1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_compat.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/sysproto.h> 45 #include <sys/file.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mutex.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/refcount.h> 53 #include <sys/racct.h> 54 #include <sys/resourcevar.h> 55 #include <sys/rwlock.h> 56 #include <sys/sched.h> 57 #include <sys/sx.h> 58 #include <sys/syscallsubr.h> 59 #include <sys/sysctl.h> 60 #include <sys/sysent.h> 61 #include <sys/time.h> 62 #include <sys/umtx.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_param.h> 66 #include <vm/pmap.h> 67 #include <vm/vm_map.h> 68 69 70 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures"); 71 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 72 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 73 static struct rwlock uihashtbl_lock; 74 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 75 static u_long uihash; /* size of hash table - 1 */ 76 77 static void calcru1(struct proc *p, struct rusage_ext *ruxp, 78 struct timeval *up, struct timeval *sp); 79 static int donice(struct thread *td, struct proc *chgp, int n); 80 static struct uidinfo *uilookup(uid_t uid); 81 static void ruxagg_locked(struct rusage_ext *rux, struct thread *td); 82 83 static __inline int lim_shared(struct plimit *limp); 84 85 /* 86 * Resource controls and accounting. 87 */ 88 #ifndef _SYS_SYSPROTO_H_ 89 struct getpriority_args { 90 int which; 91 int who; 92 }; 93 #endif 94 int 95 sys_getpriority(td, uap) 96 struct thread *td; 97 register struct getpriority_args *uap; 98 { 99 struct proc *p; 100 struct pgrp *pg; 101 int error, low; 102 103 error = 0; 104 low = PRIO_MAX + 1; 105 switch (uap->which) { 106 107 case PRIO_PROCESS: 108 if (uap->who == 0) 109 low = td->td_proc->p_nice; 110 else { 111 p = pfind(uap->who); 112 if (p == NULL) 113 break; 114 if (p_cansee(td, p) == 0) 115 low = p->p_nice; 116 PROC_UNLOCK(p); 117 } 118 break; 119 120 case PRIO_PGRP: 121 sx_slock(&proctree_lock); 122 if (uap->who == 0) { 123 pg = td->td_proc->p_pgrp; 124 PGRP_LOCK(pg); 125 } else { 126 pg = pgfind(uap->who); 127 if (pg == NULL) { 128 sx_sunlock(&proctree_lock); 129 break; 130 } 131 } 132 sx_sunlock(&proctree_lock); 133 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 134 PROC_LOCK(p); 135 if (p->p_state == PRS_NORMAL && 136 p_cansee(td, p) == 0) { 137 if (p->p_nice < low) 138 low = p->p_nice; 139 } 140 PROC_UNLOCK(p); 141 } 142 PGRP_UNLOCK(pg); 143 break; 144 145 case PRIO_USER: 146 if (uap->who == 0) 147 uap->who = td->td_ucred->cr_uid; 148 sx_slock(&allproc_lock); 149 FOREACH_PROC_IN_SYSTEM(p) { 150 PROC_LOCK(p); 151 if (p->p_state == PRS_NORMAL && 152 p_cansee(td, p) == 0 && 153 p->p_ucred->cr_uid == uap->who) { 154 if (p->p_nice < low) 155 low = p->p_nice; 156 } 157 PROC_UNLOCK(p); 158 } 159 sx_sunlock(&allproc_lock); 160 break; 161 162 default: 163 error = EINVAL; 164 break; 165 } 166 if (low == PRIO_MAX + 1 && error == 0) 167 error = ESRCH; 168 td->td_retval[0] = low; 169 return (error); 170 } 171 172 #ifndef _SYS_SYSPROTO_H_ 173 struct setpriority_args { 174 int which; 175 int who; 176 int prio; 177 }; 178 #endif 179 int 180 sys_setpriority(td, uap) 181 struct thread *td; 182 struct setpriority_args *uap; 183 { 184 struct proc *curp, *p; 185 struct pgrp *pg; 186 int found = 0, error = 0; 187 188 curp = td->td_proc; 189 switch (uap->which) { 190 case PRIO_PROCESS: 191 if (uap->who == 0) { 192 PROC_LOCK(curp); 193 error = donice(td, curp, uap->prio); 194 PROC_UNLOCK(curp); 195 } else { 196 p = pfind(uap->who); 197 if (p == NULL) 198 break; 199 error = p_cansee(td, p); 200 if (error == 0) 201 error = donice(td, p, uap->prio); 202 PROC_UNLOCK(p); 203 } 204 found++; 205 break; 206 207 case PRIO_PGRP: 208 sx_slock(&proctree_lock); 209 if (uap->who == 0) { 210 pg = curp->p_pgrp; 211 PGRP_LOCK(pg); 212 } else { 213 pg = pgfind(uap->who); 214 if (pg == NULL) { 215 sx_sunlock(&proctree_lock); 216 break; 217 } 218 } 219 sx_sunlock(&proctree_lock); 220 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 221 PROC_LOCK(p); 222 if (p->p_state == PRS_NORMAL && 223 p_cansee(td, p) == 0) { 224 error = donice(td, p, uap->prio); 225 found++; 226 } 227 PROC_UNLOCK(p); 228 } 229 PGRP_UNLOCK(pg); 230 break; 231 232 case PRIO_USER: 233 if (uap->who == 0) 234 uap->who = td->td_ucred->cr_uid; 235 sx_slock(&allproc_lock); 236 FOREACH_PROC_IN_SYSTEM(p) { 237 PROC_LOCK(p); 238 if (p->p_state == PRS_NORMAL && 239 p->p_ucred->cr_uid == uap->who && 240 p_cansee(td, p) == 0) { 241 error = donice(td, p, uap->prio); 242 found++; 243 } 244 PROC_UNLOCK(p); 245 } 246 sx_sunlock(&allproc_lock); 247 break; 248 249 default: 250 error = EINVAL; 251 break; 252 } 253 if (found == 0 && error == 0) 254 error = ESRCH; 255 return (error); 256 } 257 258 /* 259 * Set "nice" for a (whole) process. 