xref: /freebsd/sys/kern/kern_resource.c (revision 59f5f100b774de8824fb2fc1a8a11a93bbc2dafd)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/sysproto.h>
40 #include <sys/file.h>
41 #include <sys/filedesc.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/refcount.h>
49 #include <sys/racct.h>
50 #include <sys/resourcevar.h>
51 #include <sys/rwlock.h>
52 #include <sys/sched.h>
53 #include <sys/sx.h>
54 #include <sys/syscallsubr.h>
55 #include <sys/sysctl.h>
56 #include <sys/sysent.h>
57 #include <sys/time.h>
58 #include <sys/umtxvar.h>
59 
60 #include <vm/vm.h>
61 #include <vm/vm_param.h>
62 #include <vm/pmap.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_extern.h>
65 
66 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
67 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
68 #define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
69 static struct rwlock uihashtbl_lock;
70 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
71 static u_long uihash;		/* size of hash table - 1 */
72 
73 static void	calcru1(struct proc *p, struct rusage_ext *ruxp,
74 		    struct timeval *up, struct timeval *sp);
75 static int	donice(struct thread *td, struct proc *chgp, int n);
76 static struct uidinfo *uilookup(uid_t uid);
77 static void	ruxagg_ext_locked(struct rusage_ext *rux, struct thread *td);
78 
79 /*
80  * Resource controls and accounting.
81  */
82 #ifndef _SYS_SYSPROTO_H_
83 struct getpriority_args {
84 	int	which;
85 	int	who;
86 };
87 #endif
88 int
89 sys_getpriority(struct thread *td, struct getpriority_args *uap)
90 {
91 
92 	return (kern_getpriority(td, uap->which, uap->who));
93 }
94 
95 int
96 kern_getpriority(struct thread *td, int which, int who)
97 {
98 	struct proc *p;
99 	struct pgrp *pg;
100 	int error, low;
101 
102 	error = 0;
103 	low = PRIO_MAX + 1;
104 	switch (which) {
105 	case PRIO_PROCESS:
106 		if (who == 0)
107 			low = td->td_proc->p_nice;
108 		else {
109 			p = pfind(who);
110 			if (p == NULL)
111 				break;
112 			if (p_cansee(td, p) == 0)
113 				low = p->p_nice;
114 			PROC_UNLOCK(p);
115 		}
116 		break;
117 
118 	case PRIO_PGRP:
119 		sx_slock(&proctree_lock);
120 		if (who == 0) {
121 			pg = td->td_proc->p_pgrp;
122 			PGRP_LOCK(pg);
123 		} else {
124 			pg = pgfind(who);
125 			if (pg == NULL) {
126 				sx_sunlock(&proctree_lock);
127 				break;
128 			}
129 		}
130 		sx_sunlock(&proctree_lock);
131 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
132 			PROC_LOCK(p);
133 			if (p->p_state == PRS_NORMAL &&
134 			    p_cansee(td, p) == 0) {
135 				if (p->p_nice < low)
136 					low = p->p_nice;
137 			}
138 			PROC_UNLOCK(p);
139 		}
140 		PGRP_UNLOCK(pg);
141 		break;
142 
143 	case PRIO_USER:
144 		if (who == 0)
145 			who = td->td_ucred->cr_uid;
146 		sx_slock(&allproc_lock);
147 		FOREACH_PROC_IN_SYSTEM(p) {
148 			PROC_LOCK(p);
149 			if (p->p_state == PRS_NORMAL &&
150 			    p_cansee(td, p) == 0 &&
151 			    p->p_ucred->cr_uid == who) {
152 				if (p->p_nice < low)
153 					low = p->p_nice;
154 			}
155 			PROC_UNLOCK(p);
156 		}
157 		sx_sunlock(&allproc_lock);
158 		break;
159 
160 	default:
161 		error = EINVAL;
162 		break;
163 	}
164 	if (low == PRIO_MAX + 1 && error == 0)
165 		error = ESRCH;
166 	td->td_retval[0] = low;
167 	return (error);
168 }
169 
170 #ifndef _SYS_SYSPROTO_H_
171 struct setpriority_args {
172 	int	which;
173 	int	who;
174 	int	prio;
175 };
176 #endif
177 int
178 sys_setpriority(struct thread *td, struct setpriority_args *uap)
179 {
180 
181 	return (kern_setpriority(td, uap->which, uap->who, uap->prio));
182 }
183 
184 int
185 kern_setpriority(struct thread *td, int which, int who, int prio)
186 {
187 	struct proc *curp, *p;
188 	struct pgrp *pg;
189 	int found = 0, error = 0;
190 
191 	curp = td->td_proc;
192 	switch (which) {
193 	case PRIO_PROCESS:
194 		if (who == 0) {
195 			PROC_LOCK(curp);
196 			error = donice(td, curp, prio);
197 			PROC_UNLOCK(curp);
198 		} else {
199 			p = pfind(who);
200 			if (p == NULL)
201 				break;
202 			error = p_cansee(td, p);
203 			if (error == 0)
204 				error = donice(td, p, prio);
205 			PROC_UNLOCK(p);
206 		}
207 		found++;
208 		break;
209 
210 	case PRIO_PGRP:
211 		sx_slock(&proctree_lock);
212 		if (who == 0) {
213 			pg = curp->p_pgrp;
214 			PGRP_LOCK(pg);
215 		} else {
216 			pg = pgfind(who);
217 			if (pg == NULL) {
218 				sx_sunlock(&proctree_lock);
219 				break;
220 			}
221 		}
222 		sx_sunlock(&proctree_lock);
223 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
224 			PROC_LOCK(p);
225 			if (p->p_state == PRS_NORMAL &&
226 			    p_cansee(td, p) == 0) {
227 				error = donice(td, p, prio);
228 				found++;
229 			}
230 			PROC_UNLOCK(p);
231 		}
232 		PGRP_UNLOCK(pg);
233 		break;
234 
235 	case PRIO_USER:
236 		if (who == 0)
237 			who = td->td_ucred->cr_uid;
238 		sx_slock(&allproc_lock);
239 		FOREACH_PROC_IN_SYSTEM(p) {
240 			PROC_LOCK(p);
241 			if (p->p_state == PRS_NORMAL &&
242 			    p->p_ucred->cr_uid == who &&
243 			    p_cansee(td, p) == 0) {
244 				error = donice(td, p, prio);
245 				found++;
246 			}
247 			PROC_UNLOCK(p);
248 		}
249 		sx_sunlock(&allproc_lock);
250 		break;
251 
252 	default:
253 		error = EINVAL;
254 		break;
255 	}
256 	if (found == 0 && error == 0)
257 		error = ESRCH;
258 	return (error);
259 }
260 
261 /*
262  * Set "nice" for a (whole) process.
263  */
264 static int
265 donice(struct thread *td, struct proc *p, int n)
266 {
267 	int error;
268 
269 	PROC_LOCK_ASSERT(p, MA_OWNED);
270 	if ((error = p_cansched(td, p)))
271 		return (error);
272 	if (n > PRIO_MAX)
273 		n = PRIO_MAX;
274 	if (n < PRIO_MIN)
275 		n = PRIO_MIN;
276 	if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
277 		return (EACCES);
278 	sched_nice(p, n);
279 	return (0);
280 }
281 
282 static int unprivileged_idprio;
283 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW,
284     &unprivileged_idprio, 0,
285     "Allow non-root users to set an idle priority (deprecated)");
286 
287 /*
288  * Set realtime priority for LWP.
