1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/sysproto.h> 45 #include <sys/file.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mutex.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/refcount.h> 53 #include <sys/racct.h> 54 #include <sys/resourcevar.h> 55 #include <sys/rwlock.h> 56 #include <sys/sched.h> 57 #include <sys/sx.h> 58 #include <sys/syscallsubr.h> 59 #include <sys/sysctl.h> 60 #include <sys/sysent.h> 61 #include <sys/time.h> 62 #include <sys/umtx.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_param.h> 66 #include <vm/pmap.h> 67 #include <vm/vm_map.h> 68 69 70 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures"); 71 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 72 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 73 static struct rwlock uihashtbl_lock; 74 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 75 static u_long uihash; /* size of hash table - 1 */ 76 77 static void calcru1(struct proc *p, struct rusage_ext *ruxp, 78 struct timeval *up, struct timeval *sp); 79 static int donice(struct thread *td, struct proc *chgp, int n); 80 static struct uidinfo *uilookup(uid_t uid); 81 static void ruxagg_locked(struct rusage_ext *rux, struct thread *td); 82 83 /* 84 * Resource controls and accounting. 85 */ 86 #ifndef _SYS_SYSPROTO_H_ 87 struct getpriority_args { 88 int which; 89 int who; 90 }; 91 #endif 92 int 93 sys_getpriority(struct thread *td, struct getpriority_args *uap) 94 { 95 struct proc *p; 96 struct pgrp *pg; 97 int error, low; 98 99 error = 0; 100 low = PRIO_MAX + 1; 101 switch (uap->which) { 102 103 case PRIO_PROCESS: 104 if (uap->who == 0) 105 low = td->td_proc->p_nice; 106 else { 107 p = pfind(uap->who); 108 if (p == NULL) 109 break; 110 if (p_cansee(td, p) == 0) 111 low = p->p_nice; 112 PROC_UNLOCK(p); 113 } 114 break; 115 116 case PRIO_PGRP: 117 sx_slock(&proctree_lock); 118 if (uap->who == 0) { 119 pg = td->td_proc->p_pgrp; 120 PGRP_LOCK(pg); 121 } else { 122 pg = pgfind(uap->who); 123 if (pg == NULL) { 124 sx_sunlock(&proctree_lock); 125 break; 126 } 127 } 128 sx_sunlock(&proctree_lock); 129 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 130 PROC_LOCK(p); 131 if (p->p_state == PRS_NORMAL && 132 p_cansee(td, p) == 0) { 133 if (p->p_nice < low) 134 low = p->p_nice; 135 } 136 PROC_UNLOCK(p); 137 } 138 PGRP_UNLOCK(pg); 139 break; 140 141 case PRIO_USER: 142 if (uap->who == 0) 143 uap->who = td->td_ucred->cr_uid; 144 sx_slock(&allproc_lock); 145 FOREACH_PROC_IN_SYSTEM(p) { 146 PROC_LOCK(p); 147 if (p->p_state == PRS_NORMAL && 148 p_cansee(td, p) == 0 && 149 p->p_ucred->cr_uid == uap->who) { 150 if (p->p_nice < low) 151 low = p->p_nice; 152 } 153 PROC_UNLOCK(p); 154 } 155 sx_sunlock(&allproc_lock); 156 break; 157 158 default: 159 error = EINVAL; 160 break; 161 } 162 if (low == PRIO_MAX + 1 && error == 0) 163 error = ESRCH; 164 td->td_retval[0] = low; 165 return (error); 166 } 167 168 #ifndef _SYS_SYSPROTO_H_ 169 struct setpriority_args { 170 int which; 171 int who; 172 int prio; 173 }; 174 #endif 175 int 176 sys_setpriority(struct thread *td, struct setpriority_args *uap) 177 { 178 struct proc *curp, *p; 179 struct pgrp *pg; 180 int found = 0, error = 0; 181 182 curp = td->td_proc; 183 switch (uap->which) { 184 case PRIO_PROCESS: 185 if (uap->who == 0) { 186 PROC_LOCK(curp); 187 error = donice(td, curp, uap->prio); 188 PROC_UNLOCK(curp); 189 } else { 190 p = pfind(uap->who); 191 if (p == NULL) 192 break; 193 error = p_cansee(td, p); 194 if (error == 0) 195 error = donice(td, p, uap->prio); 196 PROC_UNLOCK(p); 197 } 198 found++; 199 break; 200 201 case PRIO_PGRP: 202 sx_slock(&proctree_lock); 203 if (uap->who == 0) { 204 pg = curp->p_pgrp; 205 PGRP_LOCK(pg); 206 } else { 207 pg = pgfind(uap->who); 208 if (pg == NULL) { 209 sx_sunlock(&proctree_lock); 210 break; 211 } 212 } 213 sx_sunlock(&proctree_lock); 214 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 215 PROC_LOCK(p); 216 if (p->p_state == PRS_NORMAL && 217 p_cansee(td, p) == 0) { 218 error = donice(td, p, uap->prio); 219 found++; 220 } 221 PROC_UNLOCK(p); 222 } 223 PGRP_UNLOCK(pg); 224 break; 225 226 case PRIO_USER: 227 if (uap->who == 0) 228 uap->who = td->td_ucred->cr_uid; 229 sx_slock(&allproc_lock); 230 FOREACH_PROC_IN_SYSTEM(p) { 231 PROC_LOCK(p); 232 if (p->p_state == PRS_NORMAL && 233 p->p_ucred->cr_uid == uap->who && 234 p_cansee(td, p) == 0) { 235 error = donice(td, p, uap->prio); 236 found++; 237 } 238 PROC_UNLOCK(p); 239 } 240 sx_sunlock(&allproc_lock); 241 break; 242 243 default: 244 error = EINVAL; 245 break; 246 } 247 if (found == 0 && error == 0) 248 error = ESRCH; 249 return (error); 250 } 251 252 /* 253 * Set "nice" for a (whole) process. 