1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_compat.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/sysproto.h> 47 #include <sys/file.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/malloc.h> 51 #include <sys/mutex.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/refcount.h> 55 #include <sys/racct.h> 56 #include <sys/resourcevar.h> 57 #include <sys/rwlock.h> 58 #include <sys/sched.h> 59 #include <sys/sx.h> 60 #include <sys/syscallsubr.h> 61 #include <sys/sysctl.h> 62 #include <sys/sysent.h> 63 #include <sys/time.h> 64 #include <sys/umtx.h> 65 66 #include <vm/vm.h> 67 #include <vm/vm_param.h> 68 #include <vm/pmap.h> 69 #include <vm/vm_map.h> 70 71 72 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures"); 73 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 74 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 75 static struct rwlock uihashtbl_lock; 76 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 77 static u_long uihash; /* size of hash table - 1 */ 78 79 static void calcru1(struct proc *p, struct rusage_ext *ruxp, 80 struct timeval *up, struct timeval *sp); 81 static int donice(struct thread *td, struct proc *chgp, int n); 82 static struct uidinfo *uilookup(uid_t uid); 83 static void ruxagg_locked(struct rusage_ext *rux, struct thread *td); 84 85 /* 86 * Resource controls and accounting. 87 */ 88 #ifndef _SYS_SYSPROTO_H_ 89 struct getpriority_args { 90 int which; 91 int who; 92 }; 93 #endif 94 int 95 sys_getpriority(struct thread *td, struct getpriority_args *uap) 96 { 97 struct proc *p; 98 struct pgrp *pg; 99 int error, low; 100 101 error = 0; 102 low = PRIO_MAX + 1; 103 switch (uap->which) { 104 105 case PRIO_PROCESS: 106 if (uap->who == 0) 107 low = td->td_proc->p_nice; 108 else { 109 p = pfind(uap->who); 110 if (p == NULL) 111 break; 112 if (p_cansee(td, p) == 0) 113 low = p->p_nice; 114 PROC_UNLOCK(p); 115 } 116 break; 117 118 case PRIO_PGRP: 119 sx_slock(&proctree_lock); 120 if (uap->who == 0) { 121 pg = td->td_proc->p_pgrp; 122 PGRP_LOCK(pg); 123 } else { 124 pg = pgfind(uap->who); 125 if (pg == NULL) { 126 sx_sunlock(&proctree_lock); 127 break; 128 } 129 } 130 sx_sunlock(&proctree_lock); 131 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 132 PROC_LOCK(p); 133 if (p->p_state == PRS_NORMAL && 134 p_cansee(td, p) == 0) { 135 if (p->p_nice < low) 136 low = p->p_nice; 137 } 138 PROC_UNLOCK(p); 139 } 140 PGRP_UNLOCK(pg); 141 break; 142 143 case PRIO_USER: 144 if (uap->who == 0) 145 uap->who = td->td_ucred->cr_uid; 146 sx_slock(&allproc_lock); 147 FOREACH_PROC_IN_SYSTEM(p) { 148 PROC_LOCK(p); 149 if (p->p_state == PRS_NORMAL && 150 p_cansee(td, p) == 0 && 151 p->p_ucred->cr_uid == uap->who) { 152 if (p->p_nice < low) 153 low = p->p_nice; 154 } 155 PROC_UNLOCK(p); 156 } 157 sx_sunlock(&allproc_lock); 158 break; 159 160 default: 161 error = EINVAL; 162 break; 163 } 164 if (low == PRIO_MAX + 1 && error == 0) 165 error = ESRCH; 166 td->td_retval[0] = low; 167 return (error); 168 } 169 170 #ifndef _SYS_SYSPROTO_H_ 171 struct setpriority_args { 172 int which; 173 int who; 174 int prio; 175 }; 176 #endif 177 int 178 sys_setpriority(struct thread *td, struct setpriority_args *uap) 179 { 180 struct proc *curp, *p; 181 struct pgrp *pg; 182 int found = 0, error = 0; 183 184 curp = td->td_proc; 185 switch (uap->which) { 186 case PRIO_PROCESS: 187 if (uap->who == 0) { 188 PROC_LOCK(curp); 189 error = donice(td, curp, uap->prio); 190 PROC_UNLOCK(curp); 191 } else { 192 p = pfind(uap->who); 193 if (p == NULL) 194 break; 195 error = p_cansee(td, p); 196 if (error == 0) 197 error = donice(td, p, uap->prio); 198 PROC_UNLOCK(p); 199 } 200 found++; 201 break; 202 203 case PRIO_PGRP: 204 sx_slock(&proctree_lock); 205 if (uap->who == 0) { 206 pg = curp->p_pgrp; 207 PGRP_LOCK(pg); 208 } else { 209 pg = pgfind(uap->who); 210 if (pg == NULL) { 211 sx_sunlock(&proctree_lock); 212 break; 213 } 214 } 215 sx_sunlock(&proctree_lock); 216 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 217 PROC_LOCK(p); 218 if (p->p_state == PRS_NORMAL && 219 p_cansee(td, p) == 0) { 220 error = donice(td, p, uap->prio); 221 found++; 222 } 223 PROC_UNLOCK(p); 224 } 225 PGRP_UNLOCK(pg); 226 break; 227 228 case PRIO_USER: 229 if (uap->who == 0) 230 uap->who = td->td_ucred->cr_uid; 231 sx_slock(&allproc_lock); 232 FOREACH_PROC_IN_SYSTEM(p) { 233 PROC_LOCK(p); 234 if (p->p_state == PRS_NORMAL && 235 p->p_ucred->cr_uid == uap->who && 236 p_cansee(td, p) == 0) { 237 error = donice(td, p, uap->prio); 238 found++; 239 } 240 PROC_UNLOCK(p); 241 } 242 sx_sunlock(&allproc_lock); 243 break; 244 245 default: 246 error = EINVAL; 247 break; 248 } 249 if (found == 0 && error == 0) 250 error = ESRCH; 251 return (error); 252 } 253 254 /* 255 * Set "nice" for a (whole) process. 