1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_compat.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/sysproto.h> 45 #include <sys/file.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mutex.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/refcount.h> 53 #include <sys/resourcevar.h> 54 #include <sys/sched.h> 55 #include <sys/sx.h> 56 #include <sys/syscallsubr.h> 57 #include <sys/sysent.h> 58 #include <sys/time.h> 59 60 #include <vm/vm.h> 61 #include <vm/vm_param.h> 62 #include <vm/pmap.h> 63 #include <vm/vm_map.h> 64 65 66 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures"); 67 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 68 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 69 static struct mtx uihashtbl_mtx; 70 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 71 static u_long uihash; /* size of hash table - 1 */ 72 73 static void calcru1(struct proc *p, struct rusage_ext *ruxp, 74 struct timeval *up, struct timeval *sp); 75 static int donice(struct thread *td, struct proc *chgp, int n); 76 static struct uidinfo *uilookup(uid_t uid); 77 78 /* 79 * Resource controls and accounting. 80 */ 81 #ifndef _SYS_SYSPROTO_H_ 82 struct getpriority_args { 83 int which; 84 int who; 85 }; 86 #endif 87 int 88 getpriority(td, uap) 89 struct thread *td; 90 register struct getpriority_args *uap; 91 { 92 struct proc *p; 93 struct pgrp *pg; 94 int error, low; 95 96 error = 0; 97 low = PRIO_MAX + 1; 98 switch (uap->which) { 99 100 case PRIO_PROCESS: 101 if (uap->who == 0) 102 low = td->td_proc->p_nice; 103 else { 104 p = pfind(uap->who); 105 if (p == NULL) 106 break; 107 if (p_cansee(td, p) == 0) 108 low = p->p_nice; 109 PROC_UNLOCK(p); 110 } 111 break; 112 113 case PRIO_PGRP: 114 sx_slock(&proctree_lock); 115 if (uap->who == 0) { 116 pg = td->td_proc->p_pgrp; 117 PGRP_LOCK(pg); 118 } else { 119 pg = pgfind(uap->who); 120 if (pg == NULL) { 121 sx_sunlock(&proctree_lock); 122 break; 123 } 124 } 125 sx_sunlock(&proctree_lock); 126 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 127 PROC_LOCK(p); 128 if (!p_cansee(td, p)) { 129 if (p->p_nice < low) 130 low = p->p_nice; 131 } 132 PROC_UNLOCK(p); 133 } 134 PGRP_UNLOCK(pg); 135 break; 136 137 case PRIO_USER: 138 if (uap->who == 0) 139 uap->who = td->td_ucred->cr_uid; 140 sx_slock(&allproc_lock); 141 FOREACH_PROC_IN_SYSTEM(p) { 142 /* Do not bother to check PRS_NEW processes */ 143 if (p->p_state == PRS_NEW) 144 continue; 145 PROC_LOCK(p); 146 if (!p_cansee(td, p) && 147 p->p_ucred->cr_uid == uap->who) { 148 if (p->p_nice < low) 149 low = p->p_nice; 150 } 151 PROC_UNLOCK(p); 152 } 153 sx_sunlock(&allproc_lock); 154 break; 155 156 default: 157 error = EINVAL; 158 break; 159 } 160 if (low == PRIO_MAX + 1 && error == 0) 161 error = ESRCH; 162 td->td_retval[0] = low; 163 return (error); 164 } 165 166 #ifndef _SYS_SYSPROTO_H_ 167 struct setpriority_args { 168 int which; 169 int who; 170 int prio; 171 }; 172 #endif 173 int 174 setpriority(td, uap) 175 struct thread *td; 176 struct setpriority_args *uap; 177 { 178 struct proc *curp, *p; 179 struct pgrp *pg; 180 int found = 0, error = 0; 181 182 curp = td->td_proc; 183 switch (uap->which) { 184 case PRIO_PROCESS: 185 if (uap->who == 0) { 186 PROC_LOCK(curp); 187 error = donice(td, curp, uap->prio); 188 PROC_UNLOCK(curp); 189 } else { 190 p = pfind(uap->who); 191 if (p == 0) 192 break; 193 if (p_cansee(td, p) == 0) 194 error = donice(td, p, uap->prio); 195 PROC_UNLOCK(p); 196 } 197 found++; 198 break; 199 200 case PRIO_PGRP: 201 sx_slock(&proctree_lock); 202 if (uap->who == 0) { 203 pg = curp->p_pgrp; 204 PGRP_LOCK(pg); 205 } else { 206 pg = pgfind(uap->who); 207 if (pg == NULL) { 208 sx_sunlock(&proctree_lock); 209 break; 210 } 211 } 212 sx_sunlock(&proctree_lock); 213 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 214 PROC_LOCK(p); 215 if (!p_cansee(td, p)) { 216 error = donice(td, p, uap->prio); 217 found++; 218 } 219 PROC_UNLOCK(p); 220 } 221 PGRP_UNLOCK(pg); 222 break; 223 224 case PRIO_USER: 225 if (uap->who == 0) 226 uap->who = td->td_ucred->cr_uid; 227 sx_slock(&allproc_lock); 228 FOREACH_PROC_IN_SYSTEM(p) { 229 PROC_LOCK(p); 230 if (p->p_ucred->cr_uid == uap->who && 231 !p_cansee(td, p)) { 232 error = donice(td, p, uap->prio); 233 found++; 234 } 235 PROC_UNLOCK(p); 236 } 237 sx_sunlock(&allproc_lock); 238 break; 239 240 default: 241 error = EINVAL; 242 break; 243 } 244 if (found == 0 && error == 0) 245 error = ESRCH; 246 return (error); 247 } 248 249 /* 250 * Set "nice" for a (whole) process. 