260 */ 261 static int 262 donice(struct thread *td, struct proc *p, int n) 263 { 264 int error; 265 266 PROC_LOCK_ASSERT(p, MA_OWNED); 267 if ((error = p_cansched(td, p))) 268 return (error); 269 if (n > PRIO_MAX) 270 n = PRIO_MAX; 271 if (n < PRIO_MIN) 272 n = PRIO_MIN; 273 if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0) 274 return (EACCES); 275 sched_nice(p, n); 276 return (0); 277 } 278 279 static int unprivileged_idprio; 280 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW, 281 &unprivileged_idprio, 0, "Allow non-root users to set an idle priority"); 282 283 /* 284 * Set realtime priority for LWP. 285 */ 286 #ifndef _SYS_SYSPROTO_H_ 287 struct rtprio_thread_args { 288 int function; 289 lwpid_t lwpid; 290 struct rtprio *rtp; 291 }; 292 #endif 293 int 294 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap) 295 { 296 struct proc *p; 297 struct rtprio rtp; 298 struct thread *td1; 299 int cierror, error; 300 301 /* Perform copyin before acquiring locks if needed. */ 302 if (uap->function == RTP_SET) 303 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 304 else 305 cierror = 0; 306 307 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) { 308 p = td->td_proc; 309 td1 = td; 310 PROC_LOCK(p); 311 } else { 312 /* Only look up thread in current process */ 313 td1 = tdfind(uap->lwpid, curproc->p_pid); 314 if (td1 == NULL) 315 return (ESRCH); 316 p = td1->td_proc; 317 } 318 319 switch (uap->function) { 320 case RTP_LOOKUP: 321 if ((error = p_cansee(td, p))) 322 break; 323 pri_to_rtp(td1, &rtp); 324 PROC_UNLOCK(p); 325 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 326 case RTP_SET: 327 if ((error = p_cansched(td, p)) || (error = cierror)) 328 break; 329 330 /* Disallow setting rtprio in most cases if not superuser. */ 331 332 /* 333 * Realtime priority has to be restricted for reasons which 334 * should be obvious. However, for idleprio processes, there is 335 * a potential for system deadlock if an idleprio process gains 336 * a lock on a resource that other processes need (and the 337 * idleprio process can't run due to a CPU-bound normal 338 * process). Fix me! XXX 339 * 340 * This problem is not only related to idleprio process. 341 * A user level program can obtain a file lock and hold it 342 * indefinitely. Additionally, without idleprio processes it is 343 * still conceivable that a program with low priority will never 344 * get to run. In short, allowing this feature might make it 345 * easier to lock a resource indefinitely, but it is not the 346 * only thing that makes it possible. 347 */ 348 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME || 349 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 350 unprivileged_idprio == 0)) { 351 error = priv_check(td, PRIV_SCHED_RTPRIO); 352 if (error) 353 break; 354 } 355 error = rtp_to_pri(&rtp, td1); 356 break; 357 default: 358 error = EINVAL; 359 break; 360 } 361 PROC_UNLOCK(p); 362 return (error); 363 } 364 365 /* 366 * Set realtime priority. 367 */ 368 #ifndef _SYS_SYSPROTO_H_ 369 struct rtprio_args { 370 int function; 371 pid_t pid; 372 struct rtprio *rtp; 373 }; 374 #endif 375 int 376 sys_rtprio(td, uap) 377 struct thread *td; /* curthread */ 378 register struct rtprio_args *uap; 379 { 380 struct proc *p; 381 struct thread *tdp; 382 struct rtprio rtp; 383 int cierror, error; 384 385 /* Perform copyin before acquiring locks if needed. */ 386 if (uap->function == RTP_SET) 387 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 388 else 389 cierror = 0; 390 391 if (uap->pid == 0) { 392 p = td->td_proc; 393 PROC_LOCK(p); 394 } else { 395 p = pfind(uap->pid); 396 if (p == NULL) 397 return (ESRCH); 398 } 399 400 switch (uap->function) { 401 case RTP_LOOKUP: 402 if ((error = p_cansee(td, p))) 403 break; 404 /* 405 * Return OUR priority if no pid specified, 406 * or if one is, report the highest priority 407 * in the process. There isn't much more you can do as 408 * there is only room to return a single priority. 