xref: /freebsd/sys/kern/kern_resource.c (revision 6ccbb635d7b228a34d0eb8bb16b767a233c21166)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_resource.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysproto.h>
45 #include <sys/file.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/sched.h>
53 #include <sys/sx.h>
54 #include <sys/sysent.h>
55 #include <sys/time.h>
56 
57 #include <vm/vm.h>
58 #include <vm/vm_param.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_map.h>
61 
62 static int donice(struct thread *td, struct proc *chgp, int n);
63 
64 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
65 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
66 #define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
67 static struct mtx uihashtbl_mtx;
68 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
69 static u_long uihash;		/* size of hash table - 1 */
70 
71 static struct uidinfo	*uilookup(uid_t uid);
72 
73 /*
74  * Resource controls and accounting.
75  */
76 
77 #ifndef _SYS_SYSPROTO_H_
78 struct getpriority_args {
79 	int	which;
80 	int	who;
81 };
82 #endif
83 /*
84  * MPSAFE
85  */
86 int
87 getpriority(td, uap)
88 	struct thread *td;
89 	register struct getpriority_args *uap;
90 {
91 	struct ksegrp *kg;
92 	struct proc *p;
93 	int error, low;
94 
95 	error = 0;
96 	low = PRIO_MAX + 1;
97 	switch (uap->which) {
98 
99 	case PRIO_PROCESS:
100 		if (uap->who == 0)
101 			low = td->td_ksegrp->kg_nice;
102 		else {
103 			p = pfind(uap->who);
104 			if (p == NULL)
105 				break;
106 			if (p_cansee(td, p) == 0) {
107 				FOREACH_KSEGRP_IN_PROC(p, kg) {
108 					if (kg->kg_nice < low)
109 						low = kg->kg_nice;
110 				}
111 			}
112 			PROC_UNLOCK(p);
113 		}
114 		break;
115 
116 	case PRIO_PGRP: {
117 		register struct pgrp *pg;
118 
119 		sx_slock(&proctree_lock);
120 		if (uap->who == 0) {
121 			pg = td->td_proc->p_pgrp;
122 			PGRP_LOCK(pg);
123 		} else {
124 			pg = pgfind(uap->who);
125 			if (pg == NULL) {
126 				sx_sunlock(&proctree_lock);
127 				break;
128 			}
129 		}
130 		sx_sunlock(&proctree_lock);
131 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
132 			PROC_LOCK(p);
133 			if (!p_cansee(td, p)) {
134 				FOREACH_KSEGRP_IN_PROC(p, kg) {
135 					if (kg->kg_nice < low)
136 						low = kg->kg_nice;
137 				}
138 			}
139 			PROC_UNLOCK(p);
140 		}
141 		PGRP_UNLOCK(pg);
142 		break;
143 	}
144 
145 	case PRIO_USER:
146 		if (uap->who == 0)
147 			uap->who = td->td_ucred->cr_uid;
148 		sx_slock(&allproc_lock);
149 		LIST_FOREACH(p, &allproc, p_list) {
150 			PROC_LOCK(p);
151 			if (!p_cansee(td, p) &&
152 			    p->p_ucred->cr_uid == uap->who) {
153 				FOREACH_KSEGRP_IN_PROC(p, kg) {
154 					if (kg->kg_nice < low)
155 						low = kg->kg_nice;
156 				}
157 			}
158 			PROC_UNLOCK(p);
159 		}
160 		sx_sunlock(&allproc_lock);
161 		break;
162 
163 	default:
164 		error = EINVAL;
165 		break;
166 	}
167 	if (low == PRIO_MAX + 1 && error == 0)
168 		error = ESRCH;
169 	td->td_retval[0] = low;
170 	return (error);
171 }
172 
173 #ifndef _SYS_SYSPROTO_H_
174 struct setpriority_args {
175 	int	which;
176 	int	who;
177 	int	prio;
178 };
179 #endif
180 /*
181  * MPSAFE
182  */
183 int
184 setpriority(td, uap)
185 	struct thread *td;
186 	register struct setpriority_args *uap;
187 {
188 	struct proc *curp;
189 	register struct proc *p;
190 	int found = 0, error = 0;
191 
192 	curp = td->td_proc;
193 	switch (uap->which) {
194 	case PRIO_PROCESS:
195 		if (uap->who == 0) {
196 			PROC_LOCK(curp);
197 			error = donice(td, curp, uap->prio);
198 			PROC_UNLOCK(curp);
199 		} else {
200 			p = pfind(uap->who);
201 			if (p == 0)
202 				break;
203 			if (p_cansee(td, p) == 0)
