1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_compat.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/sysproto.h> 45 #include <sys/file.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mutex.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/refcount.h> 53 #include <sys/resourcevar.h> 54 #include <sys/rwlock.h> 55 #include <sys/sched.h> 56 #include <sys/sx.h> 57 #include <sys/syscallsubr.h> 58 #include <sys/sysent.h> 59 #include <sys/time.h> 60 #include <sys/umtx.h> 61 62 #include <vm/vm.h> 63 #include <vm/vm_param.h> 64 #include <vm/pmap.h> 65 #include <vm/vm_map.h> 66 67 68 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures"); 69 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 70 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 71 static struct rwlock uihashtbl_lock; 72 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 73 static u_long uihash; /* size of hash table - 1 */ 74 75 static void calcru1(struct proc *p, struct rusage_ext *ruxp, 76 struct timeval *up, struct timeval *sp); 77 static int donice(struct thread *td, struct proc *chgp, int n); 78 static struct uidinfo *uilookup(uid_t uid); 79 static void ruxagg_locked(struct rusage_ext *rux, struct thread *td); 80 81 /* 82 * Resource controls and accounting. 83 */ 84 #ifndef _SYS_SYSPROTO_H_ 85 struct getpriority_args { 86 int which; 87 int who; 88 }; 89 #endif 90 int 91 getpriority(td, uap) 92 struct thread *td; 93 register struct getpriority_args *uap; 94 { 95 struct proc *p; 96 struct pgrp *pg; 97 int error, low; 98 99 error = 0; 100 low = PRIO_MAX + 1; 101 switch (uap->which) { 102 103 case PRIO_PROCESS: 104 if (uap->who == 0) 105 low = td->td_proc->p_nice; 106 else { 107 p = pfind(uap->who); 108 if (p == NULL) 109 break; 110 if (p_cansee(td, p) == 0) 111 low = p->p_nice; 112 PROC_UNLOCK(p); 113 } 114 break; 115 116 case PRIO_PGRP: 117 sx_slock(&proctree_lock); 118 if (uap->who == 0) { 119 pg = td->td_proc->p_pgrp; 120 PGRP_LOCK(pg); 121 } else { 122 pg = pgfind(uap->who); 123 if (pg == NULL) { 124 sx_sunlock(&proctree_lock); 125 break; 126 } 127 } 128 sx_sunlock(&proctree_lock); 129 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 130 PROC_LOCK(p); 131 if (p_cansee(td, p) == 0) { 132 if (p->p_nice < low) 133 low = p->p_nice; 134 } 135 PROC_UNLOCK(p); 136 } 137 PGRP_UNLOCK(pg); 138 break; 139 140 case PRIO_USER: 141 if (uap->who == 0) 142 uap->who = td->td_ucred->cr_uid; 143 sx_slock(&allproc_lock); 144 FOREACH_PROC_IN_SYSTEM(p) { 145 /* Do not bother to check PRS_NEW processes */ 146 if (p->p_state == PRS_NEW) 147 continue; 148 PROC_LOCK(p); 149 if (p_cansee(td, p) == 0 && 150 p->p_ucred->cr_uid == uap->who) { 151 if (p->p_nice < low) 152 low = p->p_nice; 153 } 154 PROC_UNLOCK(p); 155 } 156 sx_sunlock(&allproc_lock); 157 break; 158 159 default: 160 error = EINVAL; 161 break; 162 } 163 if (low == PRIO_MAX + 1 && error == 0) 164 error = ESRCH; 165 td->td_retval[0] = low; 166 return (error); 167 } 168 169 #ifndef _SYS_SYSPROTO_H_ 170 struct setpriority_args { 171 int which; 172 int who; 173 int prio; 174 }; 175 #endif 176 int 177 setpriority(td, uap) 178 struct thread *td; 179 struct setpriority_args *uap; 180 { 181 struct proc *curp, *p; 182 struct pgrp *pg; 183 int found = 0, error = 0; 184 185 curp = td->td_proc; 186 switch (uap->which) { 187 case PRIO_PROCESS: 188 if (uap->who == 0) { 189 PROC_LOCK(curp); 190 error = donice(td, curp, uap->prio); 191 PROC_UNLOCK(curp); 192 } else { 193 p = pfind(uap->who); 194 if (p == NULL) 195 break; 196 error = p_cansee(td, p); 197 if (error == 0) 198 error = donice(td, p, uap->prio); 199 PROC_UNLOCK(p); 200 } 201 found++; 202 break; 203 204 case PRIO_PGRP: 205 sx_slock(&proctree_lock); 206 if (uap->who == 0) { 207 pg = curp->p_pgrp; 208 PGRP_LOCK(pg); 209 } else { 210 pg = pgfind(uap->who); 211 if (pg == NULL) { 212 sx_sunlock(&proctree_lock); 213 break; 214 } 215 } 216 sx_sunlock(&proctree_lock); 217 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 218 PROC_LOCK(p); 219 if (p_cansee(td, p) == 0) { 220 error = donice(td, p, uap->prio); 221 found++; 222 } 223 PROC_UNLOCK(p); 224 } 225 PGRP_UNLOCK(pg); 226 break; 227 228 case PRIO_USER: 229 if (uap->who == 0) 230 uap->who = td->td_ucred->cr_uid; 231 sx_slock(&allproc_lock); 232 FOREACH_PROC_IN_SYSTEM(p) { 233 PROC_LOCK(p); 234 if (p->p_ucred->cr_uid == uap->who && 235 p_cansee(td, p) == 0) { 236 error = donice(td, p, uap->prio); 237 found++; 238 } 239 PROC_UNLOCK(p); 240 } 241 sx_sunlock(&allproc_lock); 242 break; 243 244 default: 245 error = EINVAL; 246 break; 247 } 248 if (found == 0 && error == 0) 249 error = ESRCH; 250 return (error); 251 } 252 253 /* 254 * Set "nice" for a (whole) process. 