= RLIM_NLIMITS) 459 return (EINVAL); 460 mtx_lock(&Giant); 461 olim.rlim_cur = p->p_rlimit[uap->which].rlim_cur; 462 if (olim.rlim_cur == -1) 463 olim.rlim_cur = 0x7fffffff; 464 olim.rlim_max = p->p_rlimit[uap->which].rlim_max; 465 if (olim.rlim_max == -1) 466 olim.rlim_max = 0x7fffffff; 467 error = copyout(&olim, uap->rlp, sizeof(olim)); 468 mtx_unlock(&Giant); 469 return (error); 470 } 471 #endif /* COMPAT_43 || COMPAT_SUNOS */ 472 473 #ifndef _SYS_SYSPROTO_H_ 474 struct __setrlimit_args { 475 u_int which; 476 struct rlimit *rlp; 477 }; 478 #endif 479 /* 480 * MPSAFE 481 */ 482 /* ARGSUSED */ 483 int 484 setrlimit(td, uap) 485 struct thread *td; 486 register struct __setrlimit_args *uap; 487 { 488 struct rlimit alim; 489 int error; 490 491 if ((error = copyin(uap->rlp, &alim, sizeof (struct rlimit)))) 492 return (error); 493 mtx_lock(&Giant); 494 error = dosetrlimit(td, uap->which, &alim); 495 mtx_unlock(&Giant); 496 return (error); 497 } 498 499 int 500 dosetrlimit(td, which, limp) 501 struct thread *td; 502 u_int which; 503 struct rlimit *limp; 504 { 505 struct proc *p = td->td_proc; 506 register struct rlimit *alimp; 507 int error; 508 509 GIANT_REQUIRED; 510 511 if (which >= RLIM_NLIMITS) 512 return (EINVAL); 513 alimp = &p->p_rlimit[which]; 514 515 /* 516 * Preserve historical bugs by treating negative limits as unsigned. 517 */ 518 if (limp->rlim_cur < 0) 519 limp->rlim_cur = RLIM_INFINITY; 520 if (limp->rlim_max < 0) 521 limp->rlim_max = RLIM_INFINITY; 522 523 if (limp->rlim_cur > alimp->rlim_max || 524 limp->rlim_max > alimp->rlim_max) 525 if ((error = suser_cred(td->td_ucred, PRISON_ROOT))) 526 return (error); 527 if (limp->rlim_cur > limp->rlim_max) 528 limp->rlim_cur = limp->rlim_max; 529 if (p->p_limit->p_refcnt > 1 && 530 (p->p_limit->p_lflags & PL_SHAREMOD) == 0) { 531 p->p_limit->p_refcnt--; 532 p->p_limit = limcopy(p->p_limit); 533 alimp = &p->p_rlimit[which]; 534 } 535 536 switch (which) { 537 538 case RLIMIT_CPU: 539 if (limp->rlim_cur > RLIM_INFINITY / (rlim_t)1000000) 540 p->p_limit->p_cpulimit = RLIM_INFINITY; 541 else 542 p->p_limit->p_cpulimit = 543 (rlim_t)1000000 * limp->rlim_cur; 544 break; 545 case RLIMIT_DATA: 546 if (limp->rlim_cur > maxdsiz) 547 limp->rlim_cur = maxdsiz; 548 if (limp->rlim_max > maxdsiz) 549 limp->rlim_max = maxdsiz; 550 break; 551 552 case RLIMIT_STACK: 553 if (limp->rlim_cur > maxssiz) 554 limp->rlim_cur = maxssiz; 555 if (limp->rlim_max > maxssiz) 556 limp->rlim_max = maxssiz; 557 /* 558 * Stack is allocated to the max at exec time with only 559 * "rlim_cur" bytes accessible. If stack limit is going 560 * up make more accessible, if going down make inaccessible. 561 */ 562 if (limp->rlim_cur != alimp->rlim_cur) { 563 vm_offset_t addr; 564 vm_size_t size; 565 vm_prot_t prot; 566 567 if (limp->rlim_cur > alimp->rlim_cur) { 568 prot = VM_PROT_ALL; 569 size = limp->rlim_cur - alimp->rlim_cur; 570 addr = USRSTACK - limp->rlim_cur; 571 } else { 572 prot = VM_PROT_NONE; 573 size = alimp->rlim_cur - limp->rlim_cur; 574 addr = USRSTACK - alimp->rlim_cur; 575 } 576 addr = trunc_page(addr); 577 size = round_page(size); 578 (void) vm_map_protect(&p->p_vmspace->vm_map, 579 addr, addr+size, prot, FALSE); 580 } 581 break; 582 583 case RLIMIT_NOFILE: 584 if (limp->rlim_cur > maxfilesperproc) 585 limp->rlim_cur = maxfilesperproc; 586 if (limp->rlim_max > maxfilesperproc) 587 limp->rlim_max = maxfilesperproc; 588 break; 589 590 case RLIMIT_NPROC: 591 if (limp->rlim_cur > maxprocperuid) 592 limp->rlim_cur = maxprocperuid; 593 if (limp->rlim_max > maxprocperuid) 594 limp->rlim_max = maxprocperuid; 595 if (limp->rlim_cur < 1) 596 limp->rlim_cur = 1; 597 if (limp->rlim_max < 1) 598 limp->rlim_max = 1; 599 break; 600 } 601 *alimp = *limp; 602 return (0); 603 } 604 605 #ifndef _SYS_SYSPROTO_H_ 606 struct __getrlimit_args { 607 u_int which; 608 struct rlimit *rlp; 609 }; 610 #endif 611 /* 612 * MPSAFE 613 */ 614 /* ARGSUSED */ 615 int 616 getrlimit(td, uap) 617 struct thread *td; 618 register struct __getrlimit_args *uap; 619 { 620 int error; 621 struct proc *p = td->td_proc; 622 623 if (uap->which >= RLIM_NLIMITS) 624 return (EINVAL); 625 mtx_lock(&Giant); 626 error = copyout(&p->p_rlimit[uap->which], uap->rlp, 627 sizeof (struct rlimit)); 628 mtx_unlock(&Giant); 629 return(error); 630 } 631 632 /* 633 * Transform the running time and tick information in proc p into user, 634 * system, and interrupt time usage. 635 */ 636 void 637 calcru(p, up, sp, ip) 638 struct proc *p; 639 struct timeval *up; 640 struct timeval *sp; 641 struct timeval *ip; 642 { 643 /* {user, system, interrupt, total} {ticks, usec}; previous tu: */ 644 u_int64_t ut, uu, st, su, it, iu, tt, tu, ptu; 645 u_int64_t uut = 0, sut = 0, iut = 0; 646 int s; 647 struct timeval tv; 648 struct bintime bt; 649 struct kse *ke; 650 struct ksegrp *kg; 651 652 mtx_assert(&sched_lock, MA_OWNED); 653 /* XXX: why spl-protect ? worst case is an off-by-one report */ 654 655 FOREACH_KSEGRP_IN_PROC(p, kg) { 656 /* we could accumulate per ksegrp and per process here*/ 657 FOREACH_KSE_IN_GROUP(kg, ke) { 658 s = splstatclock(); 659 ut = ke->ke_uticks; 660 st = ke->ke_sticks; 661 it = ke->ke_iticks; 662 splx(s); 663 664 tt = ut + st + it; 665 if (tt == 0) { 666 st = 1; 667 tt = 1; 668 } 669 670 if (ke == curthread->td_kse) { 671 /* 672 * Adjust for the current time slice. This is actually fairly 673 * important since the error here is on the order of a time 674 * quantum, which is much greater than the sampling error. 675 * XXXKSE use a different test due to threads on other 676 * processors also being 'current'. 677 */ 678 679 binuptime(&bt); 680 bintime_sub(&bt, PCPU_PTR(switchtime)); 681 bintime_add(&bt, &p->p_runtime); 682 } else { 683 bt = p->p_runtime; 684 } 685 bintime2timeval(&bt, &tv); 686 tu = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 687 ptu = ke->ke_uu + ke->ke_su + ke->ke_iu; 688 if (tu < ptu || (int64_t)tu < 0) { 689 /* XXX no %qd in kernel. Truncate. */ 690 printf("calcru: negative time of %ld usec for pid %d (%s)\n", 691 (long)tu, p->p_pid, p->p_comm); 692 tu = ptu; 693 } 694 695 /* Subdivide tu. */ 696 uu = (tu * ut) / tt; 697 su = (tu * st) / tt; 698 iu = tu - uu - su; 699 700 /* Enforce monotonicity. */ 701 if (uu < ke->ke_uu || su < ke->ke_su || iu < ke->ke_iu) { 702 if (uu < ke->ke_uu) 703 uu = ke->ke_uu; 704 else if (uu + ke->ke_su + ke->ke_iu > tu) 705 uu = tu - ke->ke_su - ke->ke_iu; 706 if (st == 0) 707 su = ke->ke_su; 708 else { 709 su = ((tu - uu) * st) / (st + it); 710 if (su < ke->ke_su) 711 su = ke->ke_su; 712 else if (uu + su + ke->ke_iu > tu) 713 su = tu - uu - ke->ke_iu; 714 } 715 KASSERT(uu + su + ke->ke_iu <= tu, 716 ("calcru: monotonisation botch 1")); 717 iu = tu - uu - su; 718 KASSERT(iu >= ke->ke_iu, 719 ("calcru: monotonisation botch 2")); 720 } 721 ke->ke_uu = uu; 722 ke->ke_su = su; 723 ke->ke_iu = iu; 724 uut += uu; 725 sut += su; 726 iut += iu; 727 728 } /* end kse loop */ 729 } /* end kseg loop */ 730 up->tv_sec = uut / 1000000; 731 up->tv_usec = uut % 1000000; 