289  */
290 #ifndef _SYS_SYSPROTO_H_
291 struct rtprio_thread_args {
292 	int		function;
293 	lwpid_t		lwpid;
294 	struct rtprio	*rtp;
295 };
296 #endif
297 int
298 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
299 {
300 	struct proc *p;
301 	struct rtprio rtp;
302 	struct thread *td1;
303 	int cierror, error;
304 
305 	/* Perform copyin before acquiring locks if needed. */
306 	if (uap->function == RTP_SET)
307 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
308 	else
309 		cierror = 0;
310 
311 	if (uap->lwpid == 0 || uap->lwpid == td->td_tid) {
312 		p = td->td_proc;
313 		td1 = td;
314 		PROC_LOCK(p);
315 	} else {
316 		td1 = tdfind(uap->lwpid, -1);
317 		if (td1 == NULL)
318 			return (ESRCH);
319 		p = td1->td_proc;
320 	}
321 
322 	switch (uap->function) {
323 	case RTP_LOOKUP:
324 		if ((error = p_cansee(td, p)))
325 			break;
326 		pri_to_rtp(td1, &rtp);
327 		PROC_UNLOCK(p);
328 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
329 	case RTP_SET:
330 		if ((error = p_cansched(td, p)) || (error = cierror))
331 			break;
332 
333 		/* Disallow setting rtprio in most cases if not superuser. */
334 
335 		/*
336 		 * Realtime priority has to be restricted for reasons which
337 		 * should be obvious.  However, for idleprio processes, there is
338 		 * a potential for system deadlock if an idleprio process gains
339 		 * a lock on a resource that other processes need (and the
340 		 * idleprio process can't run due to a CPU-bound normal
341 		 * process).  Fix me!  XXX
342 		 *
343 		 * This problem is not only related to idleprio process.
344 		 * A user level program can obtain a file lock and hold it
345 		 * indefinitely.  Additionally, without idleprio processes it is
346 		 * still conceivable that a program with low priority will never
347 		 * get to run.  In short, allowing this feature might make it
348 		 * easier to lock a resource indefinitely, but it is not the
349 		 * only thing that makes it possible.
350 		 */
351 		if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME &&
352 		    (error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0)
353 			break;
354 		if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
355 		    unprivileged_idprio == 0 &&
356 		    (error = priv_check(td, PRIV_SCHED_IDPRIO)) != 0)
357 			break;
358 		error = rtp_to_pri(&rtp, td1);
359 		break;
360 	default:
361 		error = EINVAL;
362 		break;
363 	}
364 	PROC_UNLOCK(p);
365 	return (error);
366 }
367 
368 /*
369  * Set realtime priority.
370  */
371 #ifndef _SYS_SYSPROTO_H_
372 struct rtprio_args {
373 	int		function;
374 	pid_t		pid;
375 	struct rtprio	*rtp;
376 };
377 #endif
378 int
379 sys_rtprio(struct thread *td, struct rtprio_args *uap)
380 {
381 	struct proc *p;
382 	struct thread *tdp;
383 	struct rtprio rtp;
384 	int cierror, error;
385 
386 	/* Perform copyin before acquiring locks if needed. */
387 	if (uap->function == RTP_SET)
388 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
389 	else
390 		cierror = 0;
391 
392 	if (uap->pid == 0) {
393 		p = td->td_proc;
394 		PROC_LOCK(p);
395 	} else {
396 		p = pfind(uap->pid);
397 		if (p == NULL)
398 			return (ESRCH);
399 	}
400 
401 	switch (uap->function) {
402 	case RTP_LOOKUP:
403 		if ((error = p_cansee(td, p)))
404 			break;
405 		/*
406 		 * Return OUR priority if no pid specified,
407 		 * or if one is, report the highest priority
408 		 * in the process.  There isn't much more you can do as
409 		 * there is only room to return a single priority.
410 		 * Note: specifying our own pid is not the same
411 		 * as leaving it zero.
412 		 */
413 		if (uap->pid == 0) {
414 			pri_to_rtp(td, &rtp);
415 		} else {
416 			struct rtprio rtp2;
417 
418 			rtp.type = RTP_PRIO_IDLE;
419 			rtp.prio = RTP_PRIO_MAX;
420 			FOREACH_THREAD_IN_PROC(p, tdp) {
421 				pri_to_rtp(tdp, &rtp2);
422 				if (rtp2.type <  rtp.type ||
423 				    (rtp2.type == rtp.type &&
424 				    rtp2.prio < rtp.prio)) {
425 					rtp.type = rtp2.type;
426 					rtp.prio = rtp2.prio;
427 				}
428 			}
429 		}
430 		PROC_UNLOCK(p);
431 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
432 	case RTP_SET:
433 		if ((error = p_cansched(td, p)) || (error = cierror))
434 			break;
435 
436 		/*
437 		 * Disallow setting rtprio in most cases if not superuser.
438 		 * See the comment in sys_rtprio_thread about idprio
439 		 * threads holding a lock.
440 		 */
441 		if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME &&
442 		    (error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0)
443 			break;
444 		if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
445 		    unprivileged_idprio == 0 &&
446 		    (error = priv_check(td, PRIV_SCHED_IDPRIO)) != 0)
447 			break;
448 
449 		/*
450 		 * If we are setting our own priority, set just our
451 		 * thread but if we are doing another process,
452 		 * do all the threads on that process. If we
453 		 * specify our own pid we do the latter.
454 		 */
455 		if (uap->pid == 0) {
456 			error = rtp_to_pri(&rtp, td);
457 		} else {
458 			FOREACH_THREAD_IN_PROC(p, td) {
459 				if ((error = rtp_to_pri(&rtp, td)) != 0)
460 					break;
461 			}
462 		}
463 		break;
464 	default:
465 		error = EINVAL;
466 		break;
467 	}
468 	PROC_UNLOCK(p);
469 	return (error);
470 }
471 
472 int
473 rtp_to_pri(struct rtprio *rtp, struct thread *td)
474 {
475 	u_char  newpri, oldclass, oldpri;
476 
477 	switch (RTP_PRIO_BASE(rtp->type)) {
478 	case RTP_PRIO_REALTIME:
479 		if (rtp->prio > RTP_PRIO_MAX)
480 			return (EINVAL);
481 		newpri = PRI_MIN_REALTIME + rtp->prio;
482 		break;
483 	case RTP_PRIO_NORMAL:
484 		if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE))
485 			return (EINVAL);
486 		newpri = PRI_MIN_TIMESHARE + rtp->prio;
487 		break;
488 	case RTP_PRIO_IDLE:
489 		if (rtp->prio > RTP_PRIO_MAX)
490 			return (EINVAL);
491 		newpri = PRI_MIN_IDLE + rtp->prio;
492 		break;
493 	default:
494 		return (EINVAL);
495 	}
496 
497 	thread_lock(td);
498 	oldclass = td->td_pri_class;
499 	sched_class(td, rtp->type);	/* XXX fix */
500 	oldpri = td->td_user_pri;
501 	sched_user_prio(td, newpri);
502 	if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL ||
503 	    td->td_pri_class != RTP_PRIO_NORMAL))
504 		sched_prio(td, td->td_user_pri);
505 	if (TD_ON_UPILOCK(td) && oldpri != newpri) {
506 		critical_enter();
507 		thread_unlock(td);
508 		umtx_pi_adjust(td, oldpri);
509 		critical_exit();
510 	} else
511 		thread_unlock(td);
512 	return (0);
513 }
514 
515 void
516 pri_to_rtp(struct thread *td, struct rtprio *rtp)
517 {
518 
519 	thread_lock(td);
520 	switch (PRI_BASE(td->td_pri_class)) {
521 	case PRI_REALTIME:
522 		rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
523 		break;
524 	case PRI_TIMESHARE:
525 		rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
526 		break;
527 	case PRI_IDLE:
528 		rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
529 		break;
530 	default:
531 		break;
532 	}
533 	rtp->type = td->td_pri_class;
534 	thread_unlock(td);
535 }
536 
537 #if defined(COMPAT_43)
538 #ifndef _SYS_SYSPROTO_H_
539 struct osetrlimit_args {
540 	u_int	which;
541 	struct	orlimit *rlp;
542 };
543 #endif
544 int
545 osetrlimit(struct thread *td, struct osetrlimit_args *uap)
546 {
547 	struct orlimit olim;
548 	struct rlimit lim;
549 	int error;
550 
551 	if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
552 		return (error);
553 	lim.rlim_cur = olim.rlim_cur;
554 	lim.rlim_max = olim.rlim_max;
555 	error = kern_setrlimit(td, uap->which, &lim);
556 	return (error);
557 }
558 
559 #ifndef _SYS_SYSPROTO_H_
560 struct ogetrlimit_args {
561 	u_int	which;
562 	struct	orlimit *rlp;
563 };
564 #endif
565 int
566 ogetrlimit(struct thread *td, struct ogetrlimit_args *uap)
567 {
568 	struct orlimit olim;
569 	struct rlimit rl;
570 	int error;
571 
572 	if (uap->which >= RLIM_NLIMITS)
573 		return (EINVAL);
574 	lim_rlimit(td, uap->which, &rl);
575 
576 	/*
577 	 * XXX would be more correct to convert only RLIM_INFINITY to the
578 	 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
579 	 * values.  Most 64->32 and 32->16 conversions, including not
580 	 * unimportant ones of uids are even more broken than what we
581 	 * do here (they blindly truncate).  We don't do this correctly
582 	 * here since we have little experience with EOVERFLOW yet.
