xref: /freebsd/sys/kern/kern_resource.c (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_resource.c	8.5 (Berkeley) 1/21/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysproto.h>
45 #include <sys/file.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/refcount.h>
53 #include <sys/racct.h>
54 #include <sys/resourcevar.h>
55 #include <sys/rwlock.h>
56 #include <sys/sched.h>
57 #include <sys/sx.h>
58 #include <sys/syscallsubr.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysent.h>
61 #include <sys/time.h>
62 #include <sys/umtx.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/pmap.h>
67 #include <vm/vm_map.h>
68 
69 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
70 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
71 #define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
72 static struct rwlock uihashtbl_lock;
73 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
74 static u_long uihash;		/* size of hash table - 1 */
75 
76 static void	calcru1(struct proc *p, struct rusage_ext *ruxp,
77 		    struct timeval *up, struct timeval *sp);
78 static int	donice(struct thread *td, struct proc *chgp, int n);
79 static struct uidinfo *uilookup(uid_t uid);
80 static void	ruxagg_ext_locked(struct rusage_ext *rux, struct thread *td);
81 
82 /*
83  * Resource controls and accounting.
84  */
85 #ifndef _SYS_SYSPROTO_H_
86 struct getpriority_args {
87 	int	which;
88 	int	who;
89 };
90 #endif
91 int
92 sys_getpriority(struct thread *td, struct getpriority_args *uap)
93 {
94 
95 	return (kern_getpriority(td, uap->which, uap->who));
96 }
97 
98 int
99 kern_getpriority(struct thread *td, int which, int who)
100 {
101 	struct proc *p;
102 	struct pgrp *pg;
103 	int error, low;
104 
105 	error = 0;
106 	low = PRIO_MAX + 1;
107 	switch (which) {
108 
109 	case PRIO_PROCESS:
110 		if (who == 0)
111 			low = td->td_proc->p_nice;
112 		else {
113 			p = pfind(who);
114 			if (p == NULL)
115 				break;
116 			if (p_cansee(td, p) == 0)
117 				low = p->p_nice;
118 			PROC_UNLOCK(p);
119 		}
120 		break;
121 
122 	case PRIO_PGRP:
123 		sx_slock(&proctree_lock);
124 		if (who == 0) {
125 			pg = td->td_proc->p_pgrp;
126 			PGRP_LOCK(pg);
127 		} else {
128 			pg = pgfind(who);
129 			if (pg == NULL) {
130 				sx_sunlock(&proctree_lock);
131 				break;
132 			}
133 		}
134 		sx_sunlock(&proctree_lock);
135 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
136 			PROC_LOCK(p);
137 			if (p->p_state == PRS_NORMAL &&
138 			    p_cansee(td, p) == 0) {
139 				if (p->p_nice < low)
140 					low = p->p_nice;
141 			}
142 			PROC_UNLOCK(p);
143 		}
144 		PGRP_UNLOCK(pg);
145 		break;
146 
147 	case PRIO_USER:
148 		if (who == 0)
149 			who = td->td_ucred->cr_uid;
150 		sx_slock(&allproc_lock);
151 		FOREACH_PROC_IN_SYSTEM(p) {
152 			PROC_LOCK(p);
153 			if (p->p_state == PRS_NORMAL &&
154 			    p_cansee(td, p) == 0 &&
155 			    p->p_ucred->cr_uid == who) {
156 				if (p->p_nice < low)
157 					low = p->p_nice;
158 			}
159 			PROC_UNLOCK(p);
160 		}
161 		sx_sunlock(&allproc_lock);
162 		break;
163 
164 	default:
165 		error = EINVAL;
166 		break;
167 	}
168 	if (low == PRIO_MAX + 1 && error == 0)
169 		error = ESRCH;
170 	td->td_retval[0] = low;
171 	return (error);
172 }
173 
174 #ifndef _SYS_SYSPROTO_H_
175 struct setpriority_args {
176 	int	which;
177 	int	who;
178 	int	prio;
179 };
180 #endif
181 int
182 sys_setpriority(struct thread *td, struct setpriority_args *uap)
183 {
184 
185 	return (kern_setpriority(td, uap->which, uap->who, uap->prio));
186 }
187 
188 int
189 kern_setpriority(struct thread *td, int which, int who, int prio)
190 {
191 	struct proc *curp, *p;
192 	struct pgrp *pg;
193 	int found = 0, error = 0;
194 
195 	curp = td->td_proc;
196 	switch (which) {
197 	case PRIO_PROCESS:
198 		if (who == 0) {
199 			PROC_LOCK(curp);
200 			error = donice(td, curp, prio);
201 			PROC_UNLOCK(curp);
202 		} else {
203 			p = pfind(who);
204 			if (p == NULL)
205 				break;
206 			error = p_cansee(td, p);
207 			if (error == 0)
208 				error = donice(td, p, prio);
209 			PROC_UNLOCK(p);
210 		}
211 		found++;
212 		break;
213 
214 	case PRIO_PGRP:
215 		sx_slock(&proctree_lock);
216 		if (who == 0) {
217 			pg = curp->p_pgrp;
218 			PGRP_LOCK(pg);
219 		} else {
220 			pg = pgfind(who);
221 			if (pg == NULL) {
222 				sx_sunlock(&proctree_lock);
223 				break;
224 			}
225 		}
226 		sx_sunlock(&proctree_lock);
227 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
228 			PROC_LOCK(p);
229 			if (p->p_state == PRS_NORMAL &&
230 			    p_cansee(td, p) == 0) {
231 				error = donice(td, p, prio);
232 				found++;
233 			}
234 			PROC_UNLOCK(p);
235 		}
236 		PGRP_UNLOCK(pg);
237 		break;
238 
239 	case PRIO_USER:
240 		if (who == 0)
241 			who = td->td_ucred->cr_uid;
242 		sx_slock(&allproc_lock);
243 		FOREACH_PROC_IN_SYSTEM(p) {
244 			PROC_LOCK(p);
245 			if (p->p_state == PRS_NORMAL &&
246 			    p->p_ucred->cr_uid == who &&
247 			    p_cansee(td, p) == 0) {
248 				error = donice(td, p, prio);
249 				found++;
250 			}
251 			PROC_UNLOCK(p);
252 		}
253 		sx_sunlock(&allproc_lock);
254 		break;
255 
256 	default:
257 		error = EINVAL;
258 		break;
259 	}
260 	if (found == 0 && error == 0)
261 		error = ESRCH;
262 	return (error);
263 }
264 
265 /*
266  * Set "nice" for a (whole) process.