204 				error = donice(td, p, uap->prio);
205 			PROC_UNLOCK(p);
206 		}
207 		found++;
208 		break;
209 
210 	case PRIO_PGRP: {
211 		register struct pgrp *pg;
212 
213 		sx_slock(&proctree_lock);
214 		if (uap->who == 0) {
215 			pg = curp->p_pgrp;
216 			PGRP_LOCK(pg);
217 		} else {
218 			pg = pgfind(uap->who);
219 			if (pg == NULL) {
220 				sx_sunlock(&proctree_lock);
221 				break;
222 			}
223 		}
224 		sx_sunlock(&proctree_lock);
225 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
226 			PROC_LOCK(p);
227 			if (!p_cansee(td, p)) {
228 				error = donice(td, p, uap->prio);
229 				found++;
230 			}
231 			PROC_UNLOCK(p);
232 		}
233 		PGRP_UNLOCK(pg);
234 		break;
235 	}
236 
237 	case PRIO_USER:
238 		if (uap->who == 0)
239 			uap->who = td->td_ucred->cr_uid;
240 		sx_slock(&allproc_lock);
241 		FOREACH_PROC_IN_SYSTEM(p) {
242 			PROC_LOCK(p);
243 			if (p->p_ucred->cr_uid == uap->who &&
244 			    !p_cansee(td, p)) {
245 				error = donice(td, p, uap->prio);
246 				found++;
247 			}
248 			PROC_UNLOCK(p);
249 		}
250 		sx_sunlock(&allproc_lock);
251 		break;
252 
253 	default:
254 		error = EINVAL;
255 		break;
256 	}
257 	if (found == 0 && error == 0)
258 		error = ESRCH;
259 	return (error);
260 }
261 
262 /*
263  * Set "nice" for a process.  Doesn't really understand threaded processes
264  * well but does try.  Has the unfortunate side effect of making all the NICE
265  * values for a process's ksegrps the same.  This suggests that
266  * NICE values should be stored as a process nice and deltas for the ksegrps.
267  * (but not yet).
268  */
269 static int
270 donice(struct thread *td, struct proc *p, int n)
271 {
272 	struct ksegrp *kg;
273 	int error, low;
274 
275 	low = PRIO_MAX + 1;
276 	PROC_LOCK_ASSERT(p, MA_OWNED);
277 	if ((error = p_cansched(td, p)))
278 		return (error);
279 	if (n > PRIO_MAX)
280 		n = PRIO_MAX;
281 	if (n < PRIO_MIN)
282 		n = PRIO_MIN;
283 	/*
284 	 * Only allow nicing if to more than the lowest nice.
285 	 * E.g., for nices of 4,3,2 allow nice to 3 but not 1
286 	 */
287 	FOREACH_KSEGRP_IN_PROC(p, kg) {
288 		if (kg->kg_nice < low)
289 			low = kg->kg_nice;
290 	}
291  	if (n < low && suser(td) != 0)
292 		return (EACCES);
293 	mtx_lock_spin(&sched_lock);
294 	FOREACH_KSEGRP_IN_PROC(p, kg) {
295 		sched_nice(kg, n);
296 	}
297 	mtx_unlock_spin(&sched_lock);
298 	return (0);
299 }
300 
301 /*
302  * Set realtime priority
303  *
304  * MPSAFE
305  */
306 #ifndef _SYS_SYSPROTO_H_
307 struct rtprio_args {
308 	int		function;
309 	pid_t		pid;
310 	struct rtprio	*rtp;
311 };
312 #endif
313 
314 int
315 rtprio(td, uap)
316 	struct thread *td;
317 	register struct rtprio_args *uap;
318 {
319 	struct proc *curp;
320 	register struct proc *p;
321 	struct rtprio rtp;
322 	int cierror, error;
323 
324 	/* Perform copyin before acquiring locks if needed. */
325 	if (uap->function == RTP_SET)
326 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
327 	else
328 		cierror = 0;
329 
330 	curp = td->td_proc;
331 	if (uap->pid == 0) {
332 		p = curp;
333 		PROC_LOCK(p);
334 	} else {
335 		p = pfind(uap->pid);
336 		if (p == NULL)
337 			return (ESRCH);
338 	}
339 
340 	switch (uap->function) {
341 	case RTP_LOOKUP:
342 		if ((error = p_cansee(td, p)))
343 			break;
344 		mtx_lock_spin(&sched_lock);
345 		pri_to_rtp(FIRST_KSEGRP_IN_PROC(p), &rtp);
346 		mtx_unlock_spin(&sched_lock);
347 		PROC_UNLOCK(p);
348 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
349 	case RTP_SET:
350 		if ((error = p_cansched(td, p)) || (error = cierror))
351 			break;
352 		/* disallow setting rtprio in most cases if not superuser */
353 		if (suser(td) != 0) {
354 			/* can't set someone else's */
355 			if (uap->pid) {
356 				error = EPERM;
