1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_compat.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/sysproto.h> 45 #include <sys/file.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mutex.h> 50 #include <sys/proc.h> 51 #include <sys/resourcevar.h> 52 #include <sys/sched.h> 53 #include <sys/sx.h> 54 #include <sys/syscallsubr.h> 55 #include <sys/sysent.h> 56 #include <sys/time.h> 57 58 #include <vm/vm.h> 59 #include <vm/vm_param.h> 60 #include <vm/pmap.h> 61 #include <vm/vm_map.h> 62 63 64 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures"); 65 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 66 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 67 static struct mtx uihashtbl_mtx; 68 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 69 static u_long uihash; /* size of hash table - 1 */ 70 71 static void calcru1(struct proc *p, struct rusage_ext *ruxp, 72 struct timeval *up, struct timeval *sp); 73 static int donice(struct thread *td, struct proc *chgp, int n); 74 static struct uidinfo *uilookup(uid_t uid); 75 76 /* 77 * Resource controls and accounting. 78 */ 79 80 #ifndef _SYS_SYSPROTO_H_ 81 struct getpriority_args { 82 int which; 83 int who; 84 }; 85 #endif 86 /* 87 * MPSAFE 88 */ 89 int 90 getpriority(td, uap) 91 struct thread *td; 92 register struct getpriority_args *uap; 93 { 94 struct proc *p; 95 struct pgrp *pg; 96 int error, low; 97 98 error = 0; 99 low = PRIO_MAX + 1; 100 switch (uap->which) { 101 102 case PRIO_PROCESS: 103 if (uap->who == 0) 104 low = td->td_proc->p_nice; 105 else { 106 p = pfind(uap->who); 107 if (p == NULL) 108 break; 109 if (p_cansee(td, p) == 0) 110 low = p->p_nice; 111 PROC_UNLOCK(p); 112 } 113 break; 114 115 case PRIO_PGRP: 116 sx_slock(&proctree_lock); 117 if (uap->who == 0) { 118 pg = td->td_proc->p_pgrp; 119 PGRP_LOCK(pg); 120 } else { 121 pg = pgfind(uap->who); 122 if (pg == NULL) { 123 sx_sunlock(&proctree_lock); 124 break; 125 } 126 } 127 sx_sunlock(&proctree_lock); 128 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 129 PROC_LOCK(p); 130 if (!p_cansee(td, p)) { 131 if (p->p_nice < low) 132 low = p->p_nice; 133 } 134 PROC_UNLOCK(p); 135 } 136 PGRP_UNLOCK(pg); 137 break; 138 139 case PRIO_USER: 140 if (uap->who == 0) 141 uap->who = td->td_ucred->cr_uid; 142 sx_slock(&allproc_lock); 143 LIST_FOREACH(p, &allproc, p_list) { 144 PROC_LOCK(p); 145 if (!p_cansee(td, p) && 146 p->p_ucred->cr_uid == uap->who) { 147 if (p->p_nice < low) 148 low = p->p_nice; 149 } 150 PROC_UNLOCK(p); 151 } 152 sx_sunlock(&allproc_lock); 153 break; 154 155 default: 156 error = EINVAL; 157 break; 158 } 159 if (low == PRIO_MAX + 1 && error == 0) 160 error = ESRCH; 161 td->td_retval[0] = low; 162 return (error); 163 } 164 165 #ifndef _SYS_SYSPROTO_H_ 166 struct setpriority_args { 167 int which; 168 int who; 169 int prio; 170 }; 171 #endif 172 /* 173 * MPSAFE 174 */ 175 int 176 setpriority(td, uap) 177 struct thread *td; 178 struct setpriority_args *uap; 179 { 180 struct proc *curp, *p; 181 struct pgrp *pg; 182 int found = 0, error = 0; 183 184 curp = td->td_proc; 185 switch (uap->which) { 186 case PRIO_PROCESS: 187 if (uap->who == 0) { 188 PROC_LOCK(curp); 189 error = donice(td, curp, uap->prio); 190 PROC_UNLOCK(curp); 191 } else { 192 p = pfind(uap->who); 193 if (p == 0) 194 break; 195 if (p_cansee(td, p) == 0) 196 error = donice(td, p, uap->prio); 197 PROC_UNLOCK(p); 198 } 199 found++; 200 break; 201 202 