583 	 * Elsewhere, getuid() can't fail...
584 	 */
585 	olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
586 	olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
587 	error = copyout(&olim, uap->rlp, sizeof(olim));
588 	return (error);
589 }
590 #endif /* COMPAT_43 */
591 
592 #ifndef _SYS_SYSPROTO_H_
593 struct setrlimit_args {
594 	u_int	which;
595 	struct	rlimit *rlp;
596 };
597 #endif
598 int
599 sys_setrlimit(struct thread *td, struct setrlimit_args *uap)
600 {
601 	struct rlimit alim;
602 	int error;
603 
604 	if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
605 		return (error);
606 	error = kern_setrlimit(td, uap->which, &alim);
607 	return (error);
608 }
609 
610 static void
611 lim_cb(void *arg)
612 {
613 	struct rlimit rlim;
614 	struct thread *td;
615 	struct proc *p;
616 
617 	p = arg;
618 	PROC_LOCK_ASSERT(p, MA_OWNED);
619 	/*
620 	 * Check if the process exceeds its cpu resource allocation.  If
621 	 * it reaches the max, arrange to kill the process in ast().
622 	 */
623 	if (p->p_cpulimit == RLIM_INFINITY)
624 		return;
625 	PROC_STATLOCK(p);
626 	FOREACH_THREAD_IN_PROC(p, td) {
627 		ruxagg(p, td);
628 	}
629 	PROC_STATUNLOCK(p);
630 	if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
631 		lim_rlimit_proc(p, RLIMIT_CPU, &rlim);
632 		if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
633 			killproc(p, "exceeded maximum CPU limit");
634 		} else {
635 			if (p->p_cpulimit < rlim.rlim_max)
636 				p->p_cpulimit += 5;
637 			kern_psignal(p, SIGXCPU);
638 		}
639 	}
640 	if ((p->p_flag & P_WEXIT) == 0)
641 		callout_reset_sbt(&p->p_limco, SBT_1S, 0,
642 		    lim_cb, p, C_PREL(1));
643 }
644 
645 int
646 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp)
647 {
648 
649 	return (kern_proc_setrlimit(td, td->td_proc, which, limp));
650 }
651 
652 int
653 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which,
654     struct rlimit *limp)
655 {
656 	struct plimit *newlim, *oldlim, *oldlim_td;
657 	struct rlimit *alimp;
658 	struct rlimit oldssiz;
659 	int error;
660 
661 	if (which >= RLIM_NLIMITS)
662 		return (EINVAL);
663 
664 	/*
665 	 * Preserve historical bugs by treating negative limits as unsigned.
666 	 */
667 	if (limp->rlim_cur < 0)
668 		limp->rlim_cur = RLIM_INFINITY;
669 	if (limp->rlim_max < 0)
670 		limp->rlim_max = RLIM_INFINITY;
671 
672 	oldssiz.rlim_cur = 0;
673 	newlim = lim_alloc();
674 	PROC_LOCK(p);
675 	oldlim = p->p_limit;
676 	alimp = &oldlim->pl_rlimit[which];
677 	if (limp->rlim_cur > alimp->rlim_max ||
678 	    limp->rlim_max > alimp->rlim_max)
679 		if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
680 			PROC_UNLOCK(p);
681 			lim_free(newlim);
682 			return (error);
683 		}
684 	if (limp->rlim_cur > limp->rlim_max)
685 		limp->rlim_cur = limp->rlim_max;
686 	lim_copy(newlim, oldlim);
687 	alimp = &newlim->pl_rlimit[which];
688 
689 	switch (which) {
690 	case RLIMIT_CPU:
691 		if (limp->rlim_cur != RLIM_INFINITY &&
692 		    p->p_cpulimit == RLIM_INFINITY)
693 			callout_reset_sbt(&p->p_limco, SBT_1S, 0,
694 			    lim_cb, p, C_PREL(1));
695 		p->p_cpulimit = limp->rlim_cur;
696 		break;
697 	case RLIMIT_DATA:
698 		if (limp->rlim_cur > maxdsiz)
699 			limp->rlim_cur = maxdsiz;
700 		if (limp->rlim_max > maxdsiz)
701 			limp->rlim_max = maxdsiz;
702 		break;
703 
704 	case RLIMIT_STACK:
705 		if (limp->rlim_cur > maxssiz)
706 			limp->rlim_cur = maxssiz;
707 		if (limp->rlim_max > maxssiz)
708 			limp->rlim_max = maxssiz;
709 		oldssiz = *alimp;
710 		if (p->p_sysent->sv_fixlimit != NULL)
711 			p->p_sysent->sv_fixlimit(&oldssiz,
712 			    RLIMIT_STACK);
713 		break;
714 
715 	case RLIMIT_NOFILE:
716 		if (limp->rlim_cur > maxfilesperproc)
717 			limp->rlim_cur = maxfilesperproc;
718 		if (limp->rlim_max > maxfilesperproc)
719 			limp->rlim_max = maxfilesperproc;
720 		break;
721 
722 	case RLIMIT_NPROC:
723 		if (limp->rlim_cur > maxprocperuid)
724 			limp->rlim_cur = maxprocperuid;
725 		if (limp->rlim_max > maxprocperuid)
726 			limp->rlim_max = maxprocperuid;
727 		if (limp->rlim_cur < 1)
728 			limp->rlim_cur = 1;
729 		if (limp->rlim_max < 1)
730 			limp->rlim_max = 1;
731 		break;
732 	}
733 	if (p->p_sysent->sv_fixlimit != NULL)
734 		p->p_sysent->sv_fixlimit(limp, which);
735 	*alimp = *limp;
736 	p->p_limit = newlim;
737 	PROC_UPDATE_COW(p);
738 	oldlim_td = NULL;
739 	if (td == curthread && PROC_COW_CHANGECOUNT(td, p) == 1) {
740 		oldlim_td = lim_cowsync();
741 		thread_cow_synced(td);
742 	}
743 	PROC_UNLOCK(p);
744 	if (oldlim_td != NULL) {
745 		MPASS(oldlim_td == oldlim);
746 		lim_freen(oldlim, 2);
747 	} else {
748 		lim_free(oldlim);
749 	}
750 
751 	if (which == RLIMIT_STACK &&
752 	    /*
753 	     * Skip calls from exec_new_vmspace(), done when stack is
754 	     * not mapped yet.