357 				break;
358 			}
359 			/* can't set realtime priority */
360 /*
361  * Realtime priority has to be restricted for reasons which should be
362  * obvious. However, for idle priority, there is a potential for
363  * system deadlock if an idleprio process gains a lock on a resource
364  * that other processes need (and the idleprio process can't run
365  * due to a CPU-bound normal process). Fix me! XXX
366  */
367 #if 0
368  			if (RTP_PRIO_IS_REALTIME(rtp.type))
369 #endif
370 			if (rtp.type != RTP_PRIO_NORMAL) {
371 				error = EPERM;
372 				break;
373 			}
374 		}
375 		mtx_lock_spin(&sched_lock);
376 		error = rtp_to_pri(&rtp, FIRST_KSEGRP_IN_PROC(p));
377 		mtx_unlock_spin(&sched_lock);
378 		break;
379 	default:
380 		error = EINVAL;
381 		break;
382 	}
383 	PROC_UNLOCK(p);
384 	return (error);
385 }
386 
387 int
388 rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg)
389 {
390 
391 	mtx_assert(&sched_lock, MA_OWNED);
392 	if (rtp->prio > RTP_PRIO_MAX)
393 		return (EINVAL);
394 	switch (RTP_PRIO_BASE(rtp->type)) {
395 	case RTP_PRIO_REALTIME:
396 		kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio;
397 		break;
398 	case RTP_PRIO_NORMAL:
399 		kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio;
400 		break;
401 	case RTP_PRIO_IDLE:
402 		kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio;
403 		break;
404 	default:
405 		return (EINVAL);
406 	}
407 	sched_class(kg, rtp->type);
408 	if (curthread->td_ksegrp == kg) {
409 		curthread->td_base_pri = kg->kg_user_pri;
410 		sched_prio(curthread, kg->kg_user_pri); /* XXX dubious */
411 	}
412 	return (0);
413 }
414 
415 void
416 pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp)
417 {
418 
419 	mtx_assert(&sched_lock, MA_OWNED);
420 	switch (PRI_BASE(kg->kg_pri_class)) {
421 	case PRI_REALTIME:
422 		rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME;
423 		break;
424 	case PRI_TIMESHARE:
425 		rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE;
426 		break;
427 	case PRI_IDLE:
428 		rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE;
429 		break;
430 	default:
431 		break;
432 	}
433 	rtp->type = kg->kg_pri_class;
434 }
435 
436 #if defined(COMPAT_43) || defined(COMPAT_SUNOS)
437 #ifndef _SYS_SYSPROTO_H_
438 struct osetrlimit_args {
439 	u_int	which;
440 	struct	orlimit *rlp;
441 };
442 #endif
443 /*
444  * MPSAFE
445  */
446 int
447 osetrlimit(td, uap)
448 	struct thread *td;
449 	register struct osetrlimit_args *uap;
450 {
451 	struct orlimit olim;
452 	struct rlimit lim;
453 	int error;
454 
455 	if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
456 		return (error);
457 	lim.rlim_cur = olim.rlim_cur;
458 	lim.rlim_max = olim.rlim_max;
459 	error = kern_setrlimit(td, uap->which, &lim);
460 	return (error);
461 }
462 
463 #ifndef _SYS_SYSPROTO_H_
464 struct ogetrlimit_args {
465 	u_int	which;
466 	struct	orlimit *rlp;
467 };
468 #endif
469 /*
470  * MPSAFE
471  */
472 int
473 ogetrlimit(td, uap)
474 	struct thread *td;
475 	register struct ogetrlimit_args *uap;
476 {
477 	struct orlimit olim;
478 	struct rlimit rl;
479 	struct proc *p;
480 	int error;
481 
482 	if (uap->which >= RLIM_NLIMITS)
483 		return (EINVAL);
484 	p = td->td_proc;
485 	PROC_LOCK(p);
486 	lim_rlimit(p, uap->which, &rl);
487 	PROC_UNLOCK(p);
488 
489 	/*
490 	 * XXX would be more correct to convert only RLIM_INFINITY to the
491 	 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
492 	 * values.  Most 64->32 and 32->16 conversions, including not
493 	 * unimportant ones of uids are even more broken than what we
494 	 * do here (they blindly truncate).  We don't do this correctly
495 	 * here since we have little experience with EOVERFLOW yet.