case PRIO_PGRP: 203 sx_slock(&proctree_lock); 204 if (uap->who == 0) { 205 pg = curp->p_pgrp; 206 PGRP_LOCK(pg); 207 } else { 208 pg = pgfind(uap->who); 209 if (pg == NULL) { 210 sx_sunlock(&proctree_lock); 211 break; 212 } 213 } 214 sx_sunlock(&proctree_lock); 215 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 216 PROC_LOCK(p); 217 if (!p_cansee(td, p)) { 218 error = donice(td, p, uap->prio); 219 found++; 220 } 221 PROC_UNLOCK(p); 222 } 223 PGRP_UNLOCK(pg); 224 break; 225 226 case PRIO_USER: 227 if (uap->who == 0) 228 uap->who = td->td_ucred->cr_uid; 229 sx_slock(&allproc_lock); 230 FOREACH_PROC_IN_SYSTEM(p) { 231 PROC_LOCK(p); 232 if (p->p_ucred->cr_uid == uap->who && 233 !p_cansee(td, p)) { 234 error = donice(td, p, uap->prio); 235 found++; 236 } 237 PROC_UNLOCK(p); 238 } 239 sx_sunlock(&allproc_lock); 240 break; 241 242 default: 243 error = EINVAL; 244 break; 245 } 246 if (found == 0 && error == 0) 247 error = ESRCH; 248 return (error); 249 } 250 251 /* 252 * Set "nice" for a (whole) process. 253 */ 254 static int 255 donice(struct thread *td, struct proc *p, int n) 256 { 257 int error; 258 259 PROC_LOCK_ASSERT(p, MA_OWNED); 260 if ((error = p_cansched(td, p))) 261 return (error); 262 if (n > PRIO_MAX) 263 n = PRIO_MAX; 264 if (n < PRIO_MIN) 265 n = PRIO_MIN; 266 if (n < p->p_nice && suser(td) != 0) 267 return (EACCES); 268 mtx_lock_spin(&sched_lock); 269 sched_nice(p, n); 270 mtx_unlock_spin(&sched_lock); 271 return (0); 272 } 273 274 /* 275 * Set realtime priority. 276 * 277 * MPSAFE 278 */ 279 #ifndef _SYS_SYSPROTO_H_ 280 struct rtprio_args { 281 int function; 282 pid_t pid; 283 struct rtprio *rtp; 284 }; 285 #endif 286 287 int 288 rtprio(td, uap) 289 struct thread *td; /* curthread */ 290 register struct rtprio_args *uap; 291 { 292 struct proc *curp; 293 struct proc *p; 294 struct ksegrp *kg; 295 struct rtprio rtp; 296 int cierror, error; 297 298 /* Perform copyin before acquiring locks if needed. */ 299 if (uap->function == RTP_SET) 300 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 301 else 302 cierror = 0; 303 304 curp = td->td_proc; 305 if (uap->pid == 0) { 306 p = curp; 307 PROC_LOCK(p); 308 } else { 309 p = pfind(uap->pid); 310 if (p == NULL) 311 return (ESRCH); 312 } 313 314 switch (uap->function) { 315 case RTP_LOOKUP: 316 if ((error = p_cansee(td, p))) 317 break; 318 mtx_lock_spin(&sched_lock); 319 /* 320 * Return OUR priority if no pid specified, 321 * or if one is, report the highest priority 322 * in the process. There isn't much more you can do as 323 * there is only room to return a single priority. 324 * XXXKSE: maybe need a new interface to report 325 * priorities of multiple system scope threads. 326 * Note: specifying our own pid is not the same 327 * as leaving it zero. 328 */ 329 if (uap->pid == 0) { 330 pri_to_rtp(td->td_ksegrp, &rtp); 331 } else { 332 struct rtprio rtp2; 333 334 rtp.type = RTP_PRIO_IDLE; 335 rtp.prio = RTP_PRIO_MAX; 336 FOREACH_KSEGRP_IN_PROC(p, kg) { 337 pri_to_rtp(kg, &rtp2); 338 if (rtp2.type < rtp.type || 339 (rtp2.type == rtp.type && 340 rtp2.prio < rtp.prio)) { 341 rtp.type = rtp2.type; 342 rtp.prio = rtp2.prio; 343 } 344 } 345 } 346 mtx_unlock_spin(&sched_lock); 347 PROC_UNLOCK(p); 348 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 349 case RTP_SET: 350 if ((error = p_cansched(td, p)) || (error = cierror)) 351 break; 352 353 /* Disallow setting rtprio in most cases if not superuser. */ 