254 */ 255 static int 256 donice(struct thread *td, struct proc *p, int n) 257 { 258 int error; 259 260 PROC_LOCK_ASSERT(p, MA_OWNED); 261 if ((error = p_cansched(td, p))) 262 return (error); 263 if (n > PRIO_MAX) 264 n = PRIO_MAX; 265 if (n < PRIO_MIN) 266 n = PRIO_MIN; 267 if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0) 268 return (EACCES); 269 sched_nice(p, n); 270 return (0); 271 } 272 273 static int unprivileged_idprio; 274 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW, 275 &unprivileged_idprio, 0, "Allow non-root users to set an idle priority"); 276 277 /* 278 * Set realtime priority for LWP. 279 */ 280 #ifndef _SYS_SYSPROTO_H_ 281 struct rtprio_thread_args { 282 int function; 283 lwpid_t lwpid; 284 struct rtprio *rtp; 285 }; 286 #endif 287 int 288 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap) 289 { 290 struct proc *p; 291 struct rtprio rtp; 292 struct thread *td1; 293 int cierror, error; 294 295 /* Perform copyin before acquiring locks if needed. */ 296 if (uap->function == RTP_SET) 297 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 298 else 299 cierror = 0; 300 301 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) { 302 p = td->td_proc; 303 td1 = td; 304 PROC_LOCK(p); 305 } else { 306 /* Only look up thread in current process */ 307 td1 = tdfind(uap->lwpid, curproc->p_pid); 308 if (td1 == NULL) 309 return (ESRCH); 310 p = td1->td_proc; 311 } 312 313 switch (uap->function) { 314 case RTP_LOOKUP: 315 if ((error = p_cansee(td, p))) 316 break; 317 pri_to_rtp(td1, &rtp); 318 PROC_UNLOCK(p); 319 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 320 case RTP_SET: 321 if ((error = p_cansched(td, p)) || (error = cierror)) 322 break; 323 324 /* Disallow setting rtprio in most cases if not superuser. */ 325 326 /* 327 * Realtime priority has to be restricted for reasons which 328 * should be obvious. However, for idleprio processes, there is 329 * a potential for system deadlock if an idleprio process gains 330 * a lock on a resource that other processes need (and the 331 * idleprio process can't run due to a CPU-bound normal 332 * process). Fix me! XXX 333 * 334 * This problem is not only related to idleprio process. 335 * A user level program can obtain a file lock and hold it 336 * indefinitely. Additionally, without idleprio processes it is 337 * still conceivable that a program with low priority will never 338 * get to run. In short, allowing this feature might make it 339 * easier to lock a resource indefinitely, but it is not the 340 * only thing that makes it possible. 341 */ 342 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME || 343 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 344 unprivileged_idprio == 0)) { 345 error = priv_check(td, PRIV_SCHED_RTPRIO); 346 if (error) 347 break; 348 } 349 error = rtp_to_pri(&rtp, td1); 350 break; 351 default: 352 error = EINVAL; 353 break; 354 } 355 PROC_UNLOCK(p); 356 return (error); 357 } 358 359 /* 360 * Set realtime priority. 361 */ 362 #ifndef _SYS_SYSPROTO_H_ 363 struct rtprio_args { 364 int function; 365 pid_t pid; 366 struct rtprio *rtp; 367 }; 368 #endif 369 int 370 sys_rtprio(struct thread *td, struct rtprio_args *uap) 371 { 372 struct proc *p; 373 struct thread *tdp; 374 struct rtprio rtp; 375 int cierror, error; 376 377 /* Perform copyin before acquiring locks if needed. */ 378 if (uap->function == RTP_SET) 379 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 380 else 381 cierror = 0; 382 383 if (uap->pid == 0) { 384 p = td->td_proc; 385 PROC_LOCK(p); 386 } else { 387 p = pfind(uap->pid); 388 if (p == NULL) 389 return (ESRCH); 390 } 391 392 switch (uap->function) { 393 case RTP_LOOKUP: 394 if ((error = p_cansee(td, p))) 395 break; 396 /* 397 * Return OUR priority if no pid specified, 398 * or if one is, report the highest priority 399 * in the process. There isn't much more you can do as 400 * there is only room to return a single priority. 401 * Note: specifying our own pid is not the same 402 * as leaving it zero. 403 */ 404 if (uap->pid == 0) { 405 pri_to_rtp(td, &rtp); 406 } else { 407 struct rtprio rtp2; 408 409 rtp.type = RTP_PRIO_IDLE; 410 rtp.prio = RTP_PRIO_MAX; 411 FOREACH_THREAD_IN_PROC(p, tdp) { 412 pri_to_rtp(tdp, &rtp2); 413 if (rtp2.type < rtp.type || 414 (rtp2.type == rtp.type && 415 rtp2.prio < rtp.prio)) { 416 rtp.type = rtp2.type; 417 rtp.prio = rtp2.prio; 418 } 419 } 420 } 421 PROC_UNLOCK(p); 422 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 423 case RTP_SET: 424 if ((error = p_cansched(td, p)) || (error = cierror)) 425 break; 426 427 /* 428 * Disallow setting rtprio in most cases if not superuser. 429 * See the comment in sys_rtprio_thread about idprio 430 * threads holding a lock. 431 */ 432 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME || 433 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 434 !unprivileged_idprio)) { 435 error = priv_check(td, PRIV_SCHED_RTPRIO); 436 if (error) 437 break; 438 } 439 440 /* 441 * If we are setting our own priority, set just our 442 * thread but if we are doing another process, 443 * do all the threads on that process. If we 444 * specify our own pid we do the latter. 