255 */ 256 static int 257 donice(struct thread *td, struct proc *p, int n) 258 { 259 int error; 260 261 PROC_LOCK_ASSERT(p, MA_OWNED); 262 if ((error = p_cansched(td, p))) 263 return (error); 264 if (n > PRIO_MAX) 265 n = PRIO_MAX; 266 if (n < PRIO_MIN) 267 n = PRIO_MIN; 268 if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0) 269 return (EACCES); 270 sched_nice(p, n); 271 return (0); 272 } 273 274 /* 275 * Set realtime priority for LWP. 276 */ 277 #ifndef _SYS_SYSPROTO_H_ 278 struct rtprio_thread_args { 279 int function; 280 lwpid_t lwpid; 281 struct rtprio *rtp; 282 }; 283 #endif 284 int 285 rtprio_thread(struct thread *td, struct rtprio_thread_args *uap) 286 { 287 struct proc *p; 288 struct rtprio rtp; 289 struct thread *td1; 290 int cierror, error; 291 292 /* Perform copyin before acquiring locks if needed. */ 293 if (uap->function == RTP_SET) 294 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 295 else 296 cierror = 0; 297 298 /* 299 * Though lwpid is unique, only current process is supported 300 * since there is no efficient way to look up a LWP yet. 301 */ 302 p = td->td_proc; 303 PROC_LOCK(p); 304 305 switch (uap->function) { 306 case RTP_LOOKUP: 307 if ((error = p_cansee(td, p))) 308 break; 309 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) 310 td1 = td; 311 else 312 td1 = thread_find(p, uap->lwpid); 313 if (td1 != NULL) 314 pri_to_rtp(td1, &rtp); 315 else 316 error = ESRCH; 317 PROC_UNLOCK(p); 318 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 319 case RTP_SET: 320 if ((error = p_cansched(td, p)) || (error = cierror)) 321 break; 322 323 /* Disallow setting rtprio in most cases if not superuser. */ 324 /* 325 * Realtime priority has to be restricted for reasons which should be 326 * obvious. However, for idle priority, there is a potential for 327 * system deadlock if an idleprio process gains a lock on a resource 328 * that other processes need (and the idleprio process can't run 329 * due to a CPU-bound normal process). Fix me! XXX 330 */ 331 #if 0 332 if (RTP_PRIO_IS_REALTIME(rtp.type)) { 333 #else 334 if (rtp.type != RTP_PRIO_NORMAL) { 335 #endif 336 error = priv_check(td, PRIV_SCHED_RTPRIO); 337 if (error) 338 break; 339 } 340 341 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) 342 td1 = td; 343 else 344 td1 = thread_find(p, uap->lwpid); 345 if (td1 != NULL) 346 error = rtp_to_pri(&rtp, td1); 347 else 348 error = ESRCH; 349 break; 350 default: 351 error = EINVAL; 352 break; 353 } 354 PROC_UNLOCK(p); 355 return (error); 356 } 357 358 /* 359 * Set realtime priority. 360 */ 361 #ifndef _SYS_SYSPROTO_H_ 362 struct rtprio_args { 363 int function; 364 pid_t pid; 365 struct rtprio *rtp; 366 }; 367 #endif 368 int 369 rtprio(td, uap) 370 struct thread *td; /* curthread */ 371 register struct rtprio_args *uap; 372 { 373 struct proc *p; 374 struct thread *tdp; 375 struct rtprio rtp; 376 int cierror, error; 377 378 /* Perform copyin before acquiring locks if needed. */ 379 if (uap->function == RTP_SET) 380 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 381 else 382 cierror = 0; 383 384 if (uap->pid == 0) { 385 p = td->td_proc; 386 PROC_LOCK(p); 387 } else { 388 p = pfind(uap->pid); 389 if (p == NULL) 390 return (ESRCH); 391 } 392 393 switch (uap->function) { 394 case RTP_LOOKUP: 395 if ((error = p_cansee(td, p))) 396 break; 397 /* 398 * Return OUR priority if no pid specified, 399 * or if one is, report the highest priority 400 * in the process. There isn't much more you can do as 401 * there is only room to return a single priority. 