1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_compat.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/sysproto.h> 45 #include <sys/file.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mutex.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/refcount.h> 53 #include <sys/racct.h> 54 #include <sys/resourcevar.h> 55 #include <sys/rwlock.h> 56 #include <sys/sched.h> 57 #include <sys/sx.h> 58 #include <sys/syscallsubr.h> 59 #include <sys/sysctl.h> 60 #include <sys/sysent.h> 61 #include <sys/time.h> 62 #include <sys/umtx.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_param.h> 66 #include <vm/pmap.h> 67 #include <vm/vm_map.h> 68 69 70 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures"); 71 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 72 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 73 static struct rwlock uihashtbl_lock; 74 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 75 static u_long uihash; /* size of hash table - 1 */ 76 77 static void calcru1(struct proc *p, struct rusage_ext *ruxp, 78 struct timeval *up, struct timeval *sp); 79 static int donice(struct thread *td, struct proc *chgp, int n); 80 static struct uidinfo *uilookup(uid_t uid); 81 static void ruxagg_locked(struct rusage_ext *rux, struct thread *td); 82 83 static __inline int lim_shared(struct plimit *limp); 84 85 /* 86 * Resource controls and accounting. 87 */ 88 #ifndef _SYS_SYSPROTO_H_ 89 struct getpriority_args { 90 int which; 91 int who; 92 }; 93 #endif 94 int 95 sys_getpriority(struct thread *td, register struct getpriority_args *uap) 96 { 97 struct proc *p; 98 struct pgrp *pg; 99 int error, low; 100 101 error = 0; 102 low = PRIO_MAX + 1; 103 switch (uap->which) { 104 105 case PRIO_PROCESS: 106 if (uap->who == 0) 107 low = td->td_proc->p_nice; 108 else { 109 p = pfind(uap->who); 110 if (p == NULL) 111 break; 112 if (p_cansee(td, p) == 0) 113 low = p->p_nice; 114 PROC_UNLOCK(p); 115 } 116 break; 117 118 case PRIO_PGRP: 119 sx_slock(&proctree_lock); 120 if (uap->who == 0) { 121 pg = td->td_proc->p_pgrp; 122 PGRP_LOCK(pg); 123 } else { 124 pg = pgfind(uap->who); 125 if (pg == NULL) { 126 sx_sunlock(&proctree_lock); 127 break; 128 } 129 } 130 sx_sunlock(&proctree_lock); 131 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 132 PROC_LOCK(p); 133 if (p->p_state == PRS_NORMAL && 134 p_cansee(td, p) == 0) { 135 if (p->p_nice < low) 136 low = p->p_nice; 137 } 138 PROC_UNLOCK(p); 139 } 140 PGRP_UNLOCK(pg); 141 break; 142 143 case PRIO_USER: 144 if (uap->who == 0) 145 uap->who = td->td_ucred->cr_uid; 146 sx_slock(&allproc_lock); 147 FOREACH_PROC_IN_SYSTEM(p) { 148 PROC_LOCK(p); 149 if (p->p_state == PRS_NORMAL && 150 p_cansee(td, p) == 0 && 151 p->p_ucred->cr_uid == uap->who) { 152 if (p->p_nice < low) 153 low = p->p_nice; 154 } 155 PROC_UNLOCK(p); 156 } 157 sx_sunlock(&allproc_lock); 158 break; 159 160 default: 161 error = EINVAL; 162 break; 163 } 164 if (low == PRIO_MAX + 1 && error == 0) 165 error = ESRCH; 166 td->td_retval[0] = low; 167 return (error); 168 } 169 170 #ifndef _SYS_SYSPROTO_H_ 171 struct setpriority_args { 172 int which; 173 int who; 174 int prio; 175 }; 176 #endif 177 int 178 sys_setpriority(struct thread *td, struct setpriority_args *uap) 179 { 180 struct proc *curp, *p; 181 struct pgrp *pg; 182 int found = 0, error = 0; 183 184 curp = td->td_proc; 185 switch (uap->which) { 186 case PRIO_PROCESS: 187 if (uap->who == 0) { 188 PROC_LOCK(curp); 189 error = donice(td, curp, uap->prio); 190 PROC_UNLOCK(curp); 191 } else { 192 p = pfind(uap->who); 193 if (p == NULL) 194 break; 195 error = p_cansee(td, p); 196 if (error == 0) 197 error = donice(td, p, uap->prio); 198 PROC_UNLOCK(p); 199 } 200 found++; 201 break; 202 203 case PRIO_PGRP: 204 sx_slock(&proctree_lock); 205 if (uap->who == 0) { 206 pg = curp->p_pgrp; 207 PGRP_LOCK(pg); 208 } else { 209 pg = pgfind(uap->who); 210 if (pg == NULL) { 211 sx_sunlock(&proctree_lock); 212 break; 213 } 214 } 215 sx_sunlock(&proctree_lock); 216 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 217 PROC_LOCK(p); 218 if (p->p_state == PRS_NORMAL && 219 p_cansee(td, p) == 0) { 220 error = donice(td, p, uap->prio); 221 found++; 222 } 223 PROC_UNLOCK(p); 224 } 225 PGRP_UNLOCK(pg); 226 break; 227 228 case PRIO_USER: 229 if (uap->who == 0) 230 uap->who = td->td_ucred->cr_uid; 231 sx_slock(&allproc_lock); 232 FOREACH_PROC_IN_SYSTEM(p) { 233 PROC_LOCK(p); 234 if (p->p_state == PRS_NORMAL && 235 p->p_ucred->cr_uid == uap->who && 236 p_cansee(td, p) == 0) { 237 error = donice(td, p, uap->prio); 238 found++; 239 } 240 PROC_UNLOCK(p); 241 } 242 sx_sunlock(&allproc_lock); 243 break; 244 245 default: 246 error = EINVAL; 247 break; 248 } 249 if (found == 0 && error == 0) 250 error = ESRCH; 251 return (error); 252 } 253 254 /* 255 * Set "nice" for a (whole) process. 