1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 */ 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/sysproto.h> 40 #include <sys/file.h> 41 #include <sys/filedesc.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mutex.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/refcount.h> 49 #include <sys/racct.h> 50 #include <sys/resourcevar.h> 51 #include <sys/rwlock.h> 52 #include <sys/sched.h> 53 #include <sys/sx.h> 54 #include <sys/syscallsubr.h> 55 #include <sys/sysctl.h> 56 #include <sys/sysent.h> 57 #include <sys/time.h> 58 #include <sys/umtxvar.h> 59 60 #include <vm/vm.h> 61 #include <vm/vm_param.h> 62 #include <vm/pmap.h> 63 #include <vm/vm_map.h> 64 #include <vm/vm_extern.h> 65 66 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures"); 67 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 68 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 69 static struct rwlock uihashtbl_lock; 70 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 71 static u_long uihash; /* size of hash table - 1 */ 72 73 static void calcru1(struct proc *p, struct rusage_ext *ruxp, 74 struct timeval *up, struct timeval *sp); 75 static int donice(struct thread *td, struct proc *chgp, int n); 76 static struct uidinfo *uilookup(uid_t uid); 77 static void ruxagg_ext_locked(struct rusage_ext *rux, struct thread *td); 78 79 /* 80 * Resource controls and accounting. 81 */ 82 #ifndef _SYS_SYSPROTO_H_ 83 struct getpriority_args { 84 int which; 85 int who; 86 }; 87 #endif 88 int 89 sys_getpriority(struct thread *td, struct getpriority_args *uap) 90 { 91 92 return (kern_getpriority(td, uap->which, uap->who)); 93 } 94 95 int 96 kern_getpriority(struct thread *td, int which, int who) 97 { 98 struct proc *p; 99 struct pgrp *pg; 100 int error, low; 101 102 error = 0; 103 low = PRIO_MAX + 1; 104 switch (which) { 105 case PRIO_PROCESS: 106 if (who == 0) 107 low = td->td_proc->p_nice; 108 else { 109 p = pfind(who); 110 if (p == NULL) 111 break; 112 if (p_cansee(td, p) == 0) 113 low = p->p_nice; 114 PROC_UNLOCK(p); 115 } 116 break; 117 118 case PRIO_PGRP: 119 sx_slock(&proctree_lock); 120 if (who == 0) { 121 pg = td->td_proc->p_pgrp; 122 PGRP_LOCK(pg); 123 } else { 124 pg = pgfind(who); 125 if (pg == NULL) { 126 sx_sunlock(&proctree_lock); 127 break; 128 } 129 } 130 sx_sunlock(&proctree_lock); 131 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 132 PROC_LOCK(p); 133 if (p->p_state == PRS_NORMAL && 134 p_cansee(td, p) == 0) { 135 if (p->p_nice < low) 136 low = p->p_nice; 137 } 138 PROC_UNLOCK(p); 139 } 140 PGRP_UNLOCK(pg); 141 break; 142 143 case PRIO_USER: 144 if (who == 0) 145 who = td->td_ucred->cr_uid; 146 sx_slock(&allproc_lock); 147 FOREACH_PROC_IN_SYSTEM(p) { 148 PROC_LOCK(p); 149 if (p->p_state == PRS_NORMAL && 150 p_cansee(td, p) == 0 && 151 p->p_ucred->cr_uid == who) { 152 if (p->p_nice < low) 153 low = p->p_nice; 154 } 155 PROC_UNLOCK(p); 156 } 157 sx_sunlock(&allproc_lock); 158 break; 159 160 default: 161 error = EINVAL; 162 break; 163 } 164 if (low == PRIO_MAX + 1 && error == 0) 165 error = ESRCH; 166 td->td_retval[0] = low; 167 return (error); 168 } 169 170 #ifndef _SYS_SYSPROTO_H_ 171 struct setpriority_args { 172 int which; 173 int who; 174 int prio; 175 }; 176 #endif 177 int 178 sys_setpriority(struct thread *td, struct setpriority_args *uap) 179 { 180 181 return (kern_setpriority(td, uap->which, uap->who, uap->prio)); 182 } 183 184 int 185 kern_setpriority(struct thread *td, int which, int who, int prio) 186 { 187 struct proc *curp, *p; 188 struct pgrp *pg; 189 int found = 0, error = 0; 190 191 curp = td->td_proc; 192 switch (which) { 193 case PRIO_PROCESS: 194 if (who == 0) { 195 PROC_LOCK(curp); 196 error = donice(td, curp, prio); 197 PROC_UNLOCK(curp); 198 } else { 199 p = pfind(who); 200 if (p == NULL) 201 break; 202 error = p_cansee(td, p); 203 if (error == 0) 204 error = donice(td, p, prio); 205 PROC_UNLOCK(p); 206 } 207 found++; 208 break; 209 210 case PRIO_PGRP: 211 sx_slock(&proctree_lock); 212 if (who == 0) { 213 pg = curp->p_pgrp; 214 PGRP_LOCK(pg); 215 } else { 216 pg = pgfind(who); 217 if (pg == NULL) { 218 sx_sunlock(&proctree_lock); 219 break; 220 } 221 } 222 sx_sunlock(&proctree_lock); 223 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 224 PROC_LOCK(p); 225 if (p->p_state == PRS_NORMAL && 226 p_cansee(td, p) == 0) { 227 error = donice(td, p, prio); 228 found++; 229 } 230 PROC_UNLOCK(p); 231 } 232 PGRP_UNLOCK(pg); 233 break; 234 235 case PRIO_USER: 236 if (who == 0) 237 who = td->td_ucred->cr_uid; 238 sx_slock(&allproc_lock); 239 FOREACH_PROC_IN_SYSTEM(p) { 240 PROC_LOCK(p); 241 if (p->p_state == PRS_NORMAL && 242 p->p_ucred->cr_uid == who && 243 p_cansee(td, p) == 0) { 244 error = donice(td, p, prio); 245 found++; 246 } 247 PROC_UNLOCK(p); 248 } 249 sx_sunlock(&allproc_lock); 250 break; 251 252 default: 253 error = EINVAL; 254 break; 255 } 256 if (found == 0 && error == 0) 257 error = ESRCH; 258 return (error); 259 } 260 261 /* 262 * Set "nice" for a (whole) process. 