1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_compat.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/sysproto.h> 49 #include <sys/file.h> 50 #include <sys/kernel.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/resourcevar.h> 56 #include <sys/sched.h> 57 #include <sys/sx.h> 58 #include <sys/sysent.h> 59 #include <sys/time.h> 60 61 #include <vm/vm.h> 62 #include <vm/vm_param.h> 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 66 static int donice(struct thread *td, struct proc *chgp, int n); 67 68 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 69 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 70 static struct mtx uihashtbl_mtx; 71 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 72 static u_long uihash; /* size of hash table - 1 */ 73 74 static struct uidinfo *uilookup(uid_t uid); 75 76 /* 77 * Resource controls and accounting. 78 */ 79 80 #ifndef _SYS_SYSPROTO_H_ 81 struct getpriority_args { 82 int which; 83 int who; 84 }; 85 #endif 86 /* 87 * MPSAFE 88 */ 89 int 90 getpriority(td, uap) 91 struct thread *td; 92 register struct getpriority_args *uap; 93 { 94 struct proc *p; 95 int low = PRIO_MAX + 1; 96 int error = 0; 97 struct ksegrp *kg; 98 99 switch (uap->which) { 100 case PRIO_PROCESS: 101 if (uap->who == 0) 102 low = td->td_ksegrp->kg_nice; 103 else { 104 p = pfind(uap->who); 105 if (p == NULL) 106 break; 107 if (p_cansee(td, p) == 0) { 108 FOREACH_KSEGRP_IN_PROC(p, kg) { 109 if (kg->kg_nice < low) 110 low = kg->kg_nice; 111 } 112 } 113 PROC_UNLOCK(p); 114 } 115 break; 116 117 case PRIO_PGRP: { 118 register struct pgrp *pg; 119 120 sx_slock(&proctree_lock); 121 if (uap->who == 0) { 122 pg = td->td_proc->p_pgrp; 123 PGRP_LOCK(pg); 124 } else { 125 pg = pgfind(uap->who); 126 if (pg == NULL) { 127 sx_sunlock(&proctree_lock); 128 break; 129 } 130 } 131 sx_sunlock(&proctree_lock); 132 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 133 PROC_LOCK(p); 134 if (!p_cansee(td, p)) { 135 FOREACH_KSEGRP_IN_PROC(p, kg) { 136 if (kg->kg_nice < low) 137 low = kg->kg_nice; 138 } 139 } 140 PROC_UNLOCK(p); 141 } 142 PGRP_UNLOCK(pg); 143 break; 144 } 145 146 case PRIO_USER: 147 if (uap->who == 0) 148 uap->who = td->td_ucred->cr_uid; 149 sx_slock(&allproc_lock); 150 LIST_FOREACH(p, &allproc, p_list) { 151 PROC_LOCK(p); 152 if (!p_cansee(td, p) && 153 p->p_ucred->cr_uid == uap->who) { 154 FOREACH_KSEGRP_IN_PROC(p, kg) { 155 if (kg->kg_nice < low) 156 low = kg->kg_nice; 157 } 158 } 159 PROC_UNLOCK(p); 160 } 161 sx_sunlock(&allproc_lock); 162 break; 163 164 default: 165 error = EINVAL; 166 break; 167 } 168 if (low == PRIO_MAX + 1 && error == 0) 169 error = ESRCH; 170 td->td_retval[0] = low; 171 return (error); 172 } 173 174 #ifndef _SYS_SYSPROTO_H_ 175 struct setpriority_args { 176 int which; 177 int who; 178 int prio; 179 }; 180 #endif 181 /* 182 * MPSAFE 183 */ 184 /* ARGSUSED */ 185 int 186 setpriority(td, uap) 187 struct thread *td; 188 register struct setpriority_args *uap; 189 { 190 struct proc *curp = td->td_proc; 191 register struct proc *p; 192 int found = 0, error = 0; 193 194 switch (uap->which) { 195 case PRIO_PROCESS: 196 if (uap->who == 0) { 197 PROC_LOCK(curp); 198 error = donice(td, curp, uap->prio); 199 PROC_UNLOCK(curp); 200 } else { 201 p = pfind(uap->who); 202 if (p == 0) 203 break; 204 if (p_cansee(td, p) == 0) 205 error = donice(td, p, uap->prio); 