256 */ 257 static int 258 donice(struct thread *td, struct proc *p, int n) 259 { 260 int error; 261 262 PROC_LOCK_ASSERT(p, MA_OWNED); 263 if ((error = p_cansched(td, p))) 264 return (error); 265 if (n > PRIO_MAX) 266 n = PRIO_MAX; 267 if (n < PRIO_MIN) 268 n = PRIO_MIN; 269 if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0) 270 return (EACCES); 271 sched_nice(p, n); 272 return (0); 273 } 274 275 static int unprivileged_idprio; 276 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW, 277 &unprivileged_idprio, 0, "Allow non-root users to set an idle priority"); 278 279 /* 280 * Set realtime priority for LWP. 281 */ 282 #ifndef _SYS_SYSPROTO_H_ 283 struct rtprio_thread_args { 284 int function; 285 lwpid_t lwpid; 286 struct rtprio *rtp; 287 }; 288 #endif 289 int 290 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap) 291 { 292 struct proc *p; 293 struct rtprio rtp; 294 struct thread *td1; 295 int cierror, error; 296 297 /* Perform copyin before acquiring locks if needed. */ 298 if (uap->function == RTP_SET) 299 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 300 else 301 cierror = 0; 302 303 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) { 304 p = td->td_proc; 305 td1 = td; 306 PROC_LOCK(p); 307 } else { 308 /* Only look up thread in current process */ 309 td1 = tdfind(uap->lwpid, curproc->p_pid); 310 if (td1 == NULL) 311 return (ESRCH); 312 p = td1->td_proc; 313 } 314 315 switch (uap->function) { 316 case RTP_LOOKUP: 317 if ((error = p_cansee(td, p))) 318 break; 319 pri_to_rtp(td1, &rtp); 320 PROC_UNLOCK(p); 321 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 322 case RTP_SET: 323 if ((error = p_cansched(td, p)) || (error = cierror)) 324 break; 325 326 /* Disallow setting rtprio in most cases if not superuser. */ 327 328 /* 329 * Realtime priority has to be restricted for reasons which 330 * should be obvious. However, for idleprio processes, there is 331 * a potential for system deadlock if an idleprio process gains 332 * a lock on a resource that other processes need (and the 333 * idleprio process can't run due to a CPU-bound normal 334 * process). Fix me! XXX 335 * 336 * This problem is not only related to idleprio process. 337 * A user level program can obtain a file lock and hold it 338 * indefinitely. Additionally, without idleprio processes it is 339 * still conceivable that a program with low priority will never 340 * get to run. In short, allowing this feature might make it 341 * easier to lock a resource indefinitely, but it is not the 342 * only thing that makes it possible. 343 */ 344 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME || 345 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 346 unprivileged_idprio == 0)) { 347 error = priv_check(td, PRIV_SCHED_RTPRIO); 348 if (error) 349 break; 350 } 351 error = rtp_to_pri(&rtp, td1); 352 break; 353 default: 354 error = EINVAL; 355 break; 356 } 357 PROC_UNLOCK(p); 358 return (error); 359 } 360 361 /* 362 * Set realtime priority. 363 */ 364 #ifndef _SYS_SYSPROTO_H_ 365 struct rtprio_args { 366 int function; 367 pid_t pid; 368 struct rtprio *rtp; 369 }; 370 #endif 371 int 372 sys_rtprio(struct thread *td, register struct rtprio_args *uap) 373 { 374 struct proc *p; 375 struct thread *tdp; 376 struct rtprio rtp; 377 int cierror, error; 378 379 /* Perform copyin before acquiring locks if needed. */ 380 if (uap->function == RTP_SET) 381 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 382 else 383 cierror = 0; 384 385 if (uap->pid == 0) { 386 p = td->td_proc; 387 PROC_LOCK(p); 388 } else { 389 p = pfind(uap->pid); 390 if (p == NULL) 391 return (ESRCH); 392 } 393 394 switch (uap->function) { 395 case RTP_LOOKUP: 396 if ((error = p_cansee(td, p))) 397 break; 398 /* 399 * Return OUR priority if no pid specified, 400 * or if one is, report the highest priority 401 * in the process. There isn't much more you can do as 402 * there is only room to return a single priority. 