1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/sysproto.h> 45 #include <sys/file.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mutex.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/refcount.h> 53 #include <sys/racct.h> 54 #include <sys/resourcevar.h> 55 #include <sys/rwlock.h> 56 #include <sys/sched.h> 57 #include <sys/sx.h> 58 #include <sys/syscallsubr.h> 59 #include <sys/sysctl.h> 60 #include <sys/sysent.h> 61 #include <sys/time.h> 62 #include <sys/umtx.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_param.h> 66 #include <vm/pmap.h> 67 #include <vm/vm_map.h> 68 69 70 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures"); 71 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 72 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 73 static struct rwlock uihashtbl_lock; 74 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 75 static u_long uihash; /* size of hash table - 1 */ 76 77 static void calcru1(struct proc *p, struct rusage_ext *ruxp, 78 struct timeval *up, struct timeval *sp); 79 static int donice(struct thread *td, struct proc *chgp, int n); 80 static struct uidinfo *uilookup(uid_t uid); 81 static void ruxagg_locked(struct rusage_ext *rux, struct thread *td); 82 83 /* 84 * Resource controls and accounting. 85 */ 86 #ifndef _SYS_SYSPROTO_H_ 87 struct getpriority_args { 88 int which; 89 int who; 90 }; 91 #endif 92 int 93 sys_getpriority(struct thread *td, struct getpriority_args *uap) 94 { 95 struct proc *p; 96 struct pgrp *pg; 97 int error, low; 98 99 error = 0; 100 low = PRIO_MAX + 1; 101 switch (uap->which) { 102 103 case PRIO_PROCESS: 104 if (uap->who == 0) 105 low = td->td_proc->p_nice; 106 else { 107 p = pfind(uap->who); 108 if (p == NULL) 109 break; 110 if (p_cansee(td, p) == 0) 111 low = p->p_nice; 112 PROC_UNLOCK(p); 113 } 114 break; 115 116 case PRIO_PGRP: 117 sx_slock(&proctree_lock); 118 if (uap->who == 0) { 119 pg = td->td_proc->p_pgrp; 120 PGRP_LOCK(pg); 121 } else { 122 pg = pgfind(uap->who); 123 if (pg == NULL) { 124 sx_sunlock(&proctree_lock); 125 break; 126 } 127 } 128 sx_sunlock(&proctree_lock); 129 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 130 PROC_LOCK(p); 131 if (p->p_state == PRS_NORMAL && 132 p_cansee(td, p) == 0) { 133 if (p->p_nice < low) 134 low = p->p_nice; 135 } 136 PROC_UNLOCK(p); 137 } 138 PGRP_UNLOCK(pg); 139 break; 140 141 case PRIO_USER: 142 if (uap->who == 0) 143 uap->who = td->td_ucred->cr_uid; 144 sx_slock(&allproc_lock); 145 FOREACH_PROC_IN_SYSTEM(p) { 146 PROC_LOCK(p); 147 if (p->p_state == PRS_NORMAL && 148 p_cansee(td, p) == 0 && 149 p->p_ucred->cr_uid == uap->who) { 150 if (p->p_nice < low) 151 low = p->p_nice; 152 } 153 PROC_UNLOCK(p); 154 } 155 sx_sunlock(&allproc_lock); 156 break; 157 158 default: 159 error = EINVAL; 160 break; 161 } 162 if (low == PRIO_MAX + 1 && error == 0) 163 error = ESRCH; 164 td->td_retval[0] = low; 165 return (error); 166 } 167 168 #ifndef _SYS_SYSPROTO_H_ 169 struct setpriority_args { 170 int which; 171 int who; 172 int prio; 173 }; 174 #endif 175 int 176 sys_setpriority(struct thread *td, struct setpriority_args *uap) 177 { 178 struct proc *curp, *p; 179 struct pgrp *pg; 180 int found = 0, error = 0; 181 182 curp = td->td_proc; 183 switch (uap->which) { 184 case PRIO_PROCESS: 185 if (uap->who == 0) { 186 PROC_LOCK(curp); 187 error = donice(td, curp, uap->prio); 188 PROC_UNLOCK(curp); 189 } else { 190 p = pfind(uap->who); 191 if (p == NULL) 192 break; 193 error = p_cansee(td, p); 194 if (error == 0) 195 error = donice(td, p, uap->prio); 196 PROC_UNLOCK(p); 197 } 198 found++; 199 break; 200 201 case PRIO_PGRP: 202 sx_slock(&proctree_lock); 203 if (uap->who == 0) { 204 pg = curp->p_pgrp; 205 PGRP_LOCK(pg); 206 } else { 207 pg = pgfind(uap->who); 208 if (pg == NULL) { 209 sx_sunlock(&proctree_lock); 210 break; 211 } 212 } 213 sx_sunlock(&proctree_lock); 214 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 215 PROC_LOCK(p); 216 if (p->p_state == PRS_NORMAL && 217 p_cansee(td, p) == 0) { 218 error = donice(td, p, uap->prio); 219 found++; 220 } 221 PROC_UNLOCK(p); 222 } 223 PGRP_UNLOCK(pg); 224 break; 225 226 case PRIO_USER: 227 if (uap->who == 0) 228 uap->who = td->td_ucred->cr_uid; 229 sx_slock(&allproc_lock); 230 FOREACH_PROC_IN_SYSTEM(p) { 231 PROC_LOCK(p); 232 if (p->p_state == PRS_NORMAL && 233 p->p_ucred->cr_uid == uap->who && 234 p_cansee(td, p) == 0) { 235 error = donice(td, p, uap->prio); 236 found++; 237 } 238 PROC_UNLOCK(p); 239 } 240 sx_sunlock(&allproc_lock); 241 break; 242 243 default: 244 error = EINVAL; 245 break; 246 } 247 if (found == 0 && error == 0) 248 error = ESRCH; 249 return (error); 250 } 251 252 /* 253 * Set "nice" for a (whole) process. 