402 * Note: specifying our own pid is not the same 403 * as leaving it zero. 404 */ 405 if (uap->pid == 0) { 406 pri_to_rtp(td, &rtp); 407 } else { 408 struct rtprio rtp2; 409 410 rtp.type = RTP_PRIO_IDLE; 411 rtp.prio = RTP_PRIO_MAX; 412 FOREACH_THREAD_IN_PROC(p, tdp) { 413 pri_to_rtp(tdp, &rtp2); 414 if (rtp2.type < rtp.type || 415 (rtp2.type == rtp.type && 416 rtp2.prio < rtp.prio)) { 417 rtp.type = rtp2.type; 418 rtp.prio = rtp2.prio; 419 } 420 } 421 } 422 PROC_UNLOCK(p); 423 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 424 case RTP_SET: 425 if ((error = p_cansched(td, p)) || (error = cierror)) 426 break; 427 428 /* Disallow setting rtprio in most cases if not superuser. */ 429 /* 430 * Realtime priority has to be restricted for reasons which should be 431 * obvious. However, for idle priority, there is a potential for 432 * system deadlock if an idleprio process gains a lock on a resource 433 * that other processes need (and the idleprio process can't run 434 * due to a CPU-bound normal process). Fix me! XXX 435 */ 436 #if 0 437 if (RTP_PRIO_IS_REALTIME(rtp.type)) { 438 #else 439 if (rtp.type != RTP_PRIO_NORMAL) { 440 #endif 441 error = priv_check(td, PRIV_SCHED_RTPRIO); 442 if (error) 443 break; 444 } 445 446 /* 447 * If we are setting our own priority, set just our 448 * thread but if we are doing another process, 449 * do all the threads on that process. If we 450 * specify our own pid we do the latter. 451 */ 452 if (uap->pid == 0) { 453 error = rtp_to_pri(&rtp, td); 454 } else { 455 FOREACH_THREAD_IN_PROC(p, td) { 456 if ((error = rtp_to_pri(&rtp, td)) != 0) 457 break; 458 } 459 } 460 break; 461 default: 462 error = EINVAL; 463 break; 464 } 465 PROC_UNLOCK(p); 466 return (error); 467 } 468 469 int 470 rtp_to_pri(struct rtprio *rtp, struct thread *td) 471 { 472 u_char newpri; 473 u_char oldpri; 474 475 thread_lock(td); 476 switch (RTP_PRIO_BASE(rtp->type)) { 477 case RTP_PRIO_REALTIME: 478 if (rtp->prio > RTP_PRIO_MAX) { 479 thread_unlock(td); 480 return (EINVAL); 481 } 482 newpri = PRI_MIN_REALTIME + rtp->prio; 483 break; 484 case RTP_PRIO_NORMAL: 485 if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE)) { 486 thread_unlock(td); 487 return (EINVAL); 488 } 489 newpri = PRI_MIN_TIMESHARE + rtp->prio; 490 break; 491 case RTP_PRIO_IDLE: 492 newpri = PRI_MIN_IDLE + rtp->prio; 493 break; 494 default: 495 thread_unlock(td); 496 return (EINVAL); 497 } 498 sched_class(td, rtp->type); /* XXX fix */ 499 oldpri = td->td_user_pri; 500 sched_user_prio(td, newpri); 501 if (curthread == td) 502 sched_prio(curthread, td->td_user_pri); /* XXX dubious */ 503 if (TD_ON_UPILOCK(td) && oldpri != newpri) { 504 thread_unlock(td); 505 umtx_pi_adjust(td, oldpri); 506 } else 507 thread_unlock(td); 508 return (0); 509 } 510 511 void 512 pri_to_rtp(struct thread *td, struct rtprio *rtp) 513 { 514 515 thread_lock(td); 516 switch (PRI_BASE(td->td_pri_class)) { 517 case PRI_REALTIME: 518 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME; 519 break; 520 case PRI_TIMESHARE: 521 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE; 522 break; 523 case PRI_IDLE: 524 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE; 525 break; 526 default: 527 break; 528 } 529 rtp->type = td->td_pri_class; 530 thread_unlock(td); 531 } 532 533 #if defined(COMPAT_43) 534 #ifndef _SYS_SYSPROTO_H_ 535 struct osetrlimit_args { 536 u_int which; 537 struct orlimit *rlp; 538 }; 539 #endif 540 int 541 osetrlimit(td, uap) 542 struct thread *td; 543 register struct osetrlimit_args *uap; 544 { 545 struct orlimit olim; 546 struct rlimit lim; 547 int error; 548 549 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 550 return (error); 551 lim.rlim_cur = olim.rlim_cur; 552 lim.rlim_max = olim.rlim_max; 553 error = kern_setrlimit(td, uap->which, &lim); 554 return (error); 555 } 556 557 #ifndef _SYS_SYSPROTO_H_ 558 struct ogetrlimit_args { 559 u_int which; 560 struct orlimit *rlp; 561 }; 562 #endif 563 int 564 ogetrlimit(td, uap) 565 struct thread *td; 566 register struct ogetrlimit_args *uap; 567 { 568 struct orlimit olim; 569 struct rlimit rl; 570 struct proc *p; 571 int error; 572 573 if (uap->which >= RLIM_NLIMITS) 574 return (EINVAL); 575 p = td->td_proc; 576 PROC_LOCK(p); 577 lim_rlimit(p, uap->which, &rl); 578 PROC_UNLOCK(p); 579 580 /* 581 * XXX would be more correct to convert only RLIM_INFINITY to the 582 * old RLIM_INFINITY and fail with EOVERFLOW for other