445 */ 446 if (uap->pid == 0) { 447 error = rtp_to_pri(&rtp, td); 448 } else { 449 FOREACH_THREAD_IN_PROC(p, td) { 450 if ((error = rtp_to_pri(&rtp, td)) != 0) 451 break; 452 } 453 } 454 break; 455 default: 456 error = EINVAL; 457 break; 458 } 459 PROC_UNLOCK(p); 460 return (error); 461 } 462 463 int 464 rtp_to_pri(struct rtprio *rtp, struct thread *td) 465 { 466 u_char newpri, oldclass, oldpri; 467 468 switch (RTP_PRIO_BASE(rtp->type)) { 469 case RTP_PRIO_REALTIME: 470 if (rtp->prio > RTP_PRIO_MAX) 471 return (EINVAL); 472 newpri = PRI_MIN_REALTIME + rtp->prio; 473 break; 474 case RTP_PRIO_NORMAL: 475 if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE)) 476 return (EINVAL); 477 newpri = PRI_MIN_TIMESHARE + rtp->prio; 478 break; 479 case RTP_PRIO_IDLE: 480 if (rtp->prio > RTP_PRIO_MAX) 481 return (EINVAL); 482 newpri = PRI_MIN_IDLE + rtp->prio; 483 break; 484 default: 485 return (EINVAL); 486 } 487 488 thread_lock(td); 489 oldclass = td->td_pri_class; 490 sched_class(td, rtp->type); /* XXX fix */ 491 oldpri = td->td_user_pri; 492 sched_user_prio(td, newpri); 493 if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL || 494 td->td_pri_class != RTP_PRIO_NORMAL)) 495 sched_prio(td, td->td_user_pri); 496 if (TD_ON_UPILOCK(td) && oldpri != newpri) { 497 critical_enter(); 498 thread_unlock(td); 499 umtx_pi_adjust(td, oldpri); 500 critical_exit(); 501 } else 502 thread_unlock(td); 503 return (0); 504 } 505 506 void 507 pri_to_rtp(struct thread *td, struct rtprio *rtp) 508 { 509 510 thread_lock(td); 511 switch (PRI_BASE(td->td_pri_class)) { 512 case PRI_REALTIME: 513 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME; 514 break; 515 case PRI_TIMESHARE: 516 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE; 517 break; 518 case PRI_IDLE: 519 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE; 520 break; 521 default: 522 break; 523 } 524 rtp->type = td->td_pri_class; 525 thread_unlock(td); 526 } 527 528 #if defined(COMPAT_43) 529 #ifndef _SYS_SYSPROTO_H_ 530 struct osetrlimit_args { 531 u_int which; 532 struct orlimit *rlp; 533 }; 534 #endif 535 int 536 osetrlimit(struct thread *td, struct osetrlimit_args *uap) 537 { 538 struct orlimit olim; 539 struct rlimit lim; 540 int error; 541 542 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 543 return (error); 544 lim.rlim_cur = olim.rlim_cur; 545 lim.rlim_max = olim.rlim_max; 546 error = kern_setrlimit(td, uap->which, &lim); 547 return (error); 548 } 549 550 #ifndef _SYS_SYSPROTO_H_ 551 struct ogetrlimit_args { 552 u_int which; 553 struct orlimit *rlp; 554 }; 555 #endif 556 int 557 ogetrlimit(struct thread *td, struct ogetrlimit_args *uap) 558 { 559 struct orlimit olim; 560 struct rlimit rl; 561 int error; 562 563 if (uap->which >= RLIM_NLIMITS) 564 return (EINVAL); 565 lim_rlimit(td, uap->which, &rl); 566 567 /* 568 * XXX would be more correct to convert only RLIM_INFINITY to the 569 * old RLIM_INFINITY and fail with EOVERFLOW for other larger 570 * values. Most 64->32 and 32->16 conversions, including not 571 * unimportant ones of uids are even more broken than what we 572 * do here (they blindly truncate). We don't do this correctly 573 * here since we have little experience with EOVERFLOW yet. 574 * Elsewhere, getuid() can't fail... 575 */ 576 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur; 577 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max; 578 error = copyout(&olim, uap->rlp, sizeof(olim)); 579 return (error); 580 } 581 #endif /* COMPAT_43 */ 582 583 #ifndef _SYS_SYSPROTO_H_ 584 struct __setrlimit_args { 585 u_int which; 586 struct rlimit *rlp; 587 }; 588 #endif 589 int 590 sys_setrlimit(struct thread *td, struct __setrlimit_args *uap) 591 { 592 struct rlimit alim; 593 int error; 594 595 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit)))) 596 return (error); 597 error = kern_setrlimit(td, uap->which, &alim); 598 return (error); 599 } 600 601 static void 602 lim_cb(void *arg) 603 { 604 struct rlimit rlim; 605 struct thread *td; 606 struct proc *p; 607 608 p = arg; 609 PROC_LOCK_ASSERT(p, MA_OWNED); 610 /* 611 * Check if the process exceeds its cpu resource allocation. If 612 * it reaches the max, arrange to kill the process in ast(). 613 */ 614 if (p->p_cpulimit == RLIM_INFINITY) 615 return; 616 PROC_STATLOCK(p); 617 FOREACH_THREAD_IN_PROC(p, td) { 618 ruxagg(p, td); 619 } 620 PROC_STATUNLOCK(p); 621 if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) { 622 lim_rlimit_proc(p, RLIMIT_CPU, &rlim); 623 if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) { 624 killproc(p, "exceeded maximum CPU limit"); 625 } else { 626 if (p->p_cpulimit < rlim.rlim_max) 627 p->p_cpulimit += 5; 628 kern_psignal(p, SIGXCPU); 629 } 630 } 631 if ((p->p_flag & P_WEXIT) == 0) 632 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 633 lim_cb, p, C_PREL(1)); 634 } 635 636 int 637 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp) 638 { 639 640 return (kern_proc_setrlimit(td, td->td_proc, which, limp)); 641 } 642 643 int 644 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which, 645 struct rlimit *limp) 646 { 647 struct plimit *newlim, *oldlim; 648 struct rlimit *alimp; 649 struct rlimit oldssiz; 650 int error; 651 652 if (which >= RLIM_NLIMITS) 653 return (EINVAL); 654 655 /* 656 * Preserve historical bugs by treating negative limits as unsigned. 