254 */ 255 static int 256 donice(struct thread *td, struct proc *p, int n) 257 { 258 int error; 259 260 PROC_LOCK_ASSERT(p, MA_OWNED); 261 if ((error = p_cansched(td, p))) 262 return (error); 263 if (n > PRIO_MAX) 264 n = PRIO_MAX; 265 if (n < PRIO_MIN) 266 n = PRIO_MIN; 267 if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0) 268 return (EACCES); 269 sched_nice(p, n); 270 return (0); 271 } 272 273 static int unprivileged_idprio; 274 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW, 275 &unprivileged_idprio, 0, "Allow non-root users to set an idle priority"); 276 277 /* 278 * Set realtime priority for LWP. 279 */ 280 #ifndef _SYS_SYSPROTO_H_ 281 struct rtprio_thread_args { 282 int function; 283 lwpid_t lwpid; 284 struct rtprio *rtp; 285 }; 286 #endif 287 int 288 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap) 289 { 290 struct proc *p; 291 struct rtprio rtp; 292 struct thread *td1; 293 int cierror, error; 294 295 /* Perform copyin before acquiring locks if needed. */ 296 if (uap->function == RTP_SET) 297 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 298 else 299 cierror = 0; 300 301 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) { 302 p = td->td_proc; 303 td1 = td; 304 PROC_LOCK(p); 305 } else { 306 /* Only look up thread in current process */ 307 td1 = tdfind(uap->lwpid, curproc->p_pid); 308 if (td1 == NULL) 309 return (ESRCH); 310 p = td1->td_proc; 311 } 312 313 switch (uap->function) { 314 case RTP_LOOKUP: 315 if ((error = p_cansee(td, p))) 316 break; 317 pri_to_rtp(td1, &rtp); 318 PROC_UNLOCK(p); 319 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 320 case RTP_SET: 321 if ((error = p_cansched(td, p)) || (error = cierror)) 322 break; 323 324 /* Disallow setting rtprio in most cases if not superuser. */ 325 326 /* 327 * Realtime priority has to be restricted for reasons which 328 * should be obvious. However, for idleprio processes, there is 329 * a potential for system deadlock if an idleprio process gains 330 * a lock on a resource that other processes need (and the 331 * idleprio process can't run due to a CPU-bound normal 332 * process). Fix me! XXX 333 * 334 * This problem is not only related to idleprio process. 335 * A user level program can obtain a file lock and hold it 336 * indefinitely. Additionally, without idleprio processes it is 337 * still conceivable that a program with low priority will never 338 * get to run. In short, allowing this feature might make it 339 * easier to lock a resource indefinitely, but it is not the 340 * only thing that makes it possible. 341 */ 342 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME || 343 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 344 unprivileged_idprio == 0)) { 345 error = priv_check(td, PRIV_SCHED_RTPRIO); 346 if (error) 347 break; 348 } 349 error = rtp_to_pri(&rtp, td1); 350 break; 351 default: 352 error = EINVAL; 353 break; 354 } 355 PROC_UNLOCK(p); 356 return (error); 357 } 358 359 /* 360 * Set realtime priority. 361 */ 362 #ifndef _SYS_SYSPROTO_H_ 363 struct rtprio_args { 364 int function; 365 pid_t pid; 366 struct rtprio *rtp; 367 }; 368 #endif 369 int 370 sys_rtprio(struct thread *td, struct rtprio_args *uap) 371 { 372 struct proc *p; 373 struct thread *tdp; 374 struct rtprio rtp; 375 int cierror, error; 376 377 /* Perform copyin before acquiring locks if needed. */ 378 if (uap->function == RTP_SET) 379 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 380 else 381 cierror = 0; 382 383 if (uap->pid == 0) { 384 p = td->td_proc; 385 PROC_LOCK(p); 386 } else { 387 p = pfind(uap->pid); 388 if (p == NULL) 389 return (ESRCH); 390 } 391 392 switch (uap->function) { 393 case RTP_LOOKUP: 394 if ((error = p_cansee(td, p))) 395 break; 396 /* 397 * Return OUR priority if no pid specified, 398 * or if one is, report the highest priority 399 * in the process. There isn't much more you can do as 400 * there is only room to return a single priority. 401 * Note: specifying our own pid is not the same 402 * as leaving it zero. 403 */ 404 if (uap->pid == 0) { 405 pri_to_rtp(td, &rtp); 406 } else { 407 struct rtprio rtp2; 408 409 rtp.type = RTP_PRIO_IDLE; 410 rtp.prio = RTP_PRIO_MAX; 411 FOREACH_THREAD_IN_PROC(p, tdp) { 412 pri_to_rtp(tdp, &rtp2); 413 if (rtp2.type < rtp.type || 414 (rtp2.type == rtp.type && 415 rtp2.prio < rtp.prio)) { 416 rtp.type = rtp2.type; 417 rtp.prio = rtp2.prio; 418 } 419 } 420 } 421 PROC_UNLOCK(p); 422 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 423 case RTP_SET: 424 if ((error = p_cansched(td, p)) || (error = cierror)) 425 break; 426 427 /* 428 * Disallow setting rtprio in most cases if not superuser. 