755 	     */
756 	    (td != curthread || (p->p_flag & P_INEXEC) == 0)) {
757 		/*
758 		 * Stack is allocated to the max at exec time with only
759 		 * "rlim_cur" bytes accessible.  If stack limit is going
760 		 * up make more accessible, if going down make inaccessible.
761 		 */
762 		if (limp->rlim_cur != oldssiz.rlim_cur) {
763 			vm_offset_t addr;
764 			vm_size_t size;
765 			vm_prot_t prot;
766 
767 			if (limp->rlim_cur > oldssiz.rlim_cur) {
768 				prot = p->p_sysent->sv_stackprot;
769 				size = limp->rlim_cur - oldssiz.rlim_cur;
770 				addr = round_page(p->p_vmspace->vm_stacktop) -
771 				    limp->rlim_cur;
772 			} else {
773 				prot = VM_PROT_NONE;
774 				size = oldssiz.rlim_cur - limp->rlim_cur;
775 				addr = round_page(p->p_vmspace->vm_stacktop) -
776 				    oldssiz.rlim_cur;
777 			}
778 			addr = trunc_page(addr);
779 			size = round_page(size);
780 			(void)vm_map_protect(&p->p_vmspace->vm_map,
781 			    addr, addr + size, prot, 0,
782 			    VM_MAP_PROTECT_SET_PROT);
783 		}
784 	}
785 
786 	return (0);
787 }
788 
789 #ifndef _SYS_SYSPROTO_H_
790 struct getrlimit_args {
791 	u_int	which;
792 	struct	rlimit *rlp;
793 };
794 #endif
795 /* ARGSUSED */
796 int
797 sys_getrlimit(struct thread *td, struct getrlimit_args *uap)
798 {
799 	struct rlimit rlim;
800 	int error;
801 
802 	if (uap->which >= RLIM_NLIMITS)
803 		return (EINVAL);
804 	lim_rlimit(td, uap->which, &rlim);
805 	error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
806 	return (error);
807 }
808 
809 static int
810 getrlimitusage_one(struct proc *p, u_int which, int flags, rlim_t *res)
811 {
812 	struct thread *td;
813 	struct uidinfo *ui;
814 	struct vmspace *vm;
815 	uid_t uid;
816 	int error;
817 
818 	error = 0;
819 	PROC_LOCK(p);
820 	uid = (flags & GETRLIMITUSAGE_EUID) == 0 ? p->p_ucred->cr_ruid :
821 	    p->p_ucred->cr_uid;
822 	PROC_UNLOCK(p);
823 
824 	ui = uifind(uid);
825 	vm = vmspace_acquire_ref(p);
826 
827 	switch (which) {
828 	case RLIMIT_CPU:
829 		PROC_LOCK(p);
830 		PROC_STATLOCK(p);
831 		FOREACH_THREAD_IN_PROC(p, td)
832 			ruxagg(p, td);
833 		*res = p->p_rux.rux_runtime;
834 		PROC_STATUNLOCK(p);
835 		PROC_UNLOCK(p);
836 		*res /= cpu_tickrate();
837 		break;
838 	case RLIMIT_FSIZE:
839 		error = ENXIO;
840 		break;
841 	case RLIMIT_DATA:
842 		if (vm == NULL)
843 			error = ENXIO;
844 		else
845 			*res = vm->vm_dsize * PAGE_SIZE;
846 		break;
847 	case RLIMIT_STACK:
848 		if (vm == NULL)
849 			error = ENXIO;
850 		else
851 			*res = vm->vm_ssize * PAGE_SIZE;
852 		break;
853 	case RLIMIT_CORE:
854 		error = ENXIO;
855 		break;
856 	case RLIMIT_RSS:
857 		if (vm == NULL)
858 			error = ENXIO;
859 		else
860 			*res = vmspace_resident_count(vm) * PAGE_SIZE;
861 		break;
862 	case RLIMIT_MEMLOCK:
863 		if (vm == NULL)
864 			error = ENXIO;
865 		else
866 			*res = pmap_wired_count(vmspace_pmap(vm)) * PAGE_SIZE;
867 		break;
868 	case RLIMIT_NPROC:
869 		*res = ui->ui_proccnt;
870 		break;
871 	case RLIMIT_NOFILE:
872 		*res = proc_nfiles(p);
873 		break;
874 	case RLIMIT_SBSIZE:
875 		*res = ui->ui_sbsize;
876 		break;
877 	case RLIMIT_VMEM:
878 		if (vm == NULL)
879 			error = ENXIO;
880 		else
881 			*res = vm->vm_map.size;
882 		break;
883 	case RLIMIT_NPTS:
884 		*res = ui->ui_ptscnt;
885 		break;
886 	case RLIMIT_SWAP:
887 		*res = ui->ui_vmsize;
888 		break;
889 	case RLIMIT_KQUEUES:
890 		*res = ui->ui_kqcnt;
891 		break;
892 	case RLIMIT_UMTXP:
893 		*res = ui->ui_umtxcnt;
894 		break;
895 	case RLIMIT_PIPEBUF:
896 		*res = ui->ui_pipecnt;
897 		break;
898 	default:
899 		error = EINVAL;
900 		break;
901 	}
902 
903 	vmspace_free(vm);
904 	uifree(ui);
905 	return (error);
906 }
907 
908 int
909 sys_getrlimitusage(struct thread *td, struct getrlimitusage_args *uap)
910 {
911 	rlim_t res;
912 	int error;
913 
914 	if ((uap->flags & ~(GETRLIMITUSAGE_EUID)) != 0)
915 		return (EINVAL);
916 	error = getrlimitusage_one(curproc, uap->which, uap->flags, &res);
917 	if (error == 0)
918 		error = copyout(&res, uap->res, sizeof(res));
919 	return (error);
920 }
921 
922 /*
923  * Transform the running time and tick information for children of proc p
924  * into user and system time usage.
925  */
926 void
927 calccru(struct proc *p, struct timeval *up, struct timeval *sp)
928 {
929 
930 	PROC_LOCK_ASSERT(p, MA_OWNED);
931 	calcru1(p, &p->p_crux, up, sp);
932 }
933 
934 /*
935  * Transform the running time and tick information in proc p into user
936  * and system time usage.  If appropriate, include the current time slice
937  * on this CPU.
938  */
939 void
940 calcru(struct proc *p, struct timeval *up, struct timeval *sp)
941 {
942 	struct thread *td;
943 	uint64_t runtime, u;
944 
945 	PROC_LOCK_ASSERT(p, MA_OWNED);
946 	PROC_STATLOCK_ASSERT(p, MA_OWNED);
947 	/*
948 	 * If we are getting stats for the current process, then add in the
949 	 * stats that this thread has accumulated in its current time slice.