403 * Note: specifying our own pid is not the same 404 * as leaving it zero. 405 */ 406 if (uap->pid == 0) { 407 pri_to_rtp(td, &rtp); 408 } else { 409 struct rtprio rtp2; 410 411 rtp.type = RTP_PRIO_IDLE; 412 rtp.prio = RTP_PRIO_MAX; 413 FOREACH_THREAD_IN_PROC(p, tdp) { 414 pri_to_rtp(tdp, &rtp2); 415 if (rtp2.type < rtp.type || 416 (rtp2.type == rtp.type && 417 rtp2.prio < rtp.prio)) { 418 rtp.type = rtp2.type; 419 rtp.prio = rtp2.prio; 420 } 421 } 422 } 423 PROC_UNLOCK(p); 424 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 425 case RTP_SET: 426 if ((error = p_cansched(td, p)) || (error = cierror)) 427 break; 428 429 /* 430 * Disallow setting rtprio in most cases if not superuser. 431 * See the comment in sys_rtprio_thread about idprio 432 * threads holding a lock. 433 */ 434 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME || 435 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 436 !unprivileged_idprio)) { 437 error = priv_check(td, PRIV_SCHED_RTPRIO); 438 if (error) 439 break; 440 } 441 442 /* 443 * If we are setting our own priority, set just our 444 * thread but if we are doing another process, 445 * do all the threads on that process. If we 446 * specify our own pid we do the latter. 447 */ 448 if (uap->pid == 0) { 449 error = rtp_to_pri(&rtp, td); 450 } else { 451 FOREACH_THREAD_IN_PROC(p, td) { 452 if ((error = rtp_to_pri(&rtp, td)) != 0) 453 break; 454 } 455 } 456 break; 457 default: 458 error = EINVAL; 459 break; 460 } 461 PROC_UNLOCK(p); 462 return (error); 463 } 464 465 int 466 rtp_to_pri(struct rtprio *rtp, struct thread *td) 467 { 468 u_char newpri, oldclass, oldpri; 469 470 switch (RTP_PRIO_BASE(rtp->type)) { 471 case RTP_PRIO_REALTIME: 472 if (rtp->prio > RTP_PRIO_MAX) 473 return (EINVAL); 474 newpri = PRI_MIN_REALTIME + rtp->prio; 475 break; 476 case RTP_PRIO_NORMAL: 477 if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE)) 478 return (EINVAL); 479 newpri = PRI_MIN_TIMESHARE + rtp->prio; 480 break; 481 case RTP_PRIO_IDLE: 482 if (rtp->prio > RTP_PRIO_MAX) 483 return (EINVAL); 484 newpri = PRI_MIN_IDLE + rtp->prio; 485 break; 486 default: 487 return (EINVAL); 488 } 489 490 thread_lock(td); 491 oldclass = td->td_pri_class; 492 sched_class(td, rtp->type); /* XXX fix */ 493 oldpri = td->td_user_pri; 494 sched_user_prio(td, newpri); 495 if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL || 496 td->td_pri_class != RTP_PRIO_NORMAL)) 497 sched_prio(td, td->td_user_pri); 498 if (TD_ON_UPILOCK(td) && oldpri != newpri) { 499 critical_enter(); 500 thread_unlock(td); 501 umtx_pi_adjust(td, oldpri); 502 critical_exit(); 503 } else 504 thread_unlock(td); 505 return (0); 506 } 507 508 void 509 pri_to_rtp(struct thread *td, struct rtprio *rtp) 510 { 511 512 thread_lock(td); 513 switch (PRI_BASE(td->td_pri_class)) { 514 case PRI_REALTIME: 515 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME; 516 break; 517 case PRI_TIMESHARE: 518 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE; 519 break; 520 case PRI_IDLE: 521 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE; 522 break; 523 default: 524 break; 525 } 526 rtp->type = td->td_pri_class; 527 thread_unlock(td); 528 } 529 530 #if defined(COMPAT_43) 531 #ifndef _SYS_SYSPROTO_H_ 532 struct osetrlimit_args { 533 u_int which; 534 struct orlimit *rlp; 535 }; 536 #endif 537 int 538 osetrlimit(struct thread *td, register struct osetrlimit_args *uap) 539 { 540 struct orlimit olim; 541 struct rlimit lim; 542 int error; 543 544 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 545 return (error); 546 lim.rlim_cur = olim.rlim_cur; 547 lim.rlim_max = olim.rlim_max; 548 error = kern_setrlimit(td, uap->which, &lim); 549 return (error); 550 } 551 552 #ifndef _SYS_SYSPROTO_H_ 553 struct ogetrlimit_args { 554 u_int which; 555 struct orlimit *rlp; 556 }; 557 #endif 558 int 559 ogetrlimit(struct thread *td, register struct ogetrlimit_args *uap) 560 { 561 struct orlimit olim; 562 struct rlimit rl; 563 struct proc *p; 564 int error; 565 566 if (uap->which >= RLIM_NLIMITS) 567 return (EINVAL); 568 p = td->td_proc; 569 PROC_LOCK(p); 570 lim_rlimit(p, uap->which, &rl); 571 PROC_UNLOCK(p); 572 573 /* 574 * XXX would be more correct to convert only RLIM_INFINITY to the 575 * old RLIM_INFINITY and fail with EOVERFLOW for other larger 576 * values. Most 64->32 and 32->16 conversions, including not 577 * unimportant ones of uids are even more broken than what we 578 * do here (they blindly truncate). We don't do this correctly 579 * here since we have little experience with EOVERFLOW yet. 580 * Elsewhere, getuid() can't fail... 581 */ 582 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur; 583 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max; 584 error = copyout(&olim, uap->rlp, sizeof(olim)); 585 return (error); 