429 * See the comment in sys_rtprio_thread about idprio 430 * threads holding a lock. 431 */ 432 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME || 433 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 434 !unprivileged_idprio)) { 435 error = priv_check(td, PRIV_SCHED_RTPRIO); 436 if (error) 437 break; 438 } 439 440 /* 441 * If we are setting our own priority, set just our 442 * thread but if we are doing another process, 443 * do all the threads on that process. If we 444 * specify our own pid we do the latter. 445 */ 446 if (uap->pid == 0) { 447 error = rtp_to_pri(&rtp, td); 448 } else { 449 FOREACH_THREAD_IN_PROC(p, td) { 450 if ((error = rtp_to_pri(&rtp, td)) != 0) 451 break; 452 } 453 } 454 break; 455 default: 456 error = EINVAL; 457 break; 458 } 459 PROC_UNLOCK(p); 460 return (error); 461 } 462 463 int 464 rtp_to_pri(struct rtprio *rtp, struct thread *td) 465 { 466 u_char newpri, oldclass, oldpri; 467 468 switch (RTP_PRIO_BASE(rtp->type)) { 469 case RTP_PRIO_REALTIME: 470 if (rtp->prio > RTP_PRIO_MAX) 471 return (EINVAL); 472 newpri = PRI_MIN_REALTIME + rtp->prio; 473 break; 474 case RTP_PRIO_NORMAL: 475 if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE)) 476 return (EINVAL); 477 newpri = PRI_MIN_TIMESHARE + rtp->prio; 478 break; 479 case RTP_PRIO_IDLE: 480 if (rtp->prio > RTP_PRIO_MAX) 481 return (EINVAL); 482 newpri = PRI_MIN_IDLE + rtp->prio; 483 break; 484 default: 485 return (EINVAL); 486 } 487 488 thread_lock(td); 489 oldclass = td->td_pri_class; 490 sched_class(td, rtp->type); /* XXX fix */ 491 oldpri = td->td_user_pri; 492 sched_user_prio(td, newpri); 493 if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL || 494 td->td_pri_class != RTP_PRIO_NORMAL)) 495 sched_prio(td, td->td_user_pri); 496 if (TD_ON_UPILOCK(td) && oldpri != newpri) { 497 critical_enter(); 498 thread_unlock(td); 499 umtx_pi_adjust(td, oldpri); 500 critical_exit(); 501 } else 502 thread_unlock(td); 503 return (0); 504 } 505 506 void 507 pri_to_rtp(struct thread *td, struct rtprio *rtp) 508 { 509 510 thread_lock(td); 511 switch (PRI_BASE(td->td_pri_class)) { 512 case PRI_REALTIME: 513 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME; 514 break; 515 case PRI_TIMESHARE: 516 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE; 517 break; 518 case PRI_IDLE: 519 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE; 520 break; 521 default: 522 break; 523 } 524 rtp->type = td->td_pri_class; 525 thread_unlock(td); 526 } 527 528 #if defined(COMPAT_43) 529 #ifndef _SYS_SYSPROTO_H_ 530 struct osetrlimit_args { 531 u_int which; 532 struct orlimit *rlp; 533 }; 534 #endif 535 int 536 osetrlimit(struct thread *td, struct osetrlimit_args *uap) 537 { 538 struct orlimit olim; 539 struct rlimit lim; 540 int error; 541 542 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 543 return (error); 544 lim.rlim_cur = olim.rlim_cur; 545 lim.rlim_max = olim.rlim_max; 546 error = kern_setrlimit(td, uap->which, &lim); 547 return (error); 548 } 549 550 #ifndef _SYS_SYSPROTO_H_ 551 struct ogetrlimit_args { 552 u_int which; 553 struct orlimit *rlp; 554 }; 555 #endif 556 int 557 ogetrlimit(struct thread *td, struct ogetrlimit_args *uap) 558 { 559 struct orlimit olim; 560 struct rlimit rl; 561 int error; 562 563 if (uap->which >= RLIM_NLIMITS) 564 return (EINVAL); 565 lim_rlimit(td, uap->which, &rl); 566 567 /* 568 * XXX would be more correct to convert only RLIM_INFINITY to the 569 * old RLIM_INFINITY and fail with EOVERFLOW for other larger 570 * values. Most 64->32 and 32->16 conversions, including not 571 * unimportant ones of uids are even more broken than what we 572 * do here (they blindly truncate). We don't do this correctly 573 * here since we have little experience with EOVERFLOW yet. 574 * Elsewhere, getuid() can't fail... 575 */ 576 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur; 577 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max; 578 error = copyout(&olim, uap->rlp, sizeof(olim)); 579 return (error); 580 } 581 #endif /* COMPAT_43 */ 582 583 #ifndef _SYS_SYSPROTO_H_ 584 struct __setrlimit_args { 585 u_int which; 586 struct rlimit *rlp; 587 }; 588 #endif 589 int 590 sys_setrlimit(struct thread *td, struct __setrlimit_args *uap) 591 { 592 struct rlimit alim; 593 int error; 594 595 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit)))) 596 return (error); 597 error = kern_setrlimit(td, uap->which, &alim); 598 return (error); 599 } 600 601 static void 602 lim_cb(void *arg) 603 { 604 struct rlimit rlim; 605 struct thread *td; 606 struct proc *p; 607 608 p = arg; 609 PROC_LOCK_ASSERT(p, MA_OWNED); 610 /* 611 * Check if the process exceeds its cpu resource allocation. If 612 * it reaches the max, arrange to kill the process in ast(). 