263 */ 264 static int 265 donice(struct thread *td, struct proc *p, int n) 266 { 267 int error; 268 269 PROC_LOCK_ASSERT(p, MA_OWNED); 270 if ((error = p_cansched(td, p))) 271 return (error); 272 if (n > PRIO_MAX) 273 n = PRIO_MAX; 274 if (n < PRIO_MIN) 275 n = PRIO_MIN; 276 if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0) 277 return (EACCES); 278 sched_nice(p, n); 279 return (0); 280 } 281 282 static int unprivileged_idprio; 283 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW, 284 &unprivileged_idprio, 0, 285 "Allow non-root users to set an idle priority (deprecated)"); 286 287 /* 288 * Set realtime priority for LWP. 289 */ 290 #ifndef _SYS_SYSPROTO_H_ 291 struct rtprio_thread_args { 292 int function; 293 lwpid_t lwpid; 294 struct rtprio *rtp; 295 }; 296 #endif 297 int 298 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap) 299 { 300 struct proc *p; 301 struct rtprio rtp; 302 struct thread *td1; 303 int cierror, error; 304 305 /* Perform copyin before acquiring locks if needed. */ 306 if (uap->function == RTP_SET) 307 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 308 else 309 cierror = 0; 310 311 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) { 312 p = td->td_proc; 313 td1 = td; 314 PROC_LOCK(p); 315 } else { 316 td1 = tdfind(uap->lwpid, -1); 317 if (td1 == NULL) 318 return (ESRCH); 319 p = td1->td_proc; 320 } 321 322 switch (uap->function) { 323 case RTP_LOOKUP: 324 if ((error = p_cansee(td, p))) 325 break; 326 pri_to_rtp(td1, &rtp); 327 PROC_UNLOCK(p); 328 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 329 case RTP_SET: 330 if ((error = p_cansched(td, p)) || (error = cierror)) 331 break; 332 333 /* Disallow setting rtprio in most cases if not superuser. */ 334 335 /* 336 * Realtime priority has to be restricted for reasons which 337 * should be obvious. However, for idleprio processes, there is 338 * a potential for system deadlock if an idleprio process gains 339 * a lock on a resource that other processes need (and the 340 * idleprio process can't run due to a CPU-bound normal 341 * process). Fix me! XXX 342 * 343 * This problem is not only related to idleprio process. 344 * A user level program can obtain a file lock and hold it 345 * indefinitely. Additionally, without idleprio processes it is 346 * still conceivable that a program with low priority will never 347 * get to run. In short, allowing this feature might make it 348 * easier to lock a resource indefinitely, but it is not the 349 * only thing that makes it possible. 350 */ 351 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME && 352 (error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0) 353 break; 354 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 355 unprivileged_idprio == 0 && 356 (error = priv_check(td, PRIV_SCHED_IDPRIO)) != 0) 357 break; 358 error = rtp_to_pri(&rtp, td1); 359 break; 360 default: 361 error = EINVAL; 362 break; 363 } 364 PROC_UNLOCK(p); 365 return (error); 366 } 367 368 /* 369 * Set realtime priority. 370 */ 371 #ifndef _SYS_SYSPROTO_H_ 372 struct rtprio_args { 373 int function; 374 pid_t pid; 375 struct rtprio *rtp; 376 }; 377 #endif 378 int 379 sys_rtprio(struct thread *td, struct rtprio_args *uap) 380 { 381 struct proc *p; 382 struct thread *tdp; 383 struct rtprio rtp; 384 int cierror, error; 385 386 /* Perform copyin before acquiring locks if needed. */ 387 if (uap->function == RTP_SET) 388 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 389 else 390 cierror = 0; 391 392 if (uap->pid == 0) { 393 p = td->td_proc; 394 PROC_LOCK(p); 395 } else { 396 p = pfind(uap->pid); 397 if (p == NULL) 398 return (ESRCH); 399 } 400 401 switch (uap->function) { 402 case RTP_LOOKUP: 403 if ((error = p_cansee(td, p))) 404 break; 405 /* 406 * Return OUR priority if no pid specified, 407 * or if one is, report the highest priority 408 * in the process. There isn't much more you can do as 409 * there is only room to return a single priority. 410 * Note: specifying our own pid is not the same 411 * as leaving it zero. 412 */ 413 if (uap->pid == 0) { 414 pri_to_rtp(td, &rtp); 415 } else { 416 struct rtprio rtp2; 417 418 rtp.type = RTP_PRIO_IDLE; 419 rtp.prio = RTP_PRIO_MAX; 420 FOREACH_THREAD_IN_PROC(p, tdp) { 421 pri_to_rtp(tdp, &rtp2); 422 if (rtp2.type < rtp.type || 423 (rtp2.type == rtp.type && 424 rtp2.prio < rtp.prio)) { 425 rtp.type = rtp2.type; 426 rtp.prio = rtp2.prio; 427 } 428 } 429 } 430 PROC_UNLOCK(p); 431 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 432 case RTP_SET: 433 if ((error = p_cansched(td, p)) || (error = cierror)) 434 break; 435 436 /* 437 * Disallow setting rtprio in most cases if not superuser. 438 * See the comment in sys_rtprio_thread about idprio 439 * threads holding a lock. 440 */ 441 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME && 442 (error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0) 443 break; 444 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 445 unprivileged_idprio == 0 && 446 (error = priv_check(td, PRIV_SCHED_IDPRIO)) != 0) 447 break; 448 449 /* 450 * If we are setting our own priority, set just our 451 * thread but if we are doing another process, 452 * do all the threads on that process. If we 453 * specify our own pid we do the latter. 454 */ 455 if (uap->pid == 0) { 456 error = rtp_to_pri(&rtp, td); 457 } else { 458 FOREACH_THREAD_IN_PROC(p, td) { 459 if ((error = rtp_to_pri(&rtp, td)) != 0) 460 break; 461 } 462 } 463 break; 464 default: 465 error = EINVAL; 466 break; 467 } 468 PROC_UNLOCK(p); 469 return (error); 470 } 471 472 int 473 rtp_to_pri(struct rtprio *rtp, struct thread *td) 474 { 475 u_char newpri, oldclass, oldpri; 476 477 switch (RTP_PRIO_BASE(rtp->type)) { 478 case RTP_PRIO_REALTIME: 479 if (rtp->prio > RTP_PRIO_MAX) 480 return (EINVAL); 481 newpri = PRI_MIN_REALTIME + rtp->prio; 482 break; 483 case RTP_PRIO_NORMAL: 484 if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE)) 485 return (EINVAL); 486 newpri = PRI_MIN_TIMESHARE + rtp->prio; 487 break; 488 case RTP_PRIO_IDLE: 489 if (rtp->prio > RTP_PRIO_MAX) 490 return (EINVAL); 491 newpri = PRI_MIN_IDLE + rtp->prio; 492 break; 493 default: 494 return (EINVAL); 495 } 496 497 thread_lock(td); 498 oldclass = td->td_pri_class; 499 sched_class(td, rtp->type); /* XXX fix */ 500 oldpri = td->td_user_pri; 501 sched_user_prio(td, newpri); 502 if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL || 503 td->td_pri_class != RTP_PRIO_NORMAL)) 504 sched_prio(td, td->td_user_pri); 505 if (TD_ON_UPILOCK(td) && oldpri != newpri) { 506 critical_enter(); 507 thread_unlock(td); 508 umtx_pi_adjust(td, oldpri); 509 critical_exit(); 510 } else 511 thread_unlock(td); 512 return (0); 513 } 514 515 void 516 pri_to_rtp(struct thread *td, struct rtprio *rtp) 517 { 518 519 thread_lock(td); 520 switch (PRI_BASE(td->td_pri_class)) { 521 case PRI_REALTIME: 522 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME; 523 break; 524 case PRI_TIMESHARE: 525 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE; 526 break; 527 case PRI_IDLE: 528 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE; 529 break; 530 default: 531 break; 532 } 533 rtp->type = td->td_pri_class; 534 thread_unlock(td); 535 } 536 537 #if defined(COMPAT_43) 538 #ifndef _SYS_SYSPROTO_H_ 539 struct osetrlimit_args { 540 u_int which; 541 struct orlimit *rlp; 542 }; 543 #endif 544 int 545 osetrlimit(struct thread *td, struct osetrlimit_args *uap) 546 { 547 struct orlimit olim; 548 struct rlimit lim; 549 int error; 550 551 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 552 return (error); 553 lim.rlim_cur = olim.rlim_cur; 554 lim.rlim_max = olim.rlim_max; 555 error = kern_setrlimit(td, uap->which, &lim); 556 return (error); 557 } 558 559 #ifndef _SYS_SYSPROTO_H_ 560 struct ogetrlimit_args { 561 u_int which; 562 struct orlimit *rlp; 563 }; 564 #endif 565 int 566 ogetrlimit(struct thread *td, struct ogetrlimit_args *uap) 567 { 568 struct orlimit olim; 569 struct rlimit rl; 570 int error; 571 572 if (uap->which >= RLIM_NLIMITS) 573 return (EINVAL); 574 lim_rlimit(td, uap->which, &rl); 575 576 /* 577 * XXX would be more correct to convert only RLIM_INFINITY to the 578 * old RLIM_INFINITY and fail with EOVERFLOW for other larger 579 * values. Most 64->32 and 32->16 conversions, including not 580 * unimportant ones of uids are even more broken than what we 581 * do here (they blindly truncate). We don't do this correctly 582 * here since we have little experience with EOVERFLOW yet. 583 * Elsewhere, getuid() can't fail... 584 */ 585 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur; 586 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max; 587 error = copyout(&olim, uap->rlp, sizeof(olim)); 588 return (error); 589 } 590 #endif /* COMPAT_43 */ 591 592 #ifndef _SYS_SYSPROTO_H_ 593 struct setrlimit_args { 594 u_int which; 595 struct rlimit *rlp; 596 }; 597 #endif 598 int 599 sys_setrlimit(struct thread *td, struct setrlimit_args *uap) 600 { 601 struct rlimit alim; 602 int error; 603 604 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit)))) 605 return (error); 606 error = kern_setrlimit(td, uap->which, &alim); 607 return (error); 608 } 609 610 static void 611 lim_cb(void *arg) 612 { 613 struct rlimit rlim; 614 struct thread *td; 615 struct proc *p; 616 617 p = arg; 618 PROC_LOCK_ASSERT(p, MA_OWNED); 619 /* 620 * Check if the process exceeds its cpu resource allocation. If 621 * it reaches the max, arrange to kill the process in ast(). 622 */ 623 if (p->p_cpulimit == RLIM_INFINITY) 624 return; 625 PROC_STATLOCK(p); 626 FOREACH_THREAD_IN_PROC(p, td) { 627 ruxagg(p, td); 628 } 629 PROC_STATUNLOCK(p); 630 if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) { 631 lim_rlimit_proc(p, RLIMIT_CPU, &rlim); 632 if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) { 633 killproc(p, "exceeded maximum CPU limit"); 634 } else { 635 if (p->p_cpulimit < rlim.rlim_max) 636 p->p_cpulimit += 5; 637 kern_psignal(p, SIGXCPU); 638 } 639 } 640 if ((p->p_flag & P_WEXIT) == 0) 641 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 642 lim_cb, p, C_PREL(1)); 643 } 644 645 int 646 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp) 647 { 648 649 return (kern_proc_setrlimit(td, td->td_proc, which, limp)); 650 } 651 652 int 653 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which, 654 struct rlimit *limp) 655 { 656 struct plimit *newlim, *oldlim, *oldlim_td; 657 struct rlimit *alimp; 658 struct rlimit oldssiz; 659 int error; 660 661 if (which >= RLIM_NLIMITS) 662 return (EINVAL); 663 664 /* 665 * Preserve historical bugs by treating negative limits as unsigned. 666 */ 667 if (limp->rlim_cur < 0) 668 limp->rlim_cur = RLIM_INFINITY; 669 if (limp->rlim_max < 0) 670 limp->rlim_max = RLIM_INFINITY; 671 672 oldssiz.rlim_cur = 0; 673 newlim = lim_alloc(); 674 PROC_LOCK(p); 675 oldlim = p->p_limit; 676 alimp = &oldlim->pl_rlimit[which]; 677 if (limp->rlim_cur > alimp->rlim_max || 678 limp->rlim_max > alimp->rlim_max) 679 if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) { 680 PROC_UNLOCK(p); 681 lim_free(newlim); 682 return (error); 683 } 684 if (limp->rlim_cur > limp->rlim_max) 685 limp->rlim_cur = limp->rlim_max; 686 lim_copy(newlim, oldlim); 687 alimp = &newlim->pl_rlimit[which]; 688 689 switch (which) { 690 case RLIMIT_CPU: 691 if (limp->rlim_cur != RLIM_INFINITY && 692 p->p_cpulimit == RLIM_INFINITY) 693 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 694 lim_cb, p, C_PREL(1)); 695 p->p_cpulimit = limp->rlim_cur; 696 break; 697 case RLIMIT_DATA: 698 if (limp->rlim_cur > maxdsiz) 699 limp->rlim_cur = maxdsiz; 700 if (limp->rlim_max > maxdsiz) 701 limp->rlim_max = maxdsiz; 702 break; 703 704 case RLIMIT_STACK: 705 if (limp->rlim_cur > maxssiz) 706 limp->rlim_cur = maxssiz; 707 if (limp->rlim_max > maxssiz) 708 limp->rlim_max = maxssiz; 709 oldssiz = *alimp; 710 if (p->p_sysent->sv_fixlimit != NULL) 711 p->p_sysent->sv_fixlimit(&oldssiz, 712 RLIMIT_STACK); 713 break; 714 715 case RLIMIT_NOFILE: 716 if (limp->rlim_cur > maxfilesperproc) 717 limp->rlim_cur = maxfilesperproc; 718 if (limp->rlim_max > maxfilesperproc) 719 limp->rlim_max = maxfilesperproc; 720 break; 721 722 case RLIMIT_NPROC: 723 if (limp->rlim_cur > maxprocperuid) 724 limp->rlim_cur = maxprocperuid; 725 if (limp->rlim_max > maxprocperuid) 726 limp->rlim_max = maxprocperuid; 727 if (limp->rlim_cur < 1) 728 limp->rlim_cur = 1; 729 if (limp->rlim_max < 1) 730 limp->rlim_max = 1; 731 break; 732 } 733 if (p->p_sysent->sv_fixlimit != NULL) 734 p->p_sysent->sv_fixlimit(limp, which); 735 *alimp = *limp; 736 p->p_limit = newlim; 737 PROC_UPDATE_COW(p); 738 oldlim_td = NULL; 739 if (td == curthread && PROC_COW_CHANGECOUNT(td, p) == 1) { 740 oldlim_td = lim_cowsync(); 741 thread_cow_synced(td); 742 } 743 PROC_UNLOCK(p); 744 if (oldlim_td != NULL) { 745 MPASS(oldlim_td == oldlim); 746 lim_freen(oldlim, 2); 747 } else { 748 lim_free(oldlim); 749 } 750 751 if (which == RLIMIT_STACK && 752 /* 753 * Skip calls from exec_new_vmspace(), done when stack is 754 * not mapped yet. 755 */ 756 (td != curthread || (p->p_flag & P_INEXEC) == 0)) { 757 /* 758 * Stack is allocated to the max at exec time with only 759 * "rlim_cur" bytes accessible. If stack limit is going 760 * up make more accessible, if going down make inaccessible. 761 */ 762 if (limp->rlim_cur != oldssiz.rlim_cur) { 763 vm_offset_t addr; 764 vm_size_t size; 765 vm_prot_t prot; 766 767 if (limp->rlim_cur > oldssiz.rlim_cur) { 768 prot = p->p_sysent->sv_stackprot; 769 size = limp->rlim_cur - oldssiz.rlim_cur; 770 addr = round_page(p->p_vmspace->vm_stacktop) - 771 limp->rlim_cur; 772 } else { 773 prot = VM_PROT_NONE; 774 size = oldssiz.rlim_cur - limp->rlim_cur; 775 addr = round_page(p->p_vmspace->vm_stacktop) - 776 oldssiz.rlim_cur; 777 } 778 addr = trunc_page(addr); 779 size = round_page(size); 780 (void)vm_map_protect(&p->p_vmspace->vm_map, 781 addr, addr + size, prot, 0, 782 VM_MAP_PROTECT_SET_PROT); 783 } 784 } 785 786 return (0); 787 } 788 789 #ifndef _SYS_SYSPROTO_H_ 790 struct getrlimit_args { 791 u_int which; 792 struct rlimit *rlp; 793 }; 794 #endif 795 /* ARGSUSED */ 796 int 797 sys_getrlimit(struct thread *td, struct getrlimit_args *uap) 798 { 799 struct rlimit rlim; 800 int error; 801 802 if (uap->which >= RLIM_NLIMITS) 803 return (EINVAL); 804 lim_rlimit(td, uap->which, &rlim); 805 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit)); 806 return (error); 807 } 808 809 static int 810 getrlimitusage_one(struct proc *p, u_int which, int flags, rlim_t *res) 811 { 812 struct thread *td; 813 struct uidinfo *ui; 814 struct vmspace *vm; 815 uid_t uid; 816 int error; 817 818 error = 0; 819 PROC_LOCK(p); 820 uid = (flags & GETRLIMITUSAGE_EUID) == 0 ? p->p_ucred->cr_ruid : 821 p->p_ucred->cr_uid; 822 PROC_UNLOCK(p); 823 824 ui = uifind(uid); 825 vm = vmspace_acquire_ref(p); 826 827 switch (which) { 828 case RLIMIT_CPU: 829 PROC_LOCK(p); 830 PROC_STATLOCK(p); 831 FOREACH_THREAD_IN_PROC(p, td) 832 ruxagg(p, td); 833 *res = p->p_rux.rux_runtime; 834 PROC_STATUNLOCK(p); 835 PROC_UNLOCK(p); 836 *res /= cpu_tickrate(); 837 break; 838 case RLIMIT_FSIZE: 839 error = ENXIO; 840 break; 841 case RLIMIT_DATA: 842 if (vm == NULL) 843 error = ENXIO; 844 else 845 *res = vm->vm_dsize * PAGE_SIZE; 846 break; 847 case RLIMIT_STACK: 848 if (vm == NULL) 849 error = ENXIO; 850 else 851 *res = vm->vm_ssize * PAGE_SIZE; 852 break; 853 case RLIMIT_CORE: 854 error = ENXIO; 855 break; 856 case RLIMIT_RSS: 857 if (vm == NULL) 858 error = ENXIO; 859 else 860 *res = vmspace_resident_count(vm) * PAGE_SIZE; 861 break; 862 case RLIMIT_MEMLOCK: 863 if (vm == NULL) 864 error = ENXIO; 865 else 866 *res = pmap_wired_count(vmspace_pmap(vm)) * PAGE_SIZE; 867 break; 868 case RLIMIT_NPROC: 869 *res = ui->ui_proccnt; 870 break; 871 case RLIMIT_NOFILE: 872 *res = proc_nfiles(p); 873 break; 874 case RLIMIT_SBSIZE: 875 *res = ui->ui_sbsize; 876 break; 877 case RLIMIT_VMEM: 878 if (vm == NULL) 879 error = ENXIO; 880 else 881 *res = vm->vm_map.size; 882 break; 883 case RLIMIT_NPTS: 884 *res = ui->ui_ptscnt; 885 break; 886 case RLIMIT_SWAP: 887 *res = ui->ui_vmsize; 888 break; 889 case RLIMIT_KQUEUES: 890 *res = ui->ui_kqcnt; 891 break; 892 case RLIMIT_UMTXP: 893 *res = ui->ui_umtxcnt; 894 break; 895 case RLIMIT_PIPEBUF: 896 *res = ui->ui_pipecnt; 897 break; 898 default: 899 error = EINVAL; 900 break; 901 } 902 903 vmspace_free(vm); 904 uifree(ui); 905 return (error); 906 } 907 908 int 909 sys_getrlimitusage(struct thread *td, struct getrlimitusage_args *uap) 910 { 911 rlim_t res; 912 int error; 913 914 if ((uap->flags & ~(GETRLIMITUSAGE_EUID)) != 0) 915 return (EINVAL); 916 error = getrlimitusage_one(curproc, uap->which, uap->flags, &res); 917 if (error == 0) 918 error = copyout(&res, uap->res, sizeof(res)); 919 return (error); 920 } 921 922 /* 923 * Transform the running time and tick information for children of proc p 924 * into user and system time usage. 925 */ 926 void 927 calccru(struct proc *p, struct timeval *up, struct timeval *sp) 928 { 929 930 PROC_LOCK_ASSERT(p, MA_OWNED); 931 calcru1(p, &p->p_crux, up, sp); 932 } 933 934 /* 935 * Transform the running time and tick information in proc p into user 936 * and system time usage. If appropriate, include the current time slice 937 * on this CPU. 938 */ 939 void 940 calcru(struct proc *p, struct timeval *up, struct timeval *sp) 941 { 942 struct thread *td; 943 uint64_t runtime, u; 944 945 PROC_LOCK_ASSERT(p, MA_OWNED); 946 PROC_STATLOCK_ASSERT(p, MA_OWNED); 947 /* 948 * If we are getting stats for the current process, then add in the 949 * stats that this thread has accumulated in its current time slice. 