586 } 587 #endif /* COMPAT_43 */ 588 589 #ifndef _SYS_SYSPROTO_H_ 590 struct __setrlimit_args { 591 u_int which; 592 struct rlimit *rlp; 593 }; 594 #endif 595 int 596 sys_setrlimit(struct thread *td, register struct __setrlimit_args *uap) 597 { 598 struct rlimit alim; 599 int error; 600 601 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit)))) 602 return (error); 603 error = kern_setrlimit(td, uap->which, &alim); 604 return (error); 605 } 606 607 static void 608 lim_cb(void *arg) 609 { 610 struct rlimit rlim; 611 struct thread *td; 612 struct proc *p; 613 614 p = arg; 615 PROC_LOCK_ASSERT(p, MA_OWNED); 616 /* 617 * Check if the process exceeds its cpu resource allocation. If 618 * it reaches the max, arrange to kill the process in ast(). 619 */ 620 if (p->p_cpulimit == RLIM_INFINITY) 621 return; 622 PROC_STATLOCK(p); 623 FOREACH_THREAD_IN_PROC(p, td) { 624 ruxagg(p, td); 625 } 626 PROC_STATUNLOCK(p); 627 if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) { 628 lim_rlimit(p, RLIMIT_CPU, &rlim); 629 if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) { 630 killproc(p, "exceeded maximum CPU limit"); 631 } else { 632 if (p->p_cpulimit < rlim.rlim_max) 633 p->p_cpulimit += 5; 634 kern_psignal(p, SIGXCPU); 635 } 636 } 637 if ((p->p_flag & P_WEXIT) == 0) 638 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 639 lim_cb, p, C_PREL(1)); 640 } 641 642 int 643 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp) 644 { 645 646 return (kern_proc_setrlimit(td, td->td_proc, which, limp)); 647 } 648 649 int 650 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which, 651 struct rlimit *limp) 652 { 653 struct plimit *newlim, *oldlim; 654 register struct rlimit *alimp; 655 struct rlimit oldssiz; 656 int error; 657 658 if (which >= RLIM_NLIMITS) 659 return (EINVAL); 660 661 /* 662 * Preserve historical bugs by treating negative limits as unsigned. 663 */ 664 if (limp->rlim_cur < 0) 665 limp->rlim_cur = RLIM_INFINITY; 666 if (limp->rlim_max < 0) 667 limp->rlim_max = RLIM_INFINITY; 668 669 oldssiz.rlim_cur = 0; 670 newlim = NULL; 671 PROC_LOCK(p); 672 if (lim_shared(p->p_limit)) { 673 PROC_UNLOCK(p); 674 newlim = lim_alloc(); 675 PROC_LOCK(p); 676 } 677 oldlim = p->p_limit; 678 alimp = &oldlim->pl_rlimit[which]; 679 if (limp->rlim_cur > alimp->rlim_max || 680 limp->rlim_max > alimp->rlim_max) 681 if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) { 682 PROC_UNLOCK(p); 683 if (newlim != NULL) 684 lim_free(newlim); 685 return (error); 686 } 687 if (limp->rlim_cur > limp->rlim_max) 688 limp->rlim_cur = limp->rlim_max; 689 if (newlim != NULL) { 690 lim_copy(newlim, oldlim); 691 alimp = &newlim->pl_rlimit[which]; 692 } 693 694 switch (which) { 695 696 case RLIMIT_CPU: 697 if (limp->rlim_cur != RLIM_INFINITY && 698 p->p_cpulimit == RLIM_INFINITY) 699 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 700 lim_cb, p, C_PREL(1)); 701 p->p_cpulimit = limp->rlim_cur; 702 break; 703 case RLIMIT_DATA: 704 if (limp->rlim_cur > maxdsiz) 705 limp->rlim_cur = maxdsiz; 706 if (limp->rlim_max > maxdsiz) 707 limp->rlim_max = maxdsiz; 708 break; 709 710 case RLIMIT_STACK: 711 if (limp->rlim_cur > maxssiz) 712 limp->rlim_cur = maxssiz; 713 if (limp->rlim_max > maxssiz) 714 limp->rlim_max = maxssiz; 715 oldssiz = *alimp; 716 if (p->p_sysent->sv_fixlimit != NULL) 717 p->p_sysent->sv_fixlimit(&oldssiz, 718 RLIMIT_STACK); 719 break; 720 721 case RLIMIT_NOFILE: 722 if (limp->rlim_cur > maxfilesperproc) 723 limp->rlim_cur = maxfilesperproc; 724 if (limp->rlim_max > maxfilesperproc) 725 limp->rlim_max = maxfilesperproc; 726 break; 727 728 case RLIMIT_NPROC: 729 if (limp->rlim_cur > maxprocperuid) 730 limp->rlim_cur = maxprocperuid; 731 if (limp->rlim_max > maxprocperuid) 732 limp->rlim_max = maxprocperuid; 733 if (limp->rlim_cur < 1) 734 limp->rlim_cur = 1; 735 if (limp->rlim_max < 1) 736 limp->rlim_max = 1; 737 break; 738 } 739 if (p->p_sysent->sv_fixlimit != NULL) 740 p->p_sysent->sv_fixlimit(limp, which); 741 *alimp = *limp; 742 if (newlim != NULL) 743 p->p_limit = newlim; 744 PROC_UNLOCK(p); 745 if (newlim != NULL) 746 lim_free(oldlim); 747 748 if (which == RLIMIT_STACK) { 749 /* 750 * Stack is allocated to the max at exec time with only 751 * "rlim_cur" bytes accessible. If stack limit is going 752 * up make more accessible, if going down make inaccessible. 