613 */ 614 if (p->p_cpulimit == RLIM_INFINITY) 615 return; 616 PROC_STATLOCK(p); 617 FOREACH_THREAD_IN_PROC(p, td) { 618 ruxagg(p, td); 619 } 620 PROC_STATUNLOCK(p); 621 if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) { 622 lim_rlimit_proc(p, RLIMIT_CPU, &rlim); 623 if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) { 624 killproc(p, "exceeded maximum CPU limit"); 625 } else { 626 if (p->p_cpulimit < rlim.rlim_max) 627 p->p_cpulimit += 5; 628 kern_psignal(p, SIGXCPU); 629 } 630 } 631 if ((p->p_flag & P_WEXIT) == 0) 632 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 633 lim_cb, p, C_PREL(1)); 634 } 635 636 int 637 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp) 638 { 639 640 return (kern_proc_setrlimit(td, td->td_proc, which, limp)); 641 } 642 643 int 644 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which, 645 struct rlimit *limp) 646 { 647 struct plimit *newlim, *oldlim; 648 struct rlimit *alimp; 649 struct rlimit oldssiz; 650 int error; 651 652 if (which >= RLIM_NLIMITS) 653 return (EINVAL); 654 655 /* 656 * Preserve historical bugs by treating negative limits as unsigned. 657 */ 658 if (limp->rlim_cur < 0) 659 limp->rlim_cur = RLIM_INFINITY; 660 if (limp->rlim_max < 0) 661 limp->rlim_max = RLIM_INFINITY; 662 663 oldssiz.rlim_cur = 0; 664 newlim = lim_alloc(); 665 PROC_LOCK(p); 666 oldlim = p->p_limit; 667 alimp = &oldlim->pl_rlimit[which]; 668 if (limp->rlim_cur > alimp->rlim_max || 669 limp->rlim_max > alimp->rlim_max) 670 if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) { 671 PROC_UNLOCK(p); 672 lim_free(newlim); 673 return (error); 674 } 675 if (limp->rlim_cur > limp->rlim_max) 676 limp->rlim_cur = limp->rlim_max; 677 lim_copy(newlim, oldlim); 678 alimp = &newlim->pl_rlimit[which]; 679 680 switch (which) { 681 682 case RLIMIT_CPU: 683 if (limp->rlim_cur != RLIM_INFINITY && 684 p->p_cpulimit == RLIM_INFINITY) 685 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 686 lim_cb, p, C_PREL(1)); 687 p->p_cpulimit = limp->rlim_cur; 688 break; 689 case RLIMIT_DATA: 690 if (limp->rlim_cur > maxdsiz) 691 limp->rlim_cur = maxdsiz; 692 if (limp->rlim_max > maxdsiz) 693 limp->rlim_max = maxdsiz; 694 break; 695 696 case RLIMIT_STACK: 697 if (limp->rlim_cur > maxssiz) 698 limp->rlim_cur = maxssiz; 699 if (limp->rlim_max > maxssiz) 700 limp->rlim_max = maxssiz; 701 oldssiz = *alimp; 702 if (p->p_sysent->sv_fixlimit != NULL) 703 p->p_sysent->sv_fixlimit(&oldssiz, 704 RLIMIT_STACK); 705 break; 706 707 case RLIMIT_NOFILE: 708 if (limp->rlim_cur > maxfilesperproc) 709 limp->rlim_cur = maxfilesperproc; 710 if (limp->rlim_max > maxfilesperproc) 711 limp->rlim_max = maxfilesperproc; 712 break; 713 714 case RLIMIT_NPROC: 715 if (limp->rlim_cur > maxprocperuid) 716 limp->rlim_cur = maxprocperuid; 717 if (limp->rlim_max > maxprocperuid) 718 limp->rlim_max = maxprocperuid; 719 if (limp->rlim_cur < 1) 720 limp->rlim_cur = 1; 721 if (limp->rlim_max < 1) 722 limp->rlim_max = 1; 723 break; 724 } 725 if (p->p_sysent->sv_fixlimit != NULL) 726 p->p_sysent->sv_fixlimit(limp, which); 727 *alimp = *limp; 728 p->p_limit = newlim; 729 PROC_UPDATE_COW(p); 730 PROC_UNLOCK(p); 731 lim_free(oldlim); 732 733 if (which == RLIMIT_STACK && 734 /* 735 * Skip calls from exec_new_vmspace(), done when stack is 736 * not mapped yet. 737 */ 738 (td != curthread || (p->p_flag & P_INEXEC) == 0)) { 739 /* 740 * Stack is allocated to the max at exec time with only 741 * "rlim_cur" bytes accessible. If stack limit is going 742 * up make more accessible, if going down make inaccessible. 