950 * We reset the thread and CPU state as if we had performed a context 951 * switch right here. 952 */ 953 td = curthread; 954 if (td->td_proc == p) { 955 u = cpu_ticks(); 956 runtime = u - PCPU_GET(switchtime); 957 td->td_runtime += runtime; 958 td->td_incruntime += runtime; 959 PCPU_SET(switchtime, u); 960 } 961 /* Make sure the per-thread stats are current. */ 962 FOREACH_THREAD_IN_PROC(p, td) { 963 if (td->td_incruntime == 0) 964 continue; 965 ruxagg(p, td); 966 } 967 calcru1(p, &p->p_rux, up, sp); 968 } 969 970 /* Collect resource usage for a single thread. */ 971 void 972 rufetchtd(struct thread *td, struct rusage *ru) 973 { 974 struct proc *p; 975 uint64_t runtime, u; 976 977 p = td->td_proc; 978 PROC_STATLOCK_ASSERT(p, MA_OWNED); 979 THREAD_LOCK_ASSERT(td, MA_OWNED); 980 /* 981 * If we are getting stats for the current thread, then add in the 982 * stats that this thread has accumulated in its current time slice. 983 * We reset the thread and CPU state as if we had performed a context 984 * switch right here. 985 */ 986 if (td == curthread) { 987 u = cpu_ticks(); 988 runtime = u - PCPU_GET(switchtime); 989 td->td_runtime += runtime; 990 td->td_incruntime += runtime; 991 PCPU_SET(switchtime, u); 992 } 993 ruxagg_locked(p, td); 994 *ru = td->td_ru; 995 calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime); 996 } 997 998 static uint64_t 999 mul64_by_fraction(uint64_t a, uint64_t b, uint64_t c) 1000 { 1001 uint64_t acc, bh, bl; 1002 int i, s, sa, sb; 1003 1004 /* 1005 * Calculate (a * b) / c accurately enough without overflowing. c 1006 * must be nonzero, and its top bit must be 0. a or b must be 1007 * <= c, and the implementation is tuned for b <= c. 1008 * 1009 * The comments about times are for use in calcru1() with units of 1010 * microseconds for 'a' and stathz ticks at 128 Hz for b and c. 1011 * 1012 * Let n be the number of top zero bits in c. Each iteration 1013 * either returns, or reduces b by right shifting it by at least n. 1014 * The number of iterations is at most 1 + 64 / n, and the error is 1015 * at most the number of iterations. 1016 * 1017 * It is very unusual to need even 2 iterations. Previous 1018 * implementations overflowed essentially by returning early in the 1019 * first iteration, with n = 38 giving overflow at 105+ hours and 1020 * n = 32 giving overlow at at 388+ days despite a more careful 1021 * calculation. 388 days is a reasonable uptime, and the calculation 1022 * needs to work for the uptime times the number of CPUs since 'a' 1023 * is per-process. 1024 */ 1025 if (a >= (uint64_t)1 << 63) 1026 return (0); /* Unsupported arg -- can't happen. */ 1027 acc = 0; 1028 for (i = 0; i < 128; i++) { 1029 sa = flsll(a); 1030 sb = flsll(b); 1031 if (sa + sb <= 64) 1032 /* Up to 105 hours on first iteration. */ 1033 return (acc + (a * b) / c); 1034 if (a >= c) { 1035 /* 1036 * This reduction is based on a = q * c + r, with the 1037 * remainder r < c. 'a' may be large to start, and 1038 * moving bits from b into 'a' at the end of the loop 1039 * sets the top bit of 'a', so the reduction makes 1040 * significant progress. 1041 */ 1042 acc += (a / c) * b; 1043 a %= c; 1044 sa = flsll(a); 1045 if (sa + sb <= 64) 1046 /* Up to 388 days on first iteration. */ 1047 return (acc + (a * b) / c); 1048 } 1049 1050 /* 1051 * This step writes a * b as a * ((bh << s) + bl) = 1052 * a * (bh << s) + a * bl = (a << s) * bh + a * bl. The 2 1053 * additive terms are handled separately. Splitting in 1054 * this way is linear except for rounding errors. 1055 * 1056 * s = 64 - sa is the maximum such that a << s fits in 64 1057 * bits. Since a < c and c has at least 1 zero top bit, 1058 * sa < 64 and s > 0. Thus this step makes progress by 1059 * reducing b (it increases 'a', but taking remainders on 1060 * the next iteration completes the reduction). 1061 * 1062 * Finally, the choice for s is just what is needed to keep 1063 * a * bl from overflowing, so we don't need complications 1064 * like a recursive call mul64_by_fraction(a, bl, c) to 1065 * handle the second additive term. 1066 */ 1067 s = 64 - sa; 1068 bh = b >> s; 1069 bl = b - (bh << s); 1070 acc += (a * bl) / c; 1071 a <<= s; 1072 b = bh; 1073 } 1074 return (0); /* Algorithm failure -- can't happen. */ 1075 } 1076 1077 static void 1078 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up, 1079 struct timeval *sp) 1080 { 1081 /* {user, system, interrupt, total} {ticks, usec}: */ 1082 uint64_t ut, uu, st, su, it, tt, tu; 1083 1084 ut = ruxp->rux_uticks; 1085 st = ruxp->rux_sticks; 1086 it = ruxp->rux_iticks; 1087 tt = ut + st + it; 1088 if (tt == 0) { 1089 /* Avoid divide by zero */ 1090 st = 1; 1091 tt = 1; 1092 } 1093 tu = cputick2usec(ruxp->rux_runtime); 1094 if ((int64_t)tu < 0) { 1095 /* XXX: this should be an assert /phk */ 1096 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n", 1097 (intmax_t)tu, p->p_pid, p->p_comm); 1098 tu = ruxp->rux_tu; 1099 } 1100 1101 /* Subdivide tu. Avoid overflow in the multiplications. */ 1102 if (__predict_true(tu <= ((uint64_t)1 << 38) && tt <= (1 << 26))) { 1103 /* Up to 76 hours when stathz is 128. */ 1104 uu = (tu * ut) / tt; 1105 su = (tu * st) / tt; 1106 } else { 1107 uu = mul64_by_fraction(tu, ut, tt); 1108 su = mul64_by_fraction(tu, st, tt); 1109 } 1110 1111 if (tu >= ruxp->rux_tu) { 1112 /* 1113 * The normal case, time increased. 1114 * Enforce monotonicity of bucketed numbers. 1115 */ 1116 if (uu < ruxp->rux_uu) 1117 uu = ruxp->rux_uu; 1118 if (su < ruxp->rux_su) 1119 su = ruxp->rux_su; 1120 } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) { 1121 /* 1122 * When we calibrate the cputicker, it is not uncommon to 1123 * see the presumably fixed frequency increase slightly over 1124 * time as a result of thermal stabilization and NTP 1125 * discipline (of the reference clock). We therefore ignore 1126 * a bit of backwards slop because we expect to catch up 1127 * shortly. We use a 3 microsecond limit to catch low 1128 * counts and a 1% limit for high counts. 