251 */ 252 static int 253 donice(struct thread *td, struct proc *p, int n) 254 { 255 int error; 256 257 PROC_LOCK_ASSERT(p, MA_OWNED); 258 if ((error = p_cansched(td, p))) 259 return (error); 260 if (n > PRIO_MAX) 261 n = PRIO_MAX; 262 if (n < PRIO_MIN) 263 n = PRIO_MIN; 264 if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0) 265 return (EACCES); 266 PROC_SLOCK(p); 267 sched_nice(p, n); 268 PROC_SUNLOCK(p); 269 return (0); 270 } 271 272 /* 273 * Set realtime priority for LWP. 274 */ 275 #ifndef _SYS_SYSPROTO_H_ 276 struct rtprio_thread_args { 277 int function; 278 lwpid_t lwpid; 279 struct rtprio *rtp; 280 }; 281 #endif 282 int 283 rtprio_thread(struct thread *td, struct rtprio_thread_args *uap) 284 { 285 struct proc *curp; 286 struct proc *p; 287 struct rtprio rtp; 288 struct thread *td1; 289 int cierror, error; 290 291 /* Perform copyin before acquiring locks if needed. */ 292 if (uap->function == RTP_SET) 293 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 294 else 295 cierror = 0; 296 297 curp = td->td_proc; 298 /* 299 * Though lwpid is unique, only current process is supported 300 * since there is no efficient way to look up a LWP yet. 301 */ 302 p = curp; 303 PROC_LOCK(p); 304 305 switch (uap->function) { 306 case RTP_LOOKUP: 307 if ((error = p_cansee(td, p))) 308 break; 309 PROC_SLOCK(p); 310 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) 311 td1 = td; 312 else 313 td1 = thread_find(p, uap->lwpid); 314 if (td1 != NULL) 315 pri_to_rtp(td1, &rtp); 316 else 317 error = ESRCH; 318 PROC_SUNLOCK(p); 319 PROC_UNLOCK(p); 320 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 321 case RTP_SET: 322 if ((error = p_cansched(td, p)) || (error = cierror)) 323 break; 324 325 /* Disallow setting rtprio in most cases if not superuser. */ 326 /* 327 * Realtime priority has to be restricted for reasons which should be 328 * obvious. However, for idle priority, there is a potential for 329 * system deadlock if an idleprio process gains a lock on a resource 330 * that other processes need (and the idleprio process can't run 331 * due to a CPU-bound normal process). Fix me! XXX 332 */ 333 #if 0 334 if (RTP_PRIO_IS_REALTIME(rtp.type)) { 335 #else 336 if (rtp.type != RTP_PRIO_NORMAL) { 337 #endif 338 error = priv_check(td, PRIV_SCHED_RTPRIO); 339 if (error) 340 break; 341 } 342 343 PROC_SLOCK(p); 344 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) 345 td1 = td; 346 else 347 td1 = thread_find(p, uap->lwpid); 348 if (td1 != NULL) 349 error = rtp_to_pri(&rtp, td1); 350 else 351 error = ESRCH; 352 PROC_SUNLOCK(p); 353 break; 354 default: 355 error = EINVAL; 356 break; 357 } 358 PROC_UNLOCK(p); 359 return (error); 360 } 361 362 /* 363 * Set realtime priority. 364 */ 365 #ifndef _SYS_SYSPROTO_H_ 366 struct rtprio_args { 367 int function; 368 pid_t pid; 369 struct rtprio *rtp; 370 }; 371 #endif 372 int 373 rtprio(td, uap) 374 struct thread *td; /* curthread */ 375 register struct rtprio_args *uap; 376 { 377 struct proc *curp; 378 struct proc *p; 379 struct thread *tdp; 380 struct rtprio rtp; 381 int cierror, error; 382 383 /* Perform copyin before acquiring locks if needed. */ 384 if (uap->function == RTP_SET) 385 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 386 else 387 cierror = 0; 388 389 curp = td->td_proc; 390 if (uap->pid == 0) { 391 p = curp; 392 PROC_LOCK(p); 393 } else { 394 p = pfind(uap->pid); 395 if (p == NULL) 396 return (ESRCH); 397 } 398 399 switch (uap->function) { 400 case RTP_LOOKUP: 401 if ((error = p_cansee(td, p))) 402 break; 403 PROC_SLOCK(p); 404 /* 405 * Return OUR priority if no pid specified, 406 * or if one is, report the highest priority 407 * in the process. There isn't much more you can do as 408 * there is only room to return a single priority. 