496 	 * Elsewhere, getuid() can't fail...
497 	 */
498 	olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
499 	olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
500 	error = copyout(&olim, uap->rlp, sizeof(olim));
501 	return (error);
502 }
503 #endif /* COMPAT_43 || COMPAT_SUNOS */
504 
505 #ifndef _SYS_SYSPROTO_H_
506 struct __setrlimit_args {
507 	u_int	which;
508 	struct	rlimit *rlp;
509 };
510 #endif
511 /*
512  * MPSAFE
513  */
514 int
515 setrlimit(td, uap)
516 	struct thread *td;
517 	register struct __setrlimit_args *uap;
518 {
519 	struct rlimit alim;
520 	int error;
521 
522 	if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
523 		return (error);
524 	error = kern_setrlimit(td, uap->which, &alim);
525 	return (error);
526 }
527 
528 int
529 kern_setrlimit(td, which, limp)
530 	struct thread *td;
531 	u_int which;
532 	struct rlimit *limp;
533 {
534 	struct plimit *newlim, *oldlim;
535 	struct proc *p;
536 	register struct rlimit *alimp;
537 	rlim_t oldssiz;
538 	int error;
539 
540 	if (which >= RLIM_NLIMITS)
541 		return (EINVAL);
542 
543 	/*
544 	 * Preserve historical bugs by treating negative limits as unsigned.
545 	 */
546 	if (limp->rlim_cur < 0)
547 		limp->rlim_cur = RLIM_INFINITY;
548 	if (limp->rlim_max < 0)
549 		limp->rlim_max = RLIM_INFINITY;
550 
551 	oldssiz = 0;
552 	p = td->td_proc;
553 	newlim = lim_alloc();
554 	PROC_LOCK(p);
555 	oldlim = p->p_limit;
556 	alimp = &oldlim->pl_rlimit[which];
557 	if (limp->rlim_cur > alimp->rlim_max ||
558 	    limp->rlim_max > alimp->rlim_max)
559 		if ((error = suser_cred(td->td_ucred, PRISON_ROOT))) {
560 			PROC_UNLOCK(p);
561 			lim_free(newlim);
562 			return (error);
563 	}
564 	if (limp->rlim_cur > limp->rlim_max)
565 		limp->rlim_cur = limp->rlim_max;
566 	lim_copy(newlim, oldlim);
567 	alimp = &newlim->pl_rlimit[which];
568 
569 	switch (which) {
570 
571 	case RLIMIT_CPU:
572 		mtx_lock_spin(&sched_lock);
573 		p->p_cpulimit = limp->rlim_cur;
574 		mtx_unlock_spin(&sched_lock);
575 		break;
576 	case RLIMIT_DATA:
577 		if (limp->rlim_cur > maxdsiz)
578 			limp->rlim_cur = maxdsiz;
579 		if (limp->rlim_max > maxdsiz)
580 			limp->rlim_max = maxdsiz;
581 		break;
582 
583 	case RLIMIT_STACK:
584 		if (limp->rlim_cur > maxssiz)
585 			limp->rlim_cur = maxssiz;
586 		if (limp->rlim_max > maxssiz)
587 			limp->rlim_max = maxssiz;
588 		oldssiz = alimp->rlim_cur;
589 		break;
590 
591 	case RLIMIT_NOFILE:
592 		if (limp->rlim_cur > maxfilesperproc)
593 			limp->rlim_cur = maxfilesperproc;
594 		if (limp->rlim_max > maxfilesperproc)
595 			limp->rlim_max = maxfilesperproc;
596 		break;
597 
598 	case RLIMIT_NPROC:
599 		if (limp->rlim_cur > maxprocperuid)
600 			limp->rlim_cur = maxprocperuid;
601 		if (limp->rlim_max > maxprocperuid)
602 			limp->rlim_max = maxprocperuid;
603 		if (limp->rlim_cur < 1)
604 			limp->rlim_cur = 1;
605 		if (limp->rlim_max < 1)
606 			limp->rlim_max = 1;
607 		break;
608 	}
609 	*alimp = *limp;
610 	p->p_limit = newlim;
611 	PROC_UNLOCK(p);
612 	lim_free(oldlim);
613 
614 	if (which == RLIMIT_STACK) {
615 		/*
616 		 * Stack is allocated to the max at exec time with only
617 		 * "rlim_cur" bytes accessible.  If stack limit is going
618 		 * up make more accessible, if going down make inaccessible.