354 if (suser(td) != 0) { 355 /* can't set someone else's */ 356 if (uap->pid) { 357 error = EPERM; 358 break; 359 } 360 /* can't set realtime priority */ 361 /* 362 * Realtime priority has to be restricted for reasons which should be 363 * obvious. However, for idle priority, there is a potential for 364 * system deadlock if an idleprio process gains a lock on a resource 365 * that other processes need (and the idleprio process can't run 366 * due to a CPU-bound normal process). Fix me! XXX 367 */ 368 #if 0 369 if (RTP_PRIO_IS_REALTIME(rtp.type)) { 370 #else 371 if (rtp.type != RTP_PRIO_NORMAL) { 372 #endif 373 error = EPERM; 374 break; 375 } 376 } 377 378 /* 379 * If we are setting our own priority, set just our 380 * KSEGRP but if we are doing another process, 381 * do all the groups on that process. If we 382 * specify our own pid we do the latter. 383 */ 384 mtx_lock_spin(&sched_lock); 385 if (uap->pid == 0) { 386 error = rtp_to_pri(&rtp, td->td_ksegrp); 387 } else { 388 FOREACH_KSEGRP_IN_PROC(p, kg) { 389 if ((error = rtp_to_pri(&rtp, kg)) != 0) { 390 break; 391 } 392 } 393 } 394 mtx_unlock_spin(&sched_lock); 395 break; 396 default: 397 error = EINVAL; 398 break; 399 } 400 PROC_UNLOCK(p); 401 return (error); 402 } 403 404 int 405 rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg) 406 { 407 408 mtx_assert(&sched_lock, MA_OWNED); 409 if (rtp->prio > RTP_PRIO_MAX) 410 return (EINVAL); 411 switch (RTP_PRIO_BASE(rtp->type)) { 412 case RTP_PRIO_REALTIME: 413 kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio; 414 break; 415 case RTP_PRIO_NORMAL: 416 kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio; 417 break; 418 case RTP_PRIO_IDLE: 419 kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio; 420 break; 421 default: 422 return (EINVAL); 423 } 424 sched_class(kg, rtp->type); 425 if (curthread->td_ksegrp == kg) { 426 sched_prio(curthread, kg->kg_user_pri); /* XXX dubious */ 427 } 428 return (0); 429 } 430 431 void 432 pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp) 433 { 434 435 mtx_assert(&sched_lock, MA_OWNED); 436 switch (PRI_BASE(kg->kg_pri_class)) { 437 case PRI_REALTIME: 438 rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME; 439 break; 440 case PRI_TIMESHARE: 441 rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE; 442 break; 443 case PRI_IDLE: 444 rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE; 445 break; 446 default: 447 break; 448 } 449 rtp->type = kg->kg_pri_class; 450 } 451 452 #if defined(COMPAT_43) 453 #ifndef _SYS_SYSPROTO_H_ 454 struct osetrlimit_args { 455 u_int which; 456 struct orlimit *rlp; 457 }; 458 #endif 459 /* 460 * MPSAFE 461 */ 462 int 463 osetrlimit(td, uap) 464 struct thread *td; 465 register struct osetrlimit_args *uap; 466 { 467 struct orlimit olim; 468 struct rlimit lim; 469 int error; 470 471 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 472 return (error); 473 lim.rlim_cur = olim.rlim_cur; 474 lim.rlim_max = olim.rlim_max; 475 error = kern_setrlimit(td, uap->which, &lim); 476 return (error); 477 } 478 479 #ifndef _SYS_SYSPROTO_H_ 480 struct ogetrlimit_args { 481 u_int which; 482 struct orlimit *rlp; 483 }; 484 #endif 485 /* 486 * MPSAFE 487 */ 488 int 489 ogetrlimit(td, uap) 490 struct thread *td; 491 register struct ogetrlimit_args *uap; 492 { 493 struct orlimit olim; 494 struct rlimit rl; 495 struct proc *p; 496 int error; 497 498 if (uap->which >= RLIM_NLIMITS) 499 