larger 583 * values. Most 64->32 and 32->16 conversions, including not 584 * unimportant ones of uids are even more broken than what we 585 * do here (they blindly truncate). We don't do this correctly 586 * here since we have little experience with EOVERFLOW yet. 587 * Elsewhere, getuid() can't fail... 588 */ 589 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur; 590 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max; 591 error = copyout(&olim, uap->rlp, sizeof(olim)); 592 return (error); 593 } 594 #endif /* COMPAT_43 */ 595 596 #ifndef _SYS_SYSPROTO_H_ 597 struct __setrlimit_args { 598 u_int which; 599 struct rlimit *rlp; 600 }; 601 #endif 602 int 603 setrlimit(td, uap) 604 struct thread *td; 605 register struct __setrlimit_args *uap; 606 { 607 struct rlimit alim; 608 int error; 609 610 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit)))) 611 return (error); 612 error = kern_setrlimit(td, uap->which, &alim); 613 return (error); 614 } 615 616 static void 617 lim_cb(void *arg) 618 { 619 struct rlimit rlim; 620 struct thread *td; 621 struct proc *p; 622 623 p = arg; 624 PROC_LOCK_ASSERT(p, MA_OWNED); 625 /* 626 * Check if the process exceeds its cpu resource allocation. If 627 * it reaches the max, arrange to kill the process in ast(). 628 */ 629 if (p->p_cpulimit == RLIM_INFINITY) 630 return; 631 PROC_SLOCK(p); 632 FOREACH_THREAD_IN_PROC(p, td) { 633 ruxagg(p, td); 634 } 635 PROC_SUNLOCK(p); 636 if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) { 637 lim_rlimit(p, RLIMIT_CPU, &rlim); 638 if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) { 639 killproc(p, "exceeded maximum CPU limit"); 640 } else { 641 if (p->p_cpulimit < rlim.rlim_max) 642 p->p_cpulimit += 5; 643 psignal(p, SIGXCPU); 644 } 645 } 646 if ((p->p_flag & P_WEXIT) == 0) 647 callout_reset(&p->p_limco, hz, lim_cb, p); 648 } 649 650 int 651 kern_setrlimit(td, which, limp) 652 struct thread *td; 653 u_int which; 654 struct rlimit *limp; 655 { 656 struct plimit *newlim, *oldlim; 657 struct proc *p; 658 register struct rlimit *alimp; 659 struct rlimit oldssiz; 660 int error; 661 662 if (which >= RLIM_NLIMITS) 663 return (EINVAL); 664 665 /* 666 * Preserve historical bugs by treating negative limits as unsigned. 667 */ 668 if (limp->rlim_cur < 0) 669 limp->rlim_cur = RLIM_INFINITY; 670 if (limp->rlim_max < 0) 671 limp->rlim_max = RLIM_INFINITY; 672 673 oldssiz.rlim_cur = 0; 674 p = td->td_proc; 675 newlim = lim_alloc(); 676 PROC_LOCK(p); 677 oldlim = p->p_limit; 678 alimp = &oldlim->pl_rlimit[which]; 679 if (limp->rlim_cur > alimp->rlim_max || 680 limp->rlim_max > alimp->rlim_max) 681 if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) { 682 PROC_UNLOCK(p); 683 lim_free(newlim); 684 return (error); 685 } 686 if (limp->rlim_cur > limp->rlim_max) 687 limp->rlim_cur = limp->rlim_max; 688 lim_copy(newlim, oldlim); 689 alimp = &newlim->pl_rlimit[which]; 690 691 switch (which) { 692 693 case RLIMIT_CPU: 694 if (limp->rlim_cur != RLIM_INFINITY && 695 p->p_cpulimit == RLIM_INFINITY) 696 callout_reset(&p->p_limco, hz, lim_cb, p); 697 p->p_cpulimit = limp->rlim_cur; 698 break; 699 case RLIMIT_DATA: 700 if (limp->rlim_cur > maxdsiz) 701 limp->rlim_cur = maxdsiz; 702 if (limp->rlim_max > maxdsiz) 703 limp->rlim_max = maxdsiz; 704 break; 705 706 case RLIMIT_STACK: 707 if (limp->rlim_cur > maxssiz) 708 limp->rlim_cur = maxssiz; 709 if (limp->rlim_max > maxssiz) 710 limp->rlim_max = maxssiz; 711 oldssiz = *alimp; 712 if (td->td_proc->p_sysent->sv_fixlimit != NULL) 713 td->td_proc->p_sysent->sv_fixlimit(&oldssiz, 714 RLIMIT_STACK); 715 break; 716 717 case RLIMIT_NOFILE: 718 if (limp->rlim_cur > maxfilesperproc) 719 limp->rlim_cur = maxfilesperproc; 720 if (limp->rlim_max > maxfilesperproc) 721 limp->rlim_max = maxfilesperproc; 722 break; 723 724 case RLIMIT_NPROC: 725 if (limp->rlim_cur > maxprocperuid) 726 limp->rlim_cur = maxprocperuid; 727 if (limp->rlim_max > maxprocperuid) 728 limp->rlim_max = maxprocperuid; 729 if (limp->rlim_cur < 1) 730 limp->rlim_cur = 1; 731 if (limp->rlim_max < 1) 732 limp->rlim_max = 1; 733 break; 734 } 735 if (td->td_proc->p_sysent->sv_fixlimit != NULL) 736 td->td_proc->p_sysent->sv_fixlimit(limp, which); 737 *alimp = *limp; 738 p->p_limit = newlim; 739 PROC_UNLOCK(p); 740 lim_free(oldlim); 741 742 if (which == RLIMIT_STACK) { 743 /* 744 * Stack is allocated to the max at exec time with only 745 * "rlim_cur" bytes accessible. If stack limit is going 746 * up make more accessible, if going down make inaccessible. 