950 	 * We reset the thread and CPU state as if we had performed a context
951 	 * switch right here.
952 	 */
953 	td = curthread;
954 	if (td->td_proc == p) {
955 		u = cpu_ticks();
956 		runtime = u - PCPU_GET(switchtime);
957 		td->td_runtime += runtime;
958 		td->td_incruntime += runtime;
959 		PCPU_SET(switchtime, u);
960 	}
961 	/* Make sure the per-thread stats are current. */
962 	FOREACH_THREAD_IN_PROC(p, td) {
963 		if (td->td_incruntime == 0)
964 			continue;
965 		ruxagg(p, td);
966 	}
967 	calcru1(p, &p->p_rux, up, sp);
968 }
969 
970 /* Collect resource usage for a single thread. */
971 void
972 rufetchtd(struct thread *td, struct rusage *ru)
973 {
974 	struct proc *p;
975 	uint64_t runtime, u;
976 
977 	p = td->td_proc;
978 	PROC_STATLOCK_ASSERT(p, MA_OWNED);
979 	THREAD_LOCK_ASSERT(td, MA_OWNED);
980 	/*
981 	 * If we are getting stats for the current thread, then add in the
982 	 * stats that this thread has accumulated in its current time slice.
983 	 * We reset the thread and CPU state as if we had performed a context
984 	 * switch right here.
985 	 */
986 	if (td == curthread) {
987 		u = cpu_ticks();
988 		runtime = u - PCPU_GET(switchtime);
989 		td->td_runtime += runtime;
990 		td->td_incruntime += runtime;
991 		PCPU_SET(switchtime, u);
992 	}
993 	ruxagg_locked(p, td);
994 	*ru = td->td_ru;
995 	calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime);
996 }
997 
998 static uint64_t
999 mul64_by_fraction(uint64_t a, uint64_t b, uint64_t c)
1000 {
1001 	uint64_t acc, bh, bl;
1002 	int i, s, sa, sb;
1003 
1004 	/*
1005 	 * Calculate (a * b) / c accurately enough without overflowing.  c
1006 	 * must be nonzero, and its top bit must be 0.  a or b must be
1007 	 * <= c, and the implementation is tuned for b <= c.
1008 	 *
1009 	 * The comments about times are for use in calcru1() with units of
1010 	 * microseconds for 'a' and stathz ticks at 128 Hz for b and c.
1011 	 *
1012 	 * Let n be the number of top zero bits in c.  Each iteration
1013 	 * either returns, or reduces b by right shifting it by at least n.
1014 	 * The number of iterations is at most 1 + 64 / n, and the error is
1015 	 * at most the number of iterations.
1016 	 *
1017 	 * It is very unusual to need even 2 iterations.  Previous
1018 	 * implementations overflowed essentially by returning early in the
1019 	 * first iteration, with n = 38 giving overflow at 105+ hours and
1020 	 * n = 32 giving overlow at at 388+ days despite a more careful
1021 	 * calculation.  388 days is a reasonable uptime, and the calculation
1022 	 * needs to work for the uptime times the number of CPUs since 'a'
1023 	 * is per-process.
1024 	 */
1025 	if (a >= (uint64_t)1 << 63)
1026 		return (0);		/* Unsupported arg -- can't happen. */
1027 	acc = 0;
1028 	for (i = 0; i < 128; i++) {
1029 		sa = flsll(a);
1030 		sb = flsll(b);
1031 		if (sa + sb <= 64)
1032 			/* Up to 105 hours on first iteration. */
1033 			return (acc + (a * b) / c);
1034 		if (a >= c) {
1035 			/*
1036 			 * This reduction is based on a = q * c + r, with the
1037 			 * remainder r < c.  'a' may be large to start, and
1038 			 * moving bits from b into 'a' at the end of the loop
1039 			 * sets the top bit of 'a', so the reduction makes
1040 			 * significant progress.
1041 			 */
1042 			acc += (a / c) * b;
1043 			a %= c;
1044 			sa = flsll(a);
1045 			if (sa + sb <= 64)
1046 				/* Up to 388 days on first iteration. */
1047 				return (acc + (a * b) / c);
1048 		}
1049 
1050 		/*
1051 		 * This step writes a * b as a * ((bh << s) + bl) =
1052 		 * a * (bh << s) + a * bl = (a << s) * bh + a * bl.  The 2
1053 		 * additive terms are handled separately.  Splitting in
1054 		 * this way is linear except for rounding errors.
1055 		 *
1056 		 * s = 64 - sa is the maximum such that a << s fits in 64
1057 		 * bits.  Since a < c and c has at least 1 zero top bit,
1058 		 * sa < 64 and s > 0.  Thus this step makes progress by
1059 		 * reducing b (it increases 'a', but taking remainders on
1060 		 * the next iteration completes the reduction).
1061 		 *
1062 		 * Finally, the choice for s is just what is needed to keep
1063 		 * a * bl from overflowing, so we don't need complications
1064 		 * like a recursive call mul64_by_fraction(a, bl, c) to
1065 		 * handle the second additive term.
1066 		 */
1067 		s = 64 - sa;
1068 		bh = b >> s;
1069 		bl = b - (bh << s);
1070 		acc += (a * bl) / c;
1071 		a <<= s;
1072 		b = bh;
1073 	}
1074 	return (0);		/* Algorithm failure -- can't happen. */
1075 }
1076 
1077 static void
1078 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
1079     struct timeval *sp)
1080 {
1081 	/* {user, system, interrupt, total} {ticks, usec}: */
1082 	uint64_t ut, uu, st, su, it, tt, tu;
1083 
1084 	ut = ruxp->rux_uticks;
1085 	st = ruxp->rux_sticks;
1086 	it = ruxp->rux_iticks;
1087 	tt = ut + st + it;
1088 	if (tt == 0) {
1089 		/* Avoid divide by zero */
1090 		st = 1;
1091 		tt = 1;
1092 	}
1093 	tu = cputick2usec(ruxp->rux_runtime);
1094 	if ((int64_t)tu < 0) {
1095 		/* XXX: this should be an assert /phk */
1096 		printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
1097 		    (intmax_t)tu, p->p_pid, p->p_comm);
1098 		tu = ruxp->rux_tu;
1099 	}
1100 
1101 	/* Subdivide tu.  Avoid overflow in the multiplications. */
1102 	if (__predict_true(tu <= ((uint64_t)1 << 38) && tt <= (1 << 26))) {
1103 		/* Up to 76 hours when stathz is 128. */
1104 		uu = (tu * ut) / tt;
1105 		su = (tu * st) / tt;
1106 	} else {
1107 		uu = mul64_by_fraction(tu, ut, tt);
1108 		su = mul64_by_fraction(tu, st, tt);
1109 	}
1110 
1111 	if (tu >= ruxp->rux_tu) {
1112 		/*
1113 		 * The normal case, time increased.
1114 		 * Enforce monotonicity of bucketed numbers.
1115 		 */
1116 		if (uu < ruxp->rux_uu)
1117 			uu = ruxp->rux_uu;
1118 		if (su < ruxp->rux_su)
1119 			su = ruxp->rux_su;
1120 	} else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
1121 		/*
1122 		 * When we calibrate the cputicker, it is not uncommon to
1123 		 * see the presumably fixed frequency increase slightly over
1124 		 * time as a result of thermal stabilization and NTP
1125 		 * discipline (of the reference clock).  We therefore ignore
1126 		 * a bit of backwards slop because we  expect to catch up
1127 		 * shortly.  We use a 3 microsecond limit to catch low
1128 		 * counts and a 1% limit for high counts.