409 * XXXKSE: maybe need a new interface to report 410 * priorities of multiple system scope threads. 411 * Note: specifying our own pid is not the same 412 * as leaving it zero. 413 */ 414 if (uap->pid == 0) { 415 pri_to_rtp(td, &rtp); 416 } else { 417 struct rtprio rtp2; 418 419 rtp.type = RTP_PRIO_IDLE; 420 rtp.prio = RTP_PRIO_MAX; 421 FOREACH_THREAD_IN_PROC(p, tdp) { 422 pri_to_rtp(tdp, &rtp2); 423 if (rtp2.type < rtp.type || 424 (rtp2.type == rtp.type && 425 rtp2.prio < rtp.prio)) { 426 rtp.type = rtp2.type; 427 rtp.prio = rtp2.prio; 428 } 429 } 430 } 431 PROC_SUNLOCK(p); 432 PROC_UNLOCK(p); 433 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 434 case RTP_SET: 435 if ((error = p_cansched(td, p)) || (error = cierror)) 436 break; 437 438 /* Disallow setting rtprio in most cases if not superuser. */ 439 /* 440 * Realtime priority has to be restricted for reasons which should be 441 * obvious. However, for idle priority, there is a potential for 442 * system deadlock if an idleprio process gains a lock on a resource 443 * that other processes need (and the idleprio process can't run 444 * due to a CPU-bound normal process). Fix me! XXX 445 */ 446 #if 0 447 if (RTP_PRIO_IS_REALTIME(rtp.type)) { 448 #else 449 if (rtp.type != RTP_PRIO_NORMAL) { 450 #endif 451 error = priv_check(td, PRIV_SCHED_RTPRIO); 452 if (error) 453 break; 454 } 455 456 /* 457 * If we are setting our own priority, set just our 458 * thread but if we are doing another process, 459 * do all the threads on that process. If we 460 * specify our own pid we do the latter. 461 */ 462 PROC_SLOCK(p); 463 if (uap->pid == 0) { 464 error = rtp_to_pri(&rtp, td); 465 } else { 466 FOREACH_THREAD_IN_PROC(p, td) { 467 if ((error = rtp_to_pri(&rtp, td)) != 0) 468 break; 469 } 470 } 471 PROC_SUNLOCK(p); 472 break; 473 default: 474 error = EINVAL; 475 break; 476 } 477 PROC_UNLOCK(p); 478 return (error); 479 } 480 481 int 482 rtp_to_pri(struct rtprio *rtp, struct thread *td) 483 { 484 u_char newpri; 485 486 if (rtp->prio > RTP_PRIO_MAX) 487 return (EINVAL); 488 thread_lock(td); 489 switch (RTP_PRIO_BASE(rtp->type)) { 490 case RTP_PRIO_REALTIME: 491 newpri = PRI_MIN_REALTIME + rtp->prio; 492 break; 493 case RTP_PRIO_NORMAL: 494 newpri = PRI_MIN_TIMESHARE + rtp->prio; 495 break; 496 case RTP_PRIO_IDLE: 497 newpri = PRI_MIN_IDLE + rtp->prio; 498 break; 499 default: 500 thread_unlock(td); 501 return (EINVAL); 502 } 503 sched_class(td, rtp->type); /* XXX fix */ 504 sched_user_prio(td, newpri); 505 if (curthread == td) 506 sched_prio(curthread, td->td_user_pri); /* XXX dubious */ 507 thread_unlock(td); 508 return (0); 509 } 510 511 void 512 pri_to_rtp(struct thread *td, struct rtprio *rtp) 513 { 514 515 thread_lock(td); 516 switch (PRI_BASE(td->td_pri_class)) { 517 case PRI_REALTIME: 518 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME; 519 break; 520 case PRI_TIMESHARE: 521 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE; 522 break; 523 case PRI_IDLE: 524 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE; 525 break; 526 default: 527 break; 528 } 529 rtp->type = td->td_pri_class; 530 thread_unlock(td); 531 } 532 533 #if defined(COMPAT_43) 534 #ifndef _SYS_SYSPROTO_H_ 535 struct osetrlimit_args { 536 u_int which; 537 struct orlimit *rlp; 538 }; 539 #endif 540 int 541 osetrlimit(td, uap) 542 struct thread *td; 543 register struct osetrlimit_args *uap; 544 { 545 struct orlimit olim; 546 struct rlimit lim; 547 int error; 548 549 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 550 return (error); 551 lim.rlim_cur = olim.rlim_cur; 552 lim.rlim_max = olim.rlim_max; 553 error = kern_setrlimit(td, uap->which, &lim); 554 return (error); 555 } 556 557 #ifndef _SYS_SYSPROTO_H_ 558 struct ogetrlimit_args { 559 u_int which; 560 struct orlimit *rlp; 561 }; 562 #endif 563 int 564 ogetrlimit(td, uap) 565 struct thread *td; 566 register struct ogetrlimit_args *uap; 567 { 568 struct orlimit olim; 569 struct rlimit rl; 570 struct proc *p; 571 