267  */
268 static int
269 donice(struct thread *td, struct proc *p, int n)
270 {
271 	int error;
272 
273 	PROC_LOCK_ASSERT(p, MA_OWNED);
274 	if ((error = p_cansched(td, p)))
275 		return (error);
276 	if (n > PRIO_MAX)
277 		n = PRIO_MAX;
278 	if (n < PRIO_MIN)
279 		n = PRIO_MIN;
280 	if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
281 		return (EACCES);
282 	sched_nice(p, n);
283 	return (0);
284 }
285 
286 static int unprivileged_idprio;
287 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW,
288     &unprivileged_idprio, 0, "Allow non-root users to set an idle priority");
289 
290 /*
291  * Set realtime priority for LWP.
292  */
293 #ifndef _SYS_SYSPROTO_H_
294 struct rtprio_thread_args {
295 	int		function;
296 	lwpid_t		lwpid;
297 	struct rtprio	*rtp;
298 };
299 #endif
300 int
301 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
302 {
303 	struct proc *p;
304 	struct rtprio rtp;
305 	struct thread *td1;
306 	int cierror, error;
307 
308 	/* Perform copyin before acquiring locks if needed. */
309 	if (uap->function == RTP_SET)
310 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
311 	else
312 		cierror = 0;
313 
314 	if (uap->lwpid == 0 || uap->lwpid == td->td_tid) {
315 		p = td->td_proc;
316 		td1 = td;
317 		PROC_LOCK(p);
318 	} else {
319 		/* Only look up thread in current process */
320 		td1 = tdfind(uap->lwpid, curproc->p_pid);
321 		if (td1 == NULL)
322 			return (ESRCH);
323 		p = td1->td_proc;
324 	}
325 
326 	switch (uap->function) {
327 	case RTP_LOOKUP:
328 		if ((error = p_cansee(td, p)))
329 			break;
330 		pri_to_rtp(td1, &rtp);
331 		PROC_UNLOCK(p);
332 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
333 	case RTP_SET:
334 		if ((error = p_cansched(td, p)) || (error = cierror))
335 			break;
336 
337 		/* Disallow setting rtprio in most cases if not superuser. */
338 
339 		/*
340 		 * Realtime priority has to be restricted for reasons which
341 		 * should be obvious.  However, for idleprio processes, there is
342 		 * a potential for system deadlock if an idleprio process gains
343 		 * a lock on a resource that other processes need (and the
344 		 * idleprio process can't run due to a CPU-bound normal
345 		 * process).  Fix me!  XXX
346 		 *
347 		 * This problem is not only related to idleprio process.
348 		 * A user level program can obtain a file lock and hold it
349 		 * indefinitely.  Additionally, without idleprio processes it is
350 		 * still conceivable that a program with low priority will never
351 		 * get to run.  In short, allowing this feature might make it
352 		 * easier to lock a resource indefinitely, but it is not the
353 		 * only thing that makes it possible.
354 		 */
355 		if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
356 		    (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
357 		    unprivileged_idprio == 0)) {
358 			error = priv_check(td, PRIV_SCHED_RTPRIO);
359 			if (error)
360 				break;
361 		}
362 		error = rtp_to_pri(&rtp, td1);
363 		break;
364 	default:
365 		error = EINVAL;
366 		break;
367 	}
368 	PROC_UNLOCK(p);
369 	return (error);
370 }
371 
372 /*
373  * Set realtime priority.
374  */
375 #ifndef _SYS_SYSPROTO_H_
376 struct rtprio_args {
377 	int		function;
378 	pid_t		pid;
379 	struct rtprio	*rtp;
380 };
381 #endif
382 int
383 sys_rtprio(struct thread *td, struct rtprio_args *uap)
384 {
385 	struct proc *p;
386 	struct thread *tdp;
387 	struct rtprio rtp;
388 	int cierror, error;
389 
390 	/* Perform copyin before acquiring locks if needed. */
391 	if (uap->function == RTP_SET)
392 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
393 	else
394 		cierror = 0;
395 
396 	if (uap->pid == 0) {
397 		p = td->td_proc;
398 		PROC_LOCK(p);
399 	} else {
400 		p = pfind(uap->pid);
401 		if (p == NULL)
402 			return (ESRCH);
403 	}
404 
405 	switch (uap->function) {
406 	case RTP_LOOKUP:
407 		if ((error = p_cansee(td, p)))
408 			break;
409 		/*
410 		 * Return OUR priority if no pid specified,
411 		 * or if one is, report the highest priority
412 		 * in the process.  There isn't much more you can do as
413 		 * there is only room to return a single priority.
414 		 * Note: specifying our own pid is not the same
415 		 * as leaving it zero.
416 		 */
417 		if (uap->pid == 0) {
418 			pri_to_rtp(td, &rtp);
419 		} else {
420 			struct rtprio rtp2;
421 
422 			rtp.type = RTP_PRIO_IDLE;
423 			rtp.prio = RTP_PRIO_MAX;
424 			FOREACH_THREAD_IN_PROC(p, tdp) {
425 				pri_to_rtp(tdp, &rtp2);
426 				if (rtp2.type <  rtp.type ||
427 				    (rtp2.type == rtp.type &&
428 				    rtp2.prio < rtp.prio)) {
429 					rtp.type = rtp2.type;
430 					rtp.prio = rtp2.prio;
431 				}
432 			}
433 		}
434 		PROC_UNLOCK(p);
435 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
436 	case RTP_SET:
437 		if ((error = p_cansched(td, p)) || (error = cierror))
438 			break;
439 
440 		/*
441 		 * Disallow setting rtprio in most cases if not superuser.
442 		 * See the comment in sys_rtprio_thread about idprio
443 		 * threads holding a lock.
444 		 */
445 		if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
446 		    (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
447 		    !unprivileged_idprio)) {
448 			error = priv_check(td, PRIV_SCHED_RTPRIO);
449 			if (error)
450 				break;
451 		}
452 
453 		/*
454 		 * If we are setting our own priority, set just our
455 		 * thread but if we are doing another process,
456 		 * do all the threads on that process. If we
457 		 * specify our own pid we do the latter.