return (EINVAL); 500 p = td->td_proc; 501 PROC_LOCK(p); 502 lim_rlimit(p, uap->which, &rl); 503 PROC_UNLOCK(p); 504 505 /* 506 * XXX would be more correct to convert only RLIM_INFINITY to the 507 * old RLIM_INFINITY and fail with EOVERFLOW for other larger 508 * values. Most 64->32 and 32->16 conversions, including not 509 * unimportant ones of uids are even more broken than what we 510 * do here (they blindly truncate). We don't do this correctly 511 * here since we have little experience with EOVERFLOW yet. 512 * Elsewhere, getuid() can't fail... 513 */ 514 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur; 515 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max; 516 error = copyout(&olim, uap->rlp, sizeof(olim)); 517 return (error); 518 } 519 #endif /* COMPAT_43 */ 520 521 #ifndef _SYS_SYSPROTO_H_ 522 struct __setrlimit_args { 523 u_int which; 524 struct rlimit *rlp; 525 }; 526 #endif 527 /* 528 * MPSAFE 529 */ 530 int 531 setrlimit(td, uap) 532 struct thread *td; 533 register struct __setrlimit_args *uap; 534 { 535 struct rlimit alim; 536 int error; 537 538 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit)))) 539 return (error); 540 error = kern_setrlimit(td, uap->which, &alim); 541 return (error); 542 } 543 544 int 545 kern_setrlimit(td, which, limp) 546 struct thread *td; 547 u_int which; 548 struct rlimit *limp; 549 { 550 struct plimit *newlim, *oldlim; 551 struct proc *p; 552 register struct rlimit *alimp; 553 rlim_t oldssiz; 554 int error; 555 556 if (which >= RLIM_NLIMITS) 557 return (EINVAL); 558 559 /* 560 * Preserve historical bugs by treating negative limits as unsigned. 561 */ 562 if (limp->rlim_cur < 0) 563 limp->rlim_cur = RLIM_INFINITY; 564 if (limp->rlim_max < 0) 565 limp->rlim_max = RLIM_INFINITY; 566 567 oldssiz = 0; 568 p = td->td_proc; 569 newlim = lim_alloc(); 570 PROC_LOCK(p); 571 oldlim = p->p_limit; 572 alimp = &oldlim->pl_rlimit[which]; 573 if (limp->rlim_cur > alimp->rlim_max || 574 limp->rlim_max > alimp->rlim_max) 575 if ((error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL))) { 576 PROC_UNLOCK(p); 577 lim_free(newlim); 578 return (error); 579 } 580 if (limp->rlim_cur > limp->rlim_max) 581 limp->rlim_cur = limp->rlim_max; 582 lim_copy(newlim, oldlim); 583 alimp = &newlim->pl_rlimit[which]; 584 585 switch (which) { 586 587 case RLIMIT_CPU: 588 mtx_lock_spin(&sched_lock); 589 p->p_cpulimit = limp->rlim_cur; 590 mtx_unlock_spin(&sched_lock); 591 break; 592 case RLIMIT_DATA: 593 if (limp->rlim_cur > maxdsiz) 594 limp->rlim_cur = maxdsiz; 595 if (limp->rlim_max > maxdsiz) 596 limp->rlim_max = maxdsiz; 597 break; 598 599 case RLIMIT_STACK: 600 if (limp->rlim_cur > maxssiz) 601 limp->rlim_cur = maxssiz; 602 if (limp->rlim_max > maxssiz) 603 limp->rlim_max = maxssiz; 604 oldssiz = alimp->rlim_cur; 605 break; 606 607 case RLIMIT_NOFILE: 608 if (limp->rlim_cur > maxfilesperproc) 609 limp->rlim_cur = maxfilesperproc; 610 if (limp->rlim_max > maxfilesperproc) 611 limp->rlim_max = maxfilesperproc; 612 break; 613 614 case RLIMIT_NPROC: 615 if (limp->rlim_cur > maxprocperuid) 616 limp->rlim_cur = maxprocperuid; 617 if (limp->rlim_max > maxprocperuid) 618 limp->rlim_max = maxprocperuid; 619 if (limp->rlim_cur < 1) 620 limp->rlim_cur = 1; 621 if (limp->rlim_max < 1) 622 limp->rlim_max = 1; 623 break; 624 } 625 *alimp = *limp; 626 p->p_limit = newlim; 627 PROC_UNLOCK(p); 628 lim_free(oldlim); 629 630 if (which == RLIMIT_STACK) { 631 /* 632 * Stack is allocated to the max at exec time with only 633 * "rlim_cur" bytes accessible. If stack limit is going 634 * up make more accessible, if going down make inaccessible. 