int error; 572 573 if (uap->which >= RLIM_NLIMITS) 574 return (EINVAL); 575 p = td->td_proc; 576 PROC_LOCK(p); 577 lim_rlimit(p, uap->which, &rl); 578 PROC_UNLOCK(p); 579 580 /* 581 * XXX would be more correct to convert only RLIM_INFINITY to the 582 * old RLIM_INFINITY and fail with EOVERFLOW for other larger 583 * values. Most 64->32 and 32->16 conversions, including not 584 * unimportant ones of uids are even more broken than what we 585 * do here (they blindly truncate). We don't do this correctly 586 * here since we have little experience with EOVERFLOW yet. 587 * Elsewhere, getuid() can't fail... 588 */ 589 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur; 590 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max; 591 error = copyout(&olim, uap->rlp, sizeof(olim)); 592 return (error); 593 } 594 #endif /* COMPAT_43 */ 595 596 #ifndef _SYS_SYSPROTO_H_ 597 struct __setrlimit_args { 598 u_int which; 599 struct rlimit *rlp; 600 }; 601 #endif 602 int 603 setrlimit(td, uap) 604 struct thread *td; 605 register struct __setrlimit_args *uap; 606 { 607 struct rlimit alim; 608 int error; 609 610 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit)))) 611 return (error); 612 error = kern_setrlimit(td, uap->which, &alim); 613 return (error); 614 } 615 616 static void 617 lim_cb(void *arg) 618 { 619 struct rlimit rlim; 620 struct thread *td; 621 struct proc *p; 622 623 p = arg; 624 PROC_LOCK_ASSERT(p, MA_OWNED); 625 /* 626 * Check if the process exceeds its cpu resource allocation. If 627 * it reaches the max, arrange to kill the process in ast(). 628 */ 629 if (p->p_cpulimit == RLIM_INFINITY) 630 return; 631 PROC_SLOCK(p); 632 FOREACH_THREAD_IN_PROC(p, td) { 633 thread_lock(td); 634 ruxagg(&p->p_rux, td); 635 thread_unlock(td); 636 } 637 PROC_SUNLOCK(p); 638 if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) { 639 lim_rlimit(p, RLIMIT_CPU, &rlim); 640 if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) { 641 killproc(p, "exceeded maximum CPU limit"); 642 } else { 643 if (p->p_cpulimit < rlim.rlim_max) 644 p->p_cpulimit += 5; 645 psignal(p, SIGXCPU); 646 } 647 } 648 callout_reset(&p->p_limco, hz, lim_cb, p); 649 } 650 651 int 652 kern_setrlimit(td, which, limp) 653 struct thread *td; 654 u_int which; 655 struct rlimit *limp; 656 { 657 struct plimit *newlim, *oldlim; 658 struct proc *p; 659 register struct rlimit *alimp; 660 struct rlimit oldssiz; 661 int error; 662 663 if (which >= RLIM_NLIMITS) 664 return (EINVAL); 665 666 /* 667 * Preserve historical bugs by treating negative limits as unsigned. 668 */ 669 if (limp->rlim_cur < 0) 670 limp->rlim_cur = RLIM_INFINITY; 671 if (limp->rlim_max < 0) 672 limp->rlim_max = RLIM_INFINITY; 673 674 oldssiz.rlim_cur = 0; 675 p = td->td_proc; 676 newlim = lim_alloc(); 677 PROC_LOCK(p); 678 oldlim = p->p_limit; 679 alimp = &oldlim->pl_rlimit[which]; 680 if (limp->rlim_cur > alimp->rlim_max || 681 limp->rlim_max > alimp->rlim_max) 682 if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) { 683 PROC_UNLOCK(p); 684 lim_free(newlim); 685 return (error); 686 } 687 if (limp->rlim_cur > limp->rlim_max) 688 limp->rlim_cur = limp->rlim_max; 689 lim_copy(newlim, oldlim); 690 alimp = &newlim->pl_rlimit[which]; 691 692 switch (which) { 693 694 case RLIMIT_CPU: 695 if (limp->rlim_cur != RLIM_INFINITY && 696 p->p_cpulimit == RLIM_INFINITY) 697 callout_reset(&p->p_limco, hz, lim_cb, p); 698 PROC_SLOCK(p); 699 p->p_cpulimit = limp->rlim_cur; 700 PROC_SUNLOCK(p); 701 break; 702 case RLIMIT_DATA: 703 if (limp->rlim_cur > maxdsiz) 704 limp->rlim_cur = maxdsiz; 705 if (limp->rlim_max > maxdsiz) 706 limp->rlim_max = maxdsiz; 707 break; 708 709 case RLIMIT_STACK: 710 if (limp->rlim_cur > maxssiz) 711 limp->rlim_cur = maxssiz; 712 if (limp->rlim_max > maxssiz) 713 limp->rlim_max = maxssiz; 714 oldssiz = *alimp; 715 if (td->td_proc->p_sysent->sv_fixlimit != NULL) 716 td->td_proc->p_sysent->sv_fixlimit(&oldssiz, 717 RLIMIT_STACK); 718 break; 719 720 case RLIMIT_NOFILE: 721 if (limp->rlim_cur > maxfilesperproc) 722 limp->rlim_cur = maxfilesperproc; 723 if (limp->rlim_max > maxfilesperproc) 724 limp->rlim_max = maxfilesperproc; 725 break; 726 727 case RLIMIT_NPROC: 728 if (limp->rlim_cur > maxprocperuid) 729 limp->rlim_cur = maxprocperuid; 730 if (limp->rlim_max > maxprocperuid) 731 limp->rlim_max = maxprocperuid; 732 if (limp->rlim_cur < 1) 733 limp->rlim_cur = 1; 734 if (limp->rlim_max < 1) 735 limp->rlim_max = 1; 736 break; 737 } 738 if (td->td_proc->p_sysent->sv_fixlimit != NULL) 739 td->td_proc->p_sysent->sv_fixlimit(limp, which); 740 *alimp = *limp; 741 p->p_limit = newlim; 742 PROC_UNLOCK(p); 743 lim_free(oldlim); 744 745 if (which == RLIMIT_STACK) { 746 /* 747 * Stack is allocated to the max at exec time with only 748 * "rlim_cur" bytes accessible. If stack limit is going 749 * up make more accessible, if going down make inaccessible. 750 */ 751 if (limp->rlim_cur != oldssiz.rlim_cur) { 752 vm_offset_t addr; 753 vm_size_t size; 754 vm_prot_t prot; 755 756 if (limp->rlim_cur > oldssiz.rlim_cur) { 757 prot = p->p_sysent->sv_stackprot; 758 size = limp->rlim_cur - oldssiz.rlim_cur; 759 addr = p->p_sysent->sv_usrstack - 760 limp->rlim_cur; 761 } else { 762 prot = VM_PROT_NONE; 763 size = oldssiz.rlim_cur - limp->rlim_cur; 764 addr = p->p_sysent->sv_usrstack - 765 oldssiz.rlim_cur; 766 } 767 addr = trunc_page(addr); 768 size = round_page(size); 769 (void)vm_map_protect(&p->p_vmspace->vm_map, 770 addr, addr + size, prot, FALSE); 771 } 772 } 773 774 return (0); 775 } 776 777 #ifndef _SYS_SYSPROTO_H_ 778 struct __getrlimit_args { 779 u_int which; 780 struct rlimit *rlp; 781 }; 782 #endif 783 /* ARGSUSED */ 784 int 785 getrlimit(td, uap) 786 struct thread *td; 787 register struct __getrlimit_args *uap; 788 { 789 struct rlimit rlim; 790 struct proc *p; 791 int error; 792 793 if (uap->which >= RLIM_NLIMITS) 794 return (EINVAL); 795 p = td->td_proc; 796 PROC_LOCK(p); 797 lim_rlimit(p, uap->which, &rlim); 798 PROC_UNLOCK(p); 799 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit)); 800 return (error); 801 } 802 803 /* 804 * Transform the running time and tick information for children of proc p 805 * into user and system time usage. 806 */ 807 void 808 calccru(p, up, sp) 809 struct proc *p; 810 struct timeval *up; 811 struct timeval *sp; 812 { 813 814 PROC_LOCK_ASSERT(p, MA_OWNED); 815 calcru1(p, &p->p_crux, up, sp); 816 } 817 818 /* 819 * Transform the running time and tick information in proc p into user 820 * and system time usage. If appropriate, include the current time slice 821 * on this CPU. 822 */ 823 void 824 calcru(struct proc *p, struct timeval *up, struct timeval *sp) 825 { 826 struct thread *td; 827 uint64_t u; 828 829 PROC_LOCK_ASSERT(p, MA_OWNED); 830 PROC_SLOCK_ASSERT(p, MA_OWNED); 831 /* 832 * If we are getting stats for the current process, then add in the 833 * stats that this thread has accumulated in its current time slice. 834 * We reset the thread and CPU state as if we had performed a context 835 * switch right here. 836 */ 837 td = curthread; 838 if (td->td_proc == p) { 839 u = cpu_ticks(); 840 p->p_rux.rux_runtime += u - PCPU_GET(switchtime); 841 PCPU_SET(switchtime, u); 842 } 843 /* Make sure the per-thread stats are current. */ 844 FOREACH_THREAD_IN_PROC(p, td) { 845 if (td->td_runtime == 0) 846 continue; 847 thread_lock(td); 848 ruxagg(&p->p_rux, td); 849 thread_unlock(td); 850 } 851 calcru1(p, &p->p_rux, up, sp); 852 } 853 854 static void 855 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up, 856 struct timeval *sp) 857 { 858 /* {user, system, interrupt, total} {ticks, usec}: */ 859 u_int64_t ut, uu, st, su, it, tt, tu; 860 861 ut = ruxp->rux_uticks; 862 st = ruxp->rux_sticks; 863 it = ruxp->rux_iticks; 864 tt = ut + st + it; 865 if (tt == 0) { 866 /* Avoid divide by zero */ 867 st = 1; 868 tt = 1; 869 } 870 tu = cputick2usec(ruxp->rux_runtime); 871 if ((int64_t)tu < 0) { 872 /* XXX: this should be an assert /phk */ 873 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n", 874 (intmax_t)tu, p->p_pid, p->p_comm); 875 tu = ruxp->rux_tu; 876 } 877 878 if (tu >= ruxp->rux_tu) { 879 /* 880 * The normal case, time increased. 