1129 */ 1130 uu = ruxp->rux_uu; 1131 su = ruxp->rux_su; 1132 tu = ruxp->rux_tu; 1133 } else if (vm_guest == VM_GUEST_NO) { /* tu < ruxp->rux_tu */ 1134 /* 1135 * What happened here was likely that a laptop, which ran at 1136 * a reduced clock frequency at boot, kicked into high gear. 1137 * The wisdom of spamming this message in that case is 1138 * dubious, but it might also be indicative of something 1139 * serious, so lets keep it and hope laptops can be made 1140 * more truthful about their CPU speed via ACPI. 1141 */ 1142 printf("calcru: runtime went backwards from %ju usec " 1143 "to %ju usec for pid %d (%s)\n", 1144 (uintmax_t)ruxp->rux_tu, (uintmax_t)tu, 1145 p->p_pid, p->p_comm); 1146 } 1147 1148 ruxp->rux_uu = uu; 1149 ruxp->rux_su = su; 1150 ruxp->rux_tu = tu; 1151 1152 up->tv_sec = uu / 1000000; 1153 up->tv_usec = uu % 1000000; 1154 sp->tv_sec = su / 1000000; 1155 sp->tv_usec = su % 1000000; 1156 } 1157 1158 #ifndef _SYS_SYSPROTO_H_ 1159 struct getrusage_args { 1160 int who; 1161 struct rusage *rusage; 1162 }; 1163 #endif 1164 int 1165 sys_getrusage(struct thread *td, struct getrusage_args *uap) 1166 { 1167 struct rusage ru; 1168 int error; 1169 1170 error = kern_getrusage(td, uap->who, &ru); 1171 if (error == 0) 1172 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 1173 return (error); 1174 } 1175 1176 int 1177 kern_getrusage(struct thread *td, int who, struct rusage *rup) 1178 { 1179 struct proc *p; 1180 int error; 1181 1182 error = 0; 1183 p = td->td_proc; 1184 PROC_LOCK(p); 1185 switch (who) { 1186 case RUSAGE_SELF: 1187 rufetchcalc(p, rup, &rup->ru_utime, 1188 &rup->ru_stime); 1189 break; 1190 1191 case RUSAGE_CHILDREN: 1192 *rup = p->p_stats->p_cru; 1193 calccru(p, &rup->ru_utime, &rup->ru_stime); 1194 break; 1195 1196 case RUSAGE_THREAD: 1197 PROC_STATLOCK(p); 1198 thread_lock(td); 1199 rufetchtd(td, rup); 1200 thread_unlock(td); 1201 PROC_STATUNLOCK(p); 1202 break; 1203 1204 default: 1205 error = EINVAL; 1206 } 1207 PROC_UNLOCK(p); 1208 return (error); 1209 } 1210 1211 void 1212 rucollect(struct rusage *ru, struct rusage *ru2) 1213 { 1214 long *ip, *ip2; 1215 int i; 1216 1217 if (ru->ru_maxrss < ru2->ru_maxrss) 1218 ru->ru_maxrss = ru2->ru_maxrss; 1219 ip = &ru->ru_first; 1220 ip2 = &ru2->ru_first; 1221 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 1222 *ip++ += *ip2++; 1223 } 1224 1225 void 1226 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2, 1227 struct rusage_ext *rux2) 1228 { 1229 1230 rux->rux_runtime += rux2->rux_runtime; 1231 rux->rux_uticks += rux2->rux_uticks; 1232 rux->rux_sticks += rux2->rux_sticks; 1233 rux->rux_iticks += rux2->rux_iticks; 1234 rux->rux_uu += rux2->rux_uu; 1235 rux->rux_su += rux2->rux_su; 1236 rux->rux_tu += rux2->rux_tu; 1237 rucollect(ru, ru2); 1238 } 1239 1240 /* 1241 * Aggregate tick counts into the proc's rusage_ext. 1242 */ 1243 static void 1244 ruxagg_ext_locked(struct rusage_ext *rux, struct thread *td) 1245 { 1246 1247 rux->rux_runtime += td->td_incruntime; 1248 rux->rux_uticks += td->td_uticks; 1249 rux->rux_sticks += td->td_sticks; 1250 rux->rux_iticks += td->td_iticks; 1251 } 1252 1253 void 1254 ruxagg_locked(struct proc *p, struct thread *td) 1255 { 1256 THREAD_LOCK_ASSERT(td, MA_OWNED); 1257 PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED); 1258 1259 ruxagg_ext_locked(&p->p_rux, td); 1260 ruxagg_ext_locked(&td->td_rux, td); 1261 td->td_incruntime = 0; 1262 td->td_uticks = 0; 1263 td->td_iticks = 0; 1264 td->td_sticks = 0; 1265 } 1266 1267 void 1268 ruxagg(struct proc *p, struct thread *td) 1269 { 1270 1271 thread_lock(td); 1272 ruxagg_locked(p, td); 1273 thread_unlock(td); 1274 } 1275 1276 /* 1277 * Update the rusage_ext structure and fetch a valid aggregate rusage 1278 * for proc p if storage for one is supplied. 1279 */ 1280 void 1281 rufetch(struct proc *p, struct rusage *ru) 1282 { 1283 struct thread *td; 1284 1285 PROC_STATLOCK_ASSERT(p, MA_OWNED); 1286 1287 *ru = p->p_ru; 1288 if (p->p_numthreads > 0) { 1289 FOREACH_THREAD_IN_PROC(p, td) { 1290 ruxagg(p, td); 1291 rucollect(ru, &td->td_ru); 1292 } 1293 } 1294 } 1295 1296 /* 1297 * Atomically perform a rufetch and a calcru together. 1298 * Consumers, can safely assume the calcru is executed only once 1299 * rufetch is completed. 1300 */ 1301 void 1302 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up, 1303 struct timeval *sp) 1304 { 1305 1306 PROC_STATLOCK(p); 1307 rufetch(p, ru); 1308 calcru(p, up, sp); 1309 PROC_STATUNLOCK(p); 1310 } 1311 1312 /* 1313 * Allocate a new resource limits structure and initialize its 1314 * reference count and mutex pointer. 1315 */ 1316 struct plimit * 1317 lim_alloc(void) 1318 { 1319 struct plimit *limp; 1320 1321 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK); 1322 refcount_init(&limp->pl_refcnt, 1); 1323 return (limp); 1324 } 1325 1326 struct plimit * 1327 lim_hold(struct plimit *limp) 1328 { 1329 1330 refcount_acquire(&limp->pl_refcnt); 1331 return (limp); 1332 } 1333 1334 struct plimit * 1335 lim_cowsync(void) 1336 { 1337 struct thread *td; 1338 struct proc *p; 1339 struct plimit *oldlimit; 1340 1341 td = curthread; 1342 p = td->td_proc; 1343 PROC_LOCK_ASSERT(p, MA_OWNED); 1344 1345 if (td->td_limit == p->p_limit) 1346 return (NULL); 1347 1348 oldlimit = td->td_limit; 1349 td->td_limit = lim_hold(p->p_limit); 1350 1351 return (oldlimit); 1352 } 1353 1354 void 1355 lim_fork(struct proc *p1, struct proc *p2) 1356 { 1357 1358 PROC_LOCK_ASSERT(p1, MA_OWNED); 1359 PROC_LOCK_ASSERT(p2, MA_OWNED); 