206 PROC_UNLOCK(p); 207 } 208 found++; 209 break; 210 211 case PRIO_PGRP: { 212 register struct pgrp *pg; 213 214 sx_slock(&proctree_lock); 215 if (uap->who == 0) { 216 pg = curp->p_pgrp; 217 PGRP_LOCK(pg); 218 } else { 219 pg = pgfind(uap->who); 220 if (pg == NULL) { 221 sx_sunlock(&proctree_lock); 222 break; 223 } 224 } 225 sx_sunlock(&proctree_lock); 226 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 227 PROC_LOCK(p); 228 if (!p_cansee(td, p)) { 229 error = donice(td, p, uap->prio); 230 found++; 231 } 232 PROC_UNLOCK(p); 233 } 234 PGRP_UNLOCK(pg); 235 break; 236 } 237 238 case PRIO_USER: 239 if (uap->who == 0) 240 uap->who = td->td_ucred->cr_uid; 241 sx_slock(&allproc_lock); 242 FOREACH_PROC_IN_SYSTEM(p) { 243 PROC_LOCK(p); 244 if (p->p_ucred->cr_uid == uap->who && 245 !p_cansee(td, p)) { 246 error = donice(td, p, uap->prio); 247 found++; 248 } 249 PROC_UNLOCK(p); 250 } 251 sx_sunlock(&allproc_lock); 252 break; 253 254 default: 255 error = EINVAL; 256 break; 257 } 258 if (found == 0 && error == 0) 259 error = ESRCH; 260 return (error); 261 } 262 263 /* 264 * Set "nice" for a process. Doesn't really understand threaded processes well 265 * but does try. Has the unfortunate side effect of making all the NICE 266 * values for a process's ksegrps the same.. This suggests that 267 * NICE valuse should be stored as a process nice and deltas for the ksegrps. 268 * (but not yet). 269 */ 270 static int 271 donice(struct thread *td, struct proc *p, int n) 272 { 273 int error; 274 int low = PRIO_MAX + 1; 275 struct ksegrp *kg; 276 277 PROC_LOCK_ASSERT(p, MA_OWNED); 278 if ((error = p_cansched(td, p))) 279 return (error); 280 if (n > PRIO_MAX) 281 n = PRIO_MAX; 282 if (n < PRIO_MIN) 283 n = PRIO_MIN; 284 /* 285 * Only allow nicing if to more than the lowest nice. 286 * e.g. nices of 4,3,2 allow nice to 3 but not 1 287 */ 288 FOREACH_KSEGRP_IN_PROC(p, kg) { 289 if (kg->kg_nice < low) 290 low = kg->kg_nice; 291 } 292 if (n < low && suser(td)) 293 return (EACCES); 294 mtx_lock_spin(&sched_lock); 295 FOREACH_KSEGRP_IN_PROC(p, kg) { 296 sched_nice(kg, n); 297 } 298 mtx_unlock_spin(&sched_lock); 299 return (0); 300 } 301 302 /* rtprio system call */ 303 #ifndef _SYS_SYSPROTO_H_ 304 struct rtprio_args { 305 int function; 306 pid_t pid; 307 struct rtprio *rtp; 308 }; 309 #endif 310 311 /* 312 * Set realtime priority 313 */ 314 315 /* 316 * MPSAFE 317 */ 318 /* ARGSUSED */ 319 int 320 rtprio(td, uap) 321 struct thread *td; 322 register struct rtprio_args *uap; 323 { 324 struct proc *curp = td->td_proc; 325 register struct proc *p; 326 struct rtprio rtp; 327 int error, cierror = 0; 328 329 /* Perform copyin before acquiring locks if needed. */ 330 if (uap->function == RTP_SET) 331 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 332 333 if (uap->pid == 0) { 334 p = curp; 335 PROC_LOCK(p); 336 } else { 337 p = pfind(uap->pid); 338 if (p == NULL) 339 return (ESRCH); 340 } 341 342 switch (uap->function) { 343 case RTP_LOOKUP: 344 if ((error = p_cansee(td, p))) 345 break; 346 mtx_lock_spin(&sched_lock); 347 pri_to_rtp(FIRST_KSEGRP_IN_PROC(p), &rtp); 348 mtx_unlock_spin(&sched_lock); 349 PROC_UNLOCK(p); 350 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 351 case RTP_SET: 352 if ((error = p_cansched(td, p)) || (error = cierror)) 353 break; 354 /* disallow setting rtprio in most cases if not superuser */ 