458 		 */
459 		if (uap->pid == 0) {
460 			error = rtp_to_pri(&rtp, td);
461 		} else {
462 			FOREACH_THREAD_IN_PROC(p, td) {
463 				if ((error = rtp_to_pri(&rtp, td)) != 0)
464 					break;
465 			}
466 		}
467 		break;
468 	default:
469 		error = EINVAL;
470 		break;
471 	}
472 	PROC_UNLOCK(p);
473 	return (error);
474 }
475 
476 int
477 rtp_to_pri(struct rtprio *rtp, struct thread *td)
478 {
479 	u_char  newpri, oldclass, oldpri;
480 
481 	switch (RTP_PRIO_BASE(rtp->type)) {
482 	case RTP_PRIO_REALTIME:
483 		if (rtp->prio > RTP_PRIO_MAX)
484 			return (EINVAL);
485 		newpri = PRI_MIN_REALTIME + rtp->prio;
486 		break;
487 	case RTP_PRIO_NORMAL:
488 		if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE))
489 			return (EINVAL);
490 		newpri = PRI_MIN_TIMESHARE + rtp->prio;
491 		break;
492 	case RTP_PRIO_IDLE:
493 		if (rtp->prio > RTP_PRIO_MAX)
494 			return (EINVAL);
495 		newpri = PRI_MIN_IDLE + rtp->prio;
496 		break;
497 	default:
498 		return (EINVAL);
499 	}
500 
501 	thread_lock(td);
502 	oldclass = td->td_pri_class;
503 	sched_class(td, rtp->type);	/* XXX fix */
504 	oldpri = td->td_user_pri;
505 	sched_user_prio(td, newpri);
506 	if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL ||
507 	    td->td_pri_class != RTP_PRIO_NORMAL))
508 		sched_prio(td, td->td_user_pri);
509 	if (TD_ON_UPILOCK(td) && oldpri != newpri) {
510 		critical_enter();
511 		thread_unlock(td);
512 		umtx_pi_adjust(td, oldpri);
513 		critical_exit();
514 	} else
515 		thread_unlock(td);
516 	return (0);
517 }
518 
519 void
520 pri_to_rtp(struct thread *td, struct rtprio *rtp)
521 {
522 
523 	thread_lock(td);
524 	switch (PRI_BASE(td->td_pri_class)) {
525 	case PRI_REALTIME:
526 		rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
527 		break;
528 	case PRI_TIMESHARE:
529 		rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
530 		break;
531 	case PRI_IDLE:
532 		rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
533 		break;
534 	default:
535 		break;
536 	}
537 	rtp->type = td->td_pri_class;
538 	thread_unlock(td);
539 }
540 
541 #if defined(COMPAT_43)
542 #ifndef _SYS_SYSPROTO_H_
543 struct osetrlimit_args {
544 	u_int	which;
545 	struct	orlimit *rlp;
546 };
547 #endif
548 int
549 osetrlimit(struct thread *td, struct osetrlimit_args *uap)
550 {
551 	struct orlimit olim;
552 	struct rlimit lim;
553 	int error;
554 
555 	if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
556 		return (error);
557 	lim.rlim_cur = olim.rlim_cur;
558 	lim.rlim_max = olim.rlim_max;
559 	error = kern_setrlimit(td, uap->which, &lim);
560 	return (error);
561 }
562 
563 #ifndef _SYS_SYSPROTO_H_
564 struct ogetrlimit_args {
565 	u_int	which;
566 	struct	orlimit *rlp;
567 };
568 #endif
569 int
570 ogetrlimit(struct thread *td, struct ogetrlimit_args *uap)
571 {
572 	struct orlimit olim;
573 	struct rlimit rl;
574 	int error;
575 
576 	if (uap->which >= RLIM_NLIMITS)
577 		return (EINVAL);
578 	lim_rlimit(td, uap->which, &rl);
579 
580 	/*
581 	 * XXX would be more correct to convert only RLIM_INFINITY to the
582 	 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
583 	 * values.  Most 64->32 and 32->16 conversions, including not
584 	 * unimportant ones of uids are even more broken than what we
585 	 * do here (they blindly truncate).  We don't do this correctly
586 	 * here since we have little experience with EOVERFLOW yet.
587 	 * Elsewhere, getuid() can't fail...
588 	 */
589 	olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
590 	olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
591 	error = copyout(&olim, uap->rlp, sizeof(olim));
592 	return (error);
593 }
594 #endif /* COMPAT_43 */
595 
596 #ifndef _SYS_SYSPROTO_H_
597 struct __setrlimit_args {
598 	u_int	which;
599 	struct	rlimit *rlp;
600 };
601 #endif
602 int
603 sys_setrlimit(struct thread *td, struct __setrlimit_args *uap)
604 {
605 	struct rlimit alim;
606 	int error;
607 
608 	if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
609 		return (error);
610 	error = kern_setrlimit(td, uap->which, &alim);
611 	return (error);
612 }
613 
614 static void
615 lim_cb(void *arg)
616 {
617 	struct rlimit rlim;
618 	struct thread *td;
619 	struct proc *p;
620 
621 	p = arg;
622 	PROC_LOCK_ASSERT(p, MA_OWNED);
623 	/*
624 	 * Check if the process exceeds its cpu resource allocation.  If
625 	 * it reaches the max, arrange to kill the process in ast().
626 	 */
627 	if (p->p_cpulimit == RLIM_INFINITY)
628 		return;
629 	PROC_STATLOCK(p);
630 	FOREACH_THREAD_IN_PROC(p, td) {
631 		ruxagg(p, td);
632 	}
633 	PROC_STATUNLOCK(p);
634 	if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
635 		lim_rlimit_proc(p, RLIMIT_CPU, &rlim);
636 		if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
637 			killproc(p, "exceeded maximum CPU limit");
638 		} else {
639 			if (p->p_cpulimit < rlim.rlim_max)
640 				p->p_cpulimit += 5;
641 			kern_psignal(p, SIGXCPU);
642 		}
643 	}
644 	if ((p->p_flag & P_WEXIT) == 0)
645 		callout_reset_sbt(&p->p_limco, SBT_1S, 0,
646 		    lim_cb, p, C_PREL(1));
647 }
648 
649 int
650 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp)
651 {
652 
653 	return (kern_proc_setrlimit(td, td->td_proc, which, limp));
654 }
655 
656 int
657 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which,
658     struct rlimit *limp)
659 {
660 	struct plimit *newlim, *oldlim;
661 	struct rlimit *alimp;
662 	struct rlimit oldssiz;
663 	int error;
664 
665 	if (which >= RLIM_NLIMITS)
666 		return (EINVAL);
667 
668 	/*
669 	 * Preserve historical bugs by treating negative limits as unsigned.