657 */ 658 if (limp->rlim_cur < 0) 659 limp->rlim_cur = RLIM_INFINITY; 660 if (limp->rlim_max < 0) 661 limp->rlim_max = RLIM_INFINITY; 662 663 oldssiz.rlim_cur = 0; 664 newlim = lim_alloc(); 665 PROC_LOCK(p); 666 oldlim = p->p_limit; 667 alimp = &oldlim->pl_rlimit[which]; 668 if (limp->rlim_cur > alimp->rlim_max || 669 limp->rlim_max > alimp->rlim_max) 670 if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) { 671 PROC_UNLOCK(p); 672 lim_free(newlim); 673 return (error); 674 } 675 if (limp->rlim_cur > limp->rlim_max) 676 limp->rlim_cur = limp->rlim_max; 677 lim_copy(newlim, oldlim); 678 alimp = &newlim->pl_rlimit[which]; 679 680 switch (which) { 681 682 case RLIMIT_CPU: 683 if (limp->rlim_cur != RLIM_INFINITY && 684 p->p_cpulimit == RLIM_INFINITY) 685 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 686 lim_cb, p, C_PREL(1)); 687 p->p_cpulimit = limp->rlim_cur; 688 break; 689 case RLIMIT_DATA: 690 if (limp->rlim_cur > maxdsiz) 691 limp->rlim_cur = maxdsiz; 692 if (limp->rlim_max > maxdsiz) 693 limp->rlim_max = maxdsiz; 694 break; 695 696 case RLIMIT_STACK: 697 if (limp->rlim_cur > maxssiz) 698 limp->rlim_cur = maxssiz; 699 if (limp->rlim_max > maxssiz) 700 limp->rlim_max = maxssiz; 701 oldssiz = *alimp; 702 if (p->p_sysent->sv_fixlimit != NULL) 703 p->p_sysent->sv_fixlimit(&oldssiz, 704 RLIMIT_STACK); 705 break; 706 707 case RLIMIT_NOFILE: 708 if (limp->rlim_cur > maxfilesperproc) 709 limp->rlim_cur = maxfilesperproc; 710 if (limp->rlim_max > maxfilesperproc) 711 limp->rlim_max = maxfilesperproc; 712 break; 713 714 case RLIMIT_NPROC: 715 if (limp->rlim_cur > maxprocperuid) 716 limp->rlim_cur = maxprocperuid; 717 if (limp->rlim_max > maxprocperuid) 718 limp->rlim_max = maxprocperuid; 719 if (limp->rlim_cur < 1) 720 limp->rlim_cur = 1; 721 if (limp->rlim_max < 1) 722 limp->rlim_max = 1; 723 break; 724 } 725 if (p->p_sysent->sv_fixlimit != NULL) 726 p->p_sysent->sv_fixlimit(limp, which); 727 *alimp = *limp; 728 p->p_limit = newlim; 729 PROC_UPDATE_COW(p); 730 PROC_UNLOCK(p); 731 lim_free(oldlim); 732 733 if (which == RLIMIT_STACK && 734 /* 735 * Skip calls from exec_new_vmspace(), done when stack is 736 * not mapped yet. 737 */ 738 (td != curthread || (p->p_flag & P_INEXEC) == 0)) { 739 /* 740 * Stack is allocated to the max at exec time with only 741 * "rlim_cur" bytes accessible. If stack limit is going 742 * up make more accessible, if going down make inaccessible. 743 */ 744 if (limp->rlim_cur != oldssiz.rlim_cur) { 745 vm_offset_t addr; 746 vm_size_t size; 747 vm_prot_t prot; 748 749 if (limp->rlim_cur > oldssiz.rlim_cur) { 750 prot = p->p_sysent->sv_stackprot; 751 size = limp->rlim_cur - oldssiz.rlim_cur; 752 addr = p->p_sysent->sv_usrstack - 753 limp->rlim_cur; 754 } else { 755 prot = VM_PROT_NONE; 756 size = oldssiz.rlim_cur - limp->rlim_cur; 757 addr = p->p_sysent->sv_usrstack - 758 oldssiz.rlim_cur; 759 } 760 addr = trunc_page(addr); 761 size = round_page(size); 762 (void)vm_map_protect(&p->p_vmspace->vm_map, 763 addr, addr + size, prot, FALSE); 764 } 765 } 766 767 return (0); 768 } 769 770 #ifndef _SYS_SYSPROTO_H_ 771 struct __getrlimit_args { 772 u_int which; 773 struct rlimit *rlp; 774 }; 775 #endif 776 /* ARGSUSED */ 777 int 778 sys_getrlimit(struct thread *td, struct __getrlimit_args *uap) 779 { 780 struct rlimit rlim; 781 int error; 782 783 if (uap->which >= RLIM_NLIMITS) 784 return (EINVAL); 785 lim_rlimit(td, uap->which, &rlim); 786 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit)); 787 return (error); 788 } 789 790 /* 791 * Transform the running time and tick information for children of proc p 792 * into user and system time usage. 793 */ 794 void 795 calccru(struct proc *p, struct timeval *up, struct timeval *sp) 796 { 797 798 PROC_LOCK_ASSERT(p, MA_OWNED); 799 calcru1(p, &p->p_crux, up, sp); 800 } 801 802 /* 803 * Transform the running time and tick information in proc p into user 804 * and system time usage. If appropriate, include the current time slice 805 * on this CPU. 806 */ 807 void 808 calcru(struct proc *p, struct timeval *up, struct timeval *sp) 809 { 810 struct thread *td; 811 uint64_t runtime, u; 812 813 PROC_LOCK_ASSERT(p, MA_OWNED); 814 PROC_STATLOCK_ASSERT(p, MA_OWNED); 815 /* 816 * If we are getting stats for the current process, then add in the 817 * stats that this thread has accumulated in its current time slice. 