355 if (suser(td) != 0) { 356 /* can't set someone else's */ 357 if (uap->pid) { 358 error = EPERM; 359 break; 360 } 361 /* can't set realtime priority */ 362 /* 363 * Realtime priority has to be restricted for reasons which should be 364 * obvious. However, for idle priority, there is a potential for 365 * system deadlock if an idleprio process gains a lock on a resource 366 * that other processes need (and the idleprio process can't run 367 * due to a CPU-bound normal process). Fix me! XXX 368 */ 369 #if 0 370 if (RTP_PRIO_IS_REALTIME(rtp.type)) 371 #endif 372 if (rtp.type != RTP_PRIO_NORMAL) { 373 error = EPERM; 374 break; 375 } 376 } 377 mtx_lock_spin(&sched_lock); 378 error = rtp_to_pri(&rtp, FIRST_KSEGRP_IN_PROC(p)); 379 mtx_unlock_spin(&sched_lock); 380 break; 381 default: 382 error = EINVAL; 383 break; 384 } 385 PROC_UNLOCK(p); 386 return (error); 387 } 388 389 int 390 rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg) 391 { 392 393 mtx_assert(&sched_lock, MA_OWNED); 394 if (rtp->prio > RTP_PRIO_MAX) 395 return (EINVAL); 396 switch (RTP_PRIO_BASE(rtp->type)) { 397 case RTP_PRIO_REALTIME: 398 kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio; 399 break; 400 case RTP_PRIO_NORMAL: 401 kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio; 402 break; 403 case RTP_PRIO_IDLE: 404 kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio; 405 break; 406 default: 407 return (EINVAL); 408 } 409 sched_class(kg, rtp->type); 410 if (curthread->td_ksegrp == kg) { 411 curthread->td_base_pri = kg->kg_user_pri; 412 curthread->td_priority = kg->kg_user_pri; /* XXX dubious */ 413 } 414 return (0); 415 } 416 417 void 418 pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp) 419 { 420 421 mtx_assert(&sched_lock, MA_OWNED); 422 switch (PRI_BASE(kg->kg_pri_class)) { 423 case PRI_REALTIME: 424 rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME; 425 break; 426 case PRI_TIMESHARE: 427 rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE; 428 break; 429 case PRI_IDLE: 430 rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE; 431 break; 432 default: 433 break; 434 } 435 rtp->type = kg->kg_pri_class; 436 } 437 438 #if defined(COMPAT_43) || defined(COMPAT_SUNOS) 439 #ifndef _SYS_SYSPROTO_H_ 440 struct osetrlimit_args { 441 u_int which; 442 struct orlimit *rlp; 443 }; 444 #endif 445 /* 446 * MPSAFE 447 */ 448 /* ARGSUSED */ 449 int 450 osetrlimit(td, uap) 451 struct thread *td; 452 register struct osetrlimit_args *uap; 453 { 454 struct orlimit olim; 455 struct rlimit lim; 456 int error; 457 458 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 459 return (error); 460 lim.rlim_cur = olim.rlim_cur; 461 lim.rlim_max = olim.rlim_max; 462 mtx_lock(&Giant); 463 error = dosetrlimit(td, uap->which, &lim); 464 mtx_unlock(&Giant); 465 return (error); 466 } 467 468 #ifndef _SYS_SYSPROTO_H_ 469 struct ogetrlimit_args { 470 u_int which; 471 struct orlimit *rlp; 472 }; 473 #endif 474 /* 475 * MPSAFE 476 */ 477 /* ARGSUSED */ 478 int 479 ogetrlimit(td, uap) 480 struct thread *td; 481 register struct ogetrlimit_args *uap; 482 { 483 struct proc *p = td->td_proc; 484 struct orlimit olim; 485 int error; 486 487 if (uap->which >= RLIM_NLIMITS) 488 return (EINVAL); 489 mtx_lock(&Giant); 490 olim.rlim_cur = p->p_rlimit[uap->which].rlim_cur; 491 if (olim.rlim_cur == -1) 492 olim.rlim_cur = 0x7fffffff; 493 