753 */ 754 if (limp->rlim_cur != oldssiz.rlim_cur) { 755 vm_offset_t addr; 756 vm_size_t size; 757 vm_prot_t prot; 758 759 if (limp->rlim_cur > oldssiz.rlim_cur) { 760 prot = p->p_sysent->sv_stackprot; 761 size = limp->rlim_cur - oldssiz.rlim_cur; 762 addr = p->p_sysent->sv_usrstack - 763 limp->rlim_cur; 764 } else { 765 prot = VM_PROT_NONE; 766 size = oldssiz.rlim_cur - limp->rlim_cur; 767 addr = p->p_sysent->sv_usrstack - 768 oldssiz.rlim_cur; 769 } 770 addr = trunc_page(addr); 771 size = round_page(size); 772 (void)vm_map_protect(&p->p_vmspace->vm_map, 773 addr, addr + size, prot, FALSE); 774 } 775 } 776 777 return (0); 778 } 779 780 #ifndef _SYS_SYSPROTO_H_ 781 struct __getrlimit_args { 782 u_int which; 783 struct rlimit *rlp; 784 }; 785 #endif 786 /* ARGSUSED */ 787 int 788 sys_getrlimit(struct thread *td, register struct __getrlimit_args *uap) 789 { 790 struct rlimit rlim; 791 struct proc *p; 792 int error; 793 794 if (uap->which >= RLIM_NLIMITS) 795 return (EINVAL); 796 p = td->td_proc; 797 PROC_LOCK(p); 798 lim_rlimit(p, uap->which, &rlim); 799 PROC_UNLOCK(p); 800 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit)); 801 return (error); 802 } 803 804 /* 805 * Transform the running time and tick information for children of proc p 806 * into user and system time usage. 807 */ 808 void 809 calccru(struct proc *p, struct timeval *up, struct timeval *sp) 810 { 811 812 PROC_LOCK_ASSERT(p, MA_OWNED); 813 calcru1(p, &p->p_crux, up, sp); 814 } 815 816 /* 817 * Transform the running time and tick information in proc p into user 818 * and system time usage. If appropriate, include the current time slice 819 * on this CPU. 820 */ 821 void 822 calcru(struct proc *p, struct timeval *up, struct timeval *sp) 823 { 824 struct thread *td; 825 uint64_t runtime, u; 826 827 PROC_LOCK_ASSERT(p, MA_OWNED); 828 PROC_STATLOCK_ASSERT(p, MA_OWNED); 829 /* 830 * If we are getting stats for the current process, then add in the 831 * stats that this thread has accumulated in its current time slice. 832 * We reset the thread and CPU state as if we had performed a context 833 * switch right here. 834 */ 835 td = curthread; 836 if (td->td_proc == p) { 837 u = cpu_ticks(); 838 runtime = u - PCPU_GET(switchtime); 839 td->td_runtime += runtime; 840 td->td_incruntime += runtime; 841 PCPU_SET(switchtime, u); 842 } 843 /* Make sure the per-thread stats are current. */ 844 FOREACH_THREAD_IN_PROC(p, td) { 845 if (td->td_incruntime == 0) 846 continue; 847 ruxagg(p, td); 848 } 849 calcru1(p, &p->p_rux, up, sp); 850 } 851 852 /* Collect resource usage for a single thread. */ 853 void 854 rufetchtd(struct thread *td, struct rusage *ru) 855 { 856 struct proc *p; 857 uint64_t runtime, u; 858 859 p = td->td_proc; 860 PROC_STATLOCK_ASSERT(p, MA_OWNED); 861 THREAD_LOCK_ASSERT(td, MA_OWNED); 862 /* 863 * If we are getting stats for the current thread, then add in the 864 * stats that this thread has accumulated in its current time slice. 865 * We reset the thread and CPU state as if we had performed a context 866 * switch right here. 867 */ 868 if (td == curthread) { 869 u = cpu_ticks(); 870 runtime = u - PCPU_GET(switchtime); 871 td->td_runtime += runtime; 872 td->td_incruntime += runtime; 873 PCPU_SET(switchtime, u); 874 } 875 ruxagg(p, td); 876 *ru = td->td_ru; 877 calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime); 878 } 879 880 static void 881 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up, 882 struct timeval *sp) 883 { 884 /* {user, system, interrupt, total} {ticks, usec}: */ 885 uint64_t ut, uu, st, su, it, tt, tu; 886 887 ut = ruxp->rux_uticks; 888 st = ruxp->rux_sticks; 889 it = ruxp->rux_iticks; 890 tt = ut + st + it; 891 if (tt == 0) { 892 /* Avoid divide by zero */ 893 st = 1; 894 tt = 1; 895 } 896 tu = cputick2usec(ruxp->rux_runtime); 897 if ((int64_t)tu < 0) { 898 /* XXX: this should be an assert /phk */ 899 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n", 900 (intmax_t)tu, p->p_pid, p->p_comm); 901 tu = ruxp->rux_tu; 902 } 903 904 if (tu >= ruxp->rux_tu) { 905 /* 906 * The normal case, time increased. 907 * Enforce monotonicity of bucketed numbers. 908 */ 909 uu = (tu * ut) / tt; 910 if (uu < ruxp->rux_uu) 911 uu = ruxp->rux_uu; 912 su = (tu * st) / tt; 913 if (su < ruxp->rux_su) 914 su = ruxp->rux_su; 915 } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) { 916 /* 917 * When we calibrate the cputicker, it is not uncommon to 918 * see the presumably fixed frequency increase slightly over 919 * time as a result of thermal stabilization and NTP 920 * discipline (of the reference clock). We therefore ignore 921 * a bit of backwards slop because we expect to catch up 922 * shortly. We use a 3 microsecond limit to catch low 923 * counts and a 1% limit for high counts. 