256 */ 257 static int 258 donice(struct thread *td, struct proc *p, int n) 259 { 260 int error; 261 262 PROC_LOCK_ASSERT(p, MA_OWNED); 263 if ((error = p_cansched(td, p))) 264 return (error); 265 if (n > PRIO_MAX) 266 n = PRIO_MAX; 267 if (n < PRIO_MIN) 268 n = PRIO_MIN; 269 if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0) 270 return (EACCES); 271 sched_nice(p, n); 272 return (0); 273 } 274 275 static int unprivileged_idprio; 276 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW, 277 &unprivileged_idprio, 0, "Allow non-root users to set an idle priority"); 278 279 /* 280 * Set realtime priority for LWP. 281 */ 282 #ifndef _SYS_SYSPROTO_H_ 283 struct rtprio_thread_args { 284 int function; 285 lwpid_t lwpid; 286 struct rtprio *rtp; 287 }; 288 #endif 289 int 290 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap) 291 { 292 struct proc *p; 293 struct rtprio rtp; 294 struct thread *td1; 295 int cierror, error; 296 297 /* Perform copyin before acquiring locks if needed. */ 298 if (uap->function == RTP_SET) 299 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 300 else 301 cierror = 0; 302 303 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) { 304 p = td->td_proc; 305 td1 = td; 306 PROC_LOCK(p); 307 } else { 308 /* Only look up thread in current process */ 309 td1 = tdfind(uap->lwpid, curproc->p_pid); 310 if (td1 == NULL) 311 return (ESRCH); 312 p = td1->td_proc; 313 } 314 315 switch (uap->function) { 316 case RTP_LOOKUP: 317 if ((error = p_cansee(td, p))) 318 break; 319 pri_to_rtp(td1, &rtp); 320 PROC_UNLOCK(p); 321 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 322 case RTP_SET: 323 if ((error = p_cansched(td, p)) || (error = cierror)) 324 break; 325 326 /* Disallow setting rtprio in most cases if not superuser. */ 327 328 /* 329 * Realtime priority has to be restricted for reasons which 330 * should be obvious. However, for idleprio processes, there is 331 * a potential for system deadlock if an idleprio process gains 332 * a lock on a resource that other processes need (and the 333 * idleprio process can't run due to a CPU-bound normal 334 * process). Fix me! XXX 335 * 336 * This problem is not only related to idleprio process. 337 * A user level program can obtain a file lock and hold it 338 * indefinitely. Additionally, without idleprio processes it is 339 * still conceivable that a program with low priority will never 340 * get to run. In short, allowing this feature might make it 341 * easier to lock a resource indefinitely, but it is not the 342 * only thing that makes it possible. 343 */ 344 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME || 345 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 346 unprivileged_idprio == 0)) { 347 error = priv_check(td, PRIV_SCHED_RTPRIO); 348 if (error) 349 break; 350 } 351 error = rtp_to_pri(&rtp, td1); 352 break; 353 default: 354 error = EINVAL; 355 break; 356 } 357 PROC_UNLOCK(p); 358 return (error); 359 } 360 361 /* 362 * Set realtime priority. 363 */ 364 #ifndef _SYS_SYSPROTO_H_ 365 struct rtprio_args { 366 int function; 367 pid_t pid; 368 struct rtprio *rtp; 369 }; 370 #endif 371 int 372 sys_rtprio(struct thread *td, struct rtprio_args *uap) 373 { 374 struct proc *p; 375 struct thread *tdp; 376 struct rtprio rtp; 377 int cierror, error; 378 379 /* Perform copyin before acquiring locks if needed. */ 380 if (uap->function == RTP_SET) 381 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 382 else 383 cierror = 0; 384 385 if (uap->pid == 0) { 386 p = td->td_proc; 387 PROC_LOCK(p); 388 } else { 389 p = pfind(uap->pid); 390 if (p == NULL) 391 return (ESRCH); 392 } 393 394 switch (uap->function) { 395 case RTP_LOOKUP: 396 if ((error = p_cansee(td, p))) 397 break; 398 /* 399 * Return OUR priority if no pid specified, 400 * or if one is, report the highest priority 401 * in the process. There isn't much more you can do as 402 * there is only room to return a single priority. 403 * Note: specifying our own pid is not the same 404 * as leaving it zero. 405 */ 406 if (uap->pid == 0) { 407 pri_to_rtp(td, &rtp); 408 } else { 409 struct rtprio rtp2; 410 411 rtp.type = RTP_PRIO_IDLE; 412 rtp.prio = RTP_PRIO_MAX; 413 FOREACH_THREAD_IN_PROC(p, tdp) { 414 pri_to_rtp(tdp, &rtp2); 415 if (rtp2.type < rtp.type || 416 (rtp2.type == rtp.type && 417 rtp2.prio < rtp.prio)) { 418 rtp.type = rtp2.type; 419 rtp.prio = rtp2.prio; 420 } 421 } 422 } 423 PROC_UNLOCK(p); 424 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 425 case RTP_SET: 426 if ((error = p_cansched(td, p)) || (error = cierror)) 427 break; 428 429 /* 430 * Disallow setting rtprio in most cases if not superuser. 