818 * We reset the thread and CPU state as if we had performed a context 819 * switch right here. 820 */ 821 td = curthread; 822 if (td->td_proc == p) { 823 u = cpu_ticks(); 824 runtime = u - PCPU_GET(switchtime); 825 td->td_runtime += runtime; 826 td->td_incruntime += runtime; 827 PCPU_SET(switchtime, u); 828 } 829 /* Make sure the per-thread stats are current. */ 830 FOREACH_THREAD_IN_PROC(p, td) { 831 if (td->td_incruntime == 0) 832 continue; 833 ruxagg(p, td); 834 } 835 calcru1(p, &p->p_rux, up, sp); 836 } 837 838 /* Collect resource usage for a single thread. */ 839 void 840 rufetchtd(struct thread *td, struct rusage *ru) 841 { 842 struct proc *p; 843 uint64_t runtime, u; 844 845 p = td->td_proc; 846 PROC_STATLOCK_ASSERT(p, MA_OWNED); 847 THREAD_LOCK_ASSERT(td, MA_OWNED); 848 /* 849 * If we are getting stats for the current thread, then add in the 850 * stats that this thread has accumulated in its current time slice. 851 * We reset the thread and CPU state as if we had performed a context 852 * switch right here. 853 */ 854 if (td == curthread) { 855 u = cpu_ticks(); 856 runtime = u - PCPU_GET(switchtime); 857 td->td_runtime += runtime; 858 td->td_incruntime += runtime; 859 PCPU_SET(switchtime, u); 860 } 861 ruxagg(p, td); 862 *ru = td->td_ru; 863 calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime); 864 } 865 866 /* XXX: the MI version is too slow to use: */ 867 #ifndef __HAVE_INLINE_FLSLL 868 #define flsll(x) (fls((x) >> 32) != 0 ? fls((x) >> 32) + 32 : fls(x)) 869 #endif 870 871 static uint64_t 872 mul64_by_fraction(uint64_t a, uint64_t b, uint64_t c) 873 { 874 uint64_t acc, bh, bl; 875 int i, s, sa, sb; 876 877 /* 878 * Calculate (a * b) / c accurately enough without overflowing. c 879 * must be nonzero, and its top bit must be 0. a or b must be 880 * <= c, and the implementation is tuned for b <= c. 881 * 882 * The comments about times are for use in calcru1() with units of 883 * microseconds for 'a' and stathz ticks at 128 Hz for b and c. 884 * 885 * Let n be the number of top zero bits in c. Each iteration 886 * either returns, or reduces b by right shifting it by at least n. 887 * The number of iterations is at most 1 + 64 / n, and the error is 888 * at most the number of iterations. 889 * 890 * It is very unusual to need even 2 iterations. Previous 891 * implementations overflowed essentially by returning early in the 892 * first iteration, with n = 38 giving overflow at 105+ hours and 893 * n = 32 giving overlow at at 388+ days despite a more careful 894 * calculation. 388 days is a reasonable uptime, and the calculation 895 * needs to work for the uptime times the number of CPUs since 'a' 896 * is per-process. 897 */ 898 if (a >= (uint64_t)1 << 63) 899 return (0); /* Unsupported arg -- can't happen. */ 900 acc = 0; 901 for (i = 0; i < 128; i++) { 902 sa = flsll(a); 903 sb = flsll(b); 904 if (sa + sb <= 64) 905 /* Up to 105 hours on first iteration. */ 906 return (acc + (a * b) / c); 907 if (a >= c) { 908 /* 909 * This reduction is based on a = q * c + r, with the 910 * remainder r < c. 'a' may be large to start, and 911 * moving bits from b into 'a' at the end of the loop 912 * sets the top bit of 'a', so the reduction makes 913 * significant progress. 914 */ 915 acc += (a / c) * b; 916 a %= c; 917 sa = flsll(a); 918 if (sa + sb <= 64) 919 /* Up to 388 days on first iteration. */ 920 return (acc + (a * b) / c); 921 } 922 923 /* 924 * This step writes a * b as a * ((bh << s) + bl) = 925 * a * (bh << s) + a * bl = (a << s) * bh + a * bl. The 2 926 * additive terms are handled separately. Splitting in 927 * this way is linear except for rounding errors. 928 * 929 * s = 64 - sa is the maximum such that a << s fits in 64 930 * bits. Since a < c and c has at least 1 zero top bit, 931 * sa < 64 and s > 0. Thus this step makes progress by 932 * reducing b (it increases 'a', but taking remainders on 933 * the next iteration completes the reduction). 934 * 935 * Finally, the choice for s is just what is needed to keep 936 * a * bl from overflowing, so we don't need complications 937 * like a recursive call mul64_by_fraction(a, bl, c) to 938 * handle the second additive term. 939 */ 940 s = 64 - sa; 941 bh = b >> s; 942 bl = b - (bh << s); 943 acc += (a * bl) / c; 944 a <<= s; 945 b = bh; 946 } 947 return (0); /* Algorithm failure -- can't happen. */ 948 } 949 950 static void 951 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up, 952 struct timeval *sp) 953 { 954 /* {user, system, interrupt, total} {ticks, usec}: */ 955 uint64_t ut, uu, st, su, it, tt, tu; 956 957 ut = ruxp->rux_uticks; 958 st = ruxp->rux_sticks; 959 it = ruxp->rux_iticks; 960 tt = ut + st + it; 961 if (tt == 0) { 962 /* Avoid divide by zero */ 963 st = 1; 964 tt = 1; 965 } 966 tu = cputick2usec(ruxp->rux_runtime); 967 if ((int64_t)tu < 0) { 968 /* XXX: this should be an assert /phk */ 969 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n", 970 (intmax_t)tu, p->p_pid, p->p_comm); 971 tu = ruxp->rux_tu; 972 } 973 974 /* Subdivide tu. Avoid overflow in the multiplications. */ 975 if (__predict_true(tu <= ((uint64_t)1 << 38) && tt <= (1 << 26))) { 976 /* Up to 76 hours when stathz is 128. */ 977 uu = (tu * ut) / tt; 978 su = (tu * st) / tt; 979 } else { 980 uu = mul64_by_fraction(tu, ut, tt); 981 su = mul64_by_fraction(tu, ut, st); 982 } 983 984 if (tu >= ruxp->rux_tu) { 985 /* 986 * The normal case, time increased. 