1360 1361 p2->p_limit = lim_hold(p1->p_limit); 1362 callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0); 1363 if (p1->p_cpulimit != RLIM_INFINITY) 1364 callout_reset_sbt(&p2->p_limco, SBT_1S, 0, 1365 lim_cb, p2, C_PREL(1)); 1366 } 1367 1368 void 1369 lim_free(struct plimit *limp) 1370 { 1371 1372 if (refcount_release(&limp->pl_refcnt)) 1373 free((void *)limp, M_PLIMIT); 1374 } 1375 1376 void 1377 lim_freen(struct plimit *limp, int n) 1378 { 1379 1380 if (refcount_releasen(&limp->pl_refcnt, n)) 1381 free((void *)limp, M_PLIMIT); 1382 } 1383 1384 void 1385 limbatch_add(struct limbatch *lb, struct thread *td) 1386 { 1387 struct plimit *limp; 1388 1389 MPASS(td->td_limit != NULL); 1390 limp = td->td_limit; 1391 1392 if (lb->limp != limp) { 1393 if (lb->count != 0) { 1394 lim_freen(lb->limp, lb->count); 1395 lb->count = 0; 1396 } 1397 lb->limp = limp; 1398 } 1399 1400 lb->count++; 1401 } 1402 1403 void 1404 limbatch_final(struct limbatch *lb) 1405 { 1406 1407 MPASS(lb->count != 0); 1408 lim_freen(lb->limp, lb->count); 1409 } 1410 1411 /* 1412 * Make a copy of the plimit structure. 1413 * We share these structures copy-on-write after fork. 1414 */ 1415 void 1416 lim_copy(struct plimit *dst, struct plimit *src) 1417 { 1418 1419 KASSERT(dst->pl_refcnt <= 1, ("lim_copy to shared limit")); 1420 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit)); 1421 } 1422 1423 /* 1424 * Return the hard limit for a particular system resource. The 1425 * which parameter specifies the index into the rlimit array. 1426 */ 1427 rlim_t 1428 lim_max(struct thread *td, int which) 1429 { 1430 struct rlimit rl; 1431 1432 lim_rlimit(td, which, &rl); 1433 return (rl.rlim_max); 1434 } 1435 1436 rlim_t 1437 lim_max_proc(struct proc *p, int which) 1438 { 1439 struct rlimit rl; 1440 1441 lim_rlimit_proc(p, which, &rl); 1442 return (rl.rlim_max); 1443 } 1444 1445 /* 1446 * Return the current (soft) limit for a particular system resource. 1447 * The which parameter which specifies the index into the rlimit array 1448 */ 1449 rlim_t 1450 (lim_cur)(struct thread *td, int which) 1451 { 1452 struct rlimit rl; 1453 1454 lim_rlimit(td, which, &rl); 1455 return (rl.rlim_cur); 1456 } 1457 1458 rlim_t 1459 lim_cur_proc(struct proc *p, int which) 1460 { 1461 struct rlimit rl; 1462 1463 lim_rlimit_proc(p, which, &rl); 1464 return (rl.rlim_cur); 1465 } 1466 1467 /* 1468 * Return a copy of the entire rlimit structure for the system limit 1469 * specified by 'which' in the rlimit structure pointed to by 'rlp'. 1470 */ 1471 void 1472 lim_rlimit(struct thread *td, int which, struct rlimit *rlp) 1473 { 1474 struct proc *p = td->td_proc; 1475 1476 MPASS(td == curthread); 1477 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1478 ("request for invalid resource limit")); 1479 *rlp = td->td_limit->pl_rlimit[which]; 1480 if (p->p_sysent->sv_fixlimit != NULL) 1481 p->p_sysent->sv_fixlimit(rlp, which); 1482 } 1483 1484 void 1485 lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp) 1486 { 1487 1488 PROC_LOCK_ASSERT(p, MA_OWNED); 1489 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1490 ("request for invalid resource limit")); 1491 *rlp = p->p_limit->pl_rlimit[which]; 1492 if (p->p_sysent->sv_fixlimit != NULL) 1493 p->p_sysent->sv_fixlimit(rlp, which); 1494 } 1495 1496 void 1497 uihashinit(void) 1498 { 1499 1500 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 1501 rw_init(&uihashtbl_lock, "uidinfo hash"); 1502 } 1503 1504 /* 1505 * Look up a uidinfo struct for the parameter uid. 1506 * uihashtbl_lock must be locked. 1507 * Increase refcount on uidinfo struct returned. 1508 */ 1509 static struct uidinfo * 1510 uilookup(uid_t uid) 1511 { 1512 struct uihashhead *uipp; 1513 struct uidinfo *uip; 1514 1515 rw_assert(&uihashtbl_lock, RA_LOCKED); 1516 uipp = UIHASH(uid); 1517 LIST_FOREACH(uip, uipp, ui_hash) 1518 if (uip->ui_uid == uid) { 1519 uihold(uip); 1520 break; 1521 } 1522 1523 return (uip); 1524 } 1525 1526 /* 1527 * Find or allocate a struct uidinfo for a particular uid. 1528 * Returns with uidinfo struct referenced. 1529 * uifree() should be called on a struct uidinfo when released. 1530 */ 1531 struct uidinfo * 1532 uifind(uid_t uid) 1533 { 1534 struct uidinfo *new_uip, *uip; 1535 struct ucred *cred; 1536 1537 cred = curthread->td_ucred; 1538 if (cred->cr_uidinfo->ui_uid == uid) { 1539 uip = cred->cr_uidinfo; 1540 uihold(uip); 1541 return (uip); 1542 } else if (cred->cr_ruidinfo->ui_uid == uid) { 1543 uip = cred->cr_ruidinfo; 1544 uihold(uip); 1545 return (uip); 1546 } 1547 1548 rw_rlock(&uihashtbl_lock); 1549 uip = uilookup(uid); 1550 rw_runlock(&uihashtbl_lock); 1551 if (uip != NULL) 1552 return (uip); 1553 1554 new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO); 1555 racct_create(&new_uip->ui_racct); 1556 refcount_init(&new_uip->ui_ref, 1); 1557 new_uip->ui_uid = uid; 1558 1559 rw_wlock(&uihashtbl_lock); 1560 /* 1561 * There's a chance someone created our uidinfo while we 1562 * were in malloc and not holding the lock, so we have to 1563 * make sure we don't insert a duplicate uidinfo. 1564 */ 1565 if ((uip = uilookup(uid)) == NULL) { 1566 LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash); 1567 rw_wunlock(&uihashtbl_lock); 1568 uip = new_uip; 1569 } else { 1570 rw_wunlock(&uihashtbl_lock); 1571 racct_destroy(&new_uip->ui_racct); 1572 free(new_uip, M_UIDINFO); 1573 } 1574 return (uip); 1575 } 1576 1577 /* 1578 * Place another refcount on a uidinfo struct. 1579 */ 1580 void 1581 uihold(struct uidinfo *uip) 1582 { 1583 1584 refcount_acquire(&uip->ui_ref); 1585 } 1586 1587 /*- 1588 * Since uidinfo structs have a long lifetime, we use an 1589 * opportunistic refcounting scheme to avoid locking the lookup hash 1590 * for each release. 