409 * Note: specifying our own pid is not the same 410 * as leaving it zero. 411 */ 412 if (uap->pid == 0) { 413 pri_to_rtp(td, &rtp); 414 } else { 415 struct rtprio rtp2; 416 417 rtp.type = RTP_PRIO_IDLE; 418 rtp.prio = RTP_PRIO_MAX; 419 FOREACH_THREAD_IN_PROC(p, tdp) { 420 pri_to_rtp(tdp, &rtp2); 421 if (rtp2.type < rtp.type || 422 (rtp2.type == rtp.type && 423 rtp2.prio < rtp.prio)) { 424 rtp.type = rtp2.type; 425 rtp.prio = rtp2.prio; 426 } 427 } 428 } 429 PROC_UNLOCK(p); 430 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 431 case RTP_SET: 432 if ((error = p_cansched(td, p)) || (error = cierror)) 433 break; 434 435 /* 436 * Disallow setting rtprio in most cases if not superuser. 437 * See the comment in sys_rtprio_thread about idprio 438 * threads holding a lock. 439 */ 440 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME || 441 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 442 !unprivileged_idprio)) { 443 error = priv_check(td, PRIV_SCHED_RTPRIO); 444 if (error) 445 break; 446 } 447 448 /* 449 * If we are setting our own priority, set just our 450 * thread but if we are doing another process, 451 * do all the threads on that process. If we 452 * specify our own pid we do the latter. 453 */ 454 if (uap->pid == 0) { 455 error = rtp_to_pri(&rtp, td); 456 } else { 457 FOREACH_THREAD_IN_PROC(p, td) { 458 if ((error = rtp_to_pri(&rtp, td)) != 0) 459 break; 460 } 461 } 462 break; 463 default: 464 error = EINVAL; 465 break; 466 } 467 PROC_UNLOCK(p); 468 return (error); 469 } 470 471 int 472 rtp_to_pri(struct rtprio *rtp, struct thread *td) 473 { 474 u_char newpri, oldclass, oldpri; 475 476 switch (RTP_PRIO_BASE(rtp->type)) { 477 case RTP_PRIO_REALTIME: 478 if (rtp->prio > RTP_PRIO_MAX) 479 return (EINVAL); 480 newpri = PRI_MIN_REALTIME + rtp->prio; 481 break; 482 case RTP_PRIO_NORMAL: 483 if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE)) 484 return (EINVAL); 485 newpri = PRI_MIN_TIMESHARE + rtp->prio; 486 break; 487 case RTP_PRIO_IDLE: 488 if (rtp->prio > RTP_PRIO_MAX) 489 return (EINVAL); 490 newpri = PRI_MIN_IDLE + rtp->prio; 491 break; 492 default: 493 return (EINVAL); 494 } 495 496 thread_lock(td); 497 oldclass = td->td_pri_class; 498 sched_class(td, rtp->type); /* XXX fix */ 499 oldpri = td->td_user_pri; 500 sched_user_prio(td, newpri); 501 if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL || 502 td->td_pri_class != RTP_PRIO_NORMAL)) 503 sched_prio(td, td->td_user_pri); 504 if (TD_ON_UPILOCK(td) && oldpri != newpri) { 505 critical_enter(); 506 thread_unlock(td); 507 umtx_pi_adjust(td, oldpri); 508 critical_exit(); 509 } else 510 thread_unlock(td); 511 return (0); 512 } 513 514 void 515 pri_to_rtp(struct thread *td, struct rtprio *rtp) 516 { 517 518 thread_lock(td); 519 switch (PRI_BASE(td->td_pri_class)) { 520 case PRI_REALTIME: 521 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME; 522 break; 523 case PRI_TIMESHARE: 524 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE; 525 break; 526 case PRI_IDLE: 527 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE; 528 break; 529 default: 530 break; 531 } 532 rtp->type = td->td_pri_class; 533 thread_unlock(td); 534 } 535 536 #if defined(COMPAT_43) 537 #ifndef _SYS_SYSPROTO_H_ 538 struct osetrlimit_args { 539 u_int which; 540 struct orlimit *rlp; 541 }; 542 #endif 543 int 544 osetrlimit(td, uap) 545 struct thread *td; 546 register struct osetrlimit_args *uap; 547 { 548 struct orlimit olim; 549 struct rlimit lim; 550 int error; 551 552 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 553 return (error); 554 lim.rlim_cur = olim.rlim_cur; 555 lim.rlim_max = olim.rlim_max; 556 error = kern_setrlimit(td, uap->which, &lim); 557 return (error); 558 } 559 560 #ifndef _SYS_SYSPROTO_H_ 561 struct ogetrlimit_args { 562 u_int which; 563 struct orlimit *rlp; 564 }; 565 #endif 566 int 567 ogetrlimit(td, uap) 568 struct thread *td; 569 register struct ogetrlimit_args *uap; 570 { 571 struct orlimit olim; 572 struct rlimit rl; 573 struct proc *p; 574 int error; 575 576 if (uap->which >= RLIM_NLIMITS) 577 return (EINVAL); 578 p = td->td_proc; 579 PROC_LOCK(p); 580 lim_rlimit(p, uap->which, &rl); 581 PROC_UNLOCK(p); 582 583 /* 584 * XXX would be more correct to convert only RLIM_INFINITY to the 585 * old RLIM_INFINITY and fail with EOVERFLOW for other larger 586 * values. Most 64->32 and 32->16 conversions, including not 587 * unimportant ones of uids are even more broken than what we 588 * do here (they blindly truncate). We don't do this correctly 589 * here since we have little experience with EOVERFLOW yet. 590 * Elsewhere, getuid() can't fail... 591 */ 592 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur; 593 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max; 594 error = copyout(&olim, uap->rlp, sizeof(olim)); 595 return (error); 596 } 597 #endif /* COMPAT_43 */ 598 599 #ifndef _SYS_SYSPROTO_H_ 600 struct __setrlimit_args { 601 u_int which; 602 struct rlimit *rlp; 603 }; 604 #endif 605 int 606 sys_setrlimit(td, uap) 607 struct thread *td; 608 register struct __setrlimit_args *uap; 609 { 610 struct rlimit alim; 611 int error; 612 613 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit)))) 614 return (error); 615 error = kern_setrlimit(td, uap->which, &alim); 616 return (error); 617 } 618 619 static void 620 lim_cb(void *arg) 621 { 622 struct rlimit rlim; 623 struct thread *td; 624 struct proc *p; 625 626 p = arg; 627 PROC_LOCK_ASSERT(p, MA_OWNED); 628 /* 629 * Check if the process exceeds its cpu resource allocation. If 630 * it reaches the max, arrange to kill the process in ast(). 631 */ 632 if (p->p_cpulimit == RLIM_INFINITY) 633 return; 634 PROC_SLOCK(p); 635 FOREACH_THREAD_IN_PROC(p, td) { 636 ruxagg(p, td); 637 } 638 PROC_SUNLOCK(p); 639 if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) { 640 lim_rlimit(p, RLIMIT_CPU, &rlim); 641 if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) { 642 killproc(p, "exceeded maximum CPU limit"); 643 } else { 644 if (p->p_cpulimit < rlim.rlim_max) 645 p->p_cpulimit += 5; 646 kern_psignal(p, SIGXCPU); 647 } 648 } 649 if ((p->p_flag & P_WEXIT) == 0) 650 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 651 lim_cb, p, C_PREL(1)); 652 } 653 654 int 655 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp) 656 { 657 658 return (kern_proc_setrlimit(td, td->td_proc, which, limp)); 659 } 660 661 int 662 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which, 663 struct rlimit *limp) 664 { 665 struct plimit *newlim, *oldlim; 666 register struct rlimit *alimp; 667 struct rlimit oldssiz; 668 int error; 669 670 if (which >= RLIM_NLIMITS) 671 return (EINVAL); 672 673 /* 674 * Preserve historical bugs by treating negative limits as unsigned. 675 */ 676 if (limp->rlim_cur < 0) 677 limp->rlim_cur = RLIM_INFINITY; 678 if (limp->rlim_max < 0) 679 limp->rlim_max = RLIM_INFINITY; 680 681 oldssiz.rlim_cur = 0; 682 newlim = NULL; 683 PROC_LOCK(p); 684 if (lim_shared(p->p_limit)) { 685 PROC_UNLOCK(p); 686 newlim = lim_alloc(); 687 PROC_LOCK(p); 688 } 689 oldlim = p->p_limit; 690 alimp = &oldlim->pl_rlimit[which]; 691 if (limp->rlim_cur > alimp->rlim_max || 692 limp->rlim_max > alimp->rlim_max) 693 if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) { 694 PROC_UNLOCK(p); 695 if (newlim != NULL) 696 lim_free(newlim); 697 return (error); 698 } 699 if (limp->rlim_cur > limp->rlim_max) 700 limp->rlim_cur = limp->rlim_max; 701 if (newlim != NULL) { 702 lim_copy(newlim, oldlim); 703 alimp = &newlim->pl_rlimit[which]; 704 } 705 706 switch (which) { 707 708 case RLIMIT_CPU: 709 if (limp->rlim_cur != RLIM_INFINITY && 710 p->p_cpulimit == RLIM_INFINITY) 711 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 712 lim_cb, p, C_PREL(1)); 713 p->p_cpulimit = limp->rlim_cur; 714 break; 715 case RLIMIT_DATA: 716 if (limp->rlim_cur > maxdsiz) 717 limp->rlim_cur = maxdsiz; 718 if (limp->rlim_max > maxdsiz) 719 limp->rlim_max = maxdsiz; 720 break; 721 722 case RLIMIT_STACK: 723 if (limp->rlim_cur > maxssiz) 724 limp->rlim_cur = maxssiz; 725 if (limp->rlim_max > maxssiz) 726 limp->rlim_max = maxssiz; 727 oldssiz = *alimp; 728 if (p->p_sysent->sv_fixlimit != NULL) 729 p->p_sysent->sv_fixlimit(&oldssiz, 730 RLIMIT_STACK); 731 break; 732 733 case RLIMIT_NOFILE: 734 if (limp->rlim_cur > maxfilesperproc) 735 limp->rlim_cur = maxfilesperproc; 736 if (limp->rlim_max > maxfilesperproc) 737 limp->rlim_max = maxfilesperproc; 738 break; 739 740 case RLIMIT_NPROC: 741 if (limp->rlim_cur > maxprocperuid) 742 limp->rlim_cur = maxprocperuid; 743 if (limp->rlim_max > maxprocperuid) 744 limp->rlim_max = maxprocperuid; 745 if (limp->rlim_cur < 1) 746 limp->rlim_cur = 1; 747 if (limp->rlim_max < 1) 748 limp->rlim_max = 1; 749 break; 750 } 751 if (p->p_sysent->sv_fixlimit != NULL) 752 p->p_sysent->sv_fixlimit(limp, which); 753 *alimp = *limp; 754 if (newlim != NULL) 755 p->p_limit = newlim; 756 PROC_UNLOCK(p); 757 if (newlim != NULL) 758 lim_free(oldlim); 759 760 if (which == RLIMIT_STACK) { 761 /* 762 * Stack is allocated to the max at exec time with only 763 * "rlim_cur" bytes accessible. If stack limit is going 764 * up make more accessible, if going down make inaccessible. 