670 	 */
671 	if (limp->rlim_cur < 0)
672 		limp->rlim_cur = RLIM_INFINITY;
673 	if (limp->rlim_max < 0)
674 		limp->rlim_max = RLIM_INFINITY;
675 
676 	oldssiz.rlim_cur = 0;
677 	newlim = lim_alloc();
678 	PROC_LOCK(p);
679 	oldlim = p->p_limit;
680 	alimp = &oldlim->pl_rlimit[which];
681 	if (limp->rlim_cur > alimp->rlim_max ||
682 	    limp->rlim_max > alimp->rlim_max)
683 		if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
684 			PROC_UNLOCK(p);
685 			lim_free(newlim);
686 			return (error);
687 		}
688 	if (limp->rlim_cur > limp->rlim_max)
689 		limp->rlim_cur = limp->rlim_max;
690 	lim_copy(newlim, oldlim);
691 	alimp = &newlim->pl_rlimit[which];
692 
693 	switch (which) {
694 
695 	case RLIMIT_CPU:
696 		if (limp->rlim_cur != RLIM_INFINITY &&
697 		    p->p_cpulimit == RLIM_INFINITY)
698 			callout_reset_sbt(&p->p_limco, SBT_1S, 0,
699 			    lim_cb, p, C_PREL(1));
700 		p->p_cpulimit = limp->rlim_cur;
701 		break;
702 	case RLIMIT_DATA:
703 		if (limp->rlim_cur > maxdsiz)
704 			limp->rlim_cur = maxdsiz;
705 		if (limp->rlim_max > maxdsiz)
706 			limp->rlim_max = maxdsiz;
707 		break;
708 
709 	case RLIMIT_STACK:
710 		if (limp->rlim_cur > maxssiz)
711 			limp->rlim_cur = maxssiz;
712 		if (limp->rlim_max > maxssiz)
713 			limp->rlim_max = maxssiz;
714 		oldssiz = *alimp;
715 		if (p->p_sysent->sv_fixlimit != NULL)
716 			p->p_sysent->sv_fixlimit(&oldssiz,
717 			    RLIMIT_STACK);
718 		break;
719 
720 	case RLIMIT_NOFILE:
721 		if (limp->rlim_cur > maxfilesperproc)
722 			limp->rlim_cur = maxfilesperproc;
723 		if (limp->rlim_max > maxfilesperproc)
724 			limp->rlim_max = maxfilesperproc;
725 		break;
726 
727 	case RLIMIT_NPROC:
728 		if (limp->rlim_cur > maxprocperuid)
729 			limp->rlim_cur = maxprocperuid;
730 		if (limp->rlim_max > maxprocperuid)
731 			limp->rlim_max = maxprocperuid;
732 		if (limp->rlim_cur < 1)
733 			limp->rlim_cur = 1;
734 		if (limp->rlim_max < 1)
735 			limp->rlim_max = 1;
736 		break;
737 	}
738 	if (p->p_sysent->sv_fixlimit != NULL)
739 		p->p_sysent->sv_fixlimit(limp, which);
740 	*alimp = *limp;
741 	p->p_limit = newlim;
742 	PROC_UPDATE_COW(p);
743 	PROC_UNLOCK(p);
744 	lim_free(oldlim);
745 
746 	if (which == RLIMIT_STACK &&
747 	    /*
748 	     * Skip calls from exec_new_vmspace(), done when stack is
749 	     * not mapped yet.
750 	     */
751 	    (td != curthread || (p->p_flag & P_INEXEC) == 0)) {
752 		/*
753 		 * Stack is allocated to the max at exec time with only
754 		 * "rlim_cur" bytes accessible.  If stack limit is going
755 		 * up make more accessible, if going down make inaccessible.
756 		 */
757 		if (limp->rlim_cur != oldssiz.rlim_cur) {
758 			vm_offset_t addr;
759 			vm_size_t size;
760 			vm_prot_t prot;
761 
762 			if (limp->rlim_cur > oldssiz.rlim_cur) {
763 				prot = p->p_sysent->sv_stackprot;
764 				size = limp->rlim_cur - oldssiz.rlim_cur;
765 				addr = p->p_sysent->sv_usrstack -
766 				    limp->rlim_cur;
767 			} else {
768 				prot = VM_PROT_NONE;
769 				size = oldssiz.rlim_cur - limp->rlim_cur;
770 				addr = p->p_sysent->sv_usrstack -
771 				    oldssiz.rlim_cur;
772 			}
773 			addr = trunc_page(addr);
774 			size = round_page(size);
775 			(void)vm_map_protect(&p->p_vmspace->vm_map,
776 			    addr, addr + size, prot, FALSE);
777 		}
778 	}
779 
780 	return (0);
781 }
782 
783 #ifndef _SYS_SYSPROTO_H_
784 struct __getrlimit_args {
785 	u_int	which;
786 	struct	rlimit *rlp;
787 };
788 #endif
789 /* ARGSUSED */
790 int
791 sys_getrlimit(struct thread *td, struct __getrlimit_args *uap)
792 {
793 	struct rlimit rlim;
794 	int error;
795 
796 	if (uap->which >= RLIM_NLIMITS)
797 		return (EINVAL);
798 	lim_rlimit(td, uap->which, &rlim);
799 	error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
800 	return (error);
801 }
802 
803 /*
804  * Transform the running time and tick information for children of proc p
805  * into user and system time usage.
806  */
807 void
808 calccru(struct proc *p, struct timeval *up, struct timeval *sp)
809 {
810 
811 	PROC_LOCK_ASSERT(p, MA_OWNED);
812 	calcru1(p, &p->p_crux, up, sp);
813 }
814 
815 /*
816  * Transform the running time and tick information in proc p into user
817  * and system time usage.  If appropriate, include the current time slice
818  * on this CPU.
819  */
820 void
821 calcru(struct proc *p, struct timeval *up, struct timeval *sp)
822 {
823 	struct thread *td;
824 	uint64_t runtime, u;
825 
826 	PROC_LOCK_ASSERT(p, MA_OWNED);
827 	PROC_STATLOCK_ASSERT(p, MA_OWNED);
828 	/*
829 	 * If we are getting stats for the current process, then add in the
830 	 * stats that this thread has accumulated in its current time slice.