635 */ 636 if (limp->rlim_cur != oldssiz) { 637 vm_offset_t addr; 638 vm_size_t size; 639 vm_prot_t prot; 640 641 mtx_lock(&Giant); 642 if (limp->rlim_cur > oldssiz) { 643 prot = p->p_sysent->sv_stackprot; 644 size = limp->rlim_cur - oldssiz; 645 addr = p->p_sysent->sv_usrstack - 646 limp->rlim_cur; 647 } else { 648 prot = VM_PROT_NONE; 649 size = oldssiz - limp->rlim_cur; 650 addr = p->p_sysent->sv_usrstack - oldssiz; 651 } 652 addr = trunc_page(addr); 653 size = round_page(size); 654 (void)vm_map_protect(&p->p_vmspace->vm_map, 655 addr, addr + size, prot, FALSE); 656 mtx_unlock(&Giant); 657 } 658 } 659 return (0); 660 } 661 662 #ifndef _SYS_SYSPROTO_H_ 663 struct __getrlimit_args { 664 u_int which; 665 struct rlimit *rlp; 666 }; 667 #endif 668 /* 669 * MPSAFE 670 */ 671 /* ARGSUSED */ 672 int 673 getrlimit(td, uap) 674 struct thread *td; 675 register struct __getrlimit_args *uap; 676 { 677 struct rlimit rlim; 678 struct proc *p; 679 int error; 680 681 if (uap->which >= RLIM_NLIMITS) 682 return (EINVAL); 683 p = td->td_proc; 684 PROC_LOCK(p); 685 lim_rlimit(p, uap->which, &rlim); 686 PROC_UNLOCK(p); 687 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit)); 688 return (error); 689 } 690 691 /* 692 * Transform the running time and tick information in proc p into user, 693 * system, and interrupt time usage. 694 */ 695 void 696 calcru(p, up, sp) 697 struct proc *p; 698 struct timeval *up; 699 struct timeval *sp; 700 { 701 struct bintime bt; 702 struct rusage_ext rux; 703 struct thread *td; 704 int bt_valid; 705 706 PROC_LOCK_ASSERT(p, MA_OWNED); 707 mtx_assert(&sched_lock, MA_NOTOWNED); 708 bt_valid = 0; 709 mtx_lock_spin(&sched_lock); 710 rux = p->p_rux; 711 FOREACH_THREAD_IN_PROC(p, td) { 712 if (TD_IS_RUNNING(td)) { 713 /* 714 * Adjust for the current time slice. This is 715 * actually fairly important since the error here is 716 * on the order of a time quantum which is much 717 * greater than the precision of binuptime(). 718 */ 719 KASSERT(td->td_oncpu != NOCPU, 720 ("%s: running thread has no CPU", __func__)); 721 if (!bt_valid) { 722 binuptime(&bt); 723 bt_valid = 1; 724 } 725 bintime_add(&rux.rux_runtime, &bt); 726 bintime_sub(&rux.rux_runtime, 727 &pcpu_find(td->td_oncpu)->pc_switchtime); 728 } 729 } 730 mtx_unlock_spin(&sched_lock); 731 calcru1(p, &rux, up, sp); 732 p->p_rux.rux_uu = rux.rux_uu; 733 p->p_rux.rux_su = rux.rux_su; 734 p->p_rux.rux_iu = rux.rux_iu; 735 } 736 737 void 738 calccru(p, up, sp) 739 struct proc *p; 740 struct timeval *up; 741 struct timeval *sp; 742 { 743 744 PROC_LOCK_ASSERT(p, MA_OWNED); 745 calcru1(p, &p->p_crux, up, sp); 746 } 747 748 static void 749 calcru1(p, ruxp, up, sp) 750 struct proc *p; 751 struct rusage_ext *ruxp; 752 struct timeval *up; 753 struct timeval *sp; 754 { 755 struct timeval tv; 756 /* {user, system, interrupt, total} {ticks, usec}; previous tu: */ 757 u_int64_t ut, uu, st, su, it, iu, tt, tu, ptu; 758 759 ut = ruxp->rux_uticks; 760 st = ruxp->rux_sticks; 761 it = ruxp->rux_iticks; 762 tt = ut + st + it; 763 if (tt == 0) { 764 st = 1; 765 tt = 1; 766 } 767 bintime2timeval(&ruxp->rux_runtime, &tv); 768 tu = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 769 ptu = ruxp->rux_uu + ruxp->rux_su + ruxp->rux_iu; 