xref: /freebsd/sys/kern/kern_resource.c (revision 559af1ec16576f9f3e41318d66147f4df4fb8e87)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_resource.c	8.5 (Berkeley) 1/21/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysproto.h>
45 #include <sys/file.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/refcount.h>
53 #include <sys/racct.h>
54 #include <sys/resourcevar.h>
55 #include <sys/rwlock.h>
56 #include <sys/sched.h>
57 #include <sys/sx.h>
58 #include <sys/syscallsubr.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysent.h>
61 #include <sys/time.h>
62 #include <sys/umtx.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/pmap.h>
67 #include <vm/vm_map.h>
68 
69 
70 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
71 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
72 #define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
73 static struct rwlock uihashtbl_lock;
74 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
75 static u_long uihash;		/* size of hash table - 1 */
76 
77 static void	calcru1(struct proc *p, struct rusage_ext *ruxp,
78 		    struct timeval *up, struct timeval *sp);
79 static int	donice(struct thread *td, struct proc *chgp, int n);
80 static struct uidinfo *uilookup(uid_t uid);
81 static void	ruxagg_locked(struct rusage_ext *rux, struct thread *td);
82 
83 /*
84  * Resource controls and accounting.
85  */
86 #ifndef _SYS_SYSPROTO_H_
87 struct getpriority_args {
88 	int	which;
89 	int	who;
90 };
91 #endif
92 int
93 sys_getpriority(struct thread *td, struct getpriority_args *uap)
94 {
95 	struct proc *p;
96 	struct pgrp *pg;
97 	int error, low;
98 
99 	error = 0;
100 	low = PRIO_MAX + 1;
101 	switch (uap->which) {
102 
103 	case PRIO_PROCESS:
104 		if (uap->who == 0)
105 			low = td->td_proc->p_nice;
106 		else {
107 			p = pfind(uap->who);
108 			if (p == NULL)
109 				break;
110 			if (p_cansee(td, p) == 0)
111 				low = p->p_nice;
112 			PROC_UNLOCK(p);
113 		}
114 		break;
115 
116 	case PRIO_PGRP:
117 		sx_slock(&proctree_lock);
118 		if (uap->who == 0) {
119 			pg = td->td_proc->p_pgrp;
120 			PGRP_LOCK(pg);
121 		} else {
122 			pg = pgfind(uap->who);
123 			if (pg == NULL) {
124 				sx_sunlock(&proctree_lock);
125 				break;
126 			}
127 		}
128 		sx_sunlock(&proctree_lock);
129 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
130 			PROC_LOCK(p);
131 			if (p->p_state == PRS_NORMAL &&
132 			    p_cansee(td, p) == 0) {
133 				if (p->p_nice < low)
134 					low = p->p_nice;
135 			}
136 			PROC_UNLOCK(p);
137 		}
138 		PGRP_UNLOCK(pg);
139 		break;
140 
141 	case PRIO_USER:
142 		if (uap->who == 0)
143 			uap->who = td->td_ucred->cr_uid;
144 		sx_slock(&allproc_lock);
145 		FOREACH_PROC_IN_SYSTEM(p) {
146 			PROC_LOCK(p);
147 			if (p->p_state == PRS_NORMAL &&
148 			    p_cansee(td, p) == 0 &&
149 			    p->p_ucred->cr_uid == uap->who) {
150 				if (p->p_nice < low)
151 					low = p->p_nice;
152 			}
153 			PROC_UNLOCK(p);
154 		}
155 		sx_sunlock(&allproc_lock);
156 		break;
157 
158 	default:
159 		error = EINVAL;
160 		break;
161 	}
162 	if (low == PRIO_MAX + 1 && error == 0)
163 		error = ESRCH;
164 	td->td_retval[0] = low;
165 	return (error);
166 }
167 
168 #ifndef _SYS_SYSPROTO_H_
169 struct setpriority_args {
170 	int	which;
171 	int	who;
172 	int	prio;
173 };
174 #endif
175 int
176 sys_setpriority(struct thread *td, struct setpriority_args *uap)
177 {
178 	struct proc *curp, *p;
179 	struct pgrp *pg;
180 	int found = 0, error = 0;
181 
182 	curp = td->td_proc;
183 	switch (uap->which) {
184 	case PRIO_PROCESS:
185 		if (uap->who == 0) {
186 			PROC_LOCK(curp);
187 			error = donice(td, curp, uap->prio);
188 			PROC_UNLOCK(curp);
189 		} else {
190 			p = pfind(uap->who);
191 			if (p == NULL)
192 				break;
193 			error = p_cansee(td, p);
194 			if (error == 0)
195 				error = donice(td, p, uap->prio);
196 			PROC_UNLOCK(p);
197 		}
198 		found++;
199 		break;
200 
201 	case PRIO_PGRP:
202 		sx_slock(&proctree_lock);
203 		if (uap->who == 0) {
204 			pg = curp->p_pgrp;
205 			PGRP_LOCK(pg);
206 		} else {
207 			pg = pgfind(uap->who);
208 			if (pg == NULL) {
209 				sx_sunlock(&proctree_lock);
210 				break;
211 			}
212 		}
213 		sx_sunlock(&proctree_lock);
214 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
215 			PROC_LOCK(p);
216 			if (p->p_state == PRS_NORMAL &&
217 			    p_cansee(td, p) == 0) {
218 				error = donice(td, p, uap->prio);
219 				found++;
220 			}
221 			PROC_UNLOCK(p);
222 		}
223 		PGRP_UNLOCK(pg);
224 		break;
225 
226 	case PRIO_USER:
227 		if (uap->who == 0)
228 			uap->who = td->td_ucred->cr_uid;
229 		sx_slock(&allproc_lock);
230 		FOREACH_PROC_IN_SYSTEM(p) {
231 			PROC_LOCK(p);
232 			if (p->p_state == PRS_NORMAL &&
233 			    p->p_ucred->cr_uid == uap->who &&
234 			    p_cansee(td, p) == 0) {
235 				error = donice(td, p, uap->prio);
236 				found++;
237 			}
238 			PROC_UNLOCK(p);
239 		}
240 		sx_sunlock(&allproc_lock);
241 		break;
242 
243 	default:
244 		error = EINVAL;
245 		break;
246 	}
247 	if (found == 0 && error == 0)
248 		error = ESRCH;
249 	return (error);
250 }
251 
252 /*
253  * Set "nice" for a (whole) process.