765 */ 766 if (limp->rlim_cur != oldssiz.rlim_cur) { 767 vm_offset_t addr; 768 vm_size_t size; 769 vm_prot_t prot; 770 771 if (limp->rlim_cur > oldssiz.rlim_cur) { 772 prot = p->p_sysent->sv_stackprot; 773 size = limp->rlim_cur - oldssiz.rlim_cur; 774 addr = p->p_sysent->sv_usrstack - 775 limp->rlim_cur; 776 } else { 777 prot = VM_PROT_NONE; 778 size = oldssiz.rlim_cur - limp->rlim_cur; 779 addr = p->p_sysent->sv_usrstack - 780 oldssiz.rlim_cur; 781 } 782 addr = trunc_page(addr); 783 size = round_page(size); 784 (void)vm_map_protect(&p->p_vmspace->vm_map, 785 addr, addr + size, prot, FALSE); 786 } 787 } 788 789 return (0); 790 } 791 792 #ifndef _SYS_SYSPROTO_H_ 793 struct __getrlimit_args { 794 u_int which; 795 struct rlimit *rlp; 796 }; 797 #endif 798 /* ARGSUSED */ 799 int 800 sys_getrlimit(td, uap) 801 struct thread *td; 802 register struct __getrlimit_args *uap; 803 { 804 struct rlimit rlim; 805 struct proc *p; 806 int error; 807 808 if (uap->which >= RLIM_NLIMITS) 809 return (EINVAL); 810 p = td->td_proc; 811 PROC_LOCK(p); 812 lim_rlimit(p, uap->which, &rlim); 813 PROC_UNLOCK(p); 814 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit)); 815 return (error); 816 } 817 818 /* 819 * Transform the running time and tick information for children of proc p 820 * into user and system time usage. 821 */ 822 void 823 calccru(p, up, sp) 824 struct proc *p; 825 struct timeval *up; 826 struct timeval *sp; 827 { 828 829 PROC_LOCK_ASSERT(p, MA_OWNED); 830 calcru1(p, &p->p_crux, up, sp); 831 } 832 833 /* 834 * Transform the running time and tick information in proc p into user 835 * and system time usage. If appropriate, include the current time slice 836 * on this CPU. 837 */ 838 void 839 calcru(struct proc *p, struct timeval *up, struct timeval *sp) 840 { 841 struct thread *td; 842 uint64_t runtime, u; 843 844 PROC_LOCK_ASSERT(p, MA_OWNED); 845 PROC_SLOCK_ASSERT(p, MA_OWNED); 846 /* 847 * If we are getting stats for the current process, then add in the 848 * stats that this thread has accumulated in its current time slice. 849 * We reset the thread and CPU state as if we had performed a context 850 * switch right here. 851 */ 852 td = curthread; 853 if (td->td_proc == p) { 854 u = cpu_ticks(); 855 runtime = u - PCPU_GET(switchtime); 856 td->td_runtime += runtime; 857 td->td_incruntime += runtime; 858 PCPU_SET(switchtime, u); 859 } 860 /* Make sure the per-thread stats are current. */ 861 FOREACH_THREAD_IN_PROC(p, td) { 862 if (td->td_incruntime == 0) 863 continue; 864 ruxagg(p, td); 865 } 866 calcru1(p, &p->p_rux, up, sp); 867 } 868 869 /* Collect resource usage for a single thread. */ 870 void 871 rufetchtd(struct thread *td, struct rusage *ru) 872 { 873 struct proc *p; 874 uint64_t runtime, u; 875 876 p = td->td_proc; 877 PROC_SLOCK_ASSERT(p, MA_OWNED); 878 THREAD_LOCK_ASSERT(td, MA_OWNED); 879 /* 880 * If we are getting stats for the current thread, then add in the 881 * stats that this thread has accumulated in its current time slice. 882 * We reset the thread and CPU state as if we had performed a context 883 * switch right here. 884 */ 885 if (td == curthread) { 886 u = cpu_ticks(); 887 runtime = u - PCPU_GET(switchtime); 888 td->td_runtime += runtime; 889 td->td_incruntime += runtime; 890 PCPU_SET(switchtime, u); 891 } 892 ruxagg(p, td); 893 *ru = td->td_ru; 894 calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime); 895 } 896 897 static void 898 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up, 899 struct timeval *sp) 900 { 901 /* {user, system, interrupt, total} {ticks, usec}: */ 902 uint64_t ut, uu, st, su, it, tt, tu; 903 904 ut = ruxp->rux_uticks; 905 st = ruxp->rux_sticks; 906 it = ruxp->rux_iticks; 907 tt = ut + st + it; 908 if (tt == 0) { 909 /* Avoid divide by zero */ 910 st = 1; 911 tt = 1; 912 } 913 tu = cputick2usec(ruxp->rux_runtime); 914 if ((int64_t)tu < 0) { 915 /* XXX: this should be an assert /phk */ 916 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n", 917 (intmax_t)tu, p->p_pid, p->p_comm); 918 tu = ruxp->rux_tu; 919 } 920 921 if (tu >= ruxp->rux_tu) { 922 /* 923 * The normal case, time increased. 924 * Enforce monotonicity of bucketed numbers. 925 */ 926 uu = (tu * ut) / tt; 927 if (uu < ruxp->rux_uu) 928 uu = ruxp->rux_uu; 929 su = (tu * st) / tt; 930 if (su < ruxp->rux_su) 931 su = ruxp->rux_su; 932 } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) { 933 /* 934 * When we calibrate the cputicker, it is not uncommon to 935 * see the presumably fixed frequency increase slightly over 936 * time as a result of thermal stabilization and NTP 937 * discipline (of the reference clock). We therefore ignore 938 * a bit of backwards slop because we expect to catch up 939 * shortly. We use a 3 microsecond limit to catch low 940 * counts and a 1% limit for high counts. 