431 * See the comment in sys_rtprio_thread about idprio 432 * threads holding a lock. 433 */ 434 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME || 435 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 436 !unprivileged_idprio)) { 437 error = priv_check(td, PRIV_SCHED_RTPRIO); 438 if (error) 439 break; 440 } 441 442 /* 443 * If we are setting our own priority, set just our 444 * thread but if we are doing another process, 445 * do all the threads on that process. If we 446 * specify our own pid we do the latter. 447 */ 448 if (uap->pid == 0) { 449 error = rtp_to_pri(&rtp, td); 450 } else { 451 FOREACH_THREAD_IN_PROC(p, td) { 452 if ((error = rtp_to_pri(&rtp, td)) != 0) 453 break; 454 } 455 } 456 break; 457 default: 458 error = EINVAL; 459 break; 460 } 461 PROC_UNLOCK(p); 462 return (error); 463 } 464 465 int 466 rtp_to_pri(struct rtprio *rtp, struct thread *td) 467 { 468 u_char newpri, oldclass, oldpri; 469 470 switch (RTP_PRIO_BASE(rtp->type)) { 471 case RTP_PRIO_REALTIME: 472 if (rtp->prio > RTP_PRIO_MAX) 473 return (EINVAL); 474 newpri = PRI_MIN_REALTIME + rtp->prio; 475 break; 476 case RTP_PRIO_NORMAL: 477 if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE)) 478 return (EINVAL); 479 newpri = PRI_MIN_TIMESHARE + rtp->prio; 480 break; 481 case RTP_PRIO_IDLE: 482 if (rtp->prio > RTP_PRIO_MAX) 483 return (EINVAL); 484 newpri = PRI_MIN_IDLE + rtp->prio; 485 break; 486 default: 487 return (EINVAL); 488 } 489 490 thread_lock(td); 491 oldclass = td->td_pri_class; 492 sched_class(td, rtp->type); /* XXX fix */ 493 oldpri = td->td_user_pri; 494 sched_user_prio(td, newpri); 495 if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL || 496 td->td_pri_class != RTP_PRIO_NORMAL)) 497 sched_prio(td, td->td_user_pri); 498 if (TD_ON_UPILOCK(td) && oldpri != newpri) { 499 critical_enter(); 500 thread_unlock(td); 501 umtx_pi_adjust(td, oldpri); 502 critical_exit(); 503 } else 504 thread_unlock(td); 505 return (0); 506 } 507 508 void 509 pri_to_rtp(struct thread *td, struct rtprio *rtp) 510 { 511 512 thread_lock(td); 513 switch (PRI_BASE(td->td_pri_class)) { 514 case PRI_REALTIME: 515 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME; 516 break; 517 case PRI_TIMESHARE: 518 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE; 519 break; 520 case PRI_IDLE: 521 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE; 522 break; 523 default: 524 break; 525 } 526 rtp->type = td->td_pri_class; 527 thread_unlock(td); 528 } 529 530 #if defined(COMPAT_43) 531 #ifndef _SYS_SYSPROTO_H_ 532 struct osetrlimit_args { 533 u_int which; 534 struct orlimit *rlp; 535 }; 536 #endif 537 int 538 osetrlimit(struct thread *td, struct osetrlimit_args *uap) 539 { 540 struct orlimit olim; 541 struct rlimit lim; 542 int error; 543 544 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 545 return (error); 546 lim.rlim_cur = olim.rlim_cur; 547 lim.rlim_max = olim.rlim_max; 548 error = kern_setrlimit(td, uap->which, &lim); 549 return (error); 550 } 551 552 #ifndef _SYS_SYSPROTO_H_ 553 struct ogetrlimit_args { 554 u_int which; 555 struct orlimit *rlp; 556 }; 557 #endif 558 int 559 ogetrlimit(struct thread *td, struct ogetrlimit_args *uap) 560 { 561 struct orlimit olim; 562 struct rlimit rl; 563 int error; 564 565 if (uap->which >= RLIM_NLIMITS) 566 return (EINVAL); 567 lim_rlimit(td, uap->which, &rl); 568 569 /* 570 * XXX would be more correct to convert only RLIM_INFINITY to the 571 * old RLIM_INFINITY and fail with EOVERFLOW for other larger 572 * values. Most 64->32 and 32->16 conversions, including not 573 * unimportant ones of uids are even more broken than what we 574 * do here (they blindly truncate). We don't do this correctly 575 * here since we have little experience with EOVERFLOW yet. 576 * Elsewhere, getuid() can't fail... 577 */ 578 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur; 579 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max; 580 error = copyout(&olim, uap->rlp, sizeof(olim)); 581 return (error); 582 } 583 #endif /* COMPAT_43 */ 584 585 #ifndef _SYS_SYSPROTO_H_ 586 struct __setrlimit_args { 587 u_int which; 588 struct rlimit *rlp; 589 }; 590 #endif 591 int 592 sys_setrlimit(struct thread *td, struct __setrlimit_args *uap) 593 { 594 struct rlimit alim; 595 int error; 596 597 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit)))) 598 return (error); 599 error = kern_setrlimit(td, uap->which, &alim); 600 return (error); 601 } 602 603 static void 604 lim_cb(void *arg) 605 { 606 struct rlimit rlim; 607 struct thread *td; 608 struct proc *p; 609 610 p = arg; 611 PROC_LOCK_ASSERT(p, MA_OWNED); 612 /* 613 * Check if the process exceeds its cpu resource allocation. If 614 * it reaches the max, arrange to kill the process in ast(). 