732 sp->tv_sec = sut / 1000000; 733 sp->tv_usec = sut % 1000000; 734 if (ip != NULL) { 735 ip->tv_sec = iut / 1000000; 736 ip->tv_usec = iut % 1000000; 737 } 738 } 739 740 #ifndef _SYS_SYSPROTO_H_ 741 struct getrusage_args { 742 int who; 743 struct rusage *rusage; 744 }; 745 #endif 746 /* 747 * MPSAFE 748 */ 749 /* ARGSUSED */ 750 int 751 getrusage(td, uap) 752 register struct thread *td; 753 register struct getrusage_args *uap; 754 { 755 struct proc *p = td->td_proc; 756 register struct rusage *rup; 757 int error = 0; 758 759 mtx_lock(&Giant); 760 761 switch (uap->who) { 762 case RUSAGE_SELF: 763 rup = &p->p_stats->p_ru; 764 mtx_lock_spin(&sched_lock); 765 calcru(p, &rup->ru_utime, &rup->ru_stime, NULL); 766 mtx_unlock_spin(&sched_lock); 767 break; 768 769 case RUSAGE_CHILDREN: 770 rup = &p->p_stats->p_cru; 771 break; 772 773 default: 774 rup = NULL; 775 error = EINVAL; 776 break; 777 } 778 mtx_unlock(&Giant); 779 if (error == 0) { 780 error = copyout(rup, uap->rusage, sizeof (struct rusage)); 781 } 782 return(error); 783 } 784 785 void 786 ruadd(ru, ru2) 787 register struct rusage *ru, *ru2; 788 { 789 register long *ip, *ip2; 790 register int i; 791 792 timevaladd(&ru->ru_utime, &ru2->ru_utime); 793 timevaladd(&ru->ru_stime, &ru2->ru_stime); 794 if (ru->ru_maxrss < ru2->ru_maxrss) 795 ru->ru_maxrss = ru2->ru_maxrss; 796 ip = &ru->ru_first; ip2 = &ru2->ru_first; 797 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 798 *ip++ += *ip2++; 799 } 800 801 /* 802 * Make a copy of the plimit structure. 803 * We share these structures copy-on-write after fork, 804 * and copy when a limit is changed. 805 */ 806 struct plimit * 807 limcopy(lim) 808 struct plimit *lim; 809 { 810 register struct plimit *copy; 811 812 MALLOC(copy, struct plimit *, sizeof(struct plimit), 813 M_SUBPROC, M_WAITOK); 814 bcopy(lim->pl_rlimit, copy->pl_rlimit, sizeof(struct plimit)); 815 copy->p_lflags = 0; 816 copy->p_refcnt = 1; 817 return (copy); 818 } 819 820 /* 821 * Find the uidinfo structure for a uid. This structure is used to 822 * track the total resource consumption (process count, socket buffer 823 * size, etc.) for the uid and impose limits. 824 */ 825 void 826 uihashinit() 827 { 828 829 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 830 mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF); 831 } 832 833 /* 834 * lookup a uidinfo struct for the parameter uid. 835 * uihashtbl_mtx must be locked. 836 */ 837 static struct uidinfo * 838 uilookup(uid) 839 uid_t uid; 840 { 841 struct uihashhead *uipp; 842 struct uidinfo *uip; 843 844 mtx_assert(&uihashtbl_mtx, MA_OWNED); 845 uipp = UIHASH(uid); 846 LIST_FOREACH(uip, uipp, ui_hash) 847 if (uip->ui_uid == uid) 848 break; 849 850 return (uip); 851 } 852 853 /* 854 * Find or allocate a struct uidinfo for a particular uid. 855 * Increase refcount on uidinfo struct returned. 856 * uifree() should be called on a struct uidinfo when released. 857 */ 858 struct uidinfo * 859 uifind(uid) 860 uid_t uid; 861 { 862 struct uidinfo *uip; 863 864 mtx_lock(&uihashtbl_mtx); 865 uip = uilookup(uid); 866 if (uip == NULL) { 867 struct uidinfo *old_uip; 868 869 mtx_unlock(&uihashtbl_mtx); 870 uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO); 871 mtx_lock(&uihashtbl_mtx); 872 /* 873 * There's a chance someone created our uidinfo while we 874 * were in malloc and not holding the lock, so we have to 875 * make sure we don't insert a duplicate uidinfo 876 */ 877 if ((old_uip = uilookup(uid)) != NULL) { 878 /* someone else beat us to it */ 879 free(uip, M_UIDINFO); 880 uip = old_uip; 881 } else { 882 uip->ui_mtxp = mtx_pool_alloc(); 883 uip->ui_uid = uid; 884 LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash); 885 } 886 } 887 uihold(uip); 888 mtx_unlock(&uihashtbl_mtx); 889 return (uip); 890 } 891 892 /* 893 * Place another refcount on a uidinfo struct. 