987 * Enforce monotonicity of bucketed numbers. 988 */ 989 if (uu < ruxp->rux_uu) 990 uu = ruxp->rux_uu; 991 if (su < ruxp->rux_su) 992 su = ruxp->rux_su; 993 } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) { 994 /* 995 * When we calibrate the cputicker, it is not uncommon to 996 * see the presumably fixed frequency increase slightly over 997 * time as a result of thermal stabilization and NTP 998 * discipline (of the reference clock). We therefore ignore 999 * a bit of backwards slop because we expect to catch up 1000 * shortly. We use a 3 microsecond limit to catch low 1001 * counts and a 1% limit for high counts. 1002 */ 1003 uu = ruxp->rux_uu; 1004 su = ruxp->rux_su; 1005 tu = ruxp->rux_tu; 1006 } else { /* tu < ruxp->rux_tu */ 1007 /* 1008 * What happened here was likely that a laptop, which ran at 1009 * a reduced clock frequency at boot, kicked into high gear. 1010 * The wisdom of spamming this message in that case is 1011 * dubious, but it might also be indicative of something 1012 * serious, so lets keep it and hope laptops can be made 1013 * more truthful about their CPU speed via ACPI. 1014 */ 1015 printf("calcru: runtime went backwards from %ju usec " 1016 "to %ju usec for pid %d (%s)\n", 1017 (uintmax_t)ruxp->rux_tu, (uintmax_t)tu, 1018 p->p_pid, p->p_comm); 1019 } 1020 1021 ruxp->rux_uu = uu; 1022 ruxp->rux_su = su; 1023 ruxp->rux_tu = tu; 1024 1025 up->tv_sec = uu / 1000000; 1026 up->tv_usec = uu % 1000000; 1027 sp->tv_sec = su / 1000000; 1028 sp->tv_usec = su % 1000000; 1029 } 1030 1031 #ifndef _SYS_SYSPROTO_H_ 1032 struct getrusage_args { 1033 int who; 1034 struct rusage *rusage; 1035 }; 1036 #endif 1037 int 1038 sys_getrusage(struct thread *td, struct getrusage_args *uap) 1039 { 1040 struct rusage ru; 1041 int error; 1042 1043 error = kern_getrusage(td, uap->who, &ru); 1044 if (error == 0) 1045 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 1046 return (error); 1047 } 1048 1049 int 1050 kern_getrusage(struct thread *td, int who, struct rusage *rup) 1051 { 1052 struct proc *p; 1053 int error; 1054 1055 error = 0; 1056 p = td->td_proc; 1057 PROC_LOCK(p); 1058 switch (who) { 1059 case RUSAGE_SELF: 1060 rufetchcalc(p, rup, &rup->ru_utime, 1061 &rup->ru_stime); 1062 break; 1063 1064 case RUSAGE_CHILDREN: 1065 *rup = p->p_stats->p_cru; 1066 calccru(p, &rup->ru_utime, &rup->ru_stime); 1067 break; 1068 1069 case RUSAGE_THREAD: 1070 PROC_STATLOCK(p); 1071 thread_lock(td); 1072 rufetchtd(td, rup); 1073 thread_unlock(td); 1074 PROC_STATUNLOCK(p); 1075 break; 1076 1077 default: 1078 error = EINVAL; 1079 } 1080 PROC_UNLOCK(p); 1081 return (error); 1082 } 1083 1084 void 1085 rucollect(struct rusage *ru, struct rusage *ru2) 1086 { 1087 long *ip, *ip2; 1088 int i; 1089 1090 if (ru->ru_maxrss < ru2->ru_maxrss) 1091 ru->ru_maxrss = ru2->ru_maxrss; 1092 ip = &ru->ru_first; 1093 ip2 = &ru2->ru_first; 1094 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 1095 *ip++ += *ip2++; 1096 } 1097 1098 void 1099 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2, 1100 struct rusage_ext *rux2) 1101 { 1102 1103 rux->rux_runtime += rux2->rux_runtime; 1104 rux->rux_uticks += rux2->rux_uticks; 1105 rux->rux_sticks += rux2->rux_sticks; 1106 rux->rux_iticks += rux2->rux_iticks; 1107 rux->rux_uu += rux2->rux_uu; 1108 rux->rux_su += rux2->rux_su; 1109 rux->rux_tu += rux2->rux_tu; 1110 rucollect(ru, ru2); 1111 } 1112 1113 /* 1114 * Aggregate tick counts into the proc's rusage_ext. 1115 */ 1116 static void 1117 ruxagg_locked(struct rusage_ext *rux, struct thread *td) 1118 { 1119 1120 THREAD_LOCK_ASSERT(td, MA_OWNED); 1121 PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED); 1122 rux->rux_runtime += td->td_incruntime; 1123 rux->rux_uticks += td->td_uticks; 1124 rux->rux_sticks += td->td_sticks; 1125 rux->rux_iticks += td->td_iticks; 1126 } 1127 1128 void 1129 ruxagg(struct proc *p, struct thread *td) 1130 { 1131 1132 thread_lock(td); 1133 ruxagg_locked(&p->p_rux, td); 1134 ruxagg_locked(&td->td_rux, td); 1135 td->td_incruntime = 0; 1136 td->td_uticks = 0; 1137 td->td_iticks = 0; 1138 td->td_sticks = 0; 1139 thread_unlock(td); 1140 } 1141 1142 /* 1143 * Update the rusage_ext structure and fetch a valid aggregate rusage 1144 * for proc p if storage for one is supplied. 1145 */ 1146 void 1147 rufetch(struct proc *p, struct rusage *ru) 1148 { 1149 struct thread *td; 1150 1151 PROC_STATLOCK_ASSERT(p, MA_OWNED); 1152 1153 *ru = p->p_ru; 1154 if (p->p_numthreads > 0) { 1155 FOREACH_THREAD_IN_PROC(p, td) { 1156 ruxagg(p, td); 1157 rucollect(ru, &td->td_ru); 1158 } 1159 } 1160 } 1161 1162 /* 1163 * Atomically perform a rufetch and a calcru together. 