olim.rlim_max = p->p_rlimit[uap->which].rlim_max; 494 if (olim.rlim_max == -1) 495 olim.rlim_max = 0x7fffffff; 496 error = copyout(&olim, uap->rlp, sizeof(olim)); 497 mtx_unlock(&Giant); 498 return (error); 499 } 500 #endif /* COMPAT_43 || COMPAT_SUNOS */ 501 502 #ifndef _SYS_SYSPROTO_H_ 503 struct __setrlimit_args { 504 u_int which; 505 struct rlimit *rlp; 506 }; 507 #endif 508 /* 509 * MPSAFE 510 */ 511 /* ARGSUSED */ 512 int 513 setrlimit(td, uap) 514 struct thread *td; 515 register struct __setrlimit_args *uap; 516 { 517 struct rlimit alim; 518 int error; 519 520 if ((error = copyin(uap->rlp, &alim, sizeof (struct rlimit)))) 521 return (error); 522 mtx_lock(&Giant); 523 error = dosetrlimit(td, uap->which, &alim); 524 mtx_unlock(&Giant); 525 return (error); 526 } 527 528 int 529 dosetrlimit(td, which, limp) 530 struct thread *td; 531 u_int which; 532 struct rlimit *limp; 533 { 534 struct proc *p = td->td_proc; 535 register struct rlimit *alimp; 536 int error; 537 538 GIANT_REQUIRED; 539 540 if (which >= RLIM_NLIMITS) 541 return (EINVAL); 542 alimp = &p->p_rlimit[which]; 543 544 /* 545 * Preserve historical bugs by treating negative limits as unsigned. 546 */ 547 if (limp->rlim_cur < 0) 548 limp->rlim_cur = RLIM_INFINITY; 549 if (limp->rlim_max < 0) 550 limp->rlim_max = RLIM_INFINITY; 551 552 if (limp->rlim_cur > alimp->rlim_max || 553 limp->rlim_max > alimp->rlim_max) 554 if ((error = suser_cred(td->td_ucred, PRISON_ROOT))) 555 return (error); 556 if (limp->rlim_cur > limp->rlim_max) 557 limp->rlim_cur = limp->rlim_max; 558 if (p->p_limit->p_refcnt > 1) { 559 p->p_limit->p_refcnt--; 560 p->p_limit = limcopy(p->p_limit); 561 alimp = &p->p_rlimit[which]; 562 } 563 564 switch (which) { 565 566 case RLIMIT_CPU: 567 mtx_lock_spin(&sched_lock); 568 p->p_cpulimit = limp->rlim_cur; 569 mtx_unlock_spin(&sched_lock); 570 break; 571 case RLIMIT_DATA: 572 if (limp->rlim_cur > maxdsiz) 573 limp->rlim_cur = maxdsiz; 574 if (limp->rlim_max > maxdsiz) 575 limp->rlim_max = maxdsiz; 576 break; 577 578 case RLIMIT_STACK: 579 if (limp->rlim_cur > maxssiz) 580 limp->rlim_cur = maxssiz; 581 if (limp->rlim_max > maxssiz) 582 limp->rlim_max = maxssiz; 583 /* 584 * Stack is allocated to the max at exec time with only 585 * "rlim_cur" bytes accessible. If stack limit is going 586 * up make more accessible, if going down make inaccessible. 587 */ 588 if (limp->rlim_cur != alimp->rlim_cur) { 589 vm_offset_t addr; 590 vm_size_t size; 591 vm_prot_t prot; 592 593 if (limp->rlim_cur > alimp->rlim_cur) { 594 prot = p->p_sysent->sv_stackprot; 595 size = limp->rlim_cur - alimp->rlim_cur; 596 addr = p->p_sysent->sv_usrstack - 597 limp->rlim_cur; 598 } else { 599 prot = VM_PROT_NONE; 600 size = alimp->rlim_cur - limp->rlim_cur; 601 addr = p->p_sysent->sv_usrstack - 602 alimp->rlim_cur; 603 } 604 addr = trunc_page(addr); 605 size = round_page(size); 606 (void) vm_map_protect(&p->p_vmspace->vm_map, 607 addr, addr+size, prot, FALSE); 608 } 609 break; 610 611 case RLIMIT_NOFILE: 612 if (limp->rlim_cur > maxfilesperproc) 613 limp->rlim_cur = maxfilesperproc; 614 if (limp->rlim_max > maxfilesperproc) 615 limp->rlim_max = maxfilesperproc; 616 break; 617 618 case RLIMIT_NPROC: 619 if (limp->rlim_cur > maxprocperuid) 620 limp->rlim_cur = maxprocperuid; 621 if (limp->rlim_max > maxprocperuid) 622 limp->rlim_max = maxprocperuid; 623 if (limp->rlim_cur < 1) 624 limp->rlim_cur = 1; 625 if (limp->rlim_max < 1) 626 limp->rlim_max = 1; 627 break; 628 } 629 *alimp = *limp; 630 return (0); 631 } 632 633 #ifndef _SYS_SYSPROTO_H_ 634 struct __getrlimit_args { 635 u_int which; 636 struct rlimit *rlp; 637 }; 638 #endif 639 /* 640 * MPSAFE 641 */ 642 /* ARGSUSED */ 643 int 644 getrlimit(td, uap) 645 struct thread *td; 646 register struct __getrlimit_args *uap; 647 { 648 int error; 649 struct proc *p = td->td_proc; 650 651 if (uap->which >= RLIM_NLIMITS) 652 return (EINVAL); 653 mtx_lock(&Giant); 654 error = copyout(&p->p_rlimit[uap->which], uap->rlp, 655 sizeof (struct rlimit)); 656 mtx_unlock(&Giant); 657 return(error); 658 } 659 660 /* 661 * Transform the running time and tick information in proc p into user, 662 * system, and interrupt time usage. 663 */ 664 void 665 calcru(p, up, sp, ip) 666 struct proc *p; 667 struct timeval *up; 668 struct timeval *sp; 669 struct timeval *ip; 670 { 671 /* {user, system, interrupt, total} {ticks, usec}; previous tu: */ 672 u_int64_t ut, uu, st, su, it, iu, tt, tu, ptu; 673 struct timeval tv; 674 struct bintime bt; 675 676 mtx_assert(&sched_lock, MA_OWNED); 677 /* XXX: why spl-protect ? worst case is an off-by-one report */ 678 679 ut = p->p_uticks; 680 st = p->p_sticks; 681 it = p->p_iticks; 682 683 tt = ut + st + it; 684 if (tt == 0) { 685 st = 1; 686 tt = 1; 687 } 688 689 if (curthread->td_proc == p) { 690 /* 691 * Adjust for the current time slice. This is actually fairly 692 * important since the error here is on the order of a time 693 * quantum, which is much greater than the sampling error. 694 * XXXKSE use a different test due to threads on other 695 * processors also being 'current'. 696 */ 697 698 binuptime(&bt); 699 bintime_sub(&bt, PCPU_PTR(switchtime)); 700 bintime_add(&bt, &p->p_runtime); 701 } else { 702 bt = p->p_runtime; 703 } 704 bintime2timeval(&bt, &tv); 705 tu = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 706 ptu = p->p_uu + p->p_su + p->p_iu; 707 if (tu < ptu || (int64_t)tu < 0) { 708 /* XXX no %qd in kernel. Truncate. */ 709 printf("calcru: negative time of %ld usec for pid %d (%s)\n", 710 (long)tu, p->p_pid, p->p_comm); 711 tu = ptu; 712 } 713 714 /* Subdivide tu. */ 715 uu = (tu * ut) / tt; 716 su = (tu * st) / tt; 717 iu = tu - uu - su; 718 719 /* Enforce monotonicity. */ 720 if (uu < p->p_uu || su < p->p_su || iu < p->p_iu) { 721 if (uu < p->p_uu) 722 uu = p->p_uu; 723 else if (uu + p->p_su + p->p_iu > tu) 724 uu = tu - p->p_su - p->p_iu; 725 if (st == 0) 726 su = p->p_su; 727 else { 728 su = ((tu - uu) * st) / (st + it); 729 if (su < p->p_su) 730 su = p->p_su; 731 else if (uu + su + p->p_iu > tu) 732 su = tu - uu - p->p_iu; 733 } 734 KASSERT(uu + su + p->p_iu <= tu, 735 ("calcru: monotonisation botch 1")); 736 iu = tu - uu - su; 737 KASSERT(iu >= p->p_iu, 738 ("calcru: monotonisation botch 2")); 739 } 740 p->p_uu = uu; 741 p->p_su = su; 742 p->p_iu = iu; 743 744 up->tv_sec = uu / 1000000; 745 up->tv_usec = uu % 1000000; 746 sp->tv_sec = su / 1000000; 747 sp->tv_usec = su % 1000000; 748 if (ip != NULL) { 749 ip->tv_sec = iu / 1000000; 750 ip->tv_usec = iu % 1000000; 751 } 752 } 753 754 #ifndef _SYS_SYSPROTO_H_ 755 struct getrusage_args { 756 int who; 757 struct rusage *rusage; 758 }; 759 #endif 760 /* 761 * MPSAFE 762 */ 763 /* ARGSUSED */ 764 int 765 getrusage(td, uap) 766 