924 */ 925 uu = ruxp->rux_uu; 926 su = ruxp->rux_su; 927 tu = ruxp->rux_tu; 928 } else { /* tu < ruxp->rux_tu */ 929 /* 930 * What happened here was likely that a laptop, which ran at 931 * a reduced clock frequency at boot, kicked into high gear. 932 * The wisdom of spamming this message in that case is 933 * dubious, but it might also be indicative of something 934 * serious, so lets keep it and hope laptops can be made 935 * more truthful about their CPU speed via ACPI. 936 */ 937 printf("calcru: runtime went backwards from %ju usec " 938 "to %ju usec for pid %d (%s)\n", 939 (uintmax_t)ruxp->rux_tu, (uintmax_t)tu, 940 p->p_pid, p->p_comm); 941 uu = (tu * ut) / tt; 942 su = (tu * st) / tt; 943 } 944 945 ruxp->rux_uu = uu; 946 ruxp->rux_su = su; 947 ruxp->rux_tu = tu; 948 949 up->tv_sec = uu / 1000000; 950 up->tv_usec = uu % 1000000; 951 sp->tv_sec = su / 1000000; 952 sp->tv_usec = su % 1000000; 953 } 954 955 #ifndef _SYS_SYSPROTO_H_ 956 struct getrusage_args { 957 int who; 958 struct rusage *rusage; 959 }; 960 #endif 961 int 962 sys_getrusage(register struct thread *td, register struct getrusage_args *uap) 963 { 964 struct rusage ru; 965 int error; 966 967 error = kern_getrusage(td, uap->who, &ru); 968 if (error == 0) 969 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 970 return (error); 971 } 972 973 int 974 kern_getrusage(struct thread *td, int who, struct rusage *rup) 975 { 976 struct proc *p; 977 int error; 978 979 error = 0; 980 p = td->td_proc; 981 PROC_LOCK(p); 982 switch (who) { 983 case RUSAGE_SELF: 984 rufetchcalc(p, rup, &rup->ru_utime, 985 &rup->ru_stime); 986 break; 987 988 case RUSAGE_CHILDREN: 989 *rup = p->p_stats->p_cru; 990 calccru(p, &rup->ru_utime, &rup->ru_stime); 991 break; 992 993 case RUSAGE_THREAD: 994 PROC_STATLOCK(p); 995 thread_lock(td); 996 rufetchtd(td, rup); 997 thread_unlock(td); 998 PROC_STATUNLOCK(p); 999 break; 1000 1001 default: 1002 error = EINVAL; 1003 } 1004 PROC_UNLOCK(p); 1005 return (error); 1006 } 1007 1008 void 1009 rucollect(struct rusage *ru, struct rusage *ru2) 1010 { 1011 long *ip, *ip2; 1012 int i; 1013 1014 if (ru->ru_maxrss < ru2->ru_maxrss) 1015 ru->ru_maxrss = ru2->ru_maxrss; 1016 ip = &ru->ru_first; 1017 ip2 = &ru2->ru_first; 1018 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 1019 *ip++ += *ip2++; 1020 } 1021 1022 void 1023 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2, 1024 struct rusage_ext *rux2) 1025 { 1026 1027 rux->rux_runtime += rux2->rux_runtime; 1028 rux->rux_uticks += rux2->rux_uticks; 1029 rux->rux_sticks += rux2->rux_sticks; 1030 rux->rux_iticks += rux2->rux_iticks; 1031 rux->rux_uu += rux2->rux_uu; 1032 rux->rux_su += rux2->rux_su; 1033 rux->rux_tu += rux2->rux_tu; 1034 rucollect(ru, ru2); 1035 } 1036 1037 /* 1038 * Aggregate tick counts into the proc's rusage_ext. 1039 */ 1040 static void 1041 ruxagg_locked(struct rusage_ext *rux, struct thread *td) 1042 { 1043 1044 THREAD_LOCK_ASSERT(td, MA_OWNED); 1045 PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED); 1046 rux->rux_runtime += td->td_incruntime; 1047 rux->rux_uticks += td->td_uticks; 1048 rux->rux_sticks += td->td_sticks; 1049 rux->rux_iticks += td->td_iticks; 1050 } 1051 1052 void 1053 ruxagg(struct proc *p, struct thread *td) 1054 { 1055 1056 thread_lock(td); 1057 ruxagg_locked(&p->p_rux, td); 1058 ruxagg_locked(&td->td_rux, td); 1059 td->td_incruntime = 0; 1060 td->td_uticks = 0; 1061 td->td_iticks = 0; 1062 td->td_sticks = 0; 1063 thread_unlock(td); 1064 } 1065 1066 /* 1067 * Update the rusage_ext structure and fetch a valid aggregate rusage 1068 * for proc p if storage for one is supplied. 1069 */ 1070 void 1071 rufetch(struct proc *p, struct rusage *ru) 1072 { 1073 struct thread *td; 1074 1075 PROC_STATLOCK_ASSERT(p, MA_OWNED); 1076 1077 *ru = p->p_ru; 1078 if (p->p_numthreads > 0) { 1079 FOREACH_THREAD_IN_PROC(p, td) { 1080 ruxagg(p, td); 1081 rucollect(ru, &td->td_ru); 1082 } 1083 } 1084 } 1085 1086 /* 1087 * Atomically perform a rufetch and a calcru together. 1088 * Consumers, can safely assume the calcru is executed only once 1089 * rufetch is completed. 1090 */ 1091 void 1092 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up, 1093 struct timeval *sp) 1094 { 1095 1096 PROC_STATLOCK(p); 1097 rufetch(p, ru); 1098 calcru(p, up, sp); 1099 PROC_STATUNLOCK(p); 1100 } 1101 1102 /* 1103 * Allocate a new resource limits structure and initialize its 1104 * reference count and mutex pointer. 