254  */
255 static int
256 donice(struct thread *td, struct proc *p, int n)
257 {
258 	int error;
259 
260 	PROC_LOCK_ASSERT(p, MA_OWNED);
261 	if ((error = p_cansched(td, p)))
262 		return (error);
263 	if (n > PRIO_MAX)
264 		n = PRIO_MAX;
265 	if (n < PRIO_MIN)
266 		n = PRIO_MIN;
267 	if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
268 		return (EACCES);
269 	sched_nice(p, n);
270 	return (0);
271 }
272 
273 static int unprivileged_idprio;
274 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW,
275     &unprivileged_idprio, 0, "Allow non-root users to set an idle priority");
276 
277 /*
278  * Set realtime priority for LWP.
279  */
280 #ifndef _SYS_SYSPROTO_H_
281 struct rtprio_thread_args {
282 	int		function;
283 	lwpid_t		lwpid;
284 	struct rtprio	*rtp;
285 };
286 #endif
287 int
288 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
289 {
290 	struct proc *p;
291 	struct rtprio rtp;
292 	struct thread *td1;
293 	int cierror, error;
294 
295 	/* Perform copyin before acquiring locks if needed. */
296 	if (uap->function == RTP_SET)
297 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
298 	else
299 		cierror = 0;
300 
301 	if (uap->lwpid == 0 || uap->lwpid == td->td_tid) {
302 		p = td->td_proc;
303 		td1 = td;
304 		PROC_LOCK(p);
305 	} else {
306 		/* Only look up thread in current process */
307 		td1 = tdfind(uap->lwpid, curproc->p_pid);
308 		if (td1 == NULL)
309 			return (ESRCH);
310 		p = td1->td_proc;
311 	}
312 
313 	switch (uap->function) {
314 	case RTP_LOOKUP:
315 		if ((error = p_cansee(td, p)))
316 			break;
317 		pri_to_rtp(td1, &rtp);
318 		PROC_UNLOCK(p);
319 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
320 	case RTP_SET:
321 		if ((error = p_cansched(td, p)) || (error = cierror))
322 			break;
323 
324 		/* Disallow setting rtprio in most cases if not superuser. */
325 
326 		/*
327 		 * Realtime priority has to be restricted for reasons which
328 		 * should be obvious.  However, for idleprio processes, there is
329 		 * a potential for system deadlock if an idleprio process gains
330 		 * a lock on a resource that other processes need (and the
331 		 * idleprio process can't run due to a CPU-bound normal
332 		 * process).  Fix me!  XXX
333 		 *
334 		 * This problem is not only related to idleprio process.
335 		 * A user level program can obtain a file lock and hold it
336 		 * indefinitely.  Additionally, without idleprio processes it is
337 		 * still conceivable that a program with low priority will never
338 		 * get to run.  In short, allowing this feature might make it
339 		 * easier to lock a resource indefinitely, but it is not the
340 		 * only thing that makes it possible.
341 		 */
342 		if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
343 		    (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
344 		    unprivileged_idprio == 0)) {
345 			error = priv_check(td, PRIV_SCHED_RTPRIO);
346 			if (error)
347 				break;
348 		}
349 		error = rtp_to_pri(&rtp, td1);
350 		break;
351 	default:
352 		error = EINVAL;
353 		break;
354 	}
355 	PROC_UNLOCK(p);
356 	return (error);
357 }
358 
359 /*
360  * Set realtime priority.
361  */
362 #ifndef _SYS_SYSPROTO_H_
363 struct rtprio_args {
364 	int		function;
365 	pid_t		pid;
366 	struct rtprio	*rtp;
367 };
368 #endif
369 int
370 sys_rtprio(struct thread *td, struct rtprio_args *uap)
371 {
372 	struct proc *p;
373 	struct thread *tdp;
374 	struct rtprio rtp;
375 	int cierror, error;
376 
377 	/* Perform copyin before acquiring locks if needed. */
378 	if (uap->function == RTP_SET)
379 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
380 	else
381 		cierror = 0;
382 
383 	if (uap->pid == 0) {
384 		p = td->td_proc;
385 		PROC_LOCK(p);
386 	} else {
387 		p = pfind(uap->pid);
388 		if (p == NULL)
389 			return (ESRCH);
390 	}
391 
392 	switch (uap->function) {
393 	case RTP_LOOKUP:
394 		if ((error = p_cansee(td, p)))
395 			break;
396 		/*
397 		 * Return OUR priority if no pid specified,
398 		 * or if one is, report the highest priority
399 		 * in the process.  There isn't much more you can do as
400 		 * there is only room to return a single priority.
401 		 * Note: specifying our own pid is not the same
402 		 * as leaving it zero.
403 		 */
404 		if (uap->pid == 0) {
405 			pri_to_rtp(td, &rtp);
406 		} else {
407 			struct rtprio rtp2;
408 
409 			rtp.type = RTP_PRIO_IDLE;
410 			rtp.prio = RTP_PRIO_MAX;
411 			FOREACH_THREAD_IN_PROC(p, tdp) {
412 				pri_to_rtp(tdp, &rtp2);
413 				if (rtp2.type <  rtp.type ||
414 				    (rtp2.type == rtp.type &&
415 				    rtp2.prio < rtp.prio)) {
416 					rtp.type = rtp2.type;
417 					rtp.prio = rtp2.prio;
418 				}
419 			}
420 		}
421 		PROC_UNLOCK(p);
422 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
423 	case RTP_SET:
424 		if ((error = p_cansched(td, p)) || (error = cierror))
425 			break;
426 
427 		/*
428 		 * Disallow setting rtprio in most cases if not superuser.
429 		 * See the comment in sys_rtprio_thread about idprio
430 		 * threads holding a lock.
431 		 */
432 		if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
433 		    (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
434 		    !unprivileged_idprio)) {
435 			error = priv_check(td, PRIV_SCHED_RTPRIO);
436 			if (error)
437 				break;
438 		}
439 
440 		/*
441 		 * If we are setting our own priority, set just our
442 		 * thread but if we are doing another process,
443 		 * do all the threads on that process. If we
444 		 * specify our own pid we do the latter.