831 	 * We reset the thread and CPU state as if we had performed a context
832 	 * switch right here.
833 	 */
834 	td = curthread;
835 	if (td->td_proc == p) {
836 		u = cpu_ticks();
837 		runtime = u - PCPU_GET(switchtime);
838 		td->td_runtime += runtime;
839 		td->td_incruntime += runtime;
840 		PCPU_SET(switchtime, u);
841 	}
842 	/* Make sure the per-thread stats are current. */
843 	FOREACH_THREAD_IN_PROC(p, td) {
844 		if (td->td_incruntime == 0)
845 			continue;
846 		ruxagg(p, td);
847 	}
848 	calcru1(p, &p->p_rux, up, sp);
849 }
850 
851 /* Collect resource usage for a single thread. */
852 void
853 rufetchtd(struct thread *td, struct rusage *ru)
854 {
855 	struct proc *p;
856 	uint64_t runtime, u;
857 
858 	p = td->td_proc;
859 	PROC_STATLOCK_ASSERT(p, MA_OWNED);
860 	THREAD_LOCK_ASSERT(td, MA_OWNED);
861 	/*
862 	 * If we are getting stats for the current thread, then add in the
863 	 * stats that this thread has accumulated in its current time slice.
864 	 * We reset the thread and CPU state as if we had performed a context
865 	 * switch right here.
866 	 */
867 	if (td == curthread) {
868 		u = cpu_ticks();
869 		runtime = u - PCPU_GET(switchtime);
870 		td->td_runtime += runtime;
871 		td->td_incruntime += runtime;
872 		PCPU_SET(switchtime, u);
873 	}
874 	ruxagg_locked(p, td);
875 	*ru = td->td_ru;
876 	calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime);
877 }
878 
879 /* XXX: the MI version is too slow to use: */
880 #ifndef __HAVE_INLINE_FLSLL
881 #define	flsll(x)	(fls((x) >> 32) != 0 ? fls((x) >> 32) + 32 : fls(x))
882 #endif
883 
884 static uint64_t
885 mul64_by_fraction(uint64_t a, uint64_t b, uint64_t c)
886 {
887 	uint64_t acc, bh, bl;
888 	int i, s, sa, sb;
889 
890 	/*
891 	 * Calculate (a * b) / c accurately enough without overflowing.  c
892 	 * must be nonzero, and its top bit must be 0.  a or b must be
893 	 * <= c, and the implementation is tuned for b <= c.
894 	 *
895 	 * The comments about times are for use in calcru1() with units of
896 	 * microseconds for 'a' and stathz ticks at 128 Hz for b and c.
897 	 *
898 	 * Let n be the number of top zero bits in c.  Each iteration
899 	 * either returns, or reduces b by right shifting it by at least n.
900 	 * The number of iterations is at most 1 + 64 / n, and the error is
901 	 * at most the number of iterations.
902 	 *
903 	 * It is very unusual to need even 2 iterations.  Previous
904 	 * implementations overflowed essentially by returning early in the
905 	 * first iteration, with n = 38 giving overflow at 105+ hours and
906 	 * n = 32 giving overlow at at 388+ days despite a more careful
907 	 * calculation.  388 days is a reasonable uptime, and the calculation
908 	 * needs to work for the uptime times the number of CPUs since 'a'
909 	 * is per-process.
910 	 */
911 	if (a >= (uint64_t)1 << 63)
912 		return (0);		/* Unsupported arg -- can't happen. */
913 	acc = 0;
914 	for (i = 0; i < 128; i++) {
915 		sa = flsll(a);
916 		sb = flsll(b);
917 		if (sa + sb <= 64)
918 			/* Up to 105 hours on first iteration. */
919 			return (acc + (a * b) / c);
920 		if (a >= c) {
921 			/*
922 			 * This reduction is based on a = q * c + r, with the
923 			 * remainder r < c.  'a' may be large to start, and
924 			 * moving bits from b into 'a' at the end of the loop
925 			 * sets the top bit of 'a', so the reduction makes
926 			 * significant progress.
927 			 */
928 			acc += (a / c) * b;
929 			a %= c;
930 			sa = flsll(a);
931 			if (sa + sb <= 64)
932 				/* Up to 388 days on first iteration. */
933 				return (acc + (a * b) / c);
934 		}
935 
936 		/*
937 		 * This step writes a * b as a * ((bh << s) + bl) =
938 		 * a * (bh << s) + a * bl = (a << s) * bh + a * bl.  The 2
939 		 * additive terms are handled separately.  Splitting in
940 		 * this way is linear except for rounding errors.
941 		 *
942 		 * s = 64 - sa is the maximum such that a << s fits in 64
943 		 * bits.  Since a < c and c has at least 1 zero top bit,
944 		 * sa < 64 and s > 0.  Thus this step makes progress by
945 		 * reducing b (it increases 'a', but taking remainders on
946 		 * the next iteration completes the reduction).
947 		 *
948 		 * Finally, the choice for s is just what is needed to keep
949 		 * a * bl from overflowing, so we don't need complications
950 		 * like a recursive call mul64_by_fraction(a, bl, c) to
951 		 * handle the second additive term.
952 		 */
953 		s = 64 - sa;
954 		bh = b >> s;
955 		bl = b - (bh << s);
956 		acc += (a * bl) / c;
957 		a <<= s;
958 		b = bh;
959 	}
960 	return (0);		/* Algorithm failure -- can't happen. */
961 }
962 
963 static void
964 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
965     struct timeval *sp)
966 {
967 	/* {user, system, interrupt, total} {ticks, usec}: */
968 	uint64_t ut, uu, st, su, it, tt, tu;
969 
970 	ut = ruxp->rux_uticks;
971 	st = ruxp->rux_sticks;
972 	it = ruxp->rux_iticks;
973 	tt = ut + st + it;
974 	if (tt == 0) {
975 		/* Avoid divide by zero */
976 		st = 1;
977 		tt = 1;
978 	}
979 	tu = cputick2usec(ruxp->rux_runtime);
980 	if ((int64_t)tu < 0) {
981 		/* XXX: this should be an assert /phk */
982 		printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
983 		    (intmax_t)tu, p->p_pid, p->p_comm);
984 		tu = ruxp->rux_tu;
985 	}
986 
987 	/* Subdivide tu.  Avoid overflow in the multiplications. */
988 	if (__predict_true(tu <= ((uint64_t)1 << 38) && tt <= (1 << 26))) {
989 		/* Up to 76 hours when stathz is 128. */
990 		uu = (tu * ut) / tt;
991 		su = (tu * st) / tt;
992 	} else {
993 		uu = mul64_by_fraction(tu, ut, tt);
994 		su = mul64_by_fraction(tu, st, tt);
995 	}
996 
997 	if (tu >= ruxp->rux_tu) {
998 		/*
999 		 * The normal case, time increased.