743 */ 744 if (limp->rlim_cur != oldssiz.rlim_cur) { 745 vm_offset_t addr; 746 vm_size_t size; 747 vm_prot_t prot; 748 749 if (limp->rlim_cur > oldssiz.rlim_cur) { 750 prot = p->p_sysent->sv_stackprot; 751 size = limp->rlim_cur - oldssiz.rlim_cur; 752 addr = p->p_sysent->sv_usrstack - 753 limp->rlim_cur; 754 } else { 755 prot = VM_PROT_NONE; 756 size = oldssiz.rlim_cur - limp->rlim_cur; 757 addr = p->p_sysent->sv_usrstack - 758 oldssiz.rlim_cur; 759 } 760 addr = trunc_page(addr); 761 size = round_page(size); 762 (void)vm_map_protect(&p->p_vmspace->vm_map, 763 addr, addr + size, prot, FALSE); 764 } 765 } 766 767 return (0); 768 } 769 770 #ifndef _SYS_SYSPROTO_H_ 771 struct __getrlimit_args { 772 u_int which; 773 struct rlimit *rlp; 774 }; 775 #endif 776 /* ARGSUSED */ 777 int 778 sys_getrlimit(struct thread *td, struct __getrlimit_args *uap) 779 { 780 struct rlimit rlim; 781 int error; 782 783 if (uap->which >= RLIM_NLIMITS) 784 return (EINVAL); 785 lim_rlimit(td, uap->which, &rlim); 786 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit)); 787 return (error); 788 } 789 790 /* 791 * Transform the running time and tick information for children of proc p 792 * into user and system time usage. 793 */ 794 void 795 calccru(struct proc *p, struct timeval *up, struct timeval *sp) 796 { 797 798 PROC_LOCK_ASSERT(p, MA_OWNED); 799 calcru1(p, &p->p_crux, up, sp); 800 } 801 802 /* 803 * Transform the running time and tick information in proc p into user 804 * and system time usage. If appropriate, include the current time slice 805 * on this CPU. 806 */ 807 void 808 calcru(struct proc *p, struct timeval *up, struct timeval *sp) 809 { 810 struct thread *td; 811 uint64_t runtime, u; 812 813 PROC_LOCK_ASSERT(p, MA_OWNED); 814 PROC_STATLOCK_ASSERT(p, MA_OWNED); 815 /* 816 * If we are getting stats for the current process, then add in the 817 * stats that this thread has accumulated in its current time slice. 818 * We reset the thread and CPU state as if we had performed a context 819 * switch right here. 820 */ 821 td = curthread; 822 if (td->td_proc == p) { 823 u = cpu_ticks(); 824 runtime = u - PCPU_GET(switchtime); 825 td->td_runtime += runtime; 826 td->td_incruntime += runtime; 827 PCPU_SET(switchtime, u); 828 } 829 /* Make sure the per-thread stats are current. */ 830 FOREACH_THREAD_IN_PROC(p, td) { 831 if (td->td_incruntime == 0) 832 continue; 833 ruxagg(p, td); 834 } 835 calcru1(p, &p->p_rux, up, sp); 836 } 837 838 /* Collect resource usage for a single thread. */ 839 void 840 rufetchtd(struct thread *td, struct rusage *ru) 841 { 842 struct proc *p; 843 uint64_t runtime, u; 844 845 p = td->td_proc; 846 PROC_STATLOCK_ASSERT(p, MA_OWNED); 847 THREAD_LOCK_ASSERT(td, MA_OWNED); 848 /* 849 * If we are getting stats for the current thread, then add in the 850 * stats that this thread has accumulated in its current time slice. 851 * We reset the thread and CPU state as if we had performed a context 852 * switch right here. 853 */ 854 if (td == curthread) { 855 u = cpu_ticks(); 856 runtime = u - PCPU_GET(switchtime); 857 td->td_runtime += runtime; 858 td->td_incruntime += runtime; 859 PCPU_SET(switchtime, u); 860 } 861 ruxagg(p, td); 862 *ru = td->td_ru; 863 calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime); 864 } 865 866 static uint64_t 867 mul64_by_fraction(uint64_t a, uint64_t b, uint64_t c) 868 { 869 /* 870 * Compute floor(a * (b / c)) without overflowing, (b / c) <= 1.0. 871 */ 872 return ((a / c) * b + (a % c) * (b / c) + (a % c) * (b % c) / c); 873 } 874 875 static void 876 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up, 877 struct timeval *sp) 878 { 879 /* {user, system, interrupt, total} {ticks, usec}: */ 880 uint64_t ut, uu, st, su, it, tt, tu; 881 882 ut = ruxp->rux_uticks; 883 st = ruxp->rux_sticks; 884 it = ruxp->rux_iticks; 885 tt = ut + st + it; 886 if (tt == 0) { 887 /* Avoid divide by zero */ 888 st = 1; 889 tt = 1; 890 } 891 tu = cputick2usec(ruxp->rux_runtime); 892 if ((int64_t)tu < 0) { 893 /* XXX: this should be an assert /phk */ 894 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n", 895 (intmax_t)tu, p->p_pid, p->p_comm); 896 tu = ruxp->rux_tu; 897 } 898 899 if (tu >= ruxp->rux_tu) { 900 /* 901 * The normal case, time increased. 902 * Enforce monotonicity of bucketed numbers. 903 */ 904 uu = mul64_by_fraction(tu, ut, tt); 905 if (uu < ruxp->rux_uu) 906 uu = ruxp->rux_uu; 907 su = mul64_by_fraction(tu, st, tt); 908 if (su < ruxp->rux_su) 909 su = ruxp->rux_su; 910 } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) { 911 /* 912 * When we calibrate the cputicker, it is not uncommon to 913 * see the presumably fixed frequency increase slightly over 914 * time as a result of thermal stabilization and NTP 915 * discipline (of the reference clock). We therefore ignore 916 * a bit of backwards slop because we expect to catch up 917 * shortly. We use a 3 microsecond limit to catch low 918 * counts and a 1% limit for high counts. 