619 		 */
620 		if (limp->rlim_cur != oldssiz) {
621 			vm_offset_t addr;
622 			vm_size_t size;
623 			vm_prot_t prot;
624 
625 			mtx_lock(&Giant);
626 			if (limp->rlim_cur > oldssiz) {
627 				prot = p->p_sysent->sv_stackprot;
628 				size = limp->rlim_cur - oldssiz;
629 				addr = p->p_sysent->sv_usrstack -
630 				    limp->rlim_cur;
631 			} else {
632 				prot = VM_PROT_NONE;
633 				size = oldssiz - limp->rlim_cur;
634 				addr = p->p_sysent->sv_usrstack -
635 				    oldssiz;
636 			}
637 			addr = trunc_page(addr);
638 			size = round_page(size);
639 			(void) vm_map_protect(&p->p_vmspace->vm_map,
640 					      addr, addr+size, prot, FALSE);
641 			mtx_unlock(&Giant);
642 		}
643 	}
644 	return (0);
645 }
646 
647 #ifndef _SYS_SYSPROTO_H_
648 struct __getrlimit_args {
649 	u_int	which;
650 	struct	rlimit *rlp;
651 };
652 #endif
653 /*
654  * MPSAFE
655  */
656 /* ARGSUSED */
657 int
658 getrlimit(td, uap)
659 	struct thread *td;
660 	register struct __getrlimit_args *uap;
661 {
662 	struct rlimit rlim;
663 	struct proc *p;
664 	int error;
665 
666 	if (uap->which >= RLIM_NLIMITS)
667 		return (EINVAL);
668 	p = td->td_proc;
669 	PROC_LOCK(p);
670 	lim_rlimit(p, uap->which, &rlim);
671 	PROC_UNLOCK(p);
672 	error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
673 	return(error);
674 }
675 
676 /*
677  * Transform the running time and tick information in proc p into user,
678  * system, and interrupt time usage.
679  */
680 void
681 calcru(p, up, sp, ip)
682 	struct proc *p;
683 	struct timeval *up;
684 	struct timeval *sp;
685 	struct timeval *ip;
686 {
687 	struct bintime bt;
688 	struct timeval tv;
689 	/* {user, system, interrupt, total} {ticks, usec}; previous tu: */
690 	u_int64_t ut, uu, st, su, it, iu, tt, tu, ptu;
691 
692 	mtx_assert(&sched_lock, MA_OWNED);
693 	/* XXX: why spl-protect ?  worst case is an off-by-one report */
694 
695 	ut = p->p_uticks;
696 	st = p->p_sticks;
697 	it = p->p_iticks;
698 
699 	tt = ut + st + it;
700 	if (tt == 0) {
701 		st = 1;
702 		tt = 1;
703 	}
704 	if (p == curthread->td_proc) {
705 		/*
706 		 * Adjust for the current time slice.  This is actually fairly
707 		 * important since the error here is on the order of a time
708 		 * quantum, which is much greater than the sampling error.
709 		 * XXXKSE use a different test due to threads on other
710 		 * processors also being 'current'.