1129 		 */
1130 		uu = ruxp->rux_uu;
1131 		su = ruxp->rux_su;
1132 		tu = ruxp->rux_tu;
1133 	} else if (vm_guest == VM_GUEST_NO) {  /* tu < ruxp->rux_tu */
1134 		/*
1135 		 * What happened here was likely that a laptop, which ran at
1136 		 * a reduced clock frequency at boot, kicked into high gear.
1137 		 * The wisdom of spamming this message in that case is
1138 		 * dubious, but it might also be indicative of something
1139 		 * serious, so lets keep it and hope laptops can be made
1140 		 * more truthful about their CPU speed via ACPI.
1141 		 */
1142 		printf("calcru: runtime went backwards from %ju usec "
1143 		    "to %ju usec for pid %d (%s)\n",
1144 		    (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
1145 		    p->p_pid, p->p_comm);
1146 	}
1147 
1148 	ruxp->rux_uu = uu;
1149 	ruxp->rux_su = su;
1150 	ruxp->rux_tu = tu;
1151 
1152 	up->tv_sec = uu / 1000000;
1153 	up->tv_usec = uu % 1000000;
1154 	sp->tv_sec = su / 1000000;
1155 	sp->tv_usec = su % 1000000;
1156 }
1157 
1158 #ifndef _SYS_SYSPROTO_H_
1159 struct getrusage_args {
1160 	int	who;
1161 	struct	rusage *rusage;
1162 };
1163 #endif
1164 int
1165 sys_getrusage(struct thread *td, struct getrusage_args *uap)
1166 {
1167 	struct rusage ru;
1168 	int error;
1169 
1170 	error = kern_getrusage(td, uap->who, &ru);
1171 	if (error == 0)
1172 		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
1173 	return (error);
1174 }
1175 
1176 int
1177 kern_getrusage(struct thread *td, int who, struct rusage *rup)
1178 {
1179 	struct proc *p;
1180 	int error;
1181 
1182 	error = 0;
1183 	p = td->td_proc;
1184 	PROC_LOCK(p);
1185 	switch (who) {
1186 	case RUSAGE_SELF:
1187 		rufetchcalc(p, rup, &rup->ru_utime,
1188 		    &rup->ru_stime);
1189 		break;
1190 
1191 	case RUSAGE_CHILDREN:
1192 		*rup = p->p_stats->p_cru;
1193 		calccru(p, &rup->ru_utime, &rup->ru_stime);
1194 		break;
1195 
1196 	case RUSAGE_THREAD:
1197 		PROC_STATLOCK(p);
1198 		thread_lock(td);
1199 		rufetchtd(td, rup);
1200 		thread_unlock(td);
1201 		PROC_STATUNLOCK(p);
1202 		break;
1203 
1204 	default:
1205 		error = EINVAL;
1206 	}
1207 	PROC_UNLOCK(p);
1208 	return (error);
1209 }
1210 
1211 void
1212 rucollect(struct rusage *ru, struct rusage *ru2)
1213 {
1214 	long *ip, *ip2;
1215 	int i;
1216 
1217 	if (ru->ru_maxrss < ru2->ru_maxrss)
1218 		ru->ru_maxrss = ru2->ru_maxrss;
1219 	ip = &ru->ru_first;
1220 	ip2 = &ru2->ru_first;
1221 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
1222 		*ip++ += *ip2++;
1223 }
1224 
1225 void
1226 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
1227     struct rusage_ext *rux2)
1228 {
1229 
1230 	rux->rux_runtime += rux2->rux_runtime;
1231 	rux->rux_uticks += rux2->rux_uticks;
1232 	rux->rux_sticks += rux2->rux_sticks;
1233 	rux->rux_iticks += rux2->rux_iticks;
1234 	rux->rux_uu += rux2->rux_uu;
1235 	rux->rux_su += rux2->rux_su;
1236 	rux->rux_tu += rux2->rux_tu;
1237 	rucollect(ru, ru2);
1238 }
1239 
1240 /*
1241  * Aggregate tick counts into the proc's rusage_ext.
1242  */
1243 static void
1244 ruxagg_ext_locked(struct rusage_ext *rux, struct thread *td)
1245 {
1246 
1247 	rux->rux_runtime += td->td_incruntime;
1248 	rux->rux_uticks += td->td_uticks;
1249 	rux->rux_sticks += td->td_sticks;
1250 	rux->rux_iticks += td->td_iticks;
1251 }
1252 
1253 void
1254 ruxagg_locked(struct proc *p, struct thread *td)
1255 {
1256 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1257 	PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED);
1258 
1259 	ruxagg_ext_locked(&p->p_rux, td);
1260 	ruxagg_ext_locked(&td->td_rux, td);
1261 	td->td_incruntime = 0;
1262 	td->td_uticks = 0;
1263 	td->td_iticks = 0;
1264 	td->td_sticks = 0;
1265 }
1266 
1267 void
1268 ruxagg(struct proc *p, struct thread *td)
1269 {
1270 
1271 	thread_lock(td);
1272 	ruxagg_locked(p, td);
1273 	thread_unlock(td);
1274 }
1275 
1276 /*
1277  * Update the rusage_ext structure and fetch a valid aggregate rusage
1278  * for proc p if storage for one is supplied.
1279  */
1280 void
1281 rufetch(struct proc *p, struct rusage *ru)
1282 {
1283 	struct thread *td;
1284 
1285 	PROC_STATLOCK_ASSERT(p, MA_OWNED);
1286 
1287 	*ru = p->p_ru;
1288 	if (p->p_numthreads > 0)  {
1289 		FOREACH_THREAD_IN_PROC(p, td) {
1290 			ruxagg(p, td);
1291 			rucollect(ru, &td->td_ru);
1292 		}
1293 	}
1294 }
1295 
1296 /*
1297  * Atomically perform a rufetch and a calcru together.
1298  * Consumers, can safely assume the calcru is executed only once
1299  * rufetch is completed.
1300  */
1301 void
1302 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
1303     struct timeval *sp)
1304 {
1305 
1306 	PROC_STATLOCK(p);
1307 	rufetch(p, ru);
1308 	calcru(p, up, sp);
1309 	PROC_STATUNLOCK(p);
1310 }
1311 
1312 /*
1313  * Allocate a new resource limits structure and initialize its
1314  * reference count and mutex pointer.