919 */ 920 uu = ruxp->rux_uu; 921 su = ruxp->rux_su; 922 tu = ruxp->rux_tu; 923 } else { /* tu < ruxp->rux_tu */ 924 /* 925 * What happened here was likely that a laptop, which ran at 926 * a reduced clock frequency at boot, kicked into high gear. 927 * The wisdom of spamming this message in that case is 928 * dubious, but it might also be indicative of something 929 * serious, so lets keep it and hope laptops can be made 930 * more truthful about their CPU speed via ACPI. 931 */ 932 printf("calcru: runtime went backwards from %ju usec " 933 "to %ju usec for pid %d (%s)\n", 934 (uintmax_t)ruxp->rux_tu, (uintmax_t)tu, 935 p->p_pid, p->p_comm); 936 uu = mul64_by_fraction(tu, ut, tt); 937 su = mul64_by_fraction(tu, st, tt); 938 } 939 940 ruxp->rux_uu = uu; 941 ruxp->rux_su = su; 942 ruxp->rux_tu = tu; 943 944 up->tv_sec = uu / 1000000; 945 up->tv_usec = uu % 1000000; 946 sp->tv_sec = su / 1000000; 947 sp->tv_usec = su % 1000000; 948 } 949 950 #ifndef _SYS_SYSPROTO_H_ 951 struct getrusage_args { 952 int who; 953 struct rusage *rusage; 954 }; 955 #endif 956 int 957 sys_getrusage(struct thread *td, struct getrusage_args *uap) 958 { 959 struct rusage ru; 960 int error; 961 962 error = kern_getrusage(td, uap->who, &ru); 963 if (error == 0) 964 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 965 return (error); 966 } 967 968 int 969 kern_getrusage(struct thread *td, int who, struct rusage *rup) 970 { 971 struct proc *p; 972 int error; 973 974 error = 0; 975 p = td->td_proc; 976 PROC_LOCK(p); 977 switch (who) { 978 case RUSAGE_SELF: 979 rufetchcalc(p, rup, &rup->ru_utime, 980 &rup->ru_stime); 981 break; 982 983 case RUSAGE_CHILDREN: 984 *rup = p->p_stats->p_cru; 985 calccru(p, &rup->ru_utime, &rup->ru_stime); 986 break; 987 988 case RUSAGE_THREAD: 989 PROC_STATLOCK(p); 990 thread_lock(td); 991 rufetchtd(td, rup); 992 thread_unlock(td); 993 PROC_STATUNLOCK(p); 994 break; 995 996 default: 997 error = EINVAL; 998 } 999 PROC_UNLOCK(p); 1000 return (error); 1001 } 1002 1003 void 1004 rucollect(struct rusage *ru, struct rusage *ru2) 1005 { 1006 long *ip, *ip2; 1007 int i; 1008 1009 if (ru->ru_maxrss < ru2->ru_maxrss) 1010 ru->ru_maxrss = ru2->ru_maxrss; 1011 ip = &ru->ru_first; 1012 ip2 = &ru2->ru_first; 1013 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 1014 *ip++ += *ip2++; 1015 } 1016 1017 void 1018 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2, 1019 struct rusage_ext *rux2) 1020 { 1021 1022 rux->rux_runtime += rux2->rux_runtime; 1023 rux->rux_uticks += rux2->rux_uticks; 1024 rux->rux_sticks += rux2->rux_sticks; 1025 rux->rux_iticks += rux2->rux_iticks; 1026 rux->rux_uu += rux2->rux_uu; 1027 rux->rux_su += rux2->rux_su; 1028 rux->rux_tu += rux2->rux_tu; 1029 rucollect(ru, ru2); 1030 } 1031 1032 /* 1033 * Aggregate tick counts into the proc's rusage_ext. 1034 */ 1035 static void 1036 ruxagg_locked(struct rusage_ext *rux, struct thread *td) 1037 { 1038 1039 THREAD_LOCK_ASSERT(td, MA_OWNED); 1040 PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED); 1041 rux->rux_runtime += td->td_incruntime; 1042 rux->rux_uticks += td->td_uticks; 1043 rux->rux_sticks += td->td_sticks; 1044 rux->rux_iticks += td->td_iticks; 1045 } 1046 1047 void 1048 ruxagg(struct proc *p, struct thread *td) 1049 { 1050 1051 thread_lock(td); 1052 ruxagg_locked(&p->p_rux, td); 1053 ruxagg_locked(&td->td_rux, td); 1054 td->td_incruntime = 0; 1055 td->td_uticks = 0; 1056 td->td_iticks = 0; 1057 td->td_sticks = 0; 1058 thread_unlock(td); 1059 } 1060 1061 /* 1062 * Update the rusage_ext structure and fetch a valid aggregate rusage 1063 * for proc p if storage for one is supplied. 1064 */ 1065 void 1066 rufetch(struct proc *p, struct rusage *ru) 1067 { 1068 struct thread *td; 1069 1070 PROC_STATLOCK_ASSERT(p, MA_OWNED); 1071 1072 *ru = p->p_ru; 1073 if (p->p_numthreads > 0) { 1074 FOREACH_THREAD_IN_PROC(p, td) { 1075 ruxagg(p, td); 1076 rucollect(ru, &td->td_ru); 1077 } 1078 } 1079 } 1080 1081 /* 1082 * Atomically perform a rufetch and a calcru together. 1083 * Consumers, can safely assume the calcru is executed only once 1084 * rufetch is completed. 1085 */ 1086 void 1087 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up, 1088 struct timeval *sp) 1089 { 1090 1091 PROC_STATLOCK(p); 1092 rufetch(p, ru); 1093 calcru(p, up, sp); 1094 PROC_STATUNLOCK(p); 1095 } 1096 1097 /* 1098 * Allocate a new resource limits structure and initialize its 1099 * reference count and mutex pointer. 