1105 */ 1106 struct plimit * 1107 lim_alloc() 1108 { 1109 struct plimit *limp; 1110 1111 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK); 1112 refcount_init(&limp->pl_refcnt, 1); 1113 return (limp); 1114 } 1115 1116 struct plimit * 1117 lim_hold(struct plimit *limp) 1118 { 1119 1120 refcount_acquire(&limp->pl_refcnt); 1121 return (limp); 1122 } 1123 1124 static __inline int 1125 lim_shared(struct plimit *limp) 1126 { 1127 1128 return (limp->pl_refcnt > 1); 1129 } 1130 1131 void 1132 lim_fork(struct proc *p1, struct proc *p2) 1133 { 1134 1135 PROC_LOCK_ASSERT(p1, MA_OWNED); 1136 PROC_LOCK_ASSERT(p2, MA_OWNED); 1137 1138 p2->p_limit = lim_hold(p1->p_limit); 1139 callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0); 1140 if (p1->p_cpulimit != RLIM_INFINITY) 1141 callout_reset_sbt(&p2->p_limco, SBT_1S, 0, 1142 lim_cb, p2, C_PREL(1)); 1143 } 1144 1145 void 1146 lim_free(struct plimit *limp) 1147 { 1148 1149 if (refcount_release(&limp->pl_refcnt)) 1150 free((void *)limp, M_PLIMIT); 1151 } 1152 1153 /* 1154 * Make a copy of the plimit structure. 1155 * We share these structures copy-on-write after fork. 1156 */ 1157 void 1158 lim_copy(struct plimit *dst, struct plimit *src) 1159 { 1160 1161 KASSERT(!lim_shared(dst), ("lim_copy to shared limit")); 1162 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit)); 1163 } 1164 1165 /* 1166 * Return the hard limit for a particular system resource. The 1167 * which parameter specifies the index into the rlimit array. 1168 */ 1169 rlim_t 1170 lim_max(struct proc *p, int which) 1171 { 1172 struct rlimit rl; 1173 1174 lim_rlimit(p, which, &rl); 1175 return (rl.rlim_max); 1176 } 1177 1178 /* 1179 * Return the current (soft) limit for a particular system resource. 1180 * The which parameter which specifies the index into the rlimit array 1181 */ 1182 rlim_t 1183 lim_cur(struct proc *p, int which) 1184 { 1185 struct rlimit rl; 1186 1187 lim_rlimit(p, which, &rl); 1188 return (rl.rlim_cur); 1189 } 1190 1191 /* 1192 * Return a copy of the entire rlimit structure for the system limit 1193 * specified by 'which' in the rlimit structure pointed to by 'rlp'. 1194 */ 1195 void 1196 lim_rlimit(struct proc *p, int which, struct rlimit *rlp) 1197 { 1198 1199 PROC_LOCK_ASSERT(p, MA_OWNED); 1200 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1201 ("request for invalid resource limit")); 1202 *rlp = p->p_limit->pl_rlimit[which]; 1203 if (p->p_sysent->sv_fixlimit != NULL) 1204 p->p_sysent->sv_fixlimit(rlp, which); 1205 } 1206 1207 void 1208 uihashinit() 1209 { 1210 1211 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 1212 rw_init(&uihashtbl_lock, "uidinfo hash"); 1213 } 1214 1215 /* 1216 * Look up a uidinfo struct for the parameter uid. 1217 * uihashtbl_lock must be locked. 1218 * Increase refcount on uidinfo struct returned. 1219 */ 1220 static struct uidinfo * 1221 uilookup(uid_t uid) 1222 { 1223 struct uihashhead *uipp; 1224 struct uidinfo *uip; 1225 1226 rw_assert(&uihashtbl_lock, RA_LOCKED); 1227 uipp = UIHASH(uid); 1228 LIST_FOREACH(uip, uipp, ui_hash) 1229 if (uip->ui_uid == uid) { 1230 uihold(uip); 1231 break; 1232 } 1233 1234 return (uip); 1235 } 1236 1237 /* 1238 * Find or allocate a struct uidinfo for a particular uid. 1239 * Returns with uidinfo struct referenced. 1240 * uifree() should be called on a struct uidinfo when released. 1241 */ 1242 struct uidinfo * 1243 uifind(uid_t uid) 1244 { 1245 struct uidinfo *new_uip, *uip; 1246 1247 rw_rlock(&uihashtbl_lock); 1248 uip = uilookup(uid); 1249 rw_runlock(&uihashtbl_lock); 1250 if (uip != NULL) 1251 return (uip); 1252 1253 new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO); 1254 racct_create(&new_uip->ui_racct); 1255 refcount_init(&new_uip->ui_ref, 1); 1256 new_uip->ui_uid = uid; 1257 mtx_init(&new_uip->ui_vmsize_mtx, "ui_vmsize", NULL, MTX_DEF); 1258 1259 rw_wlock(&uihashtbl_lock); 1260 /* 1261 * There's a chance someone created our uidinfo while we 1262 * were in malloc and not holding the lock, so we have to 1263 * make sure we don't insert a duplicate uidinfo. 1264 */ 1265 if ((uip = uilookup(uid)) == NULL) { 1266 LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash); 1267 rw_wunlock(&uihashtbl_lock); 1268 uip = new_uip; 1269 } else { 1270 rw_wunlock(&uihashtbl_lock); 1271 racct_destroy(&new_uip->ui_racct); 1272 mtx_destroy(&new_uip->ui_vmsize_mtx); 1273 free(new_uip, M_UIDINFO); 1274 } 1275 return (uip); 1276 } 1277 1278 /* 1279 * Place another refcount on a uidinfo struct. 