711 		 */
712 		binuptime(&bt);
713 		bintime_sub(&bt, PCPU_PTR(switchtime));
714 		bintime_add(&bt, &p->p_runtime);
715 	} else
716 		bt = p->p_runtime;
717 	bintime2timeval(&bt, &tv);
718 	tu = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
719 	ptu = p->p_uu + p->p_su + p->p_iu;
720 	if (tu < ptu || (int64_t)tu < 0) {
721 		printf("calcru: negative time of %jd usec for pid %d (%s)\n",
722 		    (intmax_t)tu, p->p_pid, p->p_comm);
723 		tu = ptu;
724 	}
725 
726 	/* Subdivide tu. */
727 	uu = (tu * ut) / tt;
728 	su = (tu * st) / tt;
729 	iu = tu - uu - su;
730 
731 	/* Enforce monotonicity. */
732 	if (uu < p->p_uu || su < p->p_su || iu < p->p_iu) {
733 		if (uu < p->p_uu)
734 			uu = p->p_uu;
735 		else if (uu + p->p_su + p->p_iu > tu)
736 			uu = tu - p->p_su - p->p_iu;
737 		if (st == 0)
738 			su = p->p_su;
739 		else {
740 			su = ((tu - uu) * st) / (st + it);
741 			if (su < p->p_su)
742 				su = p->p_su;
743 			else if (uu + su + p->p_iu > tu)
744 				su = tu - uu - p->p_iu;
745 		}
746 		KASSERT(uu + su + p->p_iu <= tu,
747 		    ("calcru: monotonisation botch 1"));
748 		iu = tu - uu - su;
749 		KASSERT(iu >= p->p_iu,
750 		    ("calcru: monotonisation botch 2"));
751 	}
752 	p->p_uu = uu;
753 	p->p_su = su;
754 	p->p_iu = iu;
755 
756 	up->tv_sec = uu / 1000000;
757 	up->tv_usec = uu % 1000000;
758 	sp->tv_sec = su / 1000000;
759 	sp->tv_usec = su % 1000000;
760 	if (ip != NULL) {
761 		ip->tv_sec = iu / 1000000;
762 		ip->tv_usec = iu % 1000000;
763 	}
764 }
765 
766 #ifndef _SYS_SYSPROTO_H_
767 struct getrusage_args {
768 	int	who;
769 	struct	rusage *rusage;
770 };
771 #endif
772 /*
773  * MPSAFE
774  */
775 /* ARGSUSED */
776 int
777 getrusage(td, uap)
778 	register struct thread *td;
779 	register struct getrusage_args *uap;
780 {
781 	struct rusage ru;
782 	struct proc *p;
783 
784 	p = td->td_proc;
785 	switch (uap->who) {
786 
787 	case RUSAGE_SELF:
788 		mtx_lock(&Giant);
789 		mtx_lock_spin(&sched_lock);
790 		calcru(p, &p->p_stats->p_ru.ru_utime, &p->p_stats->p_ru.ru_stime,
791 		    NULL);
792 		mtx_unlock_spin(&sched_lock);
793 		ru = p->p_stats->p_ru;
794 		mtx_unlock(&Giant);
795 		break;
796 
797 	case RUSAGE_CHILDREN:
798 		mtx_lock(&Giant);
799 		ru = p->p_stats->p_cru;
800 		mtx_unlock(&Giant);
801 		break;
802 
803 	default:
804 		return (EINVAL);
805 		break;
806 	}
807 	return (copyout(&ru, uap->rusage, sizeof(struct rusage)));
808 }
809 
810 void
811 ruadd(ru, ru2)
812 	register struct rusage *ru, *ru2;
813 {
814 	register long *ip, *ip2;
815 	register int i;
816 
817 	timevaladd(&ru->ru_utime, &ru2->ru_utime);
818 	timevaladd(&ru->ru_stime, &ru2->ru_stime);
819 	if (ru->ru_maxrss < ru2->ru_maxrss)
820 		ru->ru_maxrss = ru2->ru_maxrss;
821 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
822 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
823 		*ip++ += *ip2++;
824 }
825 
826 /*
827  * Allocate a new resource limits structure and initialize its
828  * reference count and mutex pointer.