1000 		 * Enforce monotonicity of bucketed numbers.
1001 		 */
1002 		if (uu < ruxp->rux_uu)
1003 			uu = ruxp->rux_uu;
1004 		if (su < ruxp->rux_su)
1005 			su = ruxp->rux_su;
1006 	} else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
1007 		/*
1008 		 * When we calibrate the cputicker, it is not uncommon to
1009 		 * see the presumably fixed frequency increase slightly over
1010 		 * time as a result of thermal stabilization and NTP
1011 		 * discipline (of the reference clock).  We therefore ignore
1012 		 * a bit of backwards slop because we  expect to catch up
1013 		 * shortly.  We use a 3 microsecond limit to catch low
1014 		 * counts and a 1% limit for high counts.
1015 		 */
1016 		uu = ruxp->rux_uu;
1017 		su = ruxp->rux_su;
1018 		tu = ruxp->rux_tu;
1019 	} else { /* tu < ruxp->rux_tu */
1020 		/*
1021 		 * What happened here was likely that a laptop, which ran at
1022 		 * a reduced clock frequency at boot, kicked into high gear.
1023 		 * The wisdom of spamming this message in that case is
1024 		 * dubious, but it might also be indicative of something
1025 		 * serious, so lets keep it and hope laptops can be made
1026 		 * more truthful about their CPU speed via ACPI.
1027 		 */
1028 		printf("calcru: runtime went backwards from %ju usec "
1029 		    "to %ju usec for pid %d (%s)\n",
1030 		    (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
1031 		    p->p_pid, p->p_comm);
1032 	}
1033 
1034 	ruxp->rux_uu = uu;
1035 	ruxp->rux_su = su;
1036 	ruxp->rux_tu = tu;
1037 
1038 	up->tv_sec = uu / 1000000;
1039 	up->tv_usec = uu % 1000000;
1040 	sp->tv_sec = su / 1000000;
1041 	sp->tv_usec = su % 1000000;
1042 }
1043 
1044 #ifndef _SYS_SYSPROTO_H_
1045 struct getrusage_args {
1046 	int	who;
1047 	struct	rusage *rusage;
1048 };
1049 #endif
1050 int
1051 sys_getrusage(struct thread *td, struct getrusage_args *uap)
1052 {
1053 	struct rusage ru;
1054 	int error;
1055 
1056 	error = kern_getrusage(td, uap->who, &ru);
1057 	if (error == 0)
1058 		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
1059 	return (error);
1060 }
1061 
1062 int
1063 kern_getrusage(struct thread *td, int who, struct rusage *rup)
1064 {
1065 	struct proc *p;
1066 	int error;
1067 
1068 	error = 0;
1069 	p = td->td_proc;
1070 	PROC_LOCK(p);
1071 	switch (who) {
1072 	case RUSAGE_SELF:
1073 		rufetchcalc(p, rup, &rup->ru_utime,
1074 		    &rup->ru_stime);
1075 		break;
1076 
1077 	case RUSAGE_CHILDREN:
1078 		*rup = p->p_stats->p_cru;
1079 		calccru(p, &rup->ru_utime, &rup->ru_stime);
1080 		break;
1081 
1082 	case RUSAGE_THREAD:
1083 		PROC_STATLOCK(p);
1084 		thread_lock(td);
1085 		rufetchtd(td, rup);
1086 		thread_unlock(td);
1087 		PROC_STATUNLOCK(p);
1088 		break;
1089 
1090 	default:
1091 		error = EINVAL;
1092 	}
1093 	PROC_UNLOCK(p);
1094 	return (error);
1095 }
1096 
1097 void
1098 rucollect(struct rusage *ru, struct rusage *ru2)
1099 {
1100 	long *ip, *ip2;
1101 	int i;
1102 
1103 	if (ru->ru_maxrss < ru2->ru_maxrss)
1104 		ru->ru_maxrss = ru2->ru_maxrss;
1105 	ip = &ru->ru_first;
1106 	ip2 = &ru2->ru_first;
1107 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
1108 		*ip++ += *ip2++;
1109 }
1110 
1111 void
1112 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
1113     struct rusage_ext *rux2)
1114 {
1115 
1116 	rux->rux_runtime += rux2->rux_runtime;
1117 	rux->rux_uticks += rux2->rux_uticks;
1118 	rux->rux_sticks += rux2->rux_sticks;
1119 	rux->rux_iticks += rux2->rux_iticks;
1120 	rux->rux_uu += rux2->rux_uu;
1121 	rux->rux_su += rux2->rux_su;
1122 	rux->rux_tu += rux2->rux_tu;
1123 	rucollect(ru, ru2);
1124 }
1125 
1126 /*
1127  * Aggregate tick counts into the proc's rusage_ext.
1128  */
1129 static void
1130 ruxagg_ext_locked(struct rusage_ext *rux, struct thread *td)
1131 {
1132 
1133 	rux->rux_runtime += td->td_incruntime;
1134 	rux->rux_uticks += td->td_uticks;
1135 	rux->rux_sticks += td->td_sticks;
1136 	rux->rux_iticks += td->td_iticks;
1137 }
1138 
1139 void
1140 ruxagg_locked(struct proc *p, struct thread *td)
1141 {
1142 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1143 	PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED);
1144 
1145 	ruxagg_ext_locked(&p->p_rux, td);
1146 	ruxagg_ext_locked(&td->td_rux, td);
1147 	td->td_incruntime = 0;
1148 	td->td_uticks = 0;
1149 	td->td_iticks = 0;
1150 	td->td_sticks = 0;
1151 }
1152 
1153 void
1154 ruxagg(struct proc *p, struct thread *td)
1155 {
1156 
1157 	thread_lock(td);
1158 	ruxagg_locked(p, td);
1159 	thread_unlock(td);
1160 }
1161 
1162 /*
1163  * Update the rusage_ext structure and fetch a valid aggregate rusage
1164  * for proc p if storage for one is supplied.