445 		 */
446 		if (uap->pid == 0) {
447 			error = rtp_to_pri(&rtp, td);
448 		} else {
449 			FOREACH_THREAD_IN_PROC(p, td) {
450 				if ((error = rtp_to_pri(&rtp, td)) != 0)
451 					break;
452 			}
453 		}
454 		break;
455 	default:
456 		error = EINVAL;
457 		break;
458 	}
459 	PROC_UNLOCK(p);
460 	return (error);
461 }
462 
463 int
464 rtp_to_pri(struct rtprio *rtp, struct thread *td)
465 {
466 	u_char  newpri, oldclass, oldpri;
467 
468 	switch (RTP_PRIO_BASE(rtp->type)) {
469 	case RTP_PRIO_REALTIME:
470 		if (rtp->prio > RTP_PRIO_MAX)
471 			return (EINVAL);
472 		newpri = PRI_MIN_REALTIME + rtp->prio;
473 		break;
474 	case RTP_PRIO_NORMAL:
475 		if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE))
476 			return (EINVAL);
477 		newpri = PRI_MIN_TIMESHARE + rtp->prio;
478 		break;
479 	case RTP_PRIO_IDLE:
480 		if (rtp->prio > RTP_PRIO_MAX)
481 			return (EINVAL);
482 		newpri = PRI_MIN_IDLE + rtp->prio;
483 		break;
484 	default:
485 		return (EINVAL);
486 	}
487 
488 	thread_lock(td);
489 	oldclass = td->td_pri_class;
490 	sched_class(td, rtp->type);	/* XXX fix */
491 	oldpri = td->td_user_pri;
492 	sched_user_prio(td, newpri);
493 	if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL ||
494 	    td->td_pri_class != RTP_PRIO_NORMAL))
495 		sched_prio(td, td->td_user_pri);
496 	if (TD_ON_UPILOCK(td) && oldpri != newpri) {
497 		critical_enter();
498 		thread_unlock(td);
499 		umtx_pi_adjust(td, oldpri);
500 		critical_exit();
501 	} else
502 		thread_unlock(td);
503 	return (0);
504 }
505 
506 void
507 pri_to_rtp(struct thread *td, struct rtprio *rtp)
508 {
509 
510 	thread_lock(td);
511 	switch (PRI_BASE(td->td_pri_class)) {
512 	case PRI_REALTIME:
513 		rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
514 		break;
515 	case PRI_TIMESHARE:
516 		rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
517 		break;
518 	case PRI_IDLE:
519 		rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
520 		break;
521 	default:
522 		break;
523 	}
524 	rtp->type = td->td_pri_class;
525 	thread_unlock(td);
526 }
527 
528 #if defined(COMPAT_43)
529 #ifndef _SYS_SYSPROTO_H_
530 struct osetrlimit_args {
531 	u_int	which;
532 	struct	orlimit *rlp;
533 };
534 #endif
535 int
536 osetrlimit(struct thread *td, struct osetrlimit_args *uap)
537 {
538 	struct orlimit olim;
539 	struct rlimit lim;
540 	int error;
541 
542 	if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
543 		return (error);
544 	lim.rlim_cur = olim.rlim_cur;
545 	lim.rlim_max = olim.rlim_max;
546 	error = kern_setrlimit(td, uap->which, &lim);
547 	return (error);
548 }
549 
550 #ifndef _SYS_SYSPROTO_H_
551 struct ogetrlimit_args {
552 	u_int	which;
553 	struct	orlimit *rlp;
554 };
555 #endif
556 int
557 ogetrlimit(struct thread *td, struct ogetrlimit_args *uap)
558 {
559 	struct orlimit olim;
560 	struct rlimit rl;
561 	int error;
562 
563 	if (uap->which >= RLIM_NLIMITS)
564 		return (EINVAL);
565 	lim_rlimit(td, uap->which, &rl);
566 
567 	/*
568 	 * XXX would be more correct to convert only RLIM_INFINITY to the
569 	 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
570 	 * values.  Most 64->32 and 32->16 conversions, including not
571 	 * unimportant ones of uids are even more broken than what we
572 	 * do here (they blindly truncate).  We don't do this correctly
573 	 * here since we have little experience with EOVERFLOW yet.
574 	 * Elsewhere, getuid() can't fail...
575 	 */
576 	olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
577 	olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
578 	error = copyout(&olim, uap->rlp, sizeof(olim));
579 	return (error);
580 }
581 #endif /* COMPAT_43 */
582 
583 #ifndef _SYS_SYSPROTO_H_
584 struct __setrlimit_args {
585 	u_int	which;
586 	struct	rlimit *rlp;
587 };
588 #endif
589 int
590 sys_setrlimit(struct thread *td, struct __setrlimit_args *uap)
591 {
592 	struct rlimit alim;
593 	int error;
594 
595 	if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
596 		return (error);
597 	error = kern_setrlimit(td, uap->which, &alim);
598 	return (error);
599 }
600 
601 static void
602 lim_cb(void *arg)
603 {
604 	struct rlimit rlim;
605 	struct thread *td;
606 	struct proc *p;
607 
608 	p = arg;
609 	PROC_LOCK_ASSERT(p, MA_OWNED);
610 	/*
611 	 * Check if the process exceeds its cpu resource allocation.  If
612 	 * it reaches the max, arrange to kill the process in ast().
613 	 */
614 	if (p->p_cpulimit == RLIM_INFINITY)
615 		return;
616 	PROC_STATLOCK(p);
617 	FOREACH_THREAD_IN_PROC(p, td) {
618 		ruxagg(p, td);
619 	}
620 	PROC_STATUNLOCK(p);
621 	if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
622 		lim_rlimit_proc(p, RLIMIT_CPU, &rlim);
623 		if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
624 			killproc(p, "exceeded maximum CPU limit");
625 		} else {
626 			if (p->p_cpulimit < rlim.rlim_max)
627 				p->p_cpulimit += 5;
628 			kern_psignal(p, SIGXCPU);
629 		}
630 	}
631 	if ((p->p_flag & P_WEXIT) == 0)
632 		callout_reset_sbt(&p->p_limco, SBT_1S, 0,
633 		    lim_cb, p, C_PREL(1));
634 }
635 
636 int
637 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp)
638 {
639 
640 	return (kern_proc_setrlimit(td, td->td_proc, which, limp));
641 }
642 
643 int
644 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which,
645     struct rlimit *limp)
646 {
647 	struct plimit *newlim, *oldlim;
648 	struct rlimit *alimp;
649 	struct rlimit oldssiz;
650 	int error;
651 
652 	if (which >= RLIM_NLIMITS)
653 		return (EINVAL);
654 
655 	/*
656 	 * Preserve historical bugs by treating negative limits as unsigned.