1100 */ 1101 struct plimit * 1102 lim_alloc() 1103 { 1104 struct plimit *limp; 1105 1106 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK); 1107 refcount_init(&limp->pl_refcnt, 1); 1108 return (limp); 1109 } 1110 1111 struct plimit * 1112 lim_hold(struct plimit *limp) 1113 { 1114 1115 refcount_acquire(&limp->pl_refcnt); 1116 return (limp); 1117 } 1118 1119 void 1120 lim_fork(struct proc *p1, struct proc *p2) 1121 { 1122 1123 PROC_LOCK_ASSERT(p1, MA_OWNED); 1124 PROC_LOCK_ASSERT(p2, MA_OWNED); 1125 1126 p2->p_limit = lim_hold(p1->p_limit); 1127 callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0); 1128 if (p1->p_cpulimit != RLIM_INFINITY) 1129 callout_reset_sbt(&p2->p_limco, SBT_1S, 0, 1130 lim_cb, p2, C_PREL(1)); 1131 } 1132 1133 void 1134 lim_free(struct plimit *limp) 1135 { 1136 1137 if (refcount_release(&limp->pl_refcnt)) 1138 free((void *)limp, M_PLIMIT); 1139 } 1140 1141 /* 1142 * Make a copy of the plimit structure. 1143 * We share these structures copy-on-write after fork. 1144 */ 1145 void 1146 lim_copy(struct plimit *dst, struct plimit *src) 1147 { 1148 1149 KASSERT(dst->pl_refcnt <= 1, ("lim_copy to shared limit")); 1150 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit)); 1151 } 1152 1153 /* 1154 * Return the hard limit for a particular system resource. The 1155 * which parameter specifies the index into the rlimit array. 1156 */ 1157 rlim_t 1158 lim_max(struct thread *td, int which) 1159 { 1160 struct rlimit rl; 1161 1162 lim_rlimit(td, which, &rl); 1163 return (rl.rlim_max); 1164 } 1165 1166 rlim_t 1167 lim_max_proc(struct proc *p, int which) 1168 { 1169 struct rlimit rl; 1170 1171 lim_rlimit_proc(p, which, &rl); 1172 return (rl.rlim_max); 1173 } 1174 1175 /* 1176 * Return the current (soft) limit for a particular system resource. 1177 * The which parameter which specifies the index into the rlimit array 1178 */ 1179 rlim_t 1180 (lim_cur)(struct thread *td, int which) 1181 { 1182 struct rlimit rl; 1183 1184 lim_rlimit(td, which, &rl); 1185 return (rl.rlim_cur); 1186 } 1187 1188 rlim_t 1189 lim_cur_proc(struct proc *p, int which) 1190 { 1191 struct rlimit rl; 1192 1193 lim_rlimit_proc(p, which, &rl); 1194 return (rl.rlim_cur); 1195 } 1196 1197 /* 1198 * Return a copy of the entire rlimit structure for the system limit 1199 * specified by 'which' in the rlimit structure pointed to by 'rlp'. 1200 */ 1201 void 1202 lim_rlimit(struct thread *td, int which, struct rlimit *rlp) 1203 { 1204 struct proc *p = td->td_proc; 1205 1206 MPASS(td == curthread); 1207 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1208 ("request for invalid resource limit")); 1209 *rlp = td->td_limit->pl_rlimit[which]; 1210 if (p->p_sysent->sv_fixlimit != NULL) 1211 p->p_sysent->sv_fixlimit(rlp, which); 1212 } 1213 1214 void 1215 lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp) 1216 { 1217 1218 PROC_LOCK_ASSERT(p, MA_OWNED); 1219 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1220 ("request for invalid resource limit")); 1221 *rlp = p->p_limit->pl_rlimit[which]; 1222 if (p->p_sysent->sv_fixlimit != NULL) 1223 p->p_sysent->sv_fixlimit(rlp, which); 1224 } 1225 1226 void 1227 uihashinit() 1228 { 1229 1230 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 1231 rw_init(&uihashtbl_lock, "uidinfo hash"); 1232 } 1233 1234 /* 1235 * Look up a uidinfo struct for the parameter uid. 1236 * uihashtbl_lock must be locked. 1237 * Increase refcount on uidinfo struct returned. 1238 */ 1239 static struct uidinfo * 1240 uilookup(uid_t uid) 1241 { 1242 struct uihashhead *uipp; 1243 struct uidinfo *uip; 1244 1245 rw_assert(&uihashtbl_lock, RA_LOCKED); 1246 uipp = UIHASH(uid); 1247 LIST_FOREACH(uip, uipp, ui_hash) 1248 if (uip->ui_uid == uid) { 1249 uihold(uip); 1250 break; 1251 } 1252 1253 return (uip); 1254 } 1255 1256 /* 1257 * Find or allocate a struct uidinfo for a particular uid. 1258 * Returns with uidinfo struct referenced. 1259 * uifree() should be called on a struct uidinfo when released. 1260 */ 1261 struct uidinfo * 1262 uifind(uid_t uid) 1263 { 1264 struct uidinfo *new_uip, *uip; 1265 struct ucred *cred; 1266 1267 cred = curthread->td_ucred; 1268 if (cred->cr_uidinfo->ui_uid == uid) { 1269 uip = cred->cr_uidinfo; 1270 uihold(uip); 1271 return (uip); 1272 } else if (cred->cr_ruidinfo->ui_uid == uid) { 1273 uip = cred->cr_ruidinfo; 1274 uihold(uip); 1275 return (uip); 1276 } 1277 1278 rw_rlock(&uihashtbl_lock); 1279 uip = uilookup(uid); 1280 rw_runlock(&uihashtbl_lock); 1281 if (uip != NULL) 1282 return (uip); 1283 1284 new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO); 1285 racct_create(&new_uip->ui_racct); 1286 refcount_init(&new_uip->ui_ref, 1); 1287 new_uip->ui_uid = uid; 1288 1289 rw_wlock(&uihashtbl_lock); 1290 /* 1291 * There's a chance someone created our uidinfo while we 1292 * were in malloc and not holding the lock, so we have to 1293 * make sure we don't insert a duplicate uidinfo. 