770 if (tu < ptu) { 771 printf( 772 "calcru: runtime went backwards from %ju usec to %ju usec for pid %d (%s)\n", 773 (uintmax_t)ptu, (uintmax_t)tu, p->p_pid, p->p_comm); 774 tu = ptu; 775 } 776 if ((int64_t)tu < 0) { 777 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n", 778 (intmax_t)tu, p->p_pid, p->p_comm); 779 tu = ptu; 780 } 781 782 /* Subdivide tu. */ 783 uu = (tu * ut) / tt; 784 su = (tu * st) / tt; 785 iu = tu - uu - su; 786 787 /* Enforce monotonicity. */ 788 if (uu < ruxp->rux_uu || su < ruxp->rux_su || iu < ruxp->rux_iu) { 789 if (uu < ruxp->rux_uu) 790 uu = ruxp->rux_uu; 791 else if (uu + ruxp->rux_su + ruxp->rux_iu > tu) 792 uu = tu - ruxp->rux_su - ruxp->rux_iu; 793 if (st == 0) 794 su = ruxp->rux_su; 795 else { 796 su = ((tu - uu) * st) / (st + it); 797 if (su < ruxp->rux_su) 798 su = ruxp->rux_su; 799 else if (uu + su + ruxp->rux_iu > tu) 800 su = tu - uu - ruxp->rux_iu; 801 } 802 KASSERT(uu + su + ruxp->rux_iu <= tu, 803 ("calcru: monotonisation botch 1")); 804 iu = tu - uu - su; 805 KASSERT(iu >= ruxp->rux_iu, 806 ("calcru: monotonisation botch 2")); 807 } 808 ruxp->rux_uu = uu; 809 ruxp->rux_su = su; 810 ruxp->rux_iu = iu; 811 812 up->tv_sec = uu / 1000000; 813 up->tv_usec = uu % 1000000; 814 sp->tv_sec = su / 1000000; 815 sp->tv_usec = su % 1000000; 816 } 817 818 #ifndef _SYS_SYSPROTO_H_ 819 struct getrusage_args { 820 int who; 821 struct rusage *rusage; 822 }; 823 #endif 824 /* 825 * MPSAFE 826 */ 827 int 828 getrusage(td, uap) 829 register struct thread *td; 830 register struct getrusage_args *uap; 831 { 832 struct rusage ru; 833 int error; 834 835 error = kern_getrusage(td, uap->who, &ru); 836 if (error == 0) 837 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 838 return (error); 839 } 840 841 int 842 kern_getrusage(td, who, rup) 843 struct thread *td; 844 int who; 845 struct rusage *rup; 846 { 847 struct proc *p; 848 849 p = td->td_proc; 850 PROC_LOCK(p); 851 switch (who) { 852 853 case RUSAGE_SELF: 854 *rup = p->p_stats->p_ru; 855 calcru(p, &rup->ru_utime, &rup->ru_stime); 856 break; 857 858 case RUSAGE_CHILDREN: 859 *rup = p->p_stats->p_cru; 860 calccru(p, &rup->ru_utime, &rup->ru_stime); 861 break; 862 863 default: 864 PROC_UNLOCK(p); 865 return (EINVAL); 866 } 867 PROC_UNLOCK(p); 868 return (0); 869 } 870 871 void 872 ruadd(ru, rux, ru2, rux2) 873 struct rusage *ru; 874 struct rusage_ext *rux; 875 struct rusage *ru2; 876 struct rusage_ext *rux2; 877 { 878 register long *ip, *ip2; 879 register int i; 880 881 bintime_add(&rux->rux_runtime, &rux2->rux_runtime); 882 rux->rux_uticks += rux2->rux_uticks; 883 rux->rux_sticks += rux2->rux_sticks; 884 rux->rux_iticks += rux2->rux_iticks; 885 rux->rux_uu += rux2->rux_uu; 886 rux->rux_su += rux2->rux_su; 887 rux->rux_iu += rux2->rux_iu; 888 if (ru->ru_maxrss < ru2->ru_maxrss) 889 ru->ru_maxrss = ru2->ru_maxrss; 890 ip = &ru->ru_first; 891 ip2 = &ru2->ru_first; 892 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 893 *ip++ += *ip2++; 894 } 895 896 /* 897 * Allocate a new resource limits structure and initialize its 898 * reference count and mutex pointer. 