747 */ 748 if (limp->rlim_cur != oldssiz.rlim_cur) { 749 vm_offset_t addr; 750 vm_size_t size; 751 vm_prot_t prot; 752 753 if (limp->rlim_cur > oldssiz.rlim_cur) { 754 prot = p->p_sysent->sv_stackprot; 755 size = limp->rlim_cur - oldssiz.rlim_cur; 756 addr = p->p_sysent->sv_usrstack - 757 limp->rlim_cur; 758 } else { 759 prot = VM_PROT_NONE; 760 size = oldssiz.rlim_cur - limp->rlim_cur; 761 addr = p->p_sysent->sv_usrstack - 762 oldssiz.rlim_cur; 763 } 764 addr = trunc_page(addr); 765 size = round_page(size); 766 (void)vm_map_protect(&p->p_vmspace->vm_map, 767 addr, addr + size, prot, FALSE); 768 } 769 } 770 771 return (0); 772 } 773 774 #ifndef _SYS_SYSPROTO_H_ 775 struct __getrlimit_args { 776 u_int which; 777 struct rlimit *rlp; 778 }; 779 #endif 780 /* ARGSUSED */ 781 int 782 getrlimit(td, uap) 783 struct thread *td; 784 register struct __getrlimit_args *uap; 785 { 786 struct rlimit rlim; 787 struct proc *p; 788 int error; 789 790 if (uap->which >= RLIM_NLIMITS) 791 return (EINVAL); 792 p = td->td_proc; 793 PROC_LOCK(p); 794 lim_rlimit(p, uap->which, &rlim); 795 PROC_UNLOCK(p); 796 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit)); 797 return (error); 798 } 799 800 /* 801 * Transform the running time and tick information for children of proc p 802 * into user and system time usage. 803 */ 804 void 805 calccru(p, up, sp) 806 struct proc *p; 807 struct timeval *up; 808 struct timeval *sp; 809 { 810 811 PROC_LOCK_ASSERT(p, MA_OWNED); 812 calcru1(p, &p->p_crux, up, sp); 813 } 814 815 /* 816 * Transform the running time and tick information in proc p into user 817 * and system time usage. If appropriate, include the current time slice 818 * on this CPU. 819 */ 820 void 821 calcru(struct proc *p, struct timeval *up, struct timeval *sp) 822 { 823 struct thread *td; 824 uint64_t u; 825 826 PROC_LOCK_ASSERT(p, MA_OWNED); 827 PROC_SLOCK_ASSERT(p, MA_OWNED); 828 /* 829 * If we are getting stats for the current process, then add in the 830 * stats that this thread has accumulated in its current time slice. 831 * We reset the thread and CPU state as if we had performed a context 832 * switch right here. 833 */ 834 td = curthread; 835 if (td->td_proc == p) { 836 u = cpu_ticks(); 837 p->p_rux.rux_runtime += u - PCPU_GET(switchtime); 838 PCPU_SET(switchtime, u); 839 } 840 /* Make sure the per-thread stats are current. */ 841 FOREACH_THREAD_IN_PROC(p, td) { 842 if (td->td_incruntime == 0) 843 continue; 844 ruxagg(p, td); 845 } 846 calcru1(p, &p->p_rux, up, sp); 847 } 848 849 static void 850 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up, 851 struct timeval *sp) 852 { 853 /* {user, system, interrupt, total} {ticks, usec}: */ 854 uint64_t ut, uu, st, su, it, tt, tu; 855 856 ut = ruxp->rux_uticks; 857 st = ruxp->rux_sticks; 858 it = ruxp->rux_iticks; 859 tt = ut + st + it; 860 if (tt == 0) { 861 /* Avoid divide by zero */ 862 st = 1; 863 tt = 1; 864 } 865 tu = cputick2usec(ruxp->rux_runtime); 866 if ((int64_t)tu < 0) { 867 /* XXX: this should be an assert /phk */ 868 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n", 869 (intmax_t)tu, p->p_pid, p->p_comm); 870 tu = ruxp->rux_tu; 871 } 872 873 if (tu >= ruxp->rux_tu) { 874 /* 875 * The normal case, time increased. 876 * Enforce monotonicity of bucketed numbers. 877 */ 878 uu = (tu * ut) / tt; 879 if (uu < ruxp->rux_uu) 880 uu = ruxp->rux_uu; 881 su = (tu * st) / tt; 882 if (su < ruxp->rux_su) 883 su = ruxp->rux_su; 884 } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) { 885 /* 886 * When we calibrate the cputicker, it is not uncommon to 887 * see the presumably fixed frequency increase slightly over 888 * time as a result of thermal stabilization and NTP 889 * discipline (of the reference clock). We therefore ignore 890 * a bit of backwards slop because we expect to catch up 891 * shortly. We use a 3 microsecond limit to catch low 892 * counts and a 1% limit for high counts. 