1165  */
1166 void
1167 rufetch(struct proc *p, struct rusage *ru)
1168 {
1169 	struct thread *td;
1170 
1171 	PROC_STATLOCK_ASSERT(p, MA_OWNED);
1172 
1173 	*ru = p->p_ru;
1174 	if (p->p_numthreads > 0)  {
1175 		FOREACH_THREAD_IN_PROC(p, td) {
1176 			ruxagg(p, td);
1177 			rucollect(ru, &td->td_ru);
1178 		}
1179 	}
1180 }
1181 
1182 /*
1183  * Atomically perform a rufetch and a calcru together.
1184  * Consumers, can safely assume the calcru is executed only once
1185  * rufetch is completed.
1186  */
1187 void
1188 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
1189     struct timeval *sp)
1190 {
1191 
1192 	PROC_STATLOCK(p);
1193 	rufetch(p, ru);
1194 	calcru(p, up, sp);
1195 	PROC_STATUNLOCK(p);
1196 }
1197 
1198 /*
1199  * Allocate a new resource limits structure and initialize its
1200  * reference count and mutex pointer.
1201  */
1202 struct plimit *
1203 lim_alloc()
1204 {
1205 	struct plimit *limp;
1206 
1207 	limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
1208 	refcount_init(&limp->pl_refcnt, 1);
1209 	return (limp);
1210 }
1211 
1212 struct plimit *
1213 lim_hold(struct plimit *limp)
1214 {
1215 
1216 	refcount_acquire(&limp->pl_refcnt);
1217 	return (limp);
1218 }
1219 
1220 void
1221 lim_fork(struct proc *p1, struct proc *p2)
1222 {
1223 
1224 	PROC_LOCK_ASSERT(p1, MA_OWNED);
1225 	PROC_LOCK_ASSERT(p2, MA_OWNED);
1226 
1227 	p2->p_limit = lim_hold(p1->p_limit);
1228 	callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
1229 	if (p1->p_cpulimit != RLIM_INFINITY)
1230 		callout_reset_sbt(&p2->p_limco, SBT_1S, 0,
1231 		    lim_cb, p2, C_PREL(1));
1232 }
1233 
1234 void
1235 lim_free(struct plimit *limp)
1236 {
1237 
1238 	if (refcount_release(&limp->pl_refcnt))
1239 		free((void *)limp, M_PLIMIT);
1240 }
1241 
1242 /*
1243  * Make a copy of the plimit structure.
1244  * We share these structures copy-on-write after fork.
1245  */
1246 void
1247 lim_copy(struct plimit *dst, struct plimit *src)
1248 {
1249 
1250 	KASSERT(dst->pl_refcnt <= 1, ("lim_copy to shared limit"));
1251 	bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
1252 }
1253 
1254 /*
1255  * Return the hard limit for a particular system resource.  The
1256  * which parameter specifies the index into the rlimit array.
1257  */
1258 rlim_t
1259 lim_max(struct thread *td, int which)
1260 {
1261 	struct rlimit rl;
1262 
1263 	lim_rlimit(td, which, &rl);
1264 	return (rl.rlim_max);
1265 }
1266 
1267 rlim_t
1268 lim_max_proc(struct proc *p, int which)
1269 {
1270 	struct rlimit rl;
1271 
1272 	lim_rlimit_proc(p, which, &rl);
1273 	return (rl.rlim_max);
1274 }
1275 
1276 /*
1277  * Return the current (soft) limit for a particular system resource.
1278  * The which parameter which specifies the index into the rlimit array
1279  */
1280 rlim_t
1281 (lim_cur)(struct thread *td, int which)
1282 {
1283 	struct rlimit rl;
1284 
1285 	lim_rlimit(td, which, &rl);
1286 	return (rl.rlim_cur);
1287 }
1288 
1289 rlim_t
1290 lim_cur_proc(struct proc *p, int which)
1291 {
1292 	struct rlimit rl;
1293 
1294 	lim_rlimit_proc(p, which, &rl);
1295 	return (rl.rlim_cur);
1296 }
1297 
1298 /*
1299  * Return a copy of the entire rlimit structure for the system limit
1300  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
1301  */
1302 void
1303 lim_rlimit(struct thread *td, int which, struct rlimit *rlp)
1304 {
1305 	struct proc *p = td->td_proc;
1306 
1307 	MPASS(td == curthread);
1308 	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1309 	    ("request for invalid resource limit"));
1310 	*rlp = td->td_limit->pl_rlimit[which];
1311 	if (p->p_sysent->sv_fixlimit != NULL)
1312 		p->p_sysent->sv_fixlimit(rlp, which);
1313 }
1314 
1315 void
1316 lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp)
1317 {
1318 
1319 	PROC_LOCK_ASSERT(p, MA_OWNED);
1320 	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1321 	    ("request for invalid resource limit"));
1322 	*rlp = p->p_limit->pl_rlimit[which];
1323 	if (p->p_sysent->sv_fixlimit != NULL)
1324 		p->p_sysent->sv_fixlimit(rlp, which);
1325 }
1326 
1327 void
1328 uihashinit()
1329 {
1330 
1331 	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
1332 	rw_init(&uihashtbl_lock, "uidinfo hash");
1333 }
1334 
1335 /*
1336  * Look up a uidinfo struct for the parameter uid.
1337  * uihashtbl_lock must be locked.
1338  * Increase refcount on uidinfo struct returned.
1339  */
1340 static struct uidinfo *
1341 uilookup(uid_t uid)
1342 {
1343 	struct uihashhead *uipp;
1344 	struct uidinfo *uip;
1345 
1346 	rw_assert(&uihashtbl_lock, RA_LOCKED);
1347 	uipp = UIHASH(uid);
1348 	LIST_FOREACH(uip, uipp, ui_hash)
1349 		if (uip->ui_uid == uid) {
1350 			uihold(uip);
1351 			break;
1352 		}
1353 
1354 	return (uip);
1355 }
1356 
1357 /*
1358  * Find or allocate a struct uidinfo for a particular uid.
1359  * Returns with uidinfo struct referenced.
1360  * uifree() should be called on a struct uidinfo when released.