1591 * 1592 * If the refcount hits 0, we need to free the structure, 1593 * which means we need to lock the hash. 1594 * Optimal case: 1595 * After locking the struct and lowering the refcount, if we find 1596 * that we don't need to free, simply unlock and return. 1597 * Suboptimal case: 1598 * If refcount lowering results in need to free, bump the count 1599 * back up, lose the lock and acquire the locks in the proper 1600 * order to try again. 1601 */ 1602 void 1603 uifree(struct uidinfo *uip) 1604 { 1605 1606 if (refcount_release_if_not_last(&uip->ui_ref)) 1607 return; 1608 1609 rw_wlock(&uihashtbl_lock); 1610 if (refcount_release(&uip->ui_ref) == 0) { 1611 rw_wunlock(&uihashtbl_lock); 1612 return; 1613 } 1614 1615 racct_destroy(&uip->ui_racct); 1616 LIST_REMOVE(uip, ui_hash); 1617 rw_wunlock(&uihashtbl_lock); 1618 1619 if (uip->ui_sbsize != 0) 1620 printf("freeing uidinfo: uid = %d, sbsize = %ld\n", 1621 uip->ui_uid, uip->ui_sbsize); 1622 if (uip->ui_proccnt != 0) 1623 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 1624 uip->ui_uid, uip->ui_proccnt); 1625 if (uip->ui_vmsize != 0) 1626 printf("freeing uidinfo: uid = %d, swapuse = %lld\n", 1627 uip->ui_uid, (unsigned long long)uip->ui_vmsize); 1628 if (uip->ui_ptscnt != 0) 1629 printf("freeing uidinfo: uid = %d, ptscnt = %ld\n", 1630 uip->ui_uid, uip->ui_ptscnt); 1631 if (uip->ui_kqcnt != 0) 1632 printf("freeing uidinfo: uid = %d, kqcnt = %ld\n", 1633 uip->ui_uid, uip->ui_kqcnt); 1634 if (uip->ui_umtxcnt != 0) 1635 printf("freeing uidinfo: uid = %d, umtxcnt = %ld\n", 1636 uip->ui_uid, uip->ui_umtxcnt); 1637 if (uip->ui_pipecnt != 0) 1638 printf("freeing uidinfo: uid = %d, pipecnt = %ld\n", 1639 uip->ui_uid, uip->ui_pipecnt); 1640 free(uip, M_UIDINFO); 1641 } 1642 1643 #ifdef RACCT 1644 void 1645 ui_racct_foreach(void (*callback)(struct racct *racct, 1646 void *arg2, void *arg3), void (*pre)(void), void (*post)(void), 1647 void *arg2, void *arg3) 1648 { 1649 struct uidinfo *uip; 1650 struct uihashhead *uih; 1651 1652 rw_rlock(&uihashtbl_lock); 1653 if (pre != NULL) 1654 (pre)(); 1655 for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) { 1656 LIST_FOREACH(uip, uih, ui_hash) { 1657 (callback)(uip->ui_racct, arg2, arg3); 1658 } 1659 } 1660 if (post != NULL) 1661 (post)(); 1662 rw_runlock(&uihashtbl_lock); 1663 } 1664 #endif 1665 1666 static inline int 1667 chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name) 1668 { 1669 long new; 1670 1671 /* Don't allow them to exceed max, but allow subtraction. */ 1672 new = atomic_fetchadd_long(limit, (long)diff) + diff; 1673 if (diff > 0 && max != 0) { 1674 if (new < 0 || new > max) { 1675 atomic_subtract_long(limit, (long)diff); 1676 return (0); 1677 } 1678 } else if (new < 0) 1679 printf("negative %s for uid = %d\n", name, uip->ui_uid); 1680 return (1); 1681 } 1682 1683 /* 1684 * Change the count associated with number of processes 1685 * a given user is using. When 'max' is 0, don't enforce a limit 1686 */ 1687 int 1688 chgproccnt(struct uidinfo *uip, int diff, rlim_t max) 1689 { 1690 1691 return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt")); 1692 } 1693 1694 /* 1695 * Change the total socket buffer size a user has used. 1696 */ 1697 int 1698 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max) 1699 { 1700 int diff, rv; 1701 1702 diff = to - *hiwat; 1703 if (diff > 0 && max == 0) { 1704 rv = 0; 1705 } else { 1706 rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize"); 1707 if (rv != 0) 1708 *hiwat = to; 1709 } 1710 return (rv); 1711 } 1712 1713 /* 1714 * Change the count associated with number of pseudo-terminals 1715 * a given user is using. When 'max' is 0, don't enforce a limit 1716 */ 1717 int 1718 chgptscnt(struct uidinfo *uip, int diff, rlim_t max) 1719 { 1720 1721 return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt")); 1722 } 1723 1724 int 1725 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max) 1726 { 1727 1728 return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt")); 1729 } 1730 1731 int 1732 chgumtxcnt(struct uidinfo *uip, int diff, rlim_t max) 1733 { 1734 1735 return (chglimit(uip, &uip->ui_umtxcnt, diff, max, "umtxcnt")); 1736 } 1737 1738 int 1739 chgpipecnt(struct uidinfo *uip, int diff, rlim_t max) 1740 { 1741 1742 return (chglimit(uip, &uip->ui_pipecnt, diff, max, "pipecnt")); 1743 } 1744 1745 static int 1746 sysctl_kern_proc_rlimit_usage(SYSCTL_HANDLER_ARGS) 1747 { 1748 rlim_t resval[RLIM_NLIMITS]; 1749 struct proc *p; 1750 size_t len; 1751 int error, *name, i; 1752 1753 name = (int *)arg1; 1754 if ((u_int)arg2 != 1 && (u_int)arg2 != 2) 1755 return (EINVAL); 1756 if (req->newptr != NULL) 1757 return (EINVAL); 1758 1759 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1760 if (error != 0) 1761 return (error); 1762 1763 if ((u_int)arg2 == 1) { 1764 len = sizeof(resval); 1765 memset(resval, 0, sizeof(resval)); 1766 for (i = 0; i < RLIM_NLIMITS; i++) { 1767 error = getrlimitusage_one(p, (unsigned)i, 0, 1768 &resval[i]); 1769 if (error == ENXIO) { 1770 resval[i] = -1; 1771 error = 0; 1772 } else if (error != 0) { 1773 break; 1774 } 1775 } 1776 } else { 1777 len = sizeof(resval[0]); 1778 error = getrlimitusage_one(p, (unsigned)name[1], 0, 1779 &resval[0]); 1780 if (error == ENXIO) { 1781 resval[0] = -1; 1782 error = 0; 1783 } 1784 } 1785 if (error == 0) 1786 error = SYSCTL_OUT(req, resval, len); 1787 PRELE(p); 1788 return (error); 1789 } 1790 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT_USAGE, rlimit_usage, 1791 CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 1792 sysctl_kern_proc_rlimit_usage, 1793 "Process limited resources usage info"); 1794