register struct thread *td; 767 register struct getrusage_args *uap; 768 { 769 struct proc *p = td->td_proc; 770 register struct rusage *rup; 771 int error = 0; 772 773 mtx_lock(&Giant); 774 775 switch (uap->who) { 776 case RUSAGE_SELF: 777 rup = &p->p_stats->p_ru; 778 mtx_lock_spin(&sched_lock); 779 calcru(p, &rup->ru_utime, &rup->ru_stime, NULL); 780 mtx_unlock_spin(&sched_lock); 781 break; 782 783 case RUSAGE_CHILDREN: 784 rup = &p->p_stats->p_cru; 785 break; 786 787 default: 788 rup = NULL; 789 error = EINVAL; 790 break; 791 } 792 mtx_unlock(&Giant); 793 if (error == 0) { 794 /* XXX Unlocked access to p_stats->p_ru or p_cru. */ 795 error = copyout(rup, uap->rusage, sizeof (struct rusage)); 796 } 797 return(error); 798 } 799 800 void 801 ruadd(ru, ru2) 802 register struct rusage *ru, *ru2; 803 { 804 register long *ip, *ip2; 805 register int i; 806 807 timevaladd(&ru->ru_utime, &ru2->ru_utime); 808 timevaladd(&ru->ru_stime, &ru2->ru_stime); 809 if (ru->ru_maxrss < ru2->ru_maxrss) 810 ru->ru_maxrss = ru2->ru_maxrss; 811 ip = &ru->ru_first; ip2 = &ru2->ru_first; 812 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 813 *ip++ += *ip2++; 814 } 815 816 /* 817 * Make a copy of the plimit structure. 818 * We share these structures copy-on-write after fork, 819 * and copy when a limit is changed. 820 */ 821 struct plimit * 822 limcopy(lim) 823 struct plimit *lim; 824 { 825 register struct plimit *copy; 826 827 MALLOC(copy, struct plimit *, sizeof(struct plimit), 828 M_SUBPROC, M_WAITOK); 829 bcopy(lim->pl_rlimit, copy->pl_rlimit, sizeof(struct plimit)); 830 copy->p_refcnt = 1; 831 return (copy); 832 } 833 834 /* 835 * Find the uidinfo structure for a uid. This structure is used to 836 * track the total resource consumption (process count, socket buffer 837 * size, etc.) for the uid and impose limits. 838 */ 839 void 840 uihashinit() 841 { 842 843 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 844 mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF); 845 } 846 847 /* 848 * lookup a uidinfo struct for the parameter uid. 849 * uihashtbl_mtx must be locked. 850 */ 851 static struct uidinfo * 852 uilookup(uid) 853 uid_t uid; 854 { 855 struct uihashhead *uipp; 856 struct uidinfo *uip; 857 858 mtx_assert(&uihashtbl_mtx, MA_OWNED); 859 uipp = UIHASH(uid); 860 LIST_FOREACH(uip, uipp, ui_hash) 861 if (uip->ui_uid == uid) 862 break; 863 864 return (uip); 865 } 866 867 /* 868 * Find or allocate a struct uidinfo for a particular uid. 869 * Increase refcount on uidinfo struct returned. 870 * uifree() should be called on a struct uidinfo when released. 871 */ 872 struct uidinfo * 873 uifind(uid) 874 uid_t uid; 875 { 876 struct uidinfo *uip; 877 878 mtx_lock(&uihashtbl_mtx); 879 uip = uilookup(uid); 880 if (uip == NULL) { 881 struct uidinfo *old_uip; 882 883 mtx_unlock(&uihashtbl_mtx); 884 uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO); 885 mtx_lock(&uihashtbl_mtx); 886 /* 887 * There's a chance someone created our uidinfo while we 888 * were in malloc and not holding the lock, so we have to 889 * make sure we don't insert a duplicate uidinfo 890 */ 891 if ((old_uip = uilookup(uid)) != NULL) { 892 /* someone else beat us to it */ 893 free(uip, M_UIDINFO); 894 uip = old_uip; 895 } else { 896 uip->ui_mtxp = mtx_pool_alloc(mtxpool_sleep); 897 uip->ui_uid = uid; 898 LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash); 899 } 900 } 901 uihold(uip); 902 mtx_unlock(&uihashtbl_mtx); 903 return (uip); 904 } 905 906 /* 907 * Place another refcount on a uidinfo struct. 