881 * Enforce monotonicity of bucketed numbers. 882 */ 883 uu = (tu * ut) / tt; 884 if (uu < ruxp->rux_uu) 885 uu = ruxp->rux_uu; 886 su = (tu * st) / tt; 887 if (su < ruxp->rux_su) 888 su = ruxp->rux_su; 889 } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) { 890 /* 891 * When we calibrate the cputicker, it is not uncommon to 892 * see the presumably fixed frequency increase slightly over 893 * time as a result of thermal stabilization and NTP 894 * discipline (of the reference clock). We therefore ignore 895 * a bit of backwards slop because we expect to catch up 896 * shortly. We use a 3 microsecond limit to catch low 897 * counts and a 1% limit for high counts. 898 */ 899 uu = ruxp->rux_uu; 900 su = ruxp->rux_su; 901 tu = ruxp->rux_tu; 902 } else { /* tu < ruxp->rux_tu */ 903 /* 904 * What happene here was likely that a laptop, which ran at 905 * a reduced clock frequency at boot, kicked into high gear. 906 * The wisdom of spamming this message in that case is 907 * dubious, but it might also be indicative of something 908 * serious, so lets keep it and hope laptops can be made 909 * more truthful about their CPU speed via ACPI. 910 */ 911 printf("calcru: runtime went backwards from %ju usec " 912 "to %ju usec for pid %d (%s)\n", 913 (uintmax_t)ruxp->rux_tu, (uintmax_t)tu, 914 p->p_pid, p->p_comm); 915 uu = (tu * ut) / tt; 916 su = (tu * st) / tt; 917 } 918 919 ruxp->rux_uu = uu; 920 ruxp->rux_su = su; 921 ruxp->rux_tu = tu; 922 923 up->tv_sec = uu / 1000000; 924 up->tv_usec = uu % 1000000; 925 sp->tv_sec = su / 1000000; 926 sp->tv_usec = su % 1000000; 927 } 928 929 #ifndef _SYS_SYSPROTO_H_ 930 struct getrusage_args { 931 int who; 932 struct rusage *rusage; 933 }; 934 #endif 935 int 936 getrusage(td, uap) 937 register struct thread *td; 938 register struct getrusage_args *uap; 939 { 940 struct rusage ru; 941 int error; 942 943 error = kern_getrusage(td, uap->who, &ru); 944 if (error == 0) 945 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 946 return (error); 947 } 948 949 int 950 kern_getrusage(td, who, rup) 951 struct thread *td; 952 int who; 953 struct rusage *rup; 954 { 955 struct proc *p; 956 957 p = td->td_proc; 958 PROC_LOCK(p); 959 switch (who) { 960 961 case RUSAGE_SELF: 962 rufetchcalc(p, rup, &rup->ru_utime, 963 &rup->ru_stime); 964 break; 965 966 case RUSAGE_CHILDREN: 967 *rup = p->p_stats->p_cru; 968 calccru(p, &rup->ru_utime, &rup->ru_stime); 969 break; 970 971 default: 972 PROC_UNLOCK(p); 973 return (EINVAL); 974 } 975 PROC_UNLOCK(p); 976 return (0); 977 } 978 979 void 980 rucollect(struct rusage *ru, struct rusage *ru2) 981 { 982 long *ip, *ip2; 983 int i; 984 985 if (ru->ru_maxrss < ru2->ru_maxrss) 986 ru->ru_maxrss = ru2->ru_maxrss; 987 ip = &ru->ru_first; 988 ip2 = &ru2->ru_first; 989 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 990 *ip++ += *ip2++; 991 } 992 993 void 994 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2, 995 struct rusage_ext *rux2) 996 { 997 998 rux->rux_runtime += rux2->rux_runtime; 999 rux->rux_uticks += rux2->rux_uticks; 1000 rux->rux_sticks += rux2->rux_sticks; 1001 rux->rux_iticks += rux2->rux_iticks; 1002 rux->rux_uu += rux2->rux_uu; 1003 rux->rux_su += rux2->rux_su; 1004 rux->rux_tu += rux2->rux_tu; 1005 rucollect(ru, ru2); 1006 } 1007 1008 /* 1009 * Aggregate tick counts into the proc's rusage_ext. 1010 */ 1011 void 1012 ruxagg(struct rusage_ext *rux, struct thread *td) 1013 { 1014 1015 THREAD_LOCK_ASSERT(td, MA_OWNED); 1016 PROC_SLOCK_ASSERT(td->td_proc, MA_OWNED); 1017 rux->rux_runtime += td->td_runtime; 1018 rux->rux_uticks += td->td_uticks; 1019 rux->rux_sticks += td->td_sticks; 1020 rux->rux_iticks += td->td_iticks; 1021 td->td_runtime = 0; 1022 td->td_uticks = 0; 1023 td->td_iticks = 0; 1024 td->td_sticks = 0; 1025 } 1026 1027 /* 1028 * Update the rusage_ext structure and fetch a valid aggregate rusage 1029 * for proc p if storage for one is supplied. 