615 */ 616 if (p->p_cpulimit == RLIM_INFINITY) 617 return; 618 PROC_STATLOCK(p); 619 FOREACH_THREAD_IN_PROC(p, td) { 620 ruxagg(p, td); 621 } 622 PROC_STATUNLOCK(p); 623 if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) { 624 lim_rlimit_proc(p, RLIMIT_CPU, &rlim); 625 if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) { 626 killproc(p, "exceeded maximum CPU limit"); 627 } else { 628 if (p->p_cpulimit < rlim.rlim_max) 629 p->p_cpulimit += 5; 630 kern_psignal(p, SIGXCPU); 631 } 632 } 633 if ((p->p_flag & P_WEXIT) == 0) 634 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 635 lim_cb, p, C_PREL(1)); 636 } 637 638 int 639 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp) 640 { 641 642 return (kern_proc_setrlimit(td, td->td_proc, which, limp)); 643 } 644 645 int 646 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which, 647 struct rlimit *limp) 648 { 649 struct plimit *newlim, *oldlim; 650 struct rlimit *alimp; 651 struct rlimit oldssiz; 652 int error; 653 654 if (which >= RLIM_NLIMITS) 655 return (EINVAL); 656 657 /* 658 * Preserve historical bugs by treating negative limits as unsigned. 659 */ 660 if (limp->rlim_cur < 0) 661 limp->rlim_cur = RLIM_INFINITY; 662 if (limp->rlim_max < 0) 663 limp->rlim_max = RLIM_INFINITY; 664 665 oldssiz.rlim_cur = 0; 666 newlim = lim_alloc(); 667 PROC_LOCK(p); 668 oldlim = p->p_limit; 669 alimp = &oldlim->pl_rlimit[which]; 670 if (limp->rlim_cur > alimp->rlim_max || 671 limp->rlim_max > alimp->rlim_max) 672 if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) { 673 PROC_UNLOCK(p); 674 lim_free(newlim); 675 return (error); 676 } 677 if (limp->rlim_cur > limp->rlim_max) 678 limp->rlim_cur = limp->rlim_max; 679 lim_copy(newlim, oldlim); 680 alimp = &newlim->pl_rlimit[which]; 681 682 switch (which) { 683 684 case RLIMIT_CPU: 685 if (limp->rlim_cur != RLIM_INFINITY && 686 p->p_cpulimit == RLIM_INFINITY) 687 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 688 lim_cb, p, C_PREL(1)); 689 p->p_cpulimit = limp->rlim_cur; 690 break; 691 case RLIMIT_DATA: 692 if (limp->rlim_cur > maxdsiz) 693 limp->rlim_cur = maxdsiz; 694 if (limp->rlim_max > maxdsiz) 695 limp->rlim_max = maxdsiz; 696 break; 697 698 case RLIMIT_STACK: 699 if (limp->rlim_cur > maxssiz) 700 limp->rlim_cur = maxssiz; 701 if (limp->rlim_max > maxssiz) 702 limp->rlim_max = maxssiz; 703 oldssiz = *alimp; 704 if (p->p_sysent->sv_fixlimit != NULL) 705 p->p_sysent->sv_fixlimit(&oldssiz, 706 RLIMIT_STACK); 707 break; 708 709 case RLIMIT_NOFILE: 710 if (limp->rlim_cur > maxfilesperproc) 711 limp->rlim_cur = maxfilesperproc; 712 if (limp->rlim_max > maxfilesperproc) 713 limp->rlim_max = maxfilesperproc; 714 break; 715 716 case RLIMIT_NPROC: 717 if (limp->rlim_cur > maxprocperuid) 718 limp->rlim_cur = maxprocperuid; 719 if (limp->rlim_max > maxprocperuid) 720 limp->rlim_max = maxprocperuid; 721 if (limp->rlim_cur < 1) 722 limp->rlim_cur = 1; 723 if (limp->rlim_max < 1) 724 limp->rlim_max = 1; 725 break; 726 } 727 if (p->p_sysent->sv_fixlimit != NULL) 728 p->p_sysent->sv_fixlimit(limp, which); 729 *alimp = *limp; 730 p->p_limit = newlim; 731 PROC_UPDATE_COW(p); 732 PROC_UNLOCK(p); 733 lim_free(oldlim); 734 735 if (which == RLIMIT_STACK && 736 /* 737 * Skip calls from exec_new_vmspace(), done when stack is 738 * not mapped yet. 739 */ 740 (td != curthread || (p->p_flag & P_INEXEC) == 0)) { 741 /* 742 * Stack is allocated to the max at exec time with only 743 * "rlim_cur" bytes accessible. If stack limit is going 744 * up make more accessible, if going down make inaccessible. 