657 	 */
658 	if (limp->rlim_cur < 0)
659 		limp->rlim_cur = RLIM_INFINITY;
660 	if (limp->rlim_max < 0)
661 		limp->rlim_max = RLIM_INFINITY;
662 
663 	oldssiz.rlim_cur = 0;
664 	newlim = lim_alloc();
665 	PROC_LOCK(p);
666 	oldlim = p->p_limit;
667 	alimp = &oldlim->pl_rlimit[which];
668 	if (limp->rlim_cur > alimp->rlim_max ||
669 	    limp->rlim_max > alimp->rlim_max)
670 		if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
671 			PROC_UNLOCK(p);
672 			lim_free(newlim);
673 			return (error);
674 		}
675 	if (limp->rlim_cur > limp->rlim_max)
676 		limp->rlim_cur = limp->rlim_max;
677 	lim_copy(newlim, oldlim);
678 	alimp = &newlim->pl_rlimit[which];
679 
680 	switch (which) {
681 
682 	case RLIMIT_CPU:
683 		if (limp->rlim_cur != RLIM_INFINITY &&
684 		    p->p_cpulimit == RLIM_INFINITY)
685 			callout_reset_sbt(&p->p_limco, SBT_1S, 0,
686 			    lim_cb, p, C_PREL(1));
687 		p->p_cpulimit = limp->rlim_cur;
688 		break;
689 	case RLIMIT_DATA:
690 		if (limp->rlim_cur > maxdsiz)
691 			limp->rlim_cur = maxdsiz;
692 		if (limp->rlim_max > maxdsiz)
693 			limp->rlim_max = maxdsiz;
694 		break;
695 
696 	case RLIMIT_STACK:
697 		if (limp->rlim_cur > maxssiz)
698 			limp->rlim_cur = maxssiz;
699 		if (limp->rlim_max > maxssiz)
700 			limp->rlim_max = maxssiz;
701 		oldssiz = *alimp;
702 		if (p->p_sysent->sv_fixlimit != NULL)
703 			p->p_sysent->sv_fixlimit(&oldssiz,
704 			    RLIMIT_STACK);
705 		break;
706 
707 	case RLIMIT_NOFILE:
708 		if (limp->rlim_cur > maxfilesperproc)
709 			limp->rlim_cur = maxfilesperproc;
710 		if (limp->rlim_max > maxfilesperproc)
711 			limp->rlim_max = maxfilesperproc;
712 		break;
713 
714 	case RLIMIT_NPROC:
715 		if (limp->rlim_cur > maxprocperuid)
716 			limp->rlim_cur = maxprocperuid;
717 		if (limp->rlim_max > maxprocperuid)
718 			limp->rlim_max = maxprocperuid;
719 		if (limp->rlim_cur < 1)
720 			limp->rlim_cur = 1;
721 		if (limp->rlim_max < 1)
722 			limp->rlim_max = 1;
723 		break;
724 	}
725 	if (p->p_sysent->sv_fixlimit != NULL)
726 		p->p_sysent->sv_fixlimit(limp, which);
727 	*alimp = *limp;
728 	p->p_limit = newlim;
729 	PROC_UPDATE_COW(p);
730 	PROC_UNLOCK(p);
731 	lim_free(oldlim);
732 
733 	if (which == RLIMIT_STACK &&
734 	    /*
735 	     * Skip calls from exec_new_vmspace(), done when stack is
736 	     * not mapped yet.
737 	     */
738 	    (td != curthread || (p->p_flag & P_INEXEC) == 0)) {
739 		/*
740 		 * Stack is allocated to the max at exec time with only
741 		 * "rlim_cur" bytes accessible.  If stack limit is going
742 		 * up make more accessible, if going down make inaccessible.
743 		 */
744 		if (limp->rlim_cur != oldssiz.rlim_cur) {
745 			vm_offset_t addr;
746 			vm_size_t size;
747 			vm_prot_t prot;
748 
749 			if (limp->rlim_cur > oldssiz.rlim_cur) {
750 				prot = p->p_sysent->sv_stackprot;
751 				size = limp->rlim_cur - oldssiz.rlim_cur;
752 				addr = p->p_sysent->sv_usrstack -
753 				    limp->rlim_cur;
754 			} else {
755 				prot = VM_PROT_NONE;
756 				size = oldssiz.rlim_cur - limp->rlim_cur;
757 				addr = p->p_sysent->sv_usrstack -
758 				    oldssiz.rlim_cur;
759 			}
760 			addr = trunc_page(addr);
761 			size = round_page(size);
762 			(void)vm_map_protect(&p->p_vmspace->vm_map,
763 			    addr, addr + size, prot, FALSE);
764 		}
765 	}
766 
767 	return (0);
768 }
769 
770 #ifndef _SYS_SYSPROTO_H_
771 struct __getrlimit_args {
772 	u_int	which;
773 	struct	rlimit *rlp;
774 };
775 #endif
776 /* ARGSUSED */
777 int
778 sys_getrlimit(struct thread *td, struct __getrlimit_args *uap)
779 {
780 	struct rlimit rlim;
781 	int error;
782 
783 	if (uap->which >= RLIM_NLIMITS)
784 		return (EINVAL);
785 	lim_rlimit(td, uap->which, &rlim);
786 	error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
787 	return (error);
788 }
789 
790 /*
791  * Transform the running time and tick information for children of proc p
792  * into user and system time usage.
793  */
794 void
795 calccru(struct proc *p, struct timeval *up, struct timeval *sp)
796 {
797 
798 	PROC_LOCK_ASSERT(p, MA_OWNED);
799 	calcru1(p, &p->p_crux, up, sp);
800 }
801 
802 /*
803  * Transform the running time and tick information in proc p into user
804  * and system time usage.  If appropriate, include the current time slice
805  * on this CPU.
806  */
807 void
808 calcru(struct proc *p, struct timeval *up, struct timeval *sp)
809 {
810 	struct thread *td;
811 	uint64_t runtime, u;
812 
813 	PROC_LOCK_ASSERT(p, MA_OWNED);
814 	PROC_STATLOCK_ASSERT(p, MA_OWNED);
815 	/*
816 	 * If we are getting stats for the current process, then add in the
817 	 * stats that this thread has accumulated in its current time slice.