1030 */ 1031 void 1032 rufetch(struct proc *p, struct rusage *ru) 1033 { 1034 struct thread *td; 1035 1036 PROC_SLOCK_ASSERT(p, MA_OWNED); 1037 1038 *ru = p->p_ru; 1039 if (p->p_numthreads > 0) { 1040 FOREACH_THREAD_IN_PROC(p, td) { 1041 thread_lock(td); 1042 ruxagg(&p->p_rux, td); 1043 thread_unlock(td); 1044 rucollect(ru, &td->td_ru); 1045 } 1046 } 1047 } 1048 1049 /* 1050 * Atomically perform a rufetch and a calcru together. 1051 * Consumers, can safely assume the calcru is executed only once 1052 * rufetch is completed. 1053 */ 1054 void 1055 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up, 1056 struct timeval *sp) 1057 { 1058 1059 PROC_SLOCK(p); 1060 rufetch(p, ru); 1061 calcru(p, up, sp); 1062 PROC_SUNLOCK(p); 1063 } 1064 1065 /* 1066 * Allocate a new resource limits structure and initialize its 1067 * reference count and mutex pointer. 1068 */ 1069 struct plimit * 1070 lim_alloc() 1071 { 1072 struct plimit *limp; 1073 1074 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK); 1075 refcount_init(&limp->pl_refcnt, 1); 1076 return (limp); 1077 } 1078 1079 struct plimit * 1080 lim_hold(limp) 1081 struct plimit *limp; 1082 { 1083 1084 refcount_acquire(&limp->pl_refcnt); 1085 return (limp); 1086 } 1087 1088 void 1089 lim_fork(struct proc *p1, struct proc *p2) 1090 { 1091 p2->p_limit = lim_hold(p1->p_limit); 1092 callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0); 1093 if (p1->p_cpulimit != RLIM_INFINITY) 1094 callout_reset(&p2->p_limco, hz, lim_cb, p2); 1095 } 1096 1097 void 1098 lim_free(limp) 1099 struct plimit *limp; 1100 { 1101 1102 KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow")); 1103 if (refcount_release(&limp->pl_refcnt)) 1104 free((void *)limp, M_PLIMIT); 1105 } 1106 1107 /* 1108 * Make a copy of the plimit structure. 1109 * We share these structures copy-on-write after fork. 1110 */ 1111 void 1112 lim_copy(dst, src) 1113 struct plimit *dst, *src; 1114 { 1115 1116 KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit")); 1117 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit)); 1118 } 1119 1120 /* 1121 * Return the hard limit for a particular system resource. The 1122 * which parameter specifies the index into the rlimit array. 1123 */ 1124 rlim_t 1125 lim_max(struct proc *p, int which) 1126 { 1127 struct rlimit rl; 1128 1129 lim_rlimit(p, which, &rl); 1130 return (rl.rlim_max); 1131 } 1132 1133 /* 1134 * Return the current (soft) limit for a particular system resource. 1135 * The which parameter which specifies the index into the rlimit array 1136 */ 1137 rlim_t 1138 lim_cur(struct proc *p, int which) 1139 { 1140 struct rlimit rl; 1141 1142 lim_rlimit(p, which, &rl); 1143 return (rl.rlim_cur); 1144 } 1145 1146 /* 1147 * Return a copy of the entire rlimit structure for the system limit 1148 * specified by 'which' in the rlimit structure pointed to by 'rlp'. 1149 */ 1150 void 1151 lim_rlimit(struct proc *p, int which, struct rlimit *rlp) 1152 { 1153 1154 PROC_LOCK_ASSERT(p, MA_OWNED); 1155 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1156 ("request for invalid resource limit")); 1157 *rlp = p->p_limit->pl_rlimit[which]; 1158 if (p->p_sysent->sv_fixlimit != NULL) 1159 p->p_sysent->sv_fixlimit(rlp, which); 1160 } 1161 1162 /* 1163 * Find the uidinfo structure for a uid. This structure is used to 1164 * track the total resource consumption (process count, socket buffer 1165 * size, etc.) for the uid and impose limits. 1166 */ 1167 void 1168 uihashinit() 1169 { 1170 1171 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 1172 mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF); 1173 } 1174 1175 /* 1176 * Look up a uidinfo struct for the parameter uid. 1177 * uihashtbl_mtx must be locked. 1178 */ 1179 static struct uidinfo * 1180 uilookup(uid) 1181 uid_t uid; 1182 { 1183 struct uihashhead *uipp; 1184 struct uidinfo *uip; 1185 1186 mtx_assert(&uihashtbl_mtx, MA_OWNED); 1187 uipp = UIHASH(uid); 1188 LIST_FOREACH(uip, uipp, ui_hash) 1189 if (uip->ui_uid == uid) 1190 break; 1191 1192 return (uip); 1193 } 1194 1195 /* 1196 * Find or allocate a struct uidinfo for a particular uid. 1197 * Increase refcount on uidinfo struct returned. 1198 * uifree() should be called on a struct uidinfo when released. 