1280 */ 1281 void 1282 uihold(struct uidinfo *uip) 1283 { 1284 1285 refcount_acquire(&uip->ui_ref); 1286 } 1287 1288 /*- 1289 * Since uidinfo structs have a long lifetime, we use an 1290 * opportunistic refcounting scheme to avoid locking the lookup hash 1291 * for each release. 1292 * 1293 * If the refcount hits 0, we need to free the structure, 1294 * which means we need to lock the hash. 1295 * Optimal case: 1296 * After locking the struct and lowering the refcount, if we find 1297 * that we don't need to free, simply unlock and return. 1298 * Suboptimal case: 1299 * If refcount lowering results in need to free, bump the count 1300 * back up, lose the lock and acquire the locks in the proper 1301 * order to try again. 1302 */ 1303 void 1304 uifree(struct uidinfo *uip) 1305 { 1306 int old; 1307 1308 /* Prepare for optimal case. */ 1309 old = uip->ui_ref; 1310 if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1)) 1311 return; 1312 1313 /* Prepare for suboptimal case. */ 1314 rw_wlock(&uihashtbl_lock); 1315 if (refcount_release(&uip->ui_ref) == 0) { 1316 rw_wunlock(&uihashtbl_lock); 1317 return; 1318 } 1319 1320 racct_destroy(&uip->ui_racct); 1321 LIST_REMOVE(uip, ui_hash); 1322 rw_wunlock(&uihashtbl_lock); 1323 1324 if (uip->ui_sbsize != 0) 1325 printf("freeing uidinfo: uid = %d, sbsize = %ld\n", 1326 uip->ui_uid, uip->ui_sbsize); 1327 if (uip->ui_proccnt != 0) 1328 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 1329 uip->ui_uid, uip->ui_proccnt); 1330 if (uip->ui_vmsize != 0) 1331 printf("freeing uidinfo: uid = %d, swapuse = %lld\n", 1332 uip->ui_uid, (unsigned long long)uip->ui_vmsize); 1333 mtx_destroy(&uip->ui_vmsize_mtx); 1334 free(uip, M_UIDINFO); 1335 } 1336 1337 #ifdef RACCT 1338 void 1339 ui_racct_foreach(void (*callback)(struct racct *racct, 1340 void *arg2, void *arg3), void *arg2, void *arg3) 1341 { 1342 struct uidinfo *uip; 1343 struct uihashhead *uih; 1344 1345 rw_rlock(&uihashtbl_lock); 1346 for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) { 1347 LIST_FOREACH(uip, uih, ui_hash) { 1348 (callback)(uip->ui_racct, arg2, arg3); 1349 } 1350 } 1351 rw_runlock(&uihashtbl_lock); 1352 } 1353 #endif 1354 1355 /* 1356 * Change the count associated with number of processes 1357 * a given user is using. When 'max' is 0, don't enforce a limit 1358 */ 1359 int 1360 chgproccnt(struct uidinfo *uip, int diff, rlim_t max) 1361 { 1362 1363 /* Don't allow them to exceed max, but allow subtraction. */ 1364 if (diff > 0 && max != 0) { 1365 if (atomic_fetchadd_long(&uip->ui_proccnt, (long)diff) + diff > max) { 1366 atomic_subtract_long(&uip->ui_proccnt, (long)diff); 1367 return (0); 1368 } 1369 } else { 1370 atomic_add_long(&uip->ui_proccnt, (long)diff); 1371 if (uip->ui_proccnt < 0) 1372 printf("negative proccnt for uid = %d\n", uip->ui_uid); 1373 } 1374 return (1); 1375 } 1376 1377 /* 1378 * Change the total socket buffer size a user has used. 1379 */ 1380 int 1381 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max) 1382 { 1383 int diff; 1384 1385 diff = to - *hiwat; 1386 if (diff > 0) { 1387 if (atomic_fetchadd_long(&uip->ui_sbsize, (long)diff) + diff > max) { 1388 atomic_subtract_long(&uip->ui_sbsize, (long)diff); 1389 return (0); 1390 } 1391 } else { 1392 atomic_add_long(&uip->ui_sbsize, (long)diff); 1393 if (uip->ui_sbsize < 0) 1394 printf("negative sbsize for uid = %d\n", uip->ui_uid); 1395 } 1396 *hiwat = to; 1397 return (1); 1398 } 1399 1400 /* 1401 * Change the count associated with number of pseudo-terminals 1402 * a given user is using. When 'max' is 0, don't enforce a limit 1403 */ 1404 int 1405 chgptscnt(struct uidinfo *uip, int diff, rlim_t max) 1406 { 1407 1408 /* Don't allow them to exceed max, but allow subtraction. */ 1409 if (diff > 0 && max != 0) { 1410 if (atomic_fetchadd_long(&uip->ui_ptscnt, (long)diff) + diff > max) { 1411 atomic_subtract_long(&uip->ui_ptscnt, (long)diff); 1412 return (0); 1413 } 1414 } else { 1415 atomic_add_long(&uip->ui_ptscnt, (long)diff); 1416 if (uip->ui_ptscnt < 0) 1417 printf("negative ptscnt for uid = %d\n", uip->ui_uid); 1418 } 1419 return (1); 1420 } 1421 1422 int 1423 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max) 1424 { 1425 1426 if (diff > 0 && max != 0) { 1427 if (atomic_fetchadd_long(&uip->ui_kqcnt, (long)diff) + 1428 diff > max) { 1429 atomic_subtract_long(&uip->ui_kqcnt, (long)diff); 1430 return (0); 1431 } 1432 } else { 1433 atomic_add_long(&uip->ui_kqcnt, (long)diff); 1434 if (uip->ui_kqcnt < 0) 1435 printf("negative kqcnt for uid = %d\n", uip->ui_uid); 1436 } 1437 return (1); 1438 } 1439