908 */ 909 void 910 uihold(uip) 911 struct uidinfo *uip; 912 { 913 914 UIDINFO_LOCK(uip); 915 uip->ui_ref++; 916 UIDINFO_UNLOCK(uip); 917 } 918 919 /*- 920 * Since uidinfo structs have a long lifetime, we use an 921 * opportunistic refcounting scheme to avoid locking the lookup hash 922 * for each release. 923 * 924 * If the refcount hits 0, we need to free the structure, 925 * which means we need to lock the hash. 926 * Optimal case: 927 * After locking the struct and lowering the refcount, if we find 928 * that we don't need to free, simply unlock and return. 929 * Suboptimal case: 930 * If refcount lowering results in need to free, bump the count 931 * back up, loose the lock and aquire the locks in the proper 932 * order to try again. 933 */ 934 void 935 uifree(uip) 936 struct uidinfo *uip; 937 { 938 939 /* Prepare for optimal case. */ 940 UIDINFO_LOCK(uip); 941 942 if (--uip->ui_ref != 0) { 943 UIDINFO_UNLOCK(uip); 944 return; 945 } 946 947 /* Prepare for suboptimal case. */ 948 uip->ui_ref++; 949 UIDINFO_UNLOCK(uip); 950 mtx_lock(&uihashtbl_mtx); 951 UIDINFO_LOCK(uip); 952 953 /* 954 * We must subtract one from the count again because we backed out 955 * our initial subtraction before dropping the lock. 956 * Since another thread may have added a reference after we dropped the 957 * initial lock we have to test for zero again. 958 */ 959 if (--uip->ui_ref == 0) { 960 LIST_REMOVE(uip, ui_hash); 961 mtx_unlock(&uihashtbl_mtx); 962 if (uip->ui_sbsize != 0) 963 /* XXX no %qd in kernel. Truncate. */ 964 printf("freeing uidinfo: uid = %d, sbsize = %ld\n", 965 uip->ui_uid, (long)uip->ui_sbsize); 966 if (uip->ui_proccnt != 0) 967 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 968 uip->ui_uid, uip->ui_proccnt); 969 UIDINFO_UNLOCK(uip); 970 FREE(uip, M_UIDINFO); 971 return; 972 } 973 974 mtx_unlock(&uihashtbl_mtx); 975 UIDINFO_UNLOCK(uip); 976 } 977 978 /* 979 * Change the count associated with number of processes 980 * a given user is using. When 'max' is 0, don't enforce a limit 981 */ 982 int 983 chgproccnt(uip, diff, max) 984 struct uidinfo *uip; 985 int diff; 986 int max; 987 { 988 989 UIDINFO_LOCK(uip); 990 /* don't allow them to exceed max, but allow subtraction */ 991 if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) { 992 UIDINFO_UNLOCK(uip); 993 return (0); 994 } 995 uip->ui_proccnt += diff; 996 if (uip->ui_proccnt < 0) 997 printf("negative proccnt for uid = %d\n", uip->ui_uid); 998 UIDINFO_UNLOCK(uip); 999 return (1); 1000 } 1001 1002 /* 1003 * Change the total socket buffer size a user has used. 1004 */ 1005 int 1006 chgsbsize(uip, hiwat, to, max) 1007 struct uidinfo *uip; 1008 u_int *hiwat; 1009 u_int to; 1010 rlim_t max; 1011 { 1012 rlim_t new; 1013 int s; 1014 1015 s = splnet(); 1016 UIDINFO_LOCK(uip); 1017 new = uip->ui_sbsize + to - *hiwat; 1018 /* don't allow them to exceed max, but allow subtraction */ 1019 if (to > *hiwat && new > max) { 1020 splx(s); 1021 UIDINFO_UNLOCK(uip); 1022 return (0); 1023 } 1024 uip->ui_sbsize = new; 1025 *hiwat = to; 1026 if (uip->ui_sbsize < 0) 1027 printf("negative sbsize for uid = %d\n", uip->ui_uid); 1028 splx(s); 1029 UIDINFO_UNLOCK(uip); 1030 return (1); 1031 } 1032