893 */ 894 uu = ruxp->rux_uu; 895 su = ruxp->rux_su; 896 tu = ruxp->rux_tu; 897 } else { /* tu < ruxp->rux_tu */ 898 /* 899 * What happened here was likely that a laptop, which ran at 900 * a reduced clock frequency at boot, kicked into high gear. 901 * The wisdom of spamming this message in that case is 902 * dubious, but it might also be indicative of something 903 * serious, so lets keep it and hope laptops can be made 904 * more truthful about their CPU speed via ACPI. 905 */ 906 printf("calcru: runtime went backwards from %ju usec " 907 "to %ju usec for pid %d (%s)\n", 908 (uintmax_t)ruxp->rux_tu, (uintmax_t)tu, 909 p->p_pid, p->p_comm); 910 uu = (tu * ut) / tt; 911 su = (tu * st) / tt; 912 } 913 914 ruxp->rux_uu = uu; 915 ruxp->rux_su = su; 916 ruxp->rux_tu = tu; 917 918 up->tv_sec = uu / 1000000; 919 up->tv_usec = uu % 1000000; 920 sp->tv_sec = su / 1000000; 921 sp->tv_usec = su % 1000000; 922 } 923 924 #ifndef _SYS_SYSPROTO_H_ 925 struct getrusage_args { 926 int who; 927 struct rusage *rusage; 928 }; 929 #endif 930 int 931 getrusage(td, uap) 932 register struct thread *td; 933 register struct getrusage_args *uap; 934 { 935 struct rusage ru; 936 int error; 937 938 error = kern_getrusage(td, uap->who, &ru); 939 if (error == 0) 940 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 941 return (error); 942 } 943 944 int 945 kern_getrusage(struct thread *td, int who, struct rusage *rup) 946 { 947 struct proc *p; 948 int error; 949 950 error = 0; 951 p = td->td_proc; 952 PROC_LOCK(p); 953 switch (who) { 954 case RUSAGE_SELF: 955 rufetchcalc(p, rup, &rup->ru_utime, 956 &rup->ru_stime); 957 break; 958 959 case RUSAGE_CHILDREN: 960 *rup = p->p_stats->p_cru; 961 calccru(p, &rup->ru_utime, &rup->ru_stime); 962 break; 963 964 case RUSAGE_THREAD: 965 PROC_SLOCK(p); 966 ruxagg(p, td); 967 PROC_SUNLOCK(p); 968 thread_lock(td); 969 *rup = td->td_ru; 970 calcru1(p, &td->td_rux, &rup->ru_utime, &rup->ru_stime); 971 thread_unlock(td); 972 break; 973 974 default: 975 error = EINVAL; 976 } 977 PROC_UNLOCK(p); 978 return (error); 979 } 980 981 void 982 rucollect(struct rusage *ru, struct rusage *ru2) 983 { 984 long *ip, *ip2; 985 int i; 986 987 if (ru->ru_maxrss < ru2->ru_maxrss) 988 ru->ru_maxrss = ru2->ru_maxrss; 989 ip = &ru->ru_first; 990 ip2 = &ru2->ru_first; 991 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 992 *ip++ += *ip2++; 993 } 994 995 void 996 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2, 997 struct rusage_ext *rux2) 998 { 999 1000 rux->rux_runtime += rux2->rux_runtime; 1001 rux->rux_uticks += rux2->rux_uticks; 1002 rux->rux_sticks += rux2->rux_sticks; 1003 rux->rux_iticks += rux2->rux_iticks; 1004 rux->rux_uu += rux2->rux_uu; 1005 rux->rux_su += rux2->rux_su; 1006 rux->rux_tu += rux2->rux_tu; 1007 rucollect(ru, ru2); 1008 } 1009 1010 /* 1011 * Aggregate tick counts into the proc's rusage_ext. 1012 */ 1013 static void 1014 ruxagg_locked(struct rusage_ext *rux, struct thread *td) 1015 { 1016 1017 THREAD_LOCK_ASSERT(td, MA_OWNED); 1018 PROC_SLOCK_ASSERT(td->td_proc, MA_OWNED); 1019 rux->rux_runtime += td->td_incruntime; 1020 rux->rux_uticks += td->td_uticks; 1021 rux->rux_sticks += td->td_sticks; 1022 rux->rux_iticks += td->td_iticks; 1023 } 1024 1025 void 1026 ruxagg(struct proc *p, struct thread *td) 1027 { 1028 1029 thread_lock(td); 1030 ruxagg_locked(&p->p_rux, td); 1031 ruxagg_locked(&td->td_rux, td); 1032 td->td_incruntime = 0; 1033 td->td_uticks = 0; 1034 td->td_iticks = 0; 1035 td->td_sticks = 0; 1036 thread_unlock(td); 1037 } 1038 1039 /* 1040 * Update the rusage_ext structure and fetch a valid aggregate rusage 1041 * for proc p if storage for one is supplied. 1042 */ 1043 void 1044 rufetch(struct proc *p, struct rusage *ru) 1045 { 1046 struct thread *td; 1047 1048 PROC_SLOCK_ASSERT(p, MA_OWNED); 1049 1050 *ru = p->p_ru; 1051 if (p->p_numthreads > 0) { 1052 FOREACH_THREAD_IN_PROC(p, td) { 1053 ruxagg(p, td); 1054 rucollect(ru, &td->td_ru); 1055 } 1056 } 1057 } 1058 1059 /* 1060 * Atomically perform a rufetch and a calcru together. 1061 * Consumers, can safely assume the calcru is executed only once 1062 * rufetch is completed. 