899 */ 900 struct plimit * 901 lim_alloc() 902 { 903 struct plimit *limp; 904 905 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK); 906 limp->pl_refcnt = 1; 907 limp->pl_mtx = mtx_pool_alloc(mtxpool_sleep); 908 return (limp); 909 } 910 911 struct plimit * 912 lim_hold(limp) 913 struct plimit *limp; 914 { 915 916 LIM_LOCK(limp); 917 limp->pl_refcnt++; 918 LIM_UNLOCK(limp); 919 return (limp); 920 } 921 922 void 923 lim_free(limp) 924 struct plimit *limp; 925 { 926 927 LIM_LOCK(limp); 928 KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow")); 929 if (--limp->pl_refcnt == 0) { 930 LIM_UNLOCK(limp); 931 free((void *)limp, M_PLIMIT); 932 return; 933 } 934 LIM_UNLOCK(limp); 935 } 936 937 /* 938 * Make a copy of the plimit structure. 939 * We share these structures copy-on-write after fork. 940 */ 941 void 942 lim_copy(dst, src) 943 struct plimit *dst, *src; 944 { 945 946 KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit")); 947 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit)); 948 } 949 950 /* 951 * Return the hard limit for a particular system resource. The 952 * which parameter specifies the index into the rlimit array. 953 */ 954 rlim_t 955 lim_max(struct proc *p, int which) 956 { 957 struct rlimit rl; 958 959 lim_rlimit(p, which, &rl); 960 return (rl.rlim_max); 961 } 962 963 /* 964 * Return the current (soft) limit for a particular system resource. 965 * The which parameter which specifies the index into the rlimit array 966 */ 967 rlim_t 968 lim_cur(struct proc *p, int which) 969 { 970 struct rlimit rl; 971 972 lim_rlimit(p, which, &rl); 973 return (rl.rlim_cur); 974 } 975 976 /* 977 * Return a copy of the entire rlimit structure for the system limit 978 * specified by 'which' in the rlimit structure pointed to by 'rlp'. 979 */ 980 void 981 lim_rlimit(struct proc *p, int which, struct rlimit *rlp) 982 { 983 984 PROC_LOCK_ASSERT(p, MA_OWNED); 985 KASSERT(which >= 0 && which < RLIM_NLIMITS, 986 ("request for invalid resource limit")); 987 *rlp = p->p_limit->pl_rlimit[which]; 988 } 989 990 /* 991 * Find the uidinfo structure for a uid. This structure is used to 992 * track the total resource consumption (process count, socket buffer 993 * size, etc.) for the uid and impose limits. 994 */ 995 void 996 uihashinit() 997 { 998 999 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 1000 mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF); 1001 } 1002 1003 /* 1004 * Look up a uidinfo struct for the parameter uid. 1005 * uihashtbl_mtx must be locked. 1006 */ 1007 static struct uidinfo * 1008 uilookup(uid) 1009 uid_t uid; 1010 { 1011 struct uihashhead *uipp; 1012 struct uidinfo *uip; 1013 1014 mtx_assert(&uihashtbl_mtx, MA_OWNED); 1015 uipp = UIHASH(uid); 1016 LIST_FOREACH(uip, uipp, ui_hash) 1017 if (uip->ui_uid == uid) 1018 break; 1019 1020 return (uip); 1021 } 1022 1023 /* 1024 * Find or allocate a struct uidinfo for a particular uid. 1025 * Increase refcount on uidinfo struct returned. 1026 * uifree() should be called on a struct uidinfo when released. 1027 */ 1028 struct uidinfo * 1029 uifind(uid) 1030 uid_t uid; 1031 { 1032 struct uidinfo *old_uip, *uip; 1033 1034 mtx_lock(&uihashtbl_mtx); 1035 uip = uilookup(uid); 1036 if (uip == NULL) { 1037 mtx_unlock(&uihashtbl_mtx); 1038 uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO); 1039 mtx_lock(&uihashtbl_mtx); 1040 /* 1041 * There's a chance someone created our uidinfo while we 1042 * were in malloc and not holding the lock, so we have to 1043 * make sure we don't insert a duplicate uidinfo. 