818 	 * We reset the thread and CPU state as if we had performed a context
819 	 * switch right here.
820 	 */
821 	td = curthread;
822 	if (td->td_proc == p) {
823 		u = cpu_ticks();
824 		runtime = u - PCPU_GET(switchtime);
825 		td->td_runtime += runtime;
826 		td->td_incruntime += runtime;
827 		PCPU_SET(switchtime, u);
828 	}
829 	/* Make sure the per-thread stats are current. */
830 	FOREACH_THREAD_IN_PROC(p, td) {
831 		if (td->td_incruntime == 0)
832 			continue;
833 		ruxagg(p, td);
834 	}
835 	calcru1(p, &p->p_rux, up, sp);
836 }
837 
838 /* Collect resource usage for a single thread. */
839 void
840 rufetchtd(struct thread *td, struct rusage *ru)
841 {
842 	struct proc *p;
843 	uint64_t runtime, u;
844 
845 	p = td->td_proc;
846 	PROC_STATLOCK_ASSERT(p, MA_OWNED);
847 	THREAD_LOCK_ASSERT(td, MA_OWNED);
848 	/*
849 	 * If we are getting stats for the current thread, then add in the
850 	 * stats that this thread has accumulated in its current time slice.
851 	 * We reset the thread and CPU state as if we had performed a context
852 	 * switch right here.
853 	 */
854 	if (td == curthread) {
855 		u = cpu_ticks();
856 		runtime = u - PCPU_GET(switchtime);
857 		td->td_runtime += runtime;
858 		td->td_incruntime += runtime;
859 		PCPU_SET(switchtime, u);
860 	}
861 	ruxagg(p, td);
862 	*ru = td->td_ru;
863 	calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime);
864 }
865 
866 /* XXX: the MI version is too slow to use: */
867 #ifndef __HAVE_INLINE_FLSLL
868 #define	flsll(x)	(fls((x) >> 32) != 0 ? fls((x) >> 32) + 32 : fls(x))
869 #endif
870 
871 static uint64_t
872 mul64_by_fraction(uint64_t a, uint64_t b, uint64_t c)
873 {
874 	uint64_t acc, bh, bl;
875 	int i, s, sa, sb;
876 
877 	/*
878 	 * Calculate (a * b) / c accurately enough without overflowing.  c
879 	 * must be nonzero, and its top bit must be 0.  a or b must be
880 	 * <= c, and the implementation is tuned for b <= c.
881 	 *
882 	 * The comments about times are for use in calcru1() with units of
883 	 * microseconds for 'a' and stathz ticks at 128 Hz for b and c.
884 	 *
885 	 * Let n be the number of top zero bits in c.  Each iteration
886 	 * either returns, or reduces b by right shifting it by at least n.
887 	 * The number of iterations is at most 1 + 64 / n, and the error is
888 	 * at most the number of iterations.
889 	 *
890 	 * It is very unusual to need even 2 iterations.  Previous
891 	 * implementations overflowed essentially by returning early in the
892 	 * first iteration, with n = 38 giving overflow at 105+ hours and
893 	 * n = 32 giving overlow at at 388+ days despite a more careful
894 	 * calculation.  388 days is a reasonable uptime, and the calculation
895 	 * needs to work for the uptime times the number of CPUs since 'a'
896 	 * is per-process.
897 	 */
898 	if (a >= (uint64_t)1 << 63)
899 		return (0);		/* Unsupported arg -- can't happen. */
900 	acc = 0;
901 	for (i = 0; i < 128; i++) {
902 		sa = flsll(a);
903 		sb = flsll(b);
904 		if (sa + sb <= 64)
905 			/* Up to 105 hours on first iteration. */
906 			return (acc + (a * b) / c);
907 		if (a >= c) {
908 			/*
909 			 * This reduction is based on a = q * c + r, with the
910 			 * remainder r < c.  'a' may be large to start, and
911 			 * moving bits from b into 'a' at the end of the loop
912 			 * sets the top bit of 'a', so the reduction makes
913 			 * significant progress.
914 			 */
915 			acc += (a / c) * b;
916 			a %= c;
917 			sa = flsll(a);
918 			if (sa + sb <= 64)
919 				/* Up to 388 days on first iteration. */
920 				return (acc + (a * b) / c);
921 		}
922 
923 		/*
924 		 * This step writes a * b as a * ((bh << s) + bl) =
925 		 * a * (bh << s) + a * bl = (a << s) * bh + a * bl.  The 2
926 		 * additive terms are handled separately.  Splitting in
927 		 * this way is linear except for rounding errors.
928 		 *
929 		 * s = 64 - sa is the maximum such that a << s fits in 64
930 		 * bits.  Since a < c and c has at least 1 zero top bit,
931 		 * sa < 64 and s > 0.  Thus this step makes progress by
932 		 * reducing b (it increases 'a', but taking remainders on
933 		 * the next iteration completes the reduction).
934 		 *
935 		 * Finally, the choice for s is just what is needed to keep
936 		 * a * bl from overflowing, so we don't need complications
937 		 * like a recursive call mul64_by_fraction(a, bl, c) to
938 		 * handle the second additive term.
939 		 */
940 		s = 64 - sa;
941 		bh = b >> s;
942 		bl = b - (bh << s);
943 		acc += (a * bl) / c;
944 		a <<= s;
945 		b = bh;
946 	}
947 	return (0);		/* Algorithm failure -- can't happen. */
948 }
949 
950 static void
951 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
952     struct timeval *sp)
953 {
954 	/* {user, system, interrupt, total} {ticks, usec}: */
955 	uint64_t ut, uu, st, su, it, tt, tu;
956 
957 	ut = ruxp->rux_uticks;
958 	st = ruxp->rux_sticks;
959 	it = ruxp->rux_iticks;
960 	tt = ut + st + it;
961 	if (tt == 0) {
962 		/* Avoid divide by zero */
963 		st = 1;
964 		tt = 1;
965 	}
966 	tu = cputick2usec(ruxp->rux_runtime);
967 	if ((int64_t)tu < 0) {
968 		/* XXX: this should be an assert /phk */
969 		printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
970 		    (intmax_t)tu, p->p_pid, p->p_comm);
971 		tu = ruxp->rux_tu;
972 	}
973 
974 	/* Subdivide tu.  Avoid overflow in the multiplications. */
975 	if (__predict_true(tu <= ((uint64_t)1 << 38) && tt <= (1 << 26))) {
976 		/* Up to 76 hours when stathz is 128. */
977 		uu = (tu * ut) / tt;
978 		su = (tu * st) / tt;
979 	} else {
980 		uu = mul64_by_fraction(tu, ut, tt);
981 		su = mul64_by_fraction(tu, ut, st);
982 	}
983 
984 	if (tu >= ruxp->rux_tu) {
985 		/*
986 		 * The normal case, time increased.