894 */ 895 void 896 uihold(uip) 897 struct uidinfo *uip; 898 { 899 900 UIDINFO_LOCK(uip); 901 uip->ui_ref++; 902 UIDINFO_UNLOCK(uip); 903 } 904 905 /*- 906 * Since uidinfo structs have a long lifetime, we use an 907 * opportunistic refcounting scheme to avoid locking the lookup hash 908 * for each release. 909 * 910 * If the refcount hits 0, we need to free the structure, 911 * which means we need to lock the hash. 912 * Optimal case: 913 * After locking the struct and lowering the refcount, if we find 914 * that we don't need to free, simply unlock and return. 915 * Suboptimal case: 916 * If refcount lowering results in need to free, bump the count 917 * back up, loose the lock and aquire the locks in the proper 918 * order to try again. 919 */ 920 void 921 uifree(uip) 922 struct uidinfo *uip; 923 { 924 925 /* Prepare for optimal case. */ 926 UIDINFO_LOCK(uip); 927 928 if (--uip->ui_ref != 0) { 929 UIDINFO_UNLOCK(uip); 930 return; 931 } 932 933 /* Prepare for suboptimal case. */ 934 uip->ui_ref++; 935 UIDINFO_UNLOCK(uip); 936 mtx_lock(&uihashtbl_mtx); 937 UIDINFO_LOCK(uip); 938 939 /* 940 * We must subtract one from the count again because we backed out 941 * our initial subtraction before dropping the lock. 942 * Since another thread may have added a reference after we dropped the 943 * initial lock we have to test for zero again. 944 */ 945 if (--uip->ui_ref == 0) { 946 LIST_REMOVE(uip, ui_hash); 947 mtx_unlock(&uihashtbl_mtx); 948 if (uip->ui_sbsize != 0) 949 /* XXX no %qd in kernel. Truncate. */ 950 printf("freeing uidinfo: uid = %d, sbsize = %ld\n", 951 uip->ui_uid, (long)uip->ui_sbsize); 952 if (uip->ui_proccnt != 0) 953 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 954 uip->ui_uid, uip->ui_proccnt); 955 UIDINFO_UNLOCK(uip); 956 FREE(uip, M_UIDINFO); 957 return; 958 } 959 960 mtx_unlock(&uihashtbl_mtx); 961 UIDINFO_UNLOCK(uip); 962 } 963 964 /* 965 * Change the count associated with number of processes 966 * a given user is using. When 'max' is 0, don't enforce a limit 967 */ 968 int 969 chgproccnt(uip, diff, max) 970 struct uidinfo *uip; 971 int diff; 972 int max; 973 { 974 975 UIDINFO_LOCK(uip); 976 /* don't allow them to exceed max, but allow subtraction */ 977 if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) { 978 UIDINFO_UNLOCK(uip); 979 return (0); 980 } 981 uip->ui_proccnt += diff; 982 if (uip->ui_proccnt < 0) 983 printf("negative proccnt for uid = %d\n", uip->ui_uid); 984 UIDINFO_UNLOCK(uip); 985 return (1); 986 } 987 988 /* 989 * Change the total socket buffer size a user has used. 990 */ 991 int 992 chgsbsize(uip, hiwat, to, max) 993 struct uidinfo *uip; 994 u_int *hiwat; 995 u_int to; 996 rlim_t max; 997 { 998 rlim_t new; 999 int s; 1000 1001 s = splnet(); 1002 UIDINFO_LOCK(uip); 1003 new = uip->ui_sbsize + to - *hiwat; 1004 /* don't allow them to exceed max, but allow subtraction */ 1005 if (to > *hiwat && new > max) { 1006 splx(s); 1007 UIDINFO_UNLOCK(uip); 1008 return (0); 1009 } 1010 uip->ui_sbsize = new; 1011 *hiwat = to; 1012 if (uip->ui_sbsize < 0) 1013 printf("negative sbsize for uid = %d\n", uip->ui_uid); 1014 splx(s); 1015 UIDINFO_UNLOCK(uip); 1016 return (1); 1017 } 1018