1199 */ 1200 struct uidinfo * 1201 uifind(uid) 1202 uid_t uid; 1203 { 1204 struct uidinfo *old_uip, *uip; 1205 1206 mtx_lock(&uihashtbl_mtx); 1207 uip = uilookup(uid); 1208 if (uip == NULL) { 1209 mtx_unlock(&uihashtbl_mtx); 1210 uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO); 1211 mtx_lock(&uihashtbl_mtx); 1212 /* 1213 * There's a chance someone created our uidinfo while we 1214 * were in malloc and not holding the lock, so we have to 1215 * make sure we don't insert a duplicate uidinfo. 1216 */ 1217 if ((old_uip = uilookup(uid)) != NULL) { 1218 /* Someone else beat us to it. */ 1219 free(uip, M_UIDINFO); 1220 uip = old_uip; 1221 } else { 1222 uip->ui_mtxp = mtx_pool_alloc(mtxpool_sleep); 1223 uip->ui_uid = uid; 1224 LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash); 1225 } 1226 } 1227 uihold(uip); 1228 mtx_unlock(&uihashtbl_mtx); 1229 return (uip); 1230 } 1231 1232 /* 1233 * Place another refcount on a uidinfo struct. 1234 */ 1235 void 1236 uihold(uip) 1237 struct uidinfo *uip; 1238 { 1239 1240 UIDINFO_LOCK(uip); 1241 uip->ui_ref++; 1242 UIDINFO_UNLOCK(uip); 1243 } 1244 1245 /*- 1246 * Since uidinfo structs have a long lifetime, we use an 1247 * opportunistic refcounting scheme to avoid locking the lookup hash 1248 * for each release. 1249 * 1250 * If the refcount hits 0, we need to free the structure, 1251 * which means we need to lock the hash. 1252 * Optimal case: 1253 * After locking the struct and lowering the refcount, if we find 1254 * that we don't need to free, simply unlock and return. 1255 * Suboptimal case: 1256 * If refcount lowering results in need to free, bump the count 1257 * back up, lose the lock and acquire the locks in the proper 1258 * order to try again. 1259 */ 1260 void 1261 uifree(uip) 1262 struct uidinfo *uip; 1263 { 1264 1265 /* Prepare for optimal case. */ 1266 UIDINFO_LOCK(uip); 1267 1268 if (--uip->ui_ref != 0) { 1269 UIDINFO_UNLOCK(uip); 1270 return; 1271 } 1272 1273 /* Prepare for suboptimal case. */ 1274 uip->ui_ref++; 1275 UIDINFO_UNLOCK(uip); 1276 mtx_lock(&uihashtbl_mtx); 1277 UIDINFO_LOCK(uip); 1278 1279 /* 1280 * We must subtract one from the count again because we backed out 1281 * our initial subtraction before dropping the lock. 1282 * Since another thread may have added a reference after we dropped the 1283 * initial lock we have to test for zero again. 1284 */ 1285 if (--uip->ui_ref == 0) { 1286 LIST_REMOVE(uip, ui_hash); 1287 mtx_unlock(&uihashtbl_mtx); 1288 if (uip->ui_sbsize != 0) 1289 printf("freeing uidinfo: uid = %d, sbsize = %jd\n", 1290 uip->ui_uid, (intmax_t)uip->ui_sbsize); 1291 if (uip->ui_proccnt != 0) 1292 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 1293 uip->ui_uid, uip->ui_proccnt); 1294 UIDINFO_UNLOCK(uip); 1295 FREE(uip, M_UIDINFO); 1296 return; 1297 } 1298 1299 mtx_unlock(&uihashtbl_mtx); 1300 UIDINFO_UNLOCK(uip); 1301 } 1302 1303 /* 1304 * Change the count associated with number of processes 1305 * a given user is using. When 'max' is 0, don't enforce a limit 1306 */ 1307 int 1308 chgproccnt(uip, diff, max) 1309 struct uidinfo *uip; 1310 int diff; 1311 int max; 1312 { 1313 1314 UIDINFO_LOCK(uip); 1315 /* Don't allow them to exceed max, but allow subtraction. */ 1316 if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) { 1317 UIDINFO_UNLOCK(uip); 1318 return (0); 1319 } 1320 uip->ui_proccnt += diff; 1321 if (uip->ui_proccnt < 0) 1322 printf("negative proccnt for uid = %d\n", uip->ui_uid); 1323 UIDINFO_UNLOCK(uip); 1324 return (1); 1325 } 1326 1327 /* 1328 * Change the total socket buffer size a user has used. 1329 */ 1330 int 1331 chgsbsize(uip, hiwat, to, max) 1332 struct uidinfo *uip; 1333 u_int *hiwat; 1334 u_int to; 1335 rlim_t max; 1336 { 1337 rlim_t new; 1338 1339 UIDINFO_LOCK(uip); 1340 new = uip->ui_sbsize + to - *hiwat; 1341 /* Don't allow them to exceed max, but allow subtraction. */ 1342 if (to > *hiwat && new > max) { 1343 UIDINFO_UNLOCK(uip); 1344 return (0); 1345 } 1346 uip->ui_sbsize = new; 1347 UIDINFO_UNLOCK(uip); 1348 *hiwat = to; 1349 if (new < 0) 1350 printf("negative sbsize for uid = %d\n", uip->ui_uid); 1351 return (1); 1352 } 1353