987 		 * Enforce monotonicity of bucketed numbers.
988 		 */
989 		if (uu < ruxp->rux_uu)
990 			uu = ruxp->rux_uu;
991 		if (su < ruxp->rux_su)
992 			su = ruxp->rux_su;
993 	} else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
994 		/*
995 		 * When we calibrate the cputicker, it is not uncommon to
996 		 * see the presumably fixed frequency increase slightly over
997 		 * time as a result of thermal stabilization and NTP
998 		 * discipline (of the reference clock).  We therefore ignore
999 		 * a bit of backwards slop because we  expect to catch up
1000 		 * shortly.  We use a 3 microsecond limit to catch low
1001 		 * counts and a 1% limit for high counts.
1002 		 */
1003 		uu = ruxp->rux_uu;
1004 		su = ruxp->rux_su;
1005 		tu = ruxp->rux_tu;
1006 	} else { /* tu < ruxp->rux_tu */
1007 		/*
1008 		 * What happened here was likely that a laptop, which ran at
1009 		 * a reduced clock frequency at boot, kicked into high gear.
1010 		 * The wisdom of spamming this message in that case is
1011 		 * dubious, but it might also be indicative of something
1012 		 * serious, so lets keep it and hope laptops can be made
1013 		 * more truthful about their CPU speed via ACPI.
1014 		 */
1015 		printf("calcru: runtime went backwards from %ju usec "
1016 		    "to %ju usec for pid %d (%s)\n",
1017 		    (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
1018 		    p->p_pid, p->p_comm);
1019 	}
1020 
1021 	ruxp->rux_uu = uu;
1022 	ruxp->rux_su = su;
1023 	ruxp->rux_tu = tu;
1024 
1025 	up->tv_sec = uu / 1000000;
1026 	up->tv_usec = uu % 1000000;
1027 	sp->tv_sec = su / 1000000;
1028 	sp->tv_usec = su % 1000000;
1029 }
1030 
1031 #ifndef _SYS_SYSPROTO_H_
1032 struct getrusage_args {
1033 	int	who;
1034 	struct	rusage *rusage;
1035 };
1036 #endif
1037 int
1038 sys_getrusage(struct thread *td, struct getrusage_args *uap)
1039 {
1040 	struct rusage ru;
1041 	int error;
1042 
1043 	error = kern_getrusage(td, uap->who, &ru);
1044 	if (error == 0)
1045 		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
1046 	return (error);
1047 }
1048 
1049 int
1050 kern_getrusage(struct thread *td, int who, struct rusage *rup)
1051 {
1052 	struct proc *p;
1053 	int error;
1054 
1055 	error = 0;
1056 	p = td->td_proc;
1057 	PROC_LOCK(p);
1058 	switch (who) {
1059 	case RUSAGE_SELF:
1060 		rufetchcalc(p, rup, &rup->ru_utime,
1061 		    &rup->ru_stime);
1062 		break;
1063 
1064 	case RUSAGE_CHILDREN:
1065 		*rup = p->p_stats->p_cru;
1066 		calccru(p, &rup->ru_utime, &rup->ru_stime);
1067 		break;
1068 
1069 	case RUSAGE_THREAD:
1070 		PROC_STATLOCK(p);
1071 		thread_lock(td);
1072 		rufetchtd(td, rup);
1073 		thread_unlock(td);
1074 		PROC_STATUNLOCK(p);
1075 		break;
1076 
1077 	default:
1078 		error = EINVAL;
1079 	}
1080 	PROC_UNLOCK(p);
1081 	return (error);
1082 }
1083 
1084 void
1085 rucollect(struct rusage *ru, struct rusage *ru2)
1086 {
1087 	long *ip, *ip2;
1088 	int i;
1089 
1090 	if (ru->ru_maxrss < ru2->ru_maxrss)
1091 		ru->ru_maxrss = ru2->ru_maxrss;
1092 	ip = &ru->ru_first;
1093 	ip2 = &ru2->ru_first;
1094 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
1095 		*ip++ += *ip2++;
1096 }
1097 
1098 void
1099 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
1100     struct rusage_ext *rux2)
1101 {
1102 
1103 	rux->rux_runtime += rux2->rux_runtime;
1104 	rux->rux_uticks += rux2->rux_uticks;
1105 	rux->rux_sticks += rux2->rux_sticks;
1106 	rux->rux_iticks += rux2->rux_iticks;
1107 	rux->rux_uu += rux2->rux_uu;
1108 	rux->rux_su += rux2->rux_su;
1109 	rux->rux_tu += rux2->rux_tu;
1110 	rucollect(ru, ru2);
1111 }
1112 
1113 /*
1114  * Aggregate tick counts into the proc's rusage_ext.
1115  */
1116 static void
1117 ruxagg_locked(struct rusage_ext *rux, struct thread *td)
1118 {
1119 
1120 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1121 	PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED);
1122 	rux->rux_runtime += td->td_incruntime;
1123 	rux->rux_uticks += td->td_uticks;
1124 	rux->rux_sticks += td->td_sticks;
1125 	rux->rux_iticks += td->td_iticks;
1126 }
1127 
1128 void
1129 ruxagg(struct proc *p, struct thread *td)
1130 {
1131 
1132 	thread_lock(td);
1133 	ruxagg_locked(&p->p_rux, td);
1134 	ruxagg_locked(&td->td_rux, td);
1135 	td->td_incruntime = 0;
1136 	td->td_uticks = 0;
1137 	td->td_iticks = 0;
1138 	td->td_sticks = 0;
1139 	thread_unlock(td);
1140 }
1141 
1142 /*
1143  * Update the rusage_ext structure and fetch a valid aggregate rusage
1144  * for proc p if storage for one is supplied.