1044 */ 1045 if ((old_uip = uilookup(uid)) != NULL) { 1046 /* Someone else beat us to it. */ 1047 free(uip, M_UIDINFO); 1048 uip = old_uip; 1049 } else { 1050 uip->ui_mtxp = mtx_pool_alloc(mtxpool_sleep); 1051 uip->ui_uid = uid; 1052 LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash); 1053 } 1054 } 1055 uihold(uip); 1056 mtx_unlock(&uihashtbl_mtx); 1057 return (uip); 1058 } 1059 1060 /* 1061 * Place another refcount on a uidinfo struct. 1062 */ 1063 void 1064 uihold(uip) 1065 struct uidinfo *uip; 1066 { 1067 1068 UIDINFO_LOCK(uip); 1069 uip->ui_ref++; 1070 UIDINFO_UNLOCK(uip); 1071 } 1072 1073 /*- 1074 * Since uidinfo structs have a long lifetime, we use an 1075 * opportunistic refcounting scheme to avoid locking the lookup hash 1076 * for each release. 1077 * 1078 * If the refcount hits 0, we need to free the structure, 1079 * which means we need to lock the hash. 1080 * Optimal case: 1081 * After locking the struct and lowering the refcount, if we find 1082 * that we don't need to free, simply unlock and return. 1083 * Suboptimal case: 1084 * If refcount lowering results in need to free, bump the count 1085 * back up, loose the lock and aquire the locks in the proper 1086 * order to try again. 1087 */ 1088 void 1089 uifree(uip) 1090 struct uidinfo *uip; 1091 { 1092 1093 /* Prepare for optimal case. */ 1094 UIDINFO_LOCK(uip); 1095 1096 if (--uip->ui_ref != 0) { 1097 UIDINFO_UNLOCK(uip); 1098 return; 1099 } 1100 1101 /* Prepare for suboptimal case. */ 1102 uip->ui_ref++; 1103 UIDINFO_UNLOCK(uip); 1104 mtx_lock(&uihashtbl_mtx); 1105 UIDINFO_LOCK(uip); 1106 1107 /* 1108 * We must subtract one from the count again because we backed out 1109 * our initial subtraction before dropping the lock. 1110 * Since another thread may have added a reference after we dropped the 1111 * initial lock we have to test for zero again. 1112 */ 1113 if (--uip->ui_ref == 0) { 1114 LIST_REMOVE(uip, ui_hash); 1115 mtx_unlock(&uihashtbl_mtx); 1116 if (uip->ui_sbsize != 0) 1117 printf("freeing uidinfo: uid = %d, sbsize = %jd\n", 1118 uip->ui_uid, (intmax_t)uip->ui_sbsize); 1119 if (uip->ui_proccnt != 0) 1120 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 1121 uip->ui_uid, uip->ui_proccnt); 1122 UIDINFO_UNLOCK(uip); 1123 FREE(uip, M_UIDINFO); 1124 return; 1125 } 1126 1127 mtx_unlock(&uihashtbl_mtx); 1128 UIDINFO_UNLOCK(uip); 1129 } 1130 1131 /* 1132 * Change the count associated with number of processes 1133 * a given user is using. When 'max' is 0, don't enforce a limit 1134 */ 1135 int 1136 chgproccnt(uip, diff, max) 1137 struct uidinfo *uip; 1138 int diff; 1139 int max; 1140 { 1141 1142 UIDINFO_LOCK(uip); 1143 /* Don't allow them to exceed max, but allow subtraction. */ 1144 if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) { 1145 UIDINFO_UNLOCK(uip); 1146 return (0); 1147 } 1148 uip->ui_proccnt += diff; 1149 if (uip->ui_proccnt < 0) 1150 printf("negative proccnt for uid = %d\n", uip->ui_uid); 1151 UIDINFO_UNLOCK(uip); 1152 return (1); 1153 } 1154 1155 /* 1156 * Change the total socket buffer size a user has used. 1157 */ 1158 int 1159 chgsbsize(uip, hiwat, to, max) 1160 struct uidinfo *uip; 1161 u_int *hiwat; 1162 u_int to; 1163 rlim_t max; 1164 { 1165 rlim_t new; 1166 1167 UIDINFO_LOCK(uip); 1168 new = uip->ui_sbsize + to - *hiwat; 1169 /* Don't allow them to exceed max, but allow subtraction. */ 1170 if (to > *hiwat && new > max) { 1171 UIDINFO_UNLOCK(uip); 1172 return (0); 1173 } 1174 uip->ui_sbsize = new; 1175 UIDINFO_UNLOCK(uip); 1176 *hiwat = to; 1177 if (new < 0) 1178 printf("negative sbsize for uid = %d\n", uip->ui_uid); 1179 return (1); 1180 } 1181