941 */ 942 uu = ruxp->rux_uu; 943 su = ruxp->rux_su; 944 tu = ruxp->rux_tu; 945 } else { /* tu < ruxp->rux_tu */ 946 /* 947 * What happened here was likely that a laptop, which ran at 948 * a reduced clock frequency at boot, kicked into high gear. 949 * The wisdom of spamming this message in that case is 950 * dubious, but it might also be indicative of something 951 * serious, so lets keep it and hope laptops can be made 952 * more truthful about their CPU speed via ACPI. 953 */ 954 printf("calcru: runtime went backwards from %ju usec " 955 "to %ju usec for pid %d (%s)\n", 956 (uintmax_t)ruxp->rux_tu, (uintmax_t)tu, 957 p->p_pid, p->p_comm); 958 uu = (tu * ut) / tt; 959 su = (tu * st) / tt; 960 } 961 962 ruxp->rux_uu = uu; 963 ruxp->rux_su = su; 964 ruxp->rux_tu = tu; 965 966 up->tv_sec = uu / 1000000; 967 up->tv_usec = uu % 1000000; 968 sp->tv_sec = su / 1000000; 969 sp->tv_usec = su % 1000000; 970 } 971 972 #ifndef _SYS_SYSPROTO_H_ 973 struct getrusage_args { 974 int who; 975 struct rusage *rusage; 976 }; 977 #endif 978 int 979 sys_getrusage(td, uap) 980 register struct thread *td; 981 register struct getrusage_args *uap; 982 { 983 struct rusage ru; 984 int error; 985 986 error = kern_getrusage(td, uap->who, &ru); 987 if (error == 0) 988 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 989 return (error); 990 } 991 992 int 993 kern_getrusage(struct thread *td, int who, struct rusage *rup) 994 { 995 struct proc *p; 996 int error; 997 998 error = 0; 999 p = td->td_proc; 1000 PROC_LOCK(p); 1001 switch (who) { 1002 case RUSAGE_SELF: 1003 rufetchcalc(p, rup, &rup->ru_utime, 1004 &rup->ru_stime); 1005 break; 1006 1007 case RUSAGE_CHILDREN: 1008 *rup = p->p_stats->p_cru; 1009 calccru(p, &rup->ru_utime, &rup->ru_stime); 1010 break; 1011 1012 case RUSAGE_THREAD: 1013 PROC_SLOCK(p); 1014 thread_lock(td); 1015 rufetchtd(td, rup); 1016 thread_unlock(td); 1017 PROC_SUNLOCK(p); 1018 break; 1019 1020 default: 1021 error = EINVAL; 1022 } 1023 PROC_UNLOCK(p); 1024 return (error); 1025 } 1026 1027 void 1028 rucollect(struct rusage *ru, struct rusage *ru2) 1029 { 1030 long *ip, *ip2; 1031 int i; 1032 1033 if (ru->ru_maxrss < ru2->ru_maxrss) 1034 ru->ru_maxrss = ru2->ru_maxrss; 1035 ip = &ru->ru_first; 1036 ip2 = &ru2->ru_first; 1037 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 1038 *ip++ += *ip2++; 1039 } 1040 1041 void 1042 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2, 1043 struct rusage_ext *rux2) 1044 { 1045 1046 rux->rux_runtime += rux2->rux_runtime; 1047 rux->rux_uticks += rux2->rux_uticks; 1048 rux->rux_sticks += rux2->rux_sticks; 1049 rux->rux_iticks += rux2->rux_iticks; 1050 rux->rux_uu += rux2->rux_uu; 1051 rux->rux_su += rux2->rux_su; 1052 rux->rux_tu += rux2->rux_tu; 1053 rucollect(ru, ru2); 1054 } 1055 1056 /* 1057 * Aggregate tick counts into the proc's rusage_ext. 1058 */ 1059 static void 1060 ruxagg_locked(struct rusage_ext *rux, struct thread *td) 1061 { 1062 1063 THREAD_LOCK_ASSERT(td, MA_OWNED); 1064 PROC_SLOCK_ASSERT(td->td_proc, MA_OWNED); 1065 rux->rux_runtime += td->td_incruntime; 1066 rux->rux_uticks += td->td_uticks; 1067 rux->rux_sticks += td->td_sticks; 1068 rux->rux_iticks += td->td_iticks; 1069 } 1070 1071 void 1072 ruxagg(struct proc *p, struct thread *td) 1073 { 1074 1075 thread_lock(td); 1076 ruxagg_locked(&p->p_rux, td); 1077 ruxagg_locked(&td->td_rux, td); 1078 td->td_incruntime = 0; 1079 td->td_uticks = 0; 1080 td->td_iticks = 0; 1081 td->td_sticks = 0; 1082 thread_unlock(td); 1083 } 1084 1085 /* 1086 * Update the rusage_ext structure and fetch a valid aggregate rusage 1087 * for proc p if storage for one is supplied. 1088 */ 1089 void 1090 rufetch(struct proc *p, struct rusage *ru) 1091 { 1092 struct thread *td; 1093 1094 PROC_SLOCK_ASSERT(p, MA_OWNED); 1095 1096 *ru = p->p_ru; 1097 if (p->p_numthreads > 0) { 1098 FOREACH_THREAD_IN_PROC(p, td) { 1099 ruxagg(p, td); 1100 rucollect(ru, &td->td_ru); 1101 } 1102 } 1103 } 1104 1105 /* 1106 * Atomically perform a rufetch and a calcru together. 1107 * Consumers, can safely assume the calcru is executed only once 1108 * rufetch is completed. 1109 */ 1110 void 1111 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up, 1112 struct timeval *sp) 1113 { 1114 1115 PROC_SLOCK(p); 1116 rufetch(p, ru); 1117 calcru(p, up, sp); 1118 PROC_SUNLOCK(p); 1119 } 1120 1121 /* 1122 * Allocate a new resource limits structure and initialize its 1123 * reference count and mutex pointer. 