1145  */
1146 void
1147 rufetch(struct proc *p, struct rusage *ru)
1148 {
1149 	struct thread *td;
1150 
1151 	PROC_STATLOCK_ASSERT(p, MA_OWNED);
1152 
1153 	*ru = p->p_ru;
1154 	if (p->p_numthreads > 0)  {
1155 		FOREACH_THREAD_IN_PROC(p, td) {
1156 			ruxagg(p, td);
1157 			rucollect(ru, &td->td_ru);
1158 		}
1159 	}
1160 }
1161 
1162 /*
1163  * Atomically perform a rufetch and a calcru together.
1164  * Consumers, can safely assume the calcru is executed only once
1165  * rufetch is completed.
1166  */
1167 void
1168 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
1169     struct timeval *sp)
1170 {
1171 
1172 	PROC_STATLOCK(p);
1173 	rufetch(p, ru);
1174 	calcru(p, up, sp);
1175 	PROC_STATUNLOCK(p);
1176 }
1177 
1178 /*
1179  * Allocate a new resource limits structure and initialize its
1180  * reference count and mutex pointer.
1181  */
1182 struct plimit *
1183 lim_alloc()
1184 {
1185 	struct plimit *limp;
1186 
1187 	limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
1188 	refcount_init(&limp->pl_refcnt, 1);
1189 	return (limp);
1190 }
1191 
1192 struct plimit *
1193 lim_hold(struct plimit *limp)
1194 {
1195 
1196 	refcount_acquire(&limp->pl_refcnt);
1197 	return (limp);
1198 }
1199 
1200 void
1201 lim_fork(struct proc *p1, struct proc *p2)
1202 {
1203 
1204 	PROC_LOCK_ASSERT(p1, MA_OWNED);
1205 	PROC_LOCK_ASSERT(p2, MA_OWNED);
1206 
1207 	p2->p_limit = lim_hold(p1->p_limit);
1208 	callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
1209 	if (p1->p_cpulimit != RLIM_INFINITY)
1210 		callout_reset_sbt(&p2->p_limco, SBT_1S, 0,
1211 		    lim_cb, p2, C_PREL(1));
1212 }
1213 
1214 void
1215 lim_free(struct plimit *limp)
1216 {
1217 
1218 	if (refcount_release(&limp->pl_refcnt))
1219 		free((void *)limp, M_PLIMIT);
1220 }
1221 
1222 /*
1223  * Make a copy of the plimit structure.
1224  * We share these structures copy-on-write after fork.
1225  */
1226 void
1227 lim_copy(struct plimit *dst, struct plimit *src)
1228 {
1229 
1230 	KASSERT(dst->pl_refcnt <= 1, ("lim_copy to shared limit"));
1231 	bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
1232 }
1233 
1234 /*
1235  * Return the hard limit for a particular system resource.  The
1236  * which parameter specifies the index into the rlimit array.
1237  */
1238 rlim_t
1239 lim_max(struct thread *td, int which)
1240 {
1241 	struct rlimit rl;
1242 
1243 	lim_rlimit(td, which, &rl);
1244 	return (rl.rlim_max);
1245 }
1246 
1247 rlim_t
1248 lim_max_proc(struct proc *p, int which)
1249 {
1250 	struct rlimit rl;
1251 
1252 	lim_rlimit_proc(p, which, &rl);
1253 	return (rl.rlim_max);
1254 }
1255 
1256 /*
1257  * Return the current (soft) limit for a particular system resource.
1258  * The which parameter which specifies the index into the rlimit array
1259  */
1260 rlim_t
1261 (lim_cur)(struct thread *td, int which)
1262 {
1263 	struct rlimit rl;
1264 
1265 	lim_rlimit(td, which, &rl);
1266 	return (rl.rlim_cur);
1267 }
1268 
1269 rlim_t
1270 lim_cur_proc(struct proc *p, int which)
1271 {
1272 	struct rlimit rl;
1273 
1274 	lim_rlimit_proc(p, which, &rl);
1275 	return (rl.rlim_cur);
1276 }
1277 
1278 /*
1279  * Return a copy of the entire rlimit structure for the system limit
1280  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
1281  */
1282 void
1283 lim_rlimit(struct thread *td, int which, struct rlimit *rlp)
1284 {
1285 	struct proc *p = td->td_proc;
1286 
1287 	MPASS(td == curthread);
1288 	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1289 	    ("request for invalid resource limit"));
1290 	*rlp = td->td_limit->pl_rlimit[which];
1291 	if (p->p_sysent->sv_fixlimit != NULL)
1292 		p->p_sysent->sv_fixlimit(rlp, which);
1293 }
1294 
1295 void
1296 lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp)
1297 {
1298 
1299 	PROC_LOCK_ASSERT(p, MA_OWNED);
1300 	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1301 	    ("request for invalid resource limit"));
1302 	*rlp = p->p_limit->pl_rlimit[which];
1303 	if (p->p_sysent->sv_fixlimit != NULL)
1304 		p->p_sysent->sv_fixlimit(rlp, which);
1305 }
1306 
1307 void
1308 uihashinit()
1309 {
1310 
1311 	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
1312 	rw_init(&uihashtbl_lock, "uidinfo hash");
1313 }
1314 
1315 /*
1316  * Look up a uidinfo struct for the parameter uid.
1317  * uihashtbl_lock must be locked.
1318  * Increase refcount on uidinfo struct returned.
1319  */
1320 static struct uidinfo *
1321 uilookup(uid_t uid)
1322 {
1323 	struct uihashhead *uipp;
1324 	struct uidinfo *uip;
1325 
1326 	rw_assert(&uihashtbl_lock, RA_LOCKED);
1327 	uipp = UIHASH(uid);
1328 	LIST_FOREACH(uip, uipp, ui_hash)
1329 		if (uip->ui_uid == uid) {
1330 			uihold(uip);
1331 			break;
1332 		}
1333 
1334 	return (uip);
1335 }
1336 
1337 /*
1338  * Find or allocate a struct uidinfo for a particular uid.
1339  * Returns with uidinfo struct referenced.
1340  * uifree() should be called on a struct uidinfo when released.