1315  */
1316 struct plimit *
1317 lim_alloc(void)
1318 {
1319 	struct plimit *limp;
1320 
1321 	limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
1322 	refcount_init(&limp->pl_refcnt, 1);
1323 	return (limp);
1324 }
1325 
1326 struct plimit *
1327 lim_hold(struct plimit *limp)
1328 {
1329 
1330 	refcount_acquire(&limp->pl_refcnt);
1331 	return (limp);
1332 }
1333 
1334 struct plimit *
1335 lim_cowsync(void)
1336 {
1337 	struct thread *td;
1338 	struct proc *p;
1339 	struct plimit *oldlimit;
1340 
1341 	td = curthread;
1342 	p = td->td_proc;
1343 	PROC_LOCK_ASSERT(p, MA_OWNED);
1344 
1345 	if (td->td_limit == p->p_limit)
1346 		return (NULL);
1347 
1348 	oldlimit = td->td_limit;
1349 	td->td_limit = lim_hold(p->p_limit);
1350 
1351 	return (oldlimit);
1352 }
1353 
1354 void
1355 lim_fork(struct proc *p1, struct proc *p2)
1356 {
1357 
1358 	PROC_LOCK_ASSERT(p1, MA_OWNED);
1359 	PROC_LOCK_ASSERT(p2, MA_OWNED);
1360 
1361 	p2->p_limit = lim_hold(p1->p_limit);
1362 	callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
1363 	if (p1->p_cpulimit != RLIM_INFINITY)
1364 		callout_reset_sbt(&p2->p_limco, SBT_1S, 0,
1365 		    lim_cb, p2, C_PREL(1));
1366 }
1367 
1368 void
1369 lim_free(struct plimit *limp)
1370 {
1371 
1372 	if (refcount_release(&limp->pl_refcnt))
1373 		free((void *)limp, M_PLIMIT);
1374 }
1375 
1376 void
1377 lim_freen(struct plimit *limp, int n)
1378 {
1379 
1380 	if (refcount_releasen(&limp->pl_refcnt, n))
1381 		free((void *)limp, M_PLIMIT);
1382 }
1383 
1384 void
1385 limbatch_add(struct limbatch *lb, struct thread *td)
1386 {
1387 	struct plimit *limp;
1388 
1389 	MPASS(td->td_limit != NULL);
1390 	limp = td->td_limit;
1391 
1392 	if (lb->limp != limp) {
1393 		if (lb->count != 0) {
1394 			lim_freen(lb->limp, lb->count);
1395 			lb->count = 0;
1396 		}
1397 		lb->limp = limp;
1398 	}
1399 
1400 	lb->count++;
1401 }
1402 
1403 void
1404 limbatch_final(struct limbatch *lb)
1405 {
1406 
1407 	MPASS(lb->count != 0);
1408 	lim_freen(lb->limp, lb->count);
1409 }
1410 
1411 /*
1412  * Make a copy of the plimit structure.
1413  * We share these structures copy-on-write after fork.
1414  */
1415 void
1416 lim_copy(struct plimit *dst, struct plimit *src)
1417 {
1418 
1419 	KASSERT(dst->pl_refcnt <= 1, ("lim_copy to shared limit"));
1420 	bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
1421 }
1422 
1423 /*
1424  * Return the hard limit for a particular system resource.  The
1425  * which parameter specifies the index into the rlimit array.
1426  */
1427 rlim_t
1428 lim_max(struct thread *td, int which)
1429 {
1430 	struct rlimit rl;
1431 
1432 	lim_rlimit(td, which, &rl);
1433 	return (rl.rlim_max);
1434 }
1435 
1436 rlim_t
1437 lim_max_proc(struct proc *p, int which)
1438 {
1439 	struct rlimit rl;
1440 
1441 	lim_rlimit_proc(p, which, &rl);
1442 	return (rl.rlim_max);
1443 }
1444 
1445 /*
1446  * Return the current (soft) limit for a particular system resource.
1447  * The which parameter which specifies the index into the rlimit array
1448  */
1449 rlim_t
1450 (lim_cur)(struct thread *td, int which)
1451 {
1452 	struct rlimit rl;
1453 
1454 	lim_rlimit(td, which, &rl);
1455 	return (rl.rlim_cur);
1456 }
1457 
1458 rlim_t
1459 lim_cur_proc(struct proc *p, int which)
1460 {
1461 	struct rlimit rl;
1462 
1463 	lim_rlimit_proc(p, which, &rl);
1464 	return (rl.rlim_cur);
1465 }
1466 
1467 /*
1468  * Return a copy of the entire rlimit structure for the system limit
1469  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
1470  */
1471 void
1472 lim_rlimit(struct thread *td, int which, struct rlimit *rlp)
1473 {
1474 	struct proc *p = td->td_proc;
1475 
1476 	MPASS(td == curthread);
1477 	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1478 	    ("request for invalid resource limit"));
1479 	*rlp = td->td_limit->pl_rlimit[which];
1480 	if (p->p_sysent->sv_fixlimit != NULL)
1481 		p->p_sysent->sv_fixlimit(rlp, which);
1482 }
1483 
1484 void
1485 lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp)
1486 {
1487 
1488 	PROC_LOCK_ASSERT(p, MA_OWNED);
1489 	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1490 	    ("request for invalid resource limit"));
1491 	*rlp = p->p_limit->pl_rlimit[which];
1492 	if (p->p_sysent->sv_fixlimit != NULL)
1493 		p->p_sysent->sv_fixlimit(rlp, which);
1494 }
1495 
1496 void
1497 uihashinit(void)
1498 {
1499 
1500 	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
1501 	rw_init(&uihashtbl_lock, "uidinfo hash");
1502 }
1503 
1504 /*
1505  * Look up a uidinfo struct for the parameter uid.
1506  * uihashtbl_lock must be locked.
1507  * Increase refcount on uidinfo struct returned.
1508  */
1509 static struct uidinfo *
1510 uilookup(uid_t uid)
1511 {
1512 	struct uihashhead *uipp;
1513 	struct uidinfo *uip;
1514 
1515 	rw_assert(&uihashtbl_lock, RA_LOCKED);
1516 	uipp = UIHASH(uid);
1517 	LIST_FOREACH(uip, uipp, ui_hash)
1518 		if (uip->ui_uid == uid) {
1519 			uihold(uip);
1520 			break;
1521 		}
1522 
1523 	return (uip);
1524 }
1525 
1526 /*
1527  * Find or allocate a struct uidinfo for a particular uid.
1528  * Returns with uidinfo struct referenced.
1529  * uifree() should be called on a struct uidinfo when released.
1530  */
1531 struct uidinfo *
1532 uifind(uid_t uid)
1533 {
1534 	struct uidinfo *new_uip, *uip;
1535 	struct ucred *cred;
1536 
1537 	cred = curthread->td_ucred;
1538 	if (cred->cr_uidinfo->ui_uid == uid) {
1539 		uip = cred->cr_uidinfo;
1540 		uihold(uip);
1541 		return (uip);
1542 	} else if (cred->cr_ruidinfo->ui_uid == uid) {
1543 		uip = cred->cr_ruidinfo;
1544 		uihold(uip);
1545 		return (uip);
1546 	}
1547 
1548 	rw_rlock(&uihashtbl_lock);
1549 	uip = uilookup(uid);
1550 	rw_runlock(&uihashtbl_lock);
1551 	if (uip != NULL)
1552 		return (uip);
1553 
1554 	new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO);
1555 	racct_create(&new_uip->ui_racct);
1556 	refcount_init(&new_uip->ui_ref, 1);
1557 	new_uip->ui_uid = uid;
1558 
1559 	rw_wlock(&uihashtbl_lock);
1560 	/*
1561 	 * There's a chance someone created our uidinfo while we
1562 	 * were in malloc and not holding the lock, so we have to
1563 	 * make sure we don't insert a duplicate uidinfo.
1564 	 */
1565 	if ((uip = uilookup(uid)) == NULL) {
1566 		LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash);
1567 		rw_wunlock(&uihashtbl_lock);
1568 		uip = new_uip;
1569 	} else {
1570 		rw_wunlock(&uihashtbl_lock);
1571 		racct_destroy(&new_uip->ui_racct);
1572 		free(new_uip, M_UIDINFO);
1573 	}
1574 	return (uip);
1575 }
1576 
1577 /*
1578  * Place another refcount on a uidinfo struct.