1124 */ 1125 struct plimit * 1126 lim_alloc() 1127 { 1128 struct plimit *limp; 1129 1130 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK); 1131 refcount_init(&limp->pl_refcnt, 1); 1132 return (limp); 1133 } 1134 1135 struct plimit * 1136 lim_hold(limp) 1137 struct plimit *limp; 1138 { 1139 1140 refcount_acquire(&limp->pl_refcnt); 1141 return (limp); 1142 } 1143 1144 static __inline int 1145 lim_shared(limp) 1146 struct plimit *limp; 1147 { 1148 1149 return (limp->pl_refcnt > 1); 1150 } 1151 1152 void 1153 lim_fork(struct proc *p1, struct proc *p2) 1154 { 1155 1156 PROC_LOCK_ASSERT(p1, MA_OWNED); 1157 PROC_LOCK_ASSERT(p2, MA_OWNED); 1158 1159 p2->p_limit = lim_hold(p1->p_limit); 1160 callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0); 1161 if (p1->p_cpulimit != RLIM_INFINITY) 1162 callout_reset_sbt(&p2->p_limco, SBT_1S, 0, 1163 lim_cb, p2, C_PREL(1)); 1164 } 1165 1166 void 1167 lim_free(limp) 1168 struct plimit *limp; 1169 { 1170 1171 KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow")); 1172 if (refcount_release(&limp->pl_refcnt)) 1173 free((void *)limp, M_PLIMIT); 1174 } 1175 1176 /* 1177 * Make a copy of the plimit structure. 1178 * We share these structures copy-on-write after fork. 1179 */ 1180 void 1181 lim_copy(dst, src) 1182 struct plimit *dst, *src; 1183 { 1184 1185 KASSERT(!lim_shared(dst), ("lim_copy to shared limit")); 1186 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit)); 1187 } 1188 1189 /* 1190 * Return the hard limit for a particular system resource. The 1191 * which parameter specifies the index into the rlimit array. 1192 */ 1193 rlim_t 1194 lim_max(struct proc *p, int which) 1195 { 1196 struct rlimit rl; 1197 1198 lim_rlimit(p, which, &rl); 1199 return (rl.rlim_max); 1200 } 1201 1202 /* 1203 * Return the current (soft) limit for a particular system resource. 1204 * The which parameter which specifies the index into the rlimit array 1205 */ 1206 rlim_t 1207 lim_cur(struct proc *p, int which) 1208 { 1209 struct rlimit rl; 1210 1211 lim_rlimit(p, which, &rl); 1212 return (rl.rlim_cur); 1213 } 1214 1215 /* 1216 * Return a copy of the entire rlimit structure for the system limit 1217 * specified by 'which' in the rlimit structure pointed to by 'rlp'. 1218 */ 1219 void 1220 lim_rlimit(struct proc *p, int which, struct rlimit *rlp) 1221 { 1222 1223 PROC_LOCK_ASSERT(p, MA_OWNED); 1224 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1225 ("request for invalid resource limit")); 1226 *rlp = p->p_limit->pl_rlimit[which]; 1227 if (p->p_sysent->sv_fixlimit != NULL) 1228 p->p_sysent->sv_fixlimit(rlp, which); 1229 } 1230 1231 void 1232 uihashinit() 1233 { 1234 1235 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 1236 rw_init(&uihashtbl_lock, "uidinfo hash"); 1237 } 1238 1239 /* 1240 * Look up a uidinfo struct for the parameter uid. 1241 * uihashtbl_lock must be locked. 1242 */ 1243 static struct uidinfo * 1244 uilookup(uid) 1245 uid_t uid; 1246 { 1247 struct uihashhead *uipp; 1248 struct uidinfo *uip; 1249 1250 rw_assert(&uihashtbl_lock, RA_LOCKED); 1251 uipp = UIHASH(uid); 1252 LIST_FOREACH(uip, uipp, ui_hash) 1253 if (uip->ui_uid == uid) 1254 break; 1255 1256 return (uip); 1257 } 1258 1259 /* 1260 * Find or allocate a struct uidinfo for a particular uid. 1261 * Increase refcount on uidinfo struct returned. 1262 * uifree() should be called on a struct uidinfo when released. 1263 */ 1264 struct uidinfo * 1265 uifind(uid) 1266 uid_t uid; 1267 { 1268 struct uidinfo *old_uip, *uip; 1269 1270 rw_rlock(&uihashtbl_lock); 1271 uip = uilookup(uid); 1272 if (uip == NULL) { 1273 rw_runlock(&uihashtbl_lock); 1274 uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO); 1275 racct_create(&uip->ui_racct); 1276 rw_wlock(&uihashtbl_lock); 1277 /* 1278 * There's a chance someone created our uidinfo while we 1279 * were in malloc and not holding the lock, so we have to 1280 * make sure we don't insert a duplicate uidinfo. 1281 */ 1282 if ((old_uip = uilookup(uid)) != NULL) { 1283 /* Someone else beat us to it. */ 1284 racct_destroy(&uip->ui_racct); 1285 free(uip, M_UIDINFO); 1286 uip = old_uip; 1287 } else { 1288 refcount_init(&uip->ui_ref, 0); 1289 uip->ui_uid = uid; 1290 mtx_init(&uip->ui_vmsize_mtx, "ui_vmsize", NULL, 1291 MTX_DEF); 1292 LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash); 1293 } 1294 } 1295 uihold(uip); 1296 rw_unlock(&uihashtbl_lock); 1297 return (uip); 1298 } 1299 1300 /* 1301 * Place another refcount on a uidinfo struct. 1302 */ 1303 void 1304 uihold(uip) 1305 struct uidinfo *uip; 1306 { 1307 1308 refcount_acquire(&uip->ui_ref); 1309 } 1310 1311 /*- 1312 * Since uidinfo structs have a long lifetime, we use an 1313 * opportunistic refcounting scheme to avoid locking the lookup hash 1314 * for each release. 