1341  */
1342 struct uidinfo *
1343 uifind(uid_t uid)
1344 {
1345 	struct uidinfo *new_uip, *uip;
1346 	struct ucred *cred;
1347 
1348 	cred = curthread->td_ucred;
1349 	if (cred->cr_uidinfo->ui_uid == uid) {
1350 		uip = cred->cr_uidinfo;
1351 		uihold(uip);
1352 		return (uip);
1353 	} else if (cred->cr_ruidinfo->ui_uid == uid) {
1354 		uip = cred->cr_ruidinfo;
1355 		uihold(uip);
1356 		return (uip);
1357 	}
1358 
1359 	rw_rlock(&uihashtbl_lock);
1360 	uip = uilookup(uid);
1361 	rw_runlock(&uihashtbl_lock);
1362 	if (uip != NULL)
1363 		return (uip);
1364 
1365 	new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO);
1366 	racct_create(&new_uip->ui_racct);
1367 	refcount_init(&new_uip->ui_ref, 1);
1368 	new_uip->ui_uid = uid;
1369 
1370 	rw_wlock(&uihashtbl_lock);
1371 	/*
1372 	 * There's a chance someone created our uidinfo while we
1373 	 * were in malloc and not holding the lock, so we have to
1374 	 * make sure we don't insert a duplicate uidinfo.
1375 	 */
1376 	if ((uip = uilookup(uid)) == NULL) {
1377 		LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash);
1378 		rw_wunlock(&uihashtbl_lock);
1379 		uip = new_uip;
1380 	} else {
1381 		rw_wunlock(&uihashtbl_lock);
1382 		racct_destroy(&new_uip->ui_racct);
1383 		free(new_uip, M_UIDINFO);
1384 	}
1385 	return (uip);
1386 }
1387 
1388 /*
1389  * Place another refcount on a uidinfo struct.
1390  */
1391 void
1392 uihold(struct uidinfo *uip)
1393 {
1394 
1395 	refcount_acquire(&uip->ui_ref);
1396 }
1397 
1398 /*-
1399  * Since uidinfo structs have a long lifetime, we use an
1400  * opportunistic refcounting scheme to avoid locking the lookup hash
1401  * for each release.
1402  *
1403  * If the refcount hits 0, we need to free the structure,
1404  * which means we need to lock the hash.
1405  * Optimal case:
1406  *   After locking the struct and lowering the refcount, if we find
1407  *   that we don't need to free, simply unlock and return.
1408  * Suboptimal case:
1409  *   If refcount lowering results in need to free, bump the count
1410  *   back up, lose the lock and acquire the locks in the proper
1411  *   order to try again.
1412  */
1413 void
1414 uifree(struct uidinfo *uip)
1415 {
1416 
1417 	if (refcount_release_if_not_last(&uip->ui_ref))
1418 		return;
1419 
1420 	rw_wlock(&uihashtbl_lock);
1421 	if (refcount_release(&uip->ui_ref) == 0) {
1422 		rw_wunlock(&uihashtbl_lock);
1423 		return;
1424 	}
1425 
1426 	racct_destroy(&uip->ui_racct);
1427 	LIST_REMOVE(uip, ui_hash);
1428 	rw_wunlock(&uihashtbl_lock);
1429 
1430 	if (uip->ui_sbsize != 0)
1431 		printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
1432 		    uip->ui_uid, uip->ui_sbsize);
1433 	if (uip->ui_proccnt != 0)
1434 		printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1435 		    uip->ui_uid, uip->ui_proccnt);
1436 	if (uip->ui_vmsize != 0)
1437 		printf("freeing uidinfo: uid = %d, swapuse = %lld\n",
1438 		    uip->ui_uid, (unsigned long long)uip->ui_vmsize);
1439 	free(uip, M_UIDINFO);
1440 }
1441 
1442 #ifdef RACCT
1443 void
1444 ui_racct_foreach(void (*callback)(struct racct *racct,
1445     void *arg2, void *arg3), void (*pre)(void), void (*post)(void),
1446     void *arg2, void *arg3)
1447 {
1448 	struct uidinfo *uip;
1449 	struct uihashhead *uih;
1450 
1451 	rw_rlock(&uihashtbl_lock);
1452 	if (pre != NULL)
1453 		(pre)();
1454 	for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) {
1455 		LIST_FOREACH(uip, uih, ui_hash) {
1456 			(callback)(uip->ui_racct, arg2, arg3);
1457 		}
1458 	}
1459 	if (post != NULL)
1460 		(post)();
1461 	rw_runlock(&uihashtbl_lock);
1462 }
1463 #endif
1464 
1465 static inline int
1466 chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name)
1467 {
1468 	long new;
1469 
1470 	/* Don't allow them to exceed max, but allow subtraction. */
1471 	new = atomic_fetchadd_long(limit, (long)diff) + diff;
1472 	if (diff > 0 && max != 0) {
1473 		if (new < 0 || new > max) {
1474 			atomic_subtract_long(limit, (long)diff);
1475 			return (0);
1476 		}
1477 	} else if (new < 0)
1478 		printf("negative %s for uid = %d\n", name, uip->ui_uid);
1479 	return (1);
1480 }
1481 
1482 /*
1483  * Change the count associated with number of processes
1484  * a given user is using.  When 'max' is 0, don't enforce a limit
1485  */
1486 int
1487 chgproccnt(struct uidinfo *uip, int diff, rlim_t max)
1488 {
1489 
1490 	return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt"));
1491 }
1492 
1493 /*
1494  * Change the total socket buffer size a user has used.
1495  */
1496 int
1497 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max)
1498 {
1499 	int diff, rv;
1500 
1501 	diff = to - *hiwat;
1502 	if (diff > 0 && max == 0) {
1503 		rv = 0;
1504 	} else {
1505 		rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize");
1506 		if (rv != 0)
1507 			*hiwat = to;
1508 	}
1509 	return (rv);
1510 }
1511 
1512 /*
1513  * Change the count associated with number of pseudo-terminals
1514  * a given user is using.  When 'max' is 0, don't enforce a limit
1515  */
1516 int
1517 chgptscnt(struct uidinfo *uip, int diff, rlim_t max)
1518 {
1519 
1520 	return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt"));
1521 }
1522 
1523 int
1524 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max)
1525 {
1526 
1527 	return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt"));
1528 }
1529 
1530 int
1531 chgumtxcnt(struct uidinfo *uip, int diff, rlim_t max)
1532 {
1533 
1534 	return (chglimit(uip, &uip->ui_umtxcnt, diff, max, "umtxcnt"));
1535 }
1536