829  */
830 struct plimit *
831 lim_alloc()
832 {
833 	struct plimit *limp;
834 
835 	limp = (struct plimit *)malloc(sizeof(struct plimit), M_PLIMIT,
836 	    M_WAITOK);
837 	limp->pl_refcnt = 1;
838 	limp->pl_mtx = mtx_pool_alloc(mtxpool_sleep);
839 	return (limp);
840 }
841 
842 struct plimit *
843 lim_hold(limp)
844 	struct plimit *limp;
845 {
846 
847 	LIM_LOCK(limp);
848 	limp->pl_refcnt++;
849 	LIM_UNLOCK(limp);
850 	return (limp);
851 }
852 
853 void
854 lim_free(limp)
855 	struct plimit *limp;
856 {
857 
858 	LIM_LOCK(limp);
859 	KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
860 	if (--limp->pl_refcnt == 0) {
861 		LIM_UNLOCK(limp);
862 		free((void *)limp, M_PLIMIT);
863 		return;
864 	}
865 	LIM_UNLOCK(limp);
866 }
867 
868 /*
869  * Make a copy of the plimit structure.
870  * We share these structures copy-on-write after fork.
871  */
872 void
873 lim_copy(dst, src)
874 	struct plimit *dst, *src;
875 {
876 
877 	KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
878 	bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
879 }
880 
881 /*
882  * Return the hard limit for a particular system resource.  The
883  * which parameter specifies the index into the rlimit array.
884  */
885 rlim_t
886 lim_max(struct proc *p, int which)
887 {
888 	struct rlimit rl;
889 
890 	lim_rlimit(p, which, &rl);
891 	return (rl.rlim_max);
892 }
893 
894 /*
895  * Return the current (soft) limit for a particular system resource.
896  * The which parameter which specifies the index into the rlimit array
897  */
898 rlim_t
899 lim_cur(struct proc *p, int which)
900 {
901 	struct rlimit rl;
902 
903 	lim_rlimit(p, which, &rl);
904 	return (rl.rlim_cur);
905 }
906 
907 /*
908  * Return a copy of the entire rlimit structure for the system limit
909  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
910  */
911 void
912 lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
913 {
914 
915 	PROC_LOCK_ASSERT(p, MA_OWNED);
916 	KASSERT(which >= 0 && which < RLIM_NLIMITS,
917 	    ("request for invalid resource limit"));
918 	*rlp = p->p_limit->pl_rlimit[which];
919 }
920 
921 /*
922  * Find the uidinfo structure for a uid.  This structure is used to
923  * track the total resource consumption (process count, socket buffer
924  * size, etc.) for the uid and impose limits.
925  */
926 void
927 uihashinit()
928 {
929 
930 	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
931 	mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF);
932 }
933 
934 /*
935  * Look up a uidinfo struct for the parameter uid.
936  * uihashtbl_mtx must be locked.
937  */
938 static struct uidinfo *
939 uilookup(uid)
940 	uid_t uid;
941 {
942 	struct uihashhead *uipp;
943 	struct uidinfo *uip;
944 
945 	mtx_assert(&uihashtbl_mtx, MA_OWNED);
946 	uipp = UIHASH(uid);
947 	LIST_FOREACH(uip, uipp, ui_hash)
948 		if (uip->ui_uid == uid)
949 			break;
950 
951 	return (uip);
952 }
953 
954 /*
955  * Find or allocate a struct uidinfo for a particular uid.
956  * Increase refcount on uidinfo struct returned.
957  * uifree() should be called on a struct uidinfo when released.
958  */
959 struct uidinfo *
960 uifind(uid)
961 	uid_t uid;
962 {
963 	struct uidinfo *old_uip, *uip;
964 
965 	mtx_lock(&uihashtbl_mtx);
966 	uip = uilookup(uid);
967 	if (uip == NULL) {
968 		mtx_unlock(&uihashtbl_mtx);
969 		uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
970 		mtx_lock(&uihashtbl_mtx);
971 		/*
972 		 * There's a chance someone created our uidinfo while we
973 		 * were in malloc and not holding the lock, so we have to
974 		 * make sure we don't insert a duplicate uidinfo.
975 		 */
976 		if ((old_uip = uilookup(uid)) != NULL) {
977 			/* Someone else beat us to it. */
978 			free(uip, M_UIDINFO);
979 			uip = old_uip;
980 		} else {
981 			uip->ui_mtxp = mtx_pool_alloc(mtxpool_sleep);
982 			uip->ui_uid = uid;
983 			LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
984 		}
985 	}
986 	uihold(uip);
987 	mtx_unlock(&uihashtbl_mtx);
988 	return (uip);
989 }
990 
991 /*
992  * Place another refcount on a uidinfo struct.