1315 * 1316 * If the refcount hits 0, we need to free the structure, 1317 * which means we need to lock the hash. 1318 * Optimal case: 1319 * After locking the struct and lowering the refcount, if we find 1320 * that we don't need to free, simply unlock and return. 1321 * Suboptimal case: 1322 * If refcount lowering results in need to free, bump the count 1323 * back up, lose the lock and acquire the locks in the proper 1324 * order to try again. 1325 */ 1326 void 1327 uifree(uip) 1328 struct uidinfo *uip; 1329 { 1330 int old; 1331 1332 /* Prepare for optimal case. */ 1333 old = uip->ui_ref; 1334 if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1)) 1335 return; 1336 1337 /* Prepare for suboptimal case. */ 1338 rw_wlock(&uihashtbl_lock); 1339 if (refcount_release(&uip->ui_ref)) { 1340 racct_destroy(&uip->ui_racct); 1341 LIST_REMOVE(uip, ui_hash); 1342 rw_wunlock(&uihashtbl_lock); 1343 if (uip->ui_sbsize != 0) 1344 printf("freeing uidinfo: uid = %d, sbsize = %ld\n", 1345 uip->ui_uid, uip->ui_sbsize); 1346 if (uip->ui_proccnt != 0) 1347 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 1348 uip->ui_uid, uip->ui_proccnt); 1349 if (uip->ui_vmsize != 0) 1350 printf("freeing uidinfo: uid = %d, swapuse = %lld\n", 1351 uip->ui_uid, (unsigned long long)uip->ui_vmsize); 1352 mtx_destroy(&uip->ui_vmsize_mtx); 1353 free(uip, M_UIDINFO); 1354 return; 1355 } 1356 /* 1357 * Someone added a reference between atomic_cmpset_int() and 1358 * rw_wlock(&uihashtbl_lock). 1359 */ 1360 rw_wunlock(&uihashtbl_lock); 1361 } 1362 1363 void 1364 ui_racct_foreach(void (*callback)(struct racct *racct, 1365 void *arg2, void *arg3), void *arg2, void *arg3) 1366 { 1367 struct uidinfo *uip; 1368 struct uihashhead *uih; 1369 1370 rw_rlock(&uihashtbl_lock); 1371 for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) { 1372 LIST_FOREACH(uip, uih, ui_hash) { 1373 (callback)(uip->ui_racct, arg2, arg3); 1374 } 1375 } 1376 rw_runlock(&uihashtbl_lock); 1377 } 1378 1379 /* 1380 * Change the count associated with number of processes 1381 * a given user is using. When 'max' is 0, don't enforce a limit 1382 */ 1383 int 1384 chgproccnt(uip, diff, max) 1385 struct uidinfo *uip; 1386 int diff; 1387 rlim_t max; 1388 { 1389 1390 /* Don't allow them to exceed max, but allow subtraction. */ 1391 if (diff > 0 && max != 0) { 1392 if (atomic_fetchadd_long(&uip->ui_proccnt, (long)diff) + diff > max) { 1393 atomic_subtract_long(&uip->ui_proccnt, (long)diff); 1394 return (0); 1395 } 1396 } else { 1397 atomic_add_long(&uip->ui_proccnt, (long)diff); 1398 if (uip->ui_proccnt < 0) 1399 printf("negative proccnt for uid = %d\n", uip->ui_uid); 1400 } 1401 return (1); 1402 } 1403 1404 /* 1405 * Change the total socket buffer size a user has used. 1406 */ 1407 int 1408 chgsbsize(uip, hiwat, to, max) 1409 struct uidinfo *uip; 1410 u_int *hiwat; 1411 u_int to; 1412 rlim_t max; 1413 { 1414 int diff; 1415 1416 diff = to - *hiwat; 1417 if (diff > 0) { 1418 if (atomic_fetchadd_long(&uip->ui_sbsize, (long)diff) + diff > max) { 1419 atomic_subtract_long(&uip->ui_sbsize, (long)diff); 1420 return (0); 1421 } 1422 } else { 1423 atomic_add_long(&uip->ui_sbsize, (long)diff); 1424 if (uip->ui_sbsize < 0) 1425 printf("negative sbsize for uid = %d\n", uip->ui_uid); 1426 } 1427 *hiwat = to; 1428 return (1); 1429 } 1430 1431 /* 1432 * Change the count associated with number of pseudo-terminals 1433 * a given user is using. When 'max' is 0, don't enforce a limit 1434 */ 1435 int 1436 chgptscnt(uip, diff, max) 1437 struct uidinfo *uip; 1438 int diff; 1439 rlim_t max; 1440 { 1441 1442 /* Don't allow them to exceed max, but allow subtraction. */ 1443 if (diff > 0 && max != 0) { 1444 if (atomic_fetchadd_long(&uip->ui_ptscnt, (long)diff) + diff > max) { 1445 atomic_subtract_long(&uip->ui_ptscnt, (long)diff); 1446 return (0); 1447 } 1448 } else { 1449 atomic_add_long(&uip->ui_ptscnt, (long)diff); 1450 if (uip->ui_ptscnt < 0) 1451 printf("negative ptscnt for uid = %d\n", uip->ui_uid); 1452 } 1453 return (1); 1454 } 1455 1456 int 1457 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max) 1458 { 1459 1460 if (diff > 0 && max != 0) { 1461 if (atomic_fetchadd_long(&uip->ui_kqcnt, (long)diff) + 1462 diff > max) { 1463 atomic_subtract_long(&uip->ui_kqcnt, (long)diff); 1464 return (0); 1465 } 1466 } else { 1467 atomic_add_long(&uip->ui_kqcnt, (long)diff); 1468 if (uip->ui_kqcnt < 0) 1469 printf("negative kqcnt for uid = %d\n", uip->ui_uid); 1470 } 1471 return (1); 1472 } 1473