1063 */ 1064 void 1065 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up, 1066 struct timeval *sp) 1067 { 1068 1069 PROC_SLOCK(p); 1070 rufetch(p, ru); 1071 calcru(p, up, sp); 1072 PROC_SUNLOCK(p); 1073 } 1074 1075 /* 1076 * Allocate a new resource limits structure and initialize its 1077 * reference count and mutex pointer. 1078 */ 1079 struct plimit * 1080 lim_alloc() 1081 { 1082 struct plimit *limp; 1083 1084 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK); 1085 refcount_init(&limp->pl_refcnt, 1); 1086 return (limp); 1087 } 1088 1089 struct plimit * 1090 lim_hold(limp) 1091 struct plimit *limp; 1092 { 1093 1094 refcount_acquire(&limp->pl_refcnt); 1095 return (limp); 1096 } 1097 1098 void 1099 lim_fork(struct proc *p1, struct proc *p2) 1100 { 1101 p2->p_limit = lim_hold(p1->p_limit); 1102 callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0); 1103 if (p1->p_cpulimit != RLIM_INFINITY) 1104 callout_reset(&p2->p_limco, hz, lim_cb, p2); 1105 } 1106 1107 void 1108 lim_free(limp) 1109 struct plimit *limp; 1110 { 1111 1112 KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow")); 1113 if (refcount_release(&limp->pl_refcnt)) 1114 free((void *)limp, M_PLIMIT); 1115 } 1116 1117 /* 1118 * Make a copy of the plimit structure. 1119 * We share these structures copy-on-write after fork. 1120 */ 1121 void 1122 lim_copy(dst, src) 1123 struct plimit *dst, *src; 1124 { 1125 1126 KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit")); 1127 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit)); 1128 } 1129 1130 /* 1131 * Return the hard limit for a particular system resource. The 1132 * which parameter specifies the index into the rlimit array. 1133 */ 1134 rlim_t 1135 lim_max(struct proc *p, int which) 1136 { 1137 struct rlimit rl; 1138 1139 lim_rlimit(p, which, &rl); 1140 return (rl.rlim_max); 1141 } 1142 1143 /* 1144 * Return the current (soft) limit for a particular system resource. 1145 * The which parameter which specifies the index into the rlimit array 1146 */ 1147 rlim_t 1148 lim_cur(struct proc *p, int which) 1149 { 1150 struct rlimit rl; 1151 1152 lim_rlimit(p, which, &rl); 1153 return (rl.rlim_cur); 1154 } 1155 1156 /* 1157 * Return a copy of the entire rlimit structure for the system limit 1158 * specified by 'which' in the rlimit structure pointed to by 'rlp'. 1159 */ 1160 void 1161 lim_rlimit(struct proc *p, int which, struct rlimit *rlp) 1162 { 1163 1164 PROC_LOCK_ASSERT(p, MA_OWNED); 1165 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1166 ("request for invalid resource limit")); 1167 *rlp = p->p_limit->pl_rlimit[which]; 1168 if (p->p_sysent->sv_fixlimit != NULL) 1169 p->p_sysent->sv_fixlimit(rlp, which); 1170 } 1171 1172 /* 1173 * Find the uidinfo structure for a uid. This structure is used to 1174 * track the total resource consumption (process count, socket buffer 1175 * size, etc.) for the uid and impose limits. 1176 */ 1177 void 1178 uihashinit() 1179 { 1180 1181 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 1182 rw_init(&uihashtbl_lock, "uidinfo hash"); 1183 } 1184 1185 /* 1186 * Look up a uidinfo struct for the parameter uid. 1187 * uihashtbl_lock must be locked. 1188 */ 1189 static struct uidinfo * 1190 uilookup(uid) 1191 uid_t uid; 1192 { 1193 struct uihashhead *uipp; 1194 struct uidinfo *uip; 1195 1196 rw_assert(&uihashtbl_lock, RA_LOCKED); 1197 uipp = UIHASH(uid); 1198 LIST_FOREACH(uip, uipp, ui_hash) 1199 if (uip->ui_uid == uid) 1200 break; 1201 1202 return (uip); 1203 } 1204 1205 /* 1206 * Find or allocate a struct uidinfo for a particular uid. 1207 * Increase refcount on uidinfo struct returned. 1208 * uifree() should be called on a struct uidinfo when released. 1209 */ 1210 struct uidinfo * 1211 uifind(uid) 1212 uid_t uid; 1213 { 1214 struct uidinfo *old_uip, *uip; 1215 1216 rw_rlock(&uihashtbl_lock); 1217 uip = uilookup(uid); 1218 if (uip == NULL) { 1219 rw_runlock(&uihashtbl_lock); 1220 uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO); 1221 rw_wlock(&uihashtbl_lock); 1222 /* 1223 * There's a chance someone created our uidinfo while we 1224 * were in malloc and not holding the lock, so we have to 1225 * make sure we don't insert a duplicate uidinfo. 