1294 */ 1295 if ((uip = uilookup(uid)) == NULL) { 1296 LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash); 1297 rw_wunlock(&uihashtbl_lock); 1298 uip = new_uip; 1299 } else { 1300 rw_wunlock(&uihashtbl_lock); 1301 racct_destroy(&new_uip->ui_racct); 1302 free(new_uip, M_UIDINFO); 1303 } 1304 return (uip); 1305 } 1306 1307 /* 1308 * Place another refcount on a uidinfo struct. 1309 */ 1310 void 1311 uihold(struct uidinfo *uip) 1312 { 1313 1314 refcount_acquire(&uip->ui_ref); 1315 } 1316 1317 /*- 1318 * Since uidinfo structs have a long lifetime, we use an 1319 * opportunistic refcounting scheme to avoid locking the lookup hash 1320 * for each release. 1321 * 1322 * If the refcount hits 0, we need to free the structure, 1323 * which means we need to lock the hash. 1324 * Optimal case: 1325 * After locking the struct and lowering the refcount, if we find 1326 * that we don't need to free, simply unlock and return. 1327 * Suboptimal case: 1328 * If refcount lowering results in need to free, bump the count 1329 * back up, lose the lock and acquire the locks in the proper 1330 * order to try again. 1331 */ 1332 void 1333 uifree(struct uidinfo *uip) 1334 { 1335 1336 if (refcount_release_if_not_last(&uip->ui_ref)) 1337 return; 1338 1339 rw_wlock(&uihashtbl_lock); 1340 if (refcount_release(&uip->ui_ref) == 0) { 1341 rw_wunlock(&uihashtbl_lock); 1342 return; 1343 } 1344 1345 racct_destroy(&uip->ui_racct); 1346 LIST_REMOVE(uip, ui_hash); 1347 rw_wunlock(&uihashtbl_lock); 1348 1349 if (uip->ui_sbsize != 0) 1350 printf("freeing uidinfo: uid = %d, sbsize = %ld\n", 1351 uip->ui_uid, uip->ui_sbsize); 1352 if (uip->ui_proccnt != 0) 1353 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 1354 uip->ui_uid, uip->ui_proccnt); 1355 if (uip->ui_vmsize != 0) 1356 printf("freeing uidinfo: uid = %d, swapuse = %lld\n", 1357 uip->ui_uid, (unsigned long long)uip->ui_vmsize); 1358 free(uip, M_UIDINFO); 1359 } 1360 1361 #ifdef RACCT 1362 void 1363 ui_racct_foreach(void (*callback)(struct racct *racct, 1364 void *arg2, void *arg3), void (*pre)(void), void (*post)(void), 1365 void *arg2, void *arg3) 1366 { 1367 struct uidinfo *uip; 1368 struct uihashhead *uih; 1369 1370 rw_rlock(&uihashtbl_lock); 1371 if (pre != NULL) 1372 (pre)(); 1373 for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) { 1374 LIST_FOREACH(uip, uih, ui_hash) { 1375 (callback)(uip->ui_racct, arg2, arg3); 1376 } 1377 } 1378 if (post != NULL) 1379 (post)(); 1380 rw_runlock(&uihashtbl_lock); 1381 } 1382 #endif 1383 1384 static inline int 1385 chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name) 1386 { 1387 long new; 1388 1389 /* Don't allow them to exceed max, but allow subtraction. */ 1390 new = atomic_fetchadd_long(limit, (long)diff) + diff; 1391 if (diff > 0 && max != 0) { 1392 if (new < 0 || new > max) { 1393 atomic_subtract_long(limit, (long)diff); 1394 return (0); 1395 } 1396 } else if (new < 0) 1397 printf("negative %s for uid = %d\n", name, uip->ui_uid); 1398 return (1); 1399 } 1400 1401 /* 1402 * Change the count associated with number of processes 1403 * a given user is using. When 'max' is 0, don't enforce a limit 1404 */ 1405 int 1406 chgproccnt(struct uidinfo *uip, int diff, rlim_t max) 1407 { 1408 1409 return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt")); 1410 } 1411 1412 /* 1413 * Change the total socket buffer size a user has used. 1414 */ 1415 int 1416 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max) 1417 { 1418 int diff, rv; 1419 1420 diff = to - *hiwat; 1421 if (diff > 0 && max == 0) { 1422 rv = 0; 1423 } else { 1424 rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize"); 1425 if (rv != 0) 1426 *hiwat = to; 1427 } 1428 return (rv); 1429 } 1430 1431 /* 1432 * Change the count associated with number of pseudo-terminals 1433 * a given user is using. When 'max' is 0, don't enforce a limit 1434 */ 1435 int 1436 chgptscnt(struct uidinfo *uip, int diff, rlim_t max) 1437 { 1438 1439 return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt")); 1440 } 1441 1442 int 1443 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max) 1444 { 1445 1446 return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt")); 1447 } 1448 1449 int 1450 chgumtxcnt(struct uidinfo *uip, int diff, rlim_t max) 1451 { 1452 1453 return (chglimit(uip, &uip->ui_umtxcnt, diff, max, "umtxcnt")); 1454 } 1455