745 */ 746 if (limp->rlim_cur != oldssiz.rlim_cur) { 747 vm_offset_t addr; 748 vm_size_t size; 749 vm_prot_t prot; 750 751 if (limp->rlim_cur > oldssiz.rlim_cur) { 752 prot = p->p_sysent->sv_stackprot; 753 size = limp->rlim_cur - oldssiz.rlim_cur; 754 addr = p->p_sysent->sv_usrstack - 755 limp->rlim_cur; 756 } else { 757 prot = VM_PROT_NONE; 758 size = oldssiz.rlim_cur - limp->rlim_cur; 759 addr = p->p_sysent->sv_usrstack - 760 oldssiz.rlim_cur; 761 } 762 addr = trunc_page(addr); 763 size = round_page(size); 764 (void)vm_map_protect(&p->p_vmspace->vm_map, 765 addr, addr + size, prot, FALSE); 766 } 767 } 768 769 return (0); 770 } 771 772 #ifndef _SYS_SYSPROTO_H_ 773 struct __getrlimit_args { 774 u_int which; 775 struct rlimit *rlp; 776 }; 777 #endif 778 /* ARGSUSED */ 779 int 780 sys_getrlimit(struct thread *td, struct __getrlimit_args *uap) 781 { 782 struct rlimit rlim; 783 int error; 784 785 if (uap->which >= RLIM_NLIMITS) 786 return (EINVAL); 787 lim_rlimit(td, uap->which, &rlim); 788 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit)); 789 return (error); 790 } 791 792 /* 793 * Transform the running time and tick information for children of proc p 794 * into user and system time usage. 795 */ 796 void 797 calccru(struct proc *p, struct timeval *up, struct timeval *sp) 798 { 799 800 PROC_LOCK_ASSERT(p, MA_OWNED); 801 calcru1(p, &p->p_crux, up, sp); 802 } 803 804 /* 805 * Transform the running time and tick information in proc p into user 806 * and system time usage. If appropriate, include the current time slice 807 * on this CPU. 808 */ 809 void 810 calcru(struct proc *p, struct timeval *up, struct timeval *sp) 811 { 812 struct thread *td; 813 uint64_t runtime, u; 814 815 PROC_LOCK_ASSERT(p, MA_OWNED); 816 PROC_STATLOCK_ASSERT(p, MA_OWNED); 817 /* 818 * If we are getting stats for the current process, then add in the 819 * stats that this thread has accumulated in its current time slice. 820 * We reset the thread and CPU state as if we had performed a context 821 * switch right here. 822 */ 823 td = curthread; 824 if (td->td_proc == p) { 825 u = cpu_ticks(); 826 runtime = u - PCPU_GET(switchtime); 827 td->td_runtime += runtime; 828 td->td_incruntime += runtime; 829 PCPU_SET(switchtime, u); 830 } 831 /* Make sure the per-thread stats are current. */ 832 FOREACH_THREAD_IN_PROC(p, td) { 833 if (td->td_incruntime == 0) 834 continue; 835 ruxagg(p, td); 836 } 837 calcru1(p, &p->p_rux, up, sp); 838 } 839 840 /* Collect resource usage for a single thread. */ 841 void 842 rufetchtd(struct thread *td, struct rusage *ru) 843 { 844 struct proc *p; 845 uint64_t runtime, u; 846 847 p = td->td_proc; 848 PROC_STATLOCK_ASSERT(p, MA_OWNED); 849 THREAD_LOCK_ASSERT(td, MA_OWNED); 850 /* 851 * If we are getting stats for the current thread, then add in the 852 * stats that this thread has accumulated in its current time slice. 853 * We reset the thread and CPU state as if we had performed a context 854 * switch right here. 855 */ 856 if (td == curthread) { 857 u = cpu_ticks(); 858 runtime = u - PCPU_GET(switchtime); 859 td->td_runtime += runtime; 860 td->td_incruntime += runtime; 861 PCPU_SET(switchtime, u); 862 } 863 ruxagg(p, td); 864 *ru = td->td_ru; 865 calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime); 866 } 867 868 static void 869 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up, 870 struct timeval *sp) 871 { 872 /* {user, system, interrupt, total} {ticks, usec}: */ 873 uint64_t ut, uu, st, su, it, tt, tu; 874 875 ut = ruxp->rux_uticks; 876 st = ruxp->rux_sticks; 877 it = ruxp->rux_iticks; 878 tt = ut + st + it; 879 if (tt == 0) { 880 /* Avoid divide by zero */ 881 st = 1; 882 tt = 1; 883 } 884 tu = cputick2usec(ruxp->rux_runtime); 885 if ((int64_t)tu < 0) { 886 /* XXX: this should be an assert /phk */ 887 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n", 888 (intmax_t)tu, p->p_pid, p->p_comm); 889 tu = ruxp->rux_tu; 890 } 891 892 if (tu >= ruxp->rux_tu) { 893 /* 894 * The normal case, time increased. 895 * Enforce monotonicity of bucketed numbers. 896 */ 897 uu = (tu * ut) / tt; 898 if (uu < ruxp->rux_uu) 899 uu = ruxp->rux_uu; 900 su = (tu * st) / tt; 901 if (su < ruxp->rux_su) 902 su = ruxp->rux_su; 903 } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) { 904 /* 905 * When we calibrate the cputicker, it is not uncommon to 906 * see the presumably fixed frequency increase slightly over 907 * time as a result of thermal stabilization and NTP 908 * discipline (of the reference clock). We therefore ignore 909 * a bit of backwards slop because we expect to catch up 910 * shortly. We use a 3 microsecond limit to catch low 911 * counts and a 1% limit for high counts. 