1361  */
1362 struct uidinfo *
1363 uifind(uid_t uid)
1364 {
1365 	struct uidinfo *new_uip, *uip;
1366 	struct ucred *cred;
1367 
1368 	cred = curthread->td_ucred;
1369 	if (cred->cr_uidinfo->ui_uid == uid) {
1370 		uip = cred->cr_uidinfo;
1371 		uihold(uip);
1372 		return (uip);
1373 	} else if (cred->cr_ruidinfo->ui_uid == uid) {
1374 		uip = cred->cr_ruidinfo;
1375 		uihold(uip);
1376 		return (uip);
1377 	}
1378 
1379 	rw_rlock(&uihashtbl_lock);
1380 	uip = uilookup(uid);
1381 	rw_runlock(&uihashtbl_lock);
1382 	if (uip != NULL)
1383 		return (uip);
1384 
1385 	new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO);
1386 	racct_create(&new_uip->ui_racct);
1387 	refcount_init(&new_uip->ui_ref, 1);
1388 	new_uip->ui_uid = uid;
1389 
1390 	rw_wlock(&uihashtbl_lock);
1391 	/*
1392 	 * There's a chance someone created our uidinfo while we
1393 	 * were in malloc and not holding the lock, so we have to
1394 	 * make sure we don't insert a duplicate uidinfo.
1395 	 */
1396 	if ((uip = uilookup(uid)) == NULL) {
1397 		LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash);
1398 		rw_wunlock(&uihashtbl_lock);
1399 		uip = new_uip;
1400 	} else {
1401 		rw_wunlock(&uihashtbl_lock);
1402 		racct_destroy(&new_uip->ui_racct);
1403 		free(new_uip, M_UIDINFO);
1404 	}
1405 	return (uip);
1406 }
1407 
1408 /*
1409  * Place another refcount on a uidinfo struct.
1410  */
1411 void
1412 uihold(struct uidinfo *uip)
1413 {
1414 
1415 	refcount_acquire(&uip->ui_ref);
1416 }
1417 
1418 /*-
1419  * Since uidinfo structs have a long lifetime, we use an
1420  * opportunistic refcounting scheme to avoid locking the lookup hash
1421  * for each release.
1422  *
1423  * If the refcount hits 0, we need to free the structure,
1424  * which means we need to lock the hash.
1425  * Optimal case:
1426  *   After locking the struct and lowering the refcount, if we find
1427  *   that we don't need to free, simply unlock and return.
1428  * Suboptimal case:
1429  *   If refcount lowering results in need to free, bump the count
1430  *   back up, lose the lock and acquire the locks in the proper
1431  *   order to try again.
1432  */
1433 void
1434 uifree(struct uidinfo *uip)
1435 {
1436 
1437 	if (refcount_release_if_not_last(&uip->ui_ref))
1438 		return;
1439 
1440 	rw_wlock(&uihashtbl_lock);
1441 	if (refcount_release(&uip->ui_ref) == 0) {
1442 		rw_wunlock(&uihashtbl_lock);
1443 		return;
1444 	}
1445 
1446 	racct_destroy(&uip->ui_racct);
1447 	LIST_REMOVE(uip, ui_hash);
1448 	rw_wunlock(&uihashtbl_lock);
1449 
1450 	if (uip->ui_sbsize != 0)
1451 		printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
1452 		    uip->ui_uid, uip->ui_sbsize);
1453 	if (uip->ui_proccnt != 0)
1454 		printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1455 		    uip->ui_uid, uip->ui_proccnt);
1456 	if (uip->ui_vmsize != 0)
1457 		printf("freeing uidinfo: uid = %d, swapuse = %lld\n",
1458 		    uip->ui_uid, (unsigned long long)uip->ui_vmsize);
1459 	free(uip, M_UIDINFO);
1460 }
1461 
1462 #ifdef RACCT
1463 void
1464 ui_racct_foreach(void (*callback)(struct racct *racct,
1465     void *arg2, void *arg3), void (*pre)(void), void (*post)(void),
1466     void *arg2, void *arg3)
1467 {
1468 	struct uidinfo *uip;
1469 	struct uihashhead *uih;
1470 
1471 	rw_rlock(&uihashtbl_lock);
1472 	if (pre != NULL)
1473 		(pre)();
1474 	for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) {
1475 		LIST_FOREACH(uip, uih, ui_hash) {
1476 			(callback)(uip->ui_racct, arg2, arg3);
1477 		}
1478 	}
1479 	if (post != NULL)
1480 		(post)();
1481 	rw_runlock(&uihashtbl_lock);
1482 }
1483 #endif
1484 
1485 static inline int
1486 chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name)
1487 {
1488 	long new;
1489 
1490 	/* Don't allow them to exceed max, but allow subtraction. */
1491 	new = atomic_fetchadd_long(limit, (long)diff) + diff;
1492 	if (diff > 0 && max != 0) {
1493 		if (new < 0 || new > max) {
1494 			atomic_subtract_long(limit, (long)diff);
1495 			return (0);
1496 		}
1497 	} else if (new < 0)
1498 		printf("negative %s for uid = %d\n", name, uip->ui_uid);
1499 	return (1);
1500 }
1501 
1502 /*
1503  * Change the count associated with number of processes
1504  * a given user is using.  When 'max' is 0, don't enforce a limit
1505  */
1506 int
1507 chgproccnt(struct uidinfo *uip, int diff, rlim_t max)
1508 {
1509 
1510 	return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt"));
1511 }
1512 
1513 /*
1514  * Change the total socket buffer size a user has used.
1515  */
1516 int
1517 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max)
1518 {
1519 	int diff, rv;
1520 
1521 	diff = to - *hiwat;
1522 	if (diff > 0 && max == 0) {
1523 		rv = 0;
1524 	} else {
1525 		rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize");
1526 		if (rv != 0)
1527 			*hiwat = to;
1528 	}
1529 	return (rv);
1530 }
1531 
1532 /*
1533  * Change the count associated with number of pseudo-terminals
1534  * a given user is using.  When 'max' is 0, don't enforce a limit
1535  */
1536 int
1537 chgptscnt(struct uidinfo *uip, int diff, rlim_t max)
1538 {
1539 
1540 	return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt"));
1541 }
1542 
1543 int
1544 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max)
1545 {
1546 
1547 	return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt"));
1548 }
1549 
1550 int
1551 chgumtxcnt(struct uidinfo *uip, int diff, rlim_t max)
1552 {
1553 
1554 	return (chglimit(uip, &uip->ui_umtxcnt, diff, max, "umtxcnt"));
1555 }
1556