1164 * Consumers, can safely assume the calcru is executed only once 1165 * rufetch is completed. 1166 */ 1167 void 1168 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up, 1169 struct timeval *sp) 1170 { 1171 1172 PROC_STATLOCK(p); 1173 rufetch(p, ru); 1174 calcru(p, up, sp); 1175 PROC_STATUNLOCK(p); 1176 } 1177 1178 /* 1179 * Allocate a new resource limits structure and initialize its 1180 * reference count and mutex pointer. 1181 */ 1182 struct plimit * 1183 lim_alloc() 1184 { 1185 struct plimit *limp; 1186 1187 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK); 1188 refcount_init(&limp->pl_refcnt, 1); 1189 return (limp); 1190 } 1191 1192 struct plimit * 1193 lim_hold(struct plimit *limp) 1194 { 1195 1196 refcount_acquire(&limp->pl_refcnt); 1197 return (limp); 1198 } 1199 1200 void 1201 lim_fork(struct proc *p1, struct proc *p2) 1202 { 1203 1204 PROC_LOCK_ASSERT(p1, MA_OWNED); 1205 PROC_LOCK_ASSERT(p2, MA_OWNED); 1206 1207 p2->p_limit = lim_hold(p1->p_limit); 1208 callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0); 1209 if (p1->p_cpulimit != RLIM_INFINITY) 1210 callout_reset_sbt(&p2->p_limco, SBT_1S, 0, 1211 lim_cb, p2, C_PREL(1)); 1212 } 1213 1214 void 1215 lim_free(struct plimit *limp) 1216 { 1217 1218 if (refcount_release(&limp->pl_refcnt)) 1219 free((void *)limp, M_PLIMIT); 1220 } 1221 1222 /* 1223 * Make a copy of the plimit structure. 1224 * We share these structures copy-on-write after fork. 1225 */ 1226 void 1227 lim_copy(struct plimit *dst, struct plimit *src) 1228 { 1229 1230 KASSERT(dst->pl_refcnt <= 1, ("lim_copy to shared limit")); 1231 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit)); 1232 } 1233 1234 /* 1235 * Return the hard limit for a particular system resource. The 1236 * which parameter specifies the index into the rlimit array. 1237 */ 1238 rlim_t 1239 lim_max(struct thread *td, int which) 1240 { 1241 struct rlimit rl; 1242 1243 lim_rlimit(td, which, &rl); 1244 return (rl.rlim_max); 1245 } 1246 1247 rlim_t 1248 lim_max_proc(struct proc *p, int which) 1249 { 1250 struct rlimit rl; 1251 1252 lim_rlimit_proc(p, which, &rl); 1253 return (rl.rlim_max); 1254 } 1255 1256 /* 1257 * Return the current (soft) limit for a particular system resource. 1258 * The which parameter which specifies the index into the rlimit array 1259 */ 1260 rlim_t 1261 (lim_cur)(struct thread *td, int which) 1262 { 1263 struct rlimit rl; 1264 1265 lim_rlimit(td, which, &rl); 1266 return (rl.rlim_cur); 1267 } 1268 1269 rlim_t 1270 lim_cur_proc(struct proc *p, int which) 1271 { 1272 struct rlimit rl; 1273 1274 lim_rlimit_proc(p, which, &rl); 1275 return (rl.rlim_cur); 1276 } 1277 1278 /* 1279 * Return a copy of the entire rlimit structure for the system limit 1280 * specified by 'which' in the rlimit structure pointed to by 'rlp'. 1281 */ 1282 void 1283 lim_rlimit(struct thread *td, int which, struct rlimit *rlp) 1284 { 1285 struct proc *p = td->td_proc; 1286 1287 MPASS(td == curthread); 1288 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1289 ("request for invalid resource limit")); 1290 *rlp = td->td_limit->pl_rlimit[which]; 1291 if (p->p_sysent->sv_fixlimit != NULL) 1292 p->p_sysent->sv_fixlimit(rlp, which); 1293 } 1294 1295 void 1296 lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp) 1297 { 1298 1299 PROC_LOCK_ASSERT(p, MA_OWNED); 1300 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1301 ("request for invalid resource limit")); 1302 *rlp = p->p_limit->pl_rlimit[which]; 1303 if (p->p_sysent->sv_fixlimit != NULL) 1304 p->p_sysent->sv_fixlimit(rlp, which); 1305 } 1306 1307 void 1308 uihashinit() 1309 { 1310 1311 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 1312 rw_init(&uihashtbl_lock, "uidinfo hash"); 1313 } 1314 1315 /* 1316 * Look up a uidinfo struct for the parameter uid. 1317 * uihashtbl_lock must be locked. 1318 * Increase refcount on uidinfo struct returned. 1319 */ 1320 static struct uidinfo * 1321 uilookup(uid_t uid) 1322 { 1323 struct uihashhead *uipp; 1324 struct uidinfo *uip; 1325 1326 rw_assert(&uihashtbl_lock, RA_LOCKED); 1327 uipp = UIHASH(uid); 1328 LIST_FOREACH(uip, uipp, ui_hash) 1329 if (uip->ui_uid == uid) { 1330 uihold(uip); 1331 break; 1332 } 1333 1334 return (uip); 1335 } 1336 1337 /* 1338 * Find or allocate a struct uidinfo for a particular uid. 1339 * Returns with uidinfo struct referenced. 1340 * uifree() should be called on a struct uidinfo when released. 