993  */
994 void
995 uihold(uip)
996 	struct uidinfo *uip;
997 {
998 
999 	UIDINFO_LOCK(uip);
1000 	uip->ui_ref++;
1001 	UIDINFO_UNLOCK(uip);
1002 }
1003 
1004 /*-
1005  * Since uidinfo structs have a long lifetime, we use an
1006  * opportunistic refcounting scheme to avoid locking the lookup hash
1007  * for each release.
1008  *
1009  * If the refcount hits 0, we need to free the structure,
1010  * which means we need to lock the hash.
1011  * Optimal case:
1012  *   After locking the struct and lowering the refcount, if we find
1013  *   that we don't need to free, simply unlock and return.
1014  * Suboptimal case:
1015  *   If refcount lowering results in need to free, bump the count
1016  *   back up, loose the lock and aquire the locks in the proper
1017  *   order to try again.
1018  */
1019 void
1020 uifree(uip)
1021 	struct uidinfo *uip;
1022 {
1023 
1024 	/* Prepare for optimal case. */
1025 	UIDINFO_LOCK(uip);
1026 
1027 	if (--uip->ui_ref != 0) {
1028 		UIDINFO_UNLOCK(uip);
1029 		return;
1030 	}
1031 
1032 	/* Prepare for suboptimal case. */
1033 	uip->ui_ref++;
1034 	UIDINFO_UNLOCK(uip);
1035 	mtx_lock(&uihashtbl_mtx);
1036 	UIDINFO_LOCK(uip);
1037 
1038 	/*
1039 	 * We must subtract one from the count again because we backed out
1040 	 * our initial subtraction before dropping the lock.
1041 	 * Since another thread may have added a reference after we dropped the
1042 	 * initial lock we have to test for zero again.
1043 	 */
1044 	if (--uip->ui_ref == 0) {
1045 		LIST_REMOVE(uip, ui_hash);
1046 		mtx_unlock(&uihashtbl_mtx);
1047 		if (uip->ui_sbsize != 0)
1048 			printf("freeing uidinfo: uid = %d, sbsize = %jd\n",
1049 			    uip->ui_uid, (intmax_t)uip->ui_sbsize);
1050 		if (uip->ui_proccnt != 0)
1051 			printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1052 			    uip->ui_uid, uip->ui_proccnt);
1053 		UIDINFO_UNLOCK(uip);
1054 		FREE(uip, M_UIDINFO);
1055 		return;
1056 	}
1057 
1058 	mtx_unlock(&uihashtbl_mtx);
1059 	UIDINFO_UNLOCK(uip);
1060 }
1061 
1062 /*
1063  * Change the count associated with number of processes
1064  * a given user is using.  When 'max' is 0, don't enforce a limit
1065  */
1066 int
1067 chgproccnt(uip, diff, max)
1068 	struct	uidinfo	*uip;
1069 	int	diff;
1070 	int	max;
1071 {
1072 
1073 	UIDINFO_LOCK(uip);
1074 	/* Don't allow them to exceed max, but allow subtraction. */
1075 	if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) {
1076 		UIDINFO_UNLOCK(uip);
1077 		return (0);
1078 	}
1079 	uip->ui_proccnt += diff;
1080 	if (uip->ui_proccnt < 0)
1081 		printf("negative proccnt for uid = %d\n", uip->ui_uid);
1082 	UIDINFO_UNLOCK(uip);
1083 	return (1);
1084 }
1085 
1086 /*
1087  * Change the total socket buffer size a user has used.
1088  */
1089 int
1090 chgsbsize(uip, hiwat, to, max)
1091 	struct	uidinfo	*uip;
1092 	u_int  *hiwat;
1093 	u_int	to;
1094 	rlim_t	max;
1095 {
1096 	rlim_t new;
1097 	int s;
1098 
1099 	s = splnet();
1100 	UIDINFO_LOCK(uip);
1101 	new = uip->ui_sbsize + to - *hiwat;
1102 	/* Don't allow them to exceed max, but allow subtraction */
1103 	if (to > *hiwat && new > max) {
1104 		splx(s);
1105 		UIDINFO_UNLOCK(uip);
1106 		return (0);
1107 	}
1108 	uip->ui_sbsize = new;
1109 	*hiwat = to;
1110 	if (uip->ui_sbsize < 0)
1111 		printf("negative sbsize for uid = %d\n", uip->ui_uid);
1112 	splx(s);
1113 	UIDINFO_UNLOCK(uip);
1114 	return (1);
1115 }
1116