912 */ 913 uu = ruxp->rux_uu; 914 su = ruxp->rux_su; 915 tu = ruxp->rux_tu; 916 } else { /* tu < ruxp->rux_tu */ 917 /* 918 * What happened here was likely that a laptop, which ran at 919 * a reduced clock frequency at boot, kicked into high gear. 920 * The wisdom of spamming this message in that case is 921 * dubious, but it might also be indicative of something 922 * serious, so lets keep it and hope laptops can be made 923 * more truthful about their CPU speed via ACPI. 924 */ 925 printf("calcru: runtime went backwards from %ju usec " 926 "to %ju usec for pid %d (%s)\n", 927 (uintmax_t)ruxp->rux_tu, (uintmax_t)tu, 928 p->p_pid, p->p_comm); 929 uu = (tu * ut) / tt; 930 su = (tu * st) / tt; 931 } 932 933 ruxp->rux_uu = uu; 934 ruxp->rux_su = su; 935 ruxp->rux_tu = tu; 936 937 up->tv_sec = uu / 1000000; 938 up->tv_usec = uu % 1000000; 939 sp->tv_sec = su / 1000000; 940 sp->tv_usec = su % 1000000; 941 } 942 943 #ifndef _SYS_SYSPROTO_H_ 944 struct getrusage_args { 945 int who; 946 struct rusage *rusage; 947 }; 948 #endif 949 int 950 sys_getrusage(struct thread *td, struct getrusage_args *uap) 951 { 952 struct rusage ru; 953 int error; 954 955 error = kern_getrusage(td, uap->who, &ru); 956 if (error == 0) 957 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 958 return (error); 959 } 960 961 int 962 kern_getrusage(struct thread *td, int who, struct rusage *rup) 963 { 964 struct proc *p; 965 int error; 966 967 error = 0; 968 p = td->td_proc; 969 PROC_LOCK(p); 970 switch (who) { 971 case RUSAGE_SELF: 972 rufetchcalc(p, rup, &rup->ru_utime, 973 &rup->ru_stime); 974 break; 975 976 case RUSAGE_CHILDREN: 977 *rup = p->p_stats->p_cru; 978 calccru(p, &rup->ru_utime, &rup->ru_stime); 979 break; 980 981 case RUSAGE_THREAD: 982 PROC_STATLOCK(p); 983 thread_lock(td); 984 rufetchtd(td, rup); 985 thread_unlock(td); 986 PROC_STATUNLOCK(p); 987 break; 988 989 default: 990 error = EINVAL; 991 } 992 PROC_UNLOCK(p); 993 return (error); 994 } 995 996 void 997 rucollect(struct rusage *ru, struct rusage *ru2) 998 { 999 long *ip, *ip2; 1000 int i; 1001 1002 if (ru->ru_maxrss < ru2->ru_maxrss) 1003 ru->ru_maxrss = ru2->ru_maxrss; 1004 ip = &ru->ru_first; 1005 ip2 = &ru2->ru_first; 1006 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 1007 *ip++ += *ip2++; 1008 } 1009 1010 void 1011 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2, 1012 struct rusage_ext *rux2) 1013 { 1014 1015 rux->rux_runtime += rux2->rux_runtime; 1016 rux->rux_uticks += rux2->rux_uticks; 1017 rux->rux_sticks += rux2->rux_sticks; 1018 rux->rux_iticks += rux2->rux_iticks; 1019 rux->rux_uu += rux2->rux_uu; 1020 rux->rux_su += rux2->rux_su; 1021 rux->rux_tu += rux2->rux_tu; 1022 rucollect(ru, ru2); 1023 } 1024 1025 /* 1026 * Aggregate tick counts into the proc's rusage_ext. 1027 */ 1028 static void 1029 ruxagg_locked(struct rusage_ext *rux, struct thread *td) 1030 { 1031 1032 THREAD_LOCK_ASSERT(td, MA_OWNED); 1033 PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED); 1034 rux->rux_runtime += td->td_incruntime; 1035 rux->rux_uticks += td->td_uticks; 1036 rux->rux_sticks += td->td_sticks; 1037 rux->rux_iticks += td->td_iticks; 1038 } 1039 1040 void 1041 ruxagg(struct proc *p, struct thread *td) 1042 { 1043 1044 thread_lock(td); 1045 ruxagg_locked(&p->p_rux, td); 1046 ruxagg_locked(&td->td_rux, td); 1047 td->td_incruntime = 0; 1048 td->td_uticks = 0; 1049 td->td_iticks = 0; 1050 td->td_sticks = 0; 1051 thread_unlock(td); 1052 } 1053 1054 /* 1055 * Update the rusage_ext structure and fetch a valid aggregate rusage 1056 * for proc p if storage for one is supplied. 1057 */ 1058 void 1059 rufetch(struct proc *p, struct rusage *ru) 1060 { 1061 struct thread *td; 1062 1063 PROC_STATLOCK_ASSERT(p, MA_OWNED); 1064 1065 *ru = p->p_ru; 1066 if (p->p_numthreads > 0) { 1067 FOREACH_THREAD_IN_PROC(p, td) { 1068 ruxagg(p, td); 1069 rucollect(ru, &td->td_ru); 1070 } 1071 } 1072 } 1073 1074 /* 1075 * Atomically perform a rufetch and a calcru together. 1076 * Consumers, can safely assume the calcru is executed only once 1077 * rufetch is completed. 1078 */ 1079 void 1080 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up, 1081 struct timeval *sp) 1082 { 1083 1084 PROC_STATLOCK(p); 1085 rufetch(p, ru); 1086 calcru(p, up, sp); 1087 PROC_STATUNLOCK(p); 1088 } 1089 1090 /* 1091 * Allocate a new resource limits structure and initialize its 1092 * reference count and mutex pointer. 