1579  */
1580 void
1581 uihold(struct uidinfo *uip)
1582 {
1583 
1584 	refcount_acquire(&uip->ui_ref);
1585 }
1586 
1587 /*-
1588  * Since uidinfo structs have a long lifetime, we use an
1589  * opportunistic refcounting scheme to avoid locking the lookup hash
1590  * for each release.
1591  *
1592  * If the refcount hits 0, we need to free the structure,
1593  * which means we need to lock the hash.
1594  * Optimal case:
1595  *   After locking the struct and lowering the refcount, if we find
1596  *   that we don't need to free, simply unlock and return.
1597  * Suboptimal case:
1598  *   If refcount lowering results in need to free, bump the count
1599  *   back up, lose the lock and acquire the locks in the proper
1600  *   order to try again.
1601  */
1602 void
1603 uifree(struct uidinfo *uip)
1604 {
1605 
1606 	if (refcount_release_if_not_last(&uip->ui_ref))
1607 		return;
1608 
1609 	rw_wlock(&uihashtbl_lock);
1610 	if (refcount_release(&uip->ui_ref) == 0) {
1611 		rw_wunlock(&uihashtbl_lock);
1612 		return;
1613 	}
1614 
1615 	racct_destroy(&uip->ui_racct);
1616 	LIST_REMOVE(uip, ui_hash);
1617 	rw_wunlock(&uihashtbl_lock);
1618 
1619 	if (uip->ui_sbsize != 0)
1620 		printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
1621 		    uip->ui_uid, uip->ui_sbsize);
1622 	if (uip->ui_proccnt != 0)
1623 		printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1624 		    uip->ui_uid, uip->ui_proccnt);
1625 	if (uip->ui_vmsize != 0)
1626 		printf("freeing uidinfo: uid = %d, swapuse = %lld\n",
1627 		    uip->ui_uid, (unsigned long long)uip->ui_vmsize);
1628 	if (uip->ui_ptscnt != 0)
1629 		printf("freeing uidinfo: uid = %d, ptscnt = %ld\n",
1630 		    uip->ui_uid, uip->ui_ptscnt);
1631 	if (uip->ui_kqcnt != 0)
1632 		printf("freeing uidinfo: uid = %d, kqcnt = %ld\n",
1633 		    uip->ui_uid, uip->ui_kqcnt);
1634 	if (uip->ui_umtxcnt != 0)
1635 		printf("freeing uidinfo: uid = %d, umtxcnt = %ld\n",
1636 		    uip->ui_uid, uip->ui_umtxcnt);
1637 	if (uip->ui_pipecnt != 0)
1638 		printf("freeing uidinfo: uid = %d, pipecnt = %ld\n",
1639 		    uip->ui_uid, uip->ui_pipecnt);
1640 	free(uip, M_UIDINFO);
1641 }
1642 
1643 #ifdef RACCT
1644 void
1645 ui_racct_foreach(void (*callback)(struct racct *racct,
1646     void *arg2, void *arg3), void (*pre)(void), void (*post)(void),
1647     void *arg2, void *arg3)
1648 {
1649 	struct uidinfo *uip;
1650 	struct uihashhead *uih;
1651 
1652 	rw_rlock(&uihashtbl_lock);
1653 	if (pre != NULL)
1654 		(pre)();
1655 	for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) {
1656 		LIST_FOREACH(uip, uih, ui_hash) {
1657 			(callback)(uip->ui_racct, arg2, arg3);
1658 		}
1659 	}
1660 	if (post != NULL)
1661 		(post)();
1662 	rw_runlock(&uihashtbl_lock);
1663 }
1664 #endif
1665 
1666 static inline int
1667 chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name)
1668 {
1669 	long new;
1670 
1671 	/* Don't allow them to exceed max, but allow subtraction. */
1672 	new = atomic_fetchadd_long(limit, (long)diff) + diff;
1673 	if (diff > 0 && max != 0) {
1674 		if (new < 0 || new > max) {
1675 			atomic_subtract_long(limit, (long)diff);
1676 			return (0);
1677 		}
1678 	} else if (new < 0)
1679 		printf("negative %s for uid = %d\n", name, uip->ui_uid);
1680 	return (1);
1681 }
1682 
1683 /*
1684  * Change the count associated with number of processes
1685  * a given user is using.  When 'max' is 0, don't enforce a limit
1686  */
1687 int
1688 chgproccnt(struct uidinfo *uip, int diff, rlim_t max)
1689 {
1690 
1691 	return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt"));
1692 }
1693 
1694 /*
1695  * Change the total socket buffer size a user has used.
1696  */
1697 int
1698 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max)
1699 {
1700 	int diff, rv;
1701 
1702 	diff = to - *hiwat;
1703 	if (diff > 0 && max == 0) {
1704 		rv = 0;
1705 	} else {
1706 		rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize");
1707 		if (rv != 0)
1708 			*hiwat = to;
1709 	}
1710 	return (rv);
1711 }
1712 
1713 /*
1714  * Change the count associated with number of pseudo-terminals
1715  * a given user is using.  When 'max' is 0, don't enforce a limit
1716  */
1717 int
1718 chgptscnt(struct uidinfo *uip, int diff, rlim_t max)
1719 {
1720 
1721 	return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt"));
1722 }
1723 
1724 int
1725 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max)
1726 {
1727 
1728 	return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt"));
1729 }
1730 
1731 int
1732 chgumtxcnt(struct uidinfo *uip, int diff, rlim_t max)
1733 {
1734 
1735 	return (chglimit(uip, &uip->ui_umtxcnt, diff, max, "umtxcnt"));
1736 }
1737 
1738 int
1739 chgpipecnt(struct uidinfo *uip, int diff, rlim_t max)
1740 {
1741 
1742 	return (chglimit(uip, &uip->ui_pipecnt, diff, max, "pipecnt"));
1743 }
1744 
1745 static int
1746 sysctl_kern_proc_rlimit_usage(SYSCTL_HANDLER_ARGS)
1747 {
1748 	rlim_t resval[RLIM_NLIMITS];
1749 	struct proc *p;
1750 	size_t len;
1751 	int error, *name, i;
1752 
1753 	name = (int *)arg1;
1754 	if ((u_int)arg2 != 1 && (u_int)arg2 != 2)
1755 		return (EINVAL);
1756 	if (req->newptr != NULL)
1757 		return (EINVAL);
1758 
1759 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1760 	if (error != 0)
1761 		return (error);
1762 
1763 	if ((u_int)arg2 == 1) {
1764 		len = sizeof(resval);
1765 		memset(resval, 0, sizeof(resval));
1766 		for (i = 0; i < RLIM_NLIMITS; i++) {
1767 			error = getrlimitusage_one(p, (unsigned)i, 0,
1768 			    &resval[i]);
1769 			if (error == ENXIO) {
1770 				resval[i] = -1;
1771 				error = 0;
1772 			} else if (error != 0) {
1773 				break;
1774 			}
1775 		}
1776 	} else {
1777 		len = sizeof(resval[0]);
1778 		error = getrlimitusage_one(p, (unsigned)name[1], 0,
1779 		    &resval[0]);
1780 		if (error == ENXIO) {
1781 			resval[0] = -1;
1782 			error = 0;
1783 		}
1784 	}
1785 	if (error == 0)
1786 		error = SYSCTL_OUT(req, resval, len);
1787 	PRELE(p);
1788 	return (error);
1789 }
1790 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT_USAGE, rlimit_usage,
1791     CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
1792     sysctl_kern_proc_rlimit_usage,
1793     "Process limited resources usage info");
1794