1341 */ 1342 struct uidinfo * 1343 uifind(uid_t uid) 1344 { 1345 struct uidinfo *new_uip, *uip; 1346 struct ucred *cred; 1347 1348 cred = curthread->td_ucred; 1349 if (cred->cr_uidinfo->ui_uid == uid) { 1350 uip = cred->cr_uidinfo; 1351 uihold(uip); 1352 return (uip); 1353 } else if (cred->cr_ruidinfo->ui_uid == uid) { 1354 uip = cred->cr_ruidinfo; 1355 uihold(uip); 1356 return (uip); 1357 } 1358 1359 rw_rlock(&uihashtbl_lock); 1360 uip = uilookup(uid); 1361 rw_runlock(&uihashtbl_lock); 1362 if (uip != NULL) 1363 return (uip); 1364 1365 new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO); 1366 racct_create(&new_uip->ui_racct); 1367 refcount_init(&new_uip->ui_ref, 1); 1368 new_uip->ui_uid = uid; 1369 1370 rw_wlock(&uihashtbl_lock); 1371 /* 1372 * There's a chance someone created our uidinfo while we 1373 * were in malloc and not holding the lock, so we have to 1374 * make sure we don't insert a duplicate uidinfo. 1375 */ 1376 if ((uip = uilookup(uid)) == NULL) { 1377 LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash); 1378 rw_wunlock(&uihashtbl_lock); 1379 uip = new_uip; 1380 } else { 1381 rw_wunlock(&uihashtbl_lock); 1382 racct_destroy(&new_uip->ui_racct); 1383 free(new_uip, M_UIDINFO); 1384 } 1385 return (uip); 1386 } 1387 1388 /* 1389 * Place another refcount on a uidinfo struct. 1390 */ 1391 void 1392 uihold(struct uidinfo *uip) 1393 { 1394 1395 refcount_acquire(&uip->ui_ref); 1396 } 1397 1398 /*- 1399 * Since uidinfo structs have a long lifetime, we use an 1400 * opportunistic refcounting scheme to avoid locking the lookup hash 1401 * for each release. 1402 * 1403 * If the refcount hits 0, we need to free the structure, 1404 * which means we need to lock the hash. 1405 * Optimal case: 1406 * After locking the struct and lowering the refcount, if we find 1407 * that we don't need to free, simply unlock and return. 1408 * Suboptimal case: 1409 * If refcount lowering results in need to free, bump the count 1410 * back up, lose the lock and acquire the locks in the proper 1411 * order to try again. 1412 */ 1413 void 1414 uifree(struct uidinfo *uip) 1415 { 1416 1417 if (refcount_release_if_not_last(&uip->ui_ref)) 1418 return; 1419 1420 rw_wlock(&uihashtbl_lock); 1421 if (refcount_release(&uip->ui_ref) == 0) { 1422 rw_wunlock(&uihashtbl_lock); 1423 return; 1424 } 1425 1426 racct_destroy(&uip->ui_racct); 1427 LIST_REMOVE(uip, ui_hash); 1428 rw_wunlock(&uihashtbl_lock); 1429 1430 if (uip->ui_sbsize != 0) 1431 printf("freeing uidinfo: uid = %d, sbsize = %ld\n", 1432 uip->ui_uid, uip->ui_sbsize); 1433 if (uip->ui_proccnt != 0) 1434 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 1435 uip->ui_uid, uip->ui_proccnt); 1436 if (uip->ui_vmsize != 0) 1437 printf("freeing uidinfo: uid = %d, swapuse = %lld\n", 1438 uip->ui_uid, (unsigned long long)uip->ui_vmsize); 1439 free(uip, M_UIDINFO); 1440 } 1441 1442 #ifdef RACCT 1443 void 1444 ui_racct_foreach(void (*callback)(struct racct *racct, 1445 void *arg2, void *arg3), void (*pre)(void), void (*post)(void), 1446 void *arg2, void *arg3) 1447 { 1448 struct uidinfo *uip; 1449 struct uihashhead *uih; 1450 1451 rw_rlock(&uihashtbl_lock); 1452 if (pre != NULL) 1453 (pre)(); 1454 for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) { 1455 LIST_FOREACH(uip, uih, ui_hash) { 1456 (callback)(uip->ui_racct, arg2, arg3); 1457 } 1458 } 1459 if (post != NULL) 1460 (post)(); 1461 rw_runlock(&uihashtbl_lock); 1462 } 1463 #endif 1464 1465 static inline int 1466 chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name) 1467 { 1468 long new; 1469 1470 /* Don't allow them to exceed max, but allow subtraction. */ 1471 new = atomic_fetchadd_long(limit, (long)diff) + diff; 1472 if (diff > 0 && max != 0) { 1473 if (new < 0 || new > max) { 1474 atomic_subtract_long(limit, (long)diff); 1475 return (0); 1476 } 1477 } else if (new < 0) 1478 printf("negative %s for uid = %d\n", name, uip->ui_uid); 1479 return (1); 1480 } 1481 1482 /* 1483 * Change the count associated with number of processes 1484 * a given user is using. When 'max' is 0, don't enforce a limit 1485 */ 1486 int 1487 chgproccnt(struct uidinfo *uip, int diff, rlim_t max) 1488 { 1489 1490 return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt")); 1491 } 1492 1493 /* 1494 * Change the total socket buffer size a user has used. 1495 */ 1496 int 1497 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max) 1498 { 1499 int diff, rv; 1500 1501 diff = to - *hiwat; 1502 if (diff > 0 && max == 0) { 1503 rv = 0; 1504 } else { 1505 rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize"); 1506 if (rv != 0) 1507 *hiwat = to; 1508 } 1509 return (rv); 1510 } 1511 1512 /* 1513 * Change the count associated with number of pseudo-terminals 1514 * a given user is using. When 'max' is 0, don't enforce a limit 1515 */ 1516 int 1517 chgptscnt(struct uidinfo *uip, int diff, rlim_t max) 1518 { 1519 1520 return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt")); 1521 } 1522 1523 int 1524 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max) 1525 { 1526 1527 return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt")); 1528 } 1529 1530 int 1531 chgumtxcnt(struct uidinfo *uip, int diff, rlim_t max) 1532 { 1533 1534 return (chglimit(uip, &uip->ui_umtxcnt, diff, max, "umtxcnt")); 1535 } 1536