1093 */ 1094 struct plimit * 1095 lim_alloc() 1096 { 1097 struct plimit *limp; 1098 1099 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK); 1100 refcount_init(&limp->pl_refcnt, 1); 1101 return (limp); 1102 } 1103 1104 struct plimit * 1105 lim_hold(struct plimit *limp) 1106 { 1107 1108 refcount_acquire(&limp->pl_refcnt); 1109 return (limp); 1110 } 1111 1112 void 1113 lim_fork(struct proc *p1, struct proc *p2) 1114 { 1115 1116 PROC_LOCK_ASSERT(p1, MA_OWNED); 1117 PROC_LOCK_ASSERT(p2, MA_OWNED); 1118 1119 p2->p_limit = lim_hold(p1->p_limit); 1120 callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0); 1121 if (p1->p_cpulimit != RLIM_INFINITY) 1122 callout_reset_sbt(&p2->p_limco, SBT_1S, 0, 1123 lim_cb, p2, C_PREL(1)); 1124 } 1125 1126 void 1127 lim_free(struct plimit *limp) 1128 { 1129 1130 if (refcount_release(&limp->pl_refcnt)) 1131 free((void *)limp, M_PLIMIT); 1132 } 1133 1134 /* 1135 * Make a copy of the plimit structure. 1136 * We share these structures copy-on-write after fork. 1137 */ 1138 void 1139 lim_copy(struct plimit *dst, struct plimit *src) 1140 { 1141 1142 KASSERT(dst->pl_refcnt <= 1, ("lim_copy to shared limit")); 1143 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit)); 1144 } 1145 1146 /* 1147 * Return the hard limit for a particular system resource. The 1148 * which parameter specifies the index into the rlimit array. 1149 */ 1150 rlim_t 1151 lim_max(struct thread *td, int which) 1152 { 1153 struct rlimit rl; 1154 1155 lim_rlimit(td, which, &rl); 1156 return (rl.rlim_max); 1157 } 1158 1159 rlim_t 1160 lim_max_proc(struct proc *p, int which) 1161 { 1162 struct rlimit rl; 1163 1164 lim_rlimit_proc(p, which, &rl); 1165 return (rl.rlim_max); 1166 } 1167 1168 /* 1169 * Return the current (soft) limit for a particular system resource. 1170 * The which parameter which specifies the index into the rlimit array 1171 */ 1172 rlim_t 1173 lim_cur(struct thread *td, int which) 1174 { 1175 struct rlimit rl; 1176 1177 lim_rlimit(td, which, &rl); 1178 return (rl.rlim_cur); 1179 } 1180 1181 rlim_t 1182 lim_cur_proc(struct proc *p, int which) 1183 { 1184 struct rlimit rl; 1185 1186 lim_rlimit_proc(p, which, &rl); 1187 return (rl.rlim_cur); 1188 } 1189 1190 /* 1191 * Return a copy of the entire rlimit structure for the system limit 1192 * specified by 'which' in the rlimit structure pointed to by 'rlp'. 1193 */ 1194 void 1195 lim_rlimit(struct thread *td, int which, struct rlimit *rlp) 1196 { 1197 struct proc *p = td->td_proc; 1198 1199 MPASS(td == curthread); 1200 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1201 ("request for invalid resource limit")); 1202 *rlp = td->td_limit->pl_rlimit[which]; 1203 if (p->p_sysent->sv_fixlimit != NULL) 1204 p->p_sysent->sv_fixlimit(rlp, which); 1205 } 1206 1207 void 1208 lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp) 1209 { 1210 1211 PROC_LOCK_ASSERT(p, MA_OWNED); 1212 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1213 ("request for invalid resource limit")); 1214 *rlp = p->p_limit->pl_rlimit[which]; 1215 if (p->p_sysent->sv_fixlimit != NULL) 1216 p->p_sysent->sv_fixlimit(rlp, which); 1217 } 1218 1219 void 1220 uihashinit() 1221 { 1222 1223 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 1224 rw_init(&uihashtbl_lock, "uidinfo hash"); 1225 } 1226 1227 /* 1228 * Look up a uidinfo struct for the parameter uid. 1229 * uihashtbl_lock must be locked. 1230 * Increase refcount on uidinfo struct returned. 1231 */ 1232 static struct uidinfo * 1233 uilookup(uid_t uid) 1234 { 1235 struct uihashhead *uipp; 1236 struct uidinfo *uip; 1237 1238 rw_assert(&uihashtbl_lock, RA_LOCKED); 1239 uipp = UIHASH(uid); 1240 LIST_FOREACH(uip, uipp, ui_hash) 1241 if (uip->ui_uid == uid) { 1242 uihold(uip); 1243 break; 1244 } 1245 1246 return (uip); 1247 } 1248 1249 /* 1250 * Find or allocate a struct uidinfo for a particular uid. 1251 * Returns with uidinfo struct referenced. 1252 * uifree() should be called on a struct uidinfo when released. 1253 */ 1254 struct uidinfo * 1255 uifind(uid_t uid) 1256 { 1257 struct uidinfo *new_uip, *uip; 1258 struct ucred *cred; 1259 1260 cred = curthread->td_ucred; 1261 if (cred->cr_uidinfo->ui_uid == uid) { 1262 uip = cred->cr_uidinfo; 1263 uihold(uip); 1264 return (uip); 1265 } else if (cred->cr_ruidinfo->ui_uid == uid) { 1266 uip = cred->cr_ruidinfo; 1267 uihold(uip); 1268 return (uip); 1269 } 1270 1271 rw_rlock(&uihashtbl_lock); 1272 uip = uilookup(uid); 1273 rw_runlock(&uihashtbl_lock); 1274 if (uip != NULL) 1275 return (uip); 1276 1277 new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO); 1278 racct_create(&new_uip->ui_racct); 1279 refcount_init(&new_uip->ui_ref, 1); 1280 new_uip->ui_uid = uid; 1281 mtx_init(&new_uip->ui_vmsize_mtx, "ui_vmsize", NULL, MTX_DEF); 1282 1283 rw_wlock(&uihashtbl_lock); 1284 /* 1285 * There's a chance someone created our uidinfo while we 1286 * were in malloc and not holding the lock, so we have to 1287 * make sure we don't insert a duplicate uidinfo. 