1226 */ 1227 if ((old_uip = uilookup(uid)) != NULL) { 1228 /* Someone else beat us to it. */ 1229 free(uip, M_UIDINFO); 1230 uip = old_uip; 1231 } else { 1232 refcount_init(&uip->ui_ref, 0); 1233 uip->ui_uid = uid; 1234 mtx_init(&uip->ui_vmsize_mtx, "ui_vmsize", NULL, 1235 MTX_DEF); 1236 LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash); 1237 } 1238 } 1239 uihold(uip); 1240 rw_unlock(&uihashtbl_lock); 1241 return (uip); 1242 } 1243 1244 /* 1245 * Place another refcount on a uidinfo struct. 1246 */ 1247 void 1248 uihold(uip) 1249 struct uidinfo *uip; 1250 { 1251 1252 refcount_acquire(&uip->ui_ref); 1253 } 1254 1255 /*- 1256 * Since uidinfo structs have a long lifetime, we use an 1257 * opportunistic refcounting scheme to avoid locking the lookup hash 1258 * for each release. 1259 * 1260 * If the refcount hits 0, we need to free the structure, 1261 * which means we need to lock the hash. 1262 * Optimal case: 1263 * After locking the struct and lowering the refcount, if we find 1264 * that we don't need to free, simply unlock and return. 1265 * Suboptimal case: 1266 * If refcount lowering results in need to free, bump the count 1267 * back up, lose the lock and acquire the locks in the proper 1268 * order to try again. 1269 */ 1270 void 1271 uifree(uip) 1272 struct uidinfo *uip; 1273 { 1274 int old; 1275 1276 /* Prepare for optimal case. */ 1277 old = uip->ui_ref; 1278 if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1)) 1279 return; 1280 1281 /* Prepare for suboptimal case. */ 1282 rw_wlock(&uihashtbl_lock); 1283 if (refcount_release(&uip->ui_ref)) { 1284 LIST_REMOVE(uip, ui_hash); 1285 rw_wunlock(&uihashtbl_lock); 1286 if (uip->ui_sbsize != 0) 1287 printf("freeing uidinfo: uid = %d, sbsize = %ld\n", 1288 uip->ui_uid, uip->ui_sbsize); 1289 if (uip->ui_proccnt != 0) 1290 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 1291 uip->ui_uid, uip->ui_proccnt); 1292 if (uip->ui_vmsize != 0) 1293 printf("freeing uidinfo: uid = %d, swapuse = %lld\n", 1294 uip->ui_uid, (unsigned long long)uip->ui_vmsize); 1295 mtx_destroy(&uip->ui_vmsize_mtx); 1296 free(uip, M_UIDINFO); 1297 return; 1298 } 1299 /* 1300 * Someone added a reference between atomic_cmpset_int() and 1301 * rw_wlock(&uihashtbl_lock). 1302 */ 1303 rw_wunlock(&uihashtbl_lock); 1304 } 1305 1306 /* 1307 * Change the count associated with number of processes 1308 * a given user is using. When 'max' is 0, don't enforce a limit 1309 */ 1310 int 1311 chgproccnt(uip, diff, max) 1312 struct uidinfo *uip; 1313 int diff; 1314 rlim_t max; 1315 { 1316 1317 /* Don't allow them to exceed max, but allow subtraction. */ 1318 if (diff > 0 && max != 0) { 1319 if (atomic_fetchadd_long(&uip->ui_proccnt, (long)diff) + diff > max) { 1320 atomic_subtract_long(&uip->ui_proccnt, (long)diff); 1321 return (0); 1322 } 1323 } else { 1324 atomic_add_long(&uip->ui_proccnt, (long)diff); 1325 if (uip->ui_proccnt < 0) 1326 printf("negative proccnt for uid = %d\n", uip->ui_uid); 1327 } 1328 return (1); 1329 } 1330 1331 /* 1332 * Change the total socket buffer size a user has used. 1333 */ 1334 int 1335 chgsbsize(uip, hiwat, to, max) 1336 struct uidinfo *uip; 1337 u_int *hiwat; 1338 u_int to; 1339 rlim_t max; 1340 { 1341 int diff; 1342 1343 diff = to - *hiwat; 1344 if (diff > 0) { 1345 if (atomic_fetchadd_long(&uip->ui_sbsize, (long)diff) + diff > max) { 1346 atomic_subtract_long(&uip->ui_sbsize, (long)diff); 1347 return (0); 1348 } 1349 } else { 1350 atomic_add_long(&uip->ui_sbsize, (long)diff); 1351 if (uip->ui_sbsize < 0) 1352 printf("negative sbsize for uid = %d\n", uip->ui_uid); 1353 } 1354 *hiwat = to; 1355 return (1); 1356 } 1357 1358 /* 1359 * Change the count associated with number of pseudo-terminals 1360 * a given user is using. When 'max' is 0, don't enforce a limit 1361 */ 1362 int 1363 chgptscnt(uip, diff, max) 1364 struct uidinfo *uip; 1365 int diff; 1366 rlim_t max; 1367 { 1368 1369 /* Don't allow them to exceed max, but allow subtraction. */ 1370 if (diff > 0 && max != 0) { 1371 if (atomic_fetchadd_long(&uip->ui_ptscnt, (long)diff) + diff > max) { 1372 atomic_subtract_long(&uip->ui_ptscnt, (long)diff); 1373 return (0); 1374 } 1375 } else { 1376 atomic_add_long(&uip->ui_ptscnt, (long)diff); 1377 if (uip->ui_ptscnt < 0) 1378 printf("negative ptscnt for uid = %d\n", uip->ui_uid); 1379 } 1380 return (1); 1381 } 1382