1288 */ 1289 if ((uip = uilookup(uid)) == NULL) { 1290 LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash); 1291 rw_wunlock(&uihashtbl_lock); 1292 uip = new_uip; 1293 } else { 1294 rw_wunlock(&uihashtbl_lock); 1295 racct_destroy(&new_uip->ui_racct); 1296 mtx_destroy(&new_uip->ui_vmsize_mtx); 1297 free(new_uip, M_UIDINFO); 1298 } 1299 return (uip); 1300 } 1301 1302 /* 1303 * Place another refcount on a uidinfo struct. 1304 */ 1305 void 1306 uihold(struct uidinfo *uip) 1307 { 1308 1309 refcount_acquire(&uip->ui_ref); 1310 } 1311 1312 /*- 1313 * Since uidinfo structs have a long lifetime, we use an 1314 * opportunistic refcounting scheme to avoid locking the lookup hash 1315 * for each release. 1316 * 1317 * If the refcount hits 0, we need to free the structure, 1318 * which means we need to lock the hash. 1319 * Optimal case: 1320 * After locking the struct and lowering the refcount, if we find 1321 * that we don't need to free, simply unlock and return. 1322 * Suboptimal case: 1323 * If refcount lowering results in need to free, bump the count 1324 * back up, lose the lock and acquire the locks in the proper 1325 * order to try again. 1326 */ 1327 void 1328 uifree(struct uidinfo *uip) 1329 { 1330 int old; 1331 1332 /* Prepare for optimal case. */ 1333 old = uip->ui_ref; 1334 if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1)) 1335 return; 1336 1337 /* Prepare for suboptimal case. */ 1338 rw_wlock(&uihashtbl_lock); 1339 if (refcount_release(&uip->ui_ref) == 0) { 1340 rw_wunlock(&uihashtbl_lock); 1341 return; 1342 } 1343 1344 racct_destroy(&uip->ui_racct); 1345 LIST_REMOVE(uip, ui_hash); 1346 rw_wunlock(&uihashtbl_lock); 1347 1348 if (uip->ui_sbsize != 0) 1349 printf("freeing uidinfo: uid = %d, sbsize = %ld\n", 1350 uip->ui_uid, uip->ui_sbsize); 1351 if (uip->ui_proccnt != 0) 1352 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 1353 uip->ui_uid, uip->ui_proccnt); 1354 if (uip->ui_vmsize != 0) 1355 printf("freeing uidinfo: uid = %d, swapuse = %lld\n", 1356 uip->ui_uid, (unsigned long long)uip->ui_vmsize); 1357 mtx_destroy(&uip->ui_vmsize_mtx); 1358 free(uip, M_UIDINFO); 1359 } 1360 1361 #ifdef RACCT 1362 void 1363 ui_racct_foreach(void (*callback)(struct racct *racct, 1364 void *arg2, void *arg3), void (*pre)(void), void (*post)(void), 1365 void *arg2, void *arg3) 1366 { 1367 struct uidinfo *uip; 1368 struct uihashhead *uih; 1369 1370 rw_rlock(&uihashtbl_lock); 1371 if (pre != NULL) 1372 (pre)(); 1373 for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) { 1374 LIST_FOREACH(uip, uih, ui_hash) { 1375 (callback)(uip->ui_racct, arg2, arg3); 1376 } 1377 } 1378 if (post != NULL) 1379 (post)(); 1380 rw_runlock(&uihashtbl_lock); 1381 } 1382 #endif 1383 1384 static inline int 1385 chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name) 1386 { 1387 long new; 1388 1389 /* Don't allow them to exceed max, but allow subtraction. */ 1390 new = atomic_fetchadd_long(limit, (long)diff) + diff; 1391 if (diff > 0 && max != 0) { 1392 if (new < 0 || new > max) { 1393 atomic_subtract_long(limit, (long)diff); 1394 return (0); 1395 } 1396 } else if (new < 0) 1397 printf("negative %s for uid = %d\n", name, uip->ui_uid); 1398 return (1); 1399 } 1400 1401 /* 1402 * Change the count associated with number of processes 1403 * a given user is using. When 'max' is 0, don't enforce a limit 1404 */ 1405 int 1406 chgproccnt(struct uidinfo *uip, int diff, rlim_t max) 1407 { 1408 1409 return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt")); 1410 } 1411 1412 /* 1413 * Change the total socket buffer size a user has used. 1414 */ 1415 int 1416 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max) 1417 { 1418 int diff, rv; 1419 1420 diff = to - *hiwat; 1421 if (diff > 0 && max == 0) { 1422 rv = 0; 1423 } else { 1424 rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize"); 1425 if (rv != 0) 1426 *hiwat = to; 1427 } 1428 return (rv); 1429 } 1430 1431 /* 1432 * Change the count associated with number of pseudo-terminals 1433 * a given user is using. When 'max' is 0, don't enforce a limit 1434 */ 1435 int 1436 chgptscnt(struct uidinfo *uip, int diff, rlim_t max) 1437 { 1438 1439 return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt")); 1440 } 1441 1442 int 1443 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max) 1444 { 1445 1446 return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt")); 1447 } 1448 1449 int 1450 chgumtxcnt(struct uidinfo *uip, int diff, rlim_t max) 1451 { 1452 1453 return (chglimit(uip, &uip->ui_umtxcnt, diff, max, "umtxcnt")); 1454 } 1455