xref: /freebsd/sys/kern/kern_resource.c (revision 4ed925457ab06e83238a5db33e89ccc94b99a713)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_resource.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysproto.h>
45 #include <sys/file.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/refcount.h>
53 #include <sys/resourcevar.h>
54 #include <sys/rwlock.h>
55 #include <sys/sched.h>
56 #include <sys/sx.h>
57 #include <sys/syscallsubr.h>
58 #include <sys/sysent.h>
59 #include <sys/time.h>
60 #include <sys/umtx.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/pmap.h>
65 #include <vm/vm_map.h>
66 
67 
68 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
69 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
70 #define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
71 static struct rwlock uihashtbl_lock;
72 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
73 static u_long uihash;		/* size of hash table - 1 */
74 
75 static void	calcru1(struct proc *p, struct rusage_ext *ruxp,
76 		    struct timeval *up, struct timeval *sp);
77 static int	donice(struct thread *td, struct proc *chgp, int n);
78 static struct uidinfo *uilookup(uid_t uid);
79 
80 /*
81  * Resource controls and accounting.
82  */
83 #ifndef _SYS_SYSPROTO_H_
84 struct getpriority_args {
85 	int	which;
86 	int	who;
87 };
88 #endif
89 int
90 getpriority(td, uap)
91 	struct thread *td;
92 	register struct getpriority_args *uap;
93 {
94 	struct proc *p;
95 	struct pgrp *pg;
96 	int error, low;
97 
98 	error = 0;
99 	low = PRIO_MAX + 1;
100 	switch (uap->which) {
101 
102 	case PRIO_PROCESS:
103 		if (uap->who == 0)
104 			low = td->td_proc->p_nice;
105 		else {
106 			p = pfind(uap->who);
107 			if (p == NULL)
108 				break;
109 			if (p_cansee(td, p) == 0)
110 				low = p->p_nice;
111 			PROC_UNLOCK(p);
112 		}
113 		break;
114 
115 	case PRIO_PGRP:
116 		sx_slock(&proctree_lock);
117 		if (uap->who == 0) {
118 			pg = td->td_proc->p_pgrp;
119 			PGRP_LOCK(pg);
120 		} else {
121 			pg = pgfind(uap->who);
122 			if (pg == NULL) {
123 				sx_sunlock(&proctree_lock);
124 				break;
125 			}
126 		}
127 		sx_sunlock(&proctree_lock);
128 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
129 			PROC_LOCK(p);
130 			if (p_cansee(td, p) == 0) {
131 				if (p->p_nice < low)
132 					low = p->p_nice;
133 			}
134 			PROC_UNLOCK(p);
135 		}
136 		PGRP_UNLOCK(pg);
137 		break;
138 
139 	case PRIO_USER:
140 		if (uap->who == 0)
141 			uap->who = td->td_ucred->cr_uid;
142 		sx_slock(&allproc_lock);
143 		FOREACH_PROC_IN_SYSTEM(p) {
144 			/* Do not bother to check PRS_NEW processes */
145 			if (p->p_state == PRS_NEW)
146 				continue;
147 			PROC_LOCK(p);
148 			if (p_cansee(td, p) == 0 &&
149 			    p->p_ucred->cr_uid == uap->who) {
150 				if (p->p_nice < low)
151 					low = p->p_nice;
152 			}
153 			PROC_UNLOCK(p);
154 		}
155 		sx_sunlock(&allproc_lock);
156 		break;
157 
158 	default:
159 		error = EINVAL;
160 		break;
161 	}
162 	if (low == PRIO_MAX + 1 && error == 0)
163 		error = ESRCH;
164 	td->td_retval[0] = low;
165 	return (error);
166 }
167 
168 #ifndef _SYS_SYSPROTO_H_
169 struct setpriority_args {
170 	int	which;
171 	int	who;
172 	int	prio;
173 };
174 #endif
175 int
176 setpriority(td, uap)
177 	struct thread *td;
178 	struct setpriority_args *uap;
179 {
180 	struct proc *curp, *p;
181 	struct pgrp *pg;
182 	int found = 0, error = 0;
183 
184 	curp = td->td_proc;
185 	switch (uap->which) {
186 	case PRIO_PROCESS:
187 		if (uap->who == 0) {
188 			PROC_LOCK(curp);
189 			error = donice(td, curp, uap->prio);
190 			PROC_UNLOCK(curp);
191 		} else {
192 			p = pfind(uap->who);
193 			if (p == NULL)
194 				break;
195 			error = p_cansee(td, p);
196 			if (error == 0)
197 				error = donice(td, p, uap->prio);
198 			PROC_UNLOCK(p);
199 		}
200 		found++;
201 		break;
202 
203 	case PRIO_PGRP:
204 		sx_slock(&proctree_lock);
205 		if (uap->who == 0) {
206 			pg = curp->p_pgrp;
207 			PGRP_LOCK(pg);
208 		} else {
209 			pg = pgfind(uap->who);
210 			if (pg == NULL) {
211 				sx_sunlock(&proctree_lock);
212 				break;
213 			}
214 		}
215 		sx_sunlock(&proctree_lock);
216 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
217 			PROC_LOCK(p);
218 			if (p_cansee(td, p) == 0) {
219 				error = donice(td, p, uap->prio);
220 				found++;
221 			}
222 			PROC_UNLOCK(p);
223 		}
224 		PGRP_UNLOCK(pg);
225 		break;
226 
227 	case PRIO_USER:
228 		if (uap->who == 0)
229 			uap->who = td->td_ucred->cr_uid;
230 		sx_slock(&allproc_lock);
231 		FOREACH_PROC_IN_SYSTEM(p) {
232 			PROC_LOCK(p);
233 			if (p->p_ucred->cr_uid == uap->who &&
234 			    p_cansee(td, p) == 0) {
235 				error = donice(td, p, uap->prio);
236 				found++;
237 			}
238 			PROC_UNLOCK(p);
239 		}
240 		sx_sunlock(&allproc_lock);
241 		break;
242 
243 	default:
244 		error = EINVAL;
245 		break;
246 	}
247 	if (found == 0 && error == 0)
248 		error = ESRCH;
249 	return (error);
250 }
251 
252 /*
253  * Set "nice" for a (whole) process.
254  */
255 static int
256 donice(struct thread *td, struct proc *p, int n)
257 {
258 	int error;
259 
260 	PROC_LOCK_ASSERT(p, MA_OWNED);
261 	if ((error = p_cansched(td, p)))
262 		return (error);
263 	if (n > PRIO_MAX)
264 		n = PRIO_MAX;
265 	if (n < PRIO_MIN)
266 		n = PRIO_MIN;
267 	if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
268 		return (EACCES);
269 	sched_nice(p, n);
270 	return (0);
271 }
272 
273 /*
274  * Set realtime priority for LWP.
275  */
276 #ifndef _SYS_SYSPROTO_H_
277 struct rtprio_thread_args {
278 	int		function;
279 	lwpid_t		lwpid;
280 	struct rtprio	*rtp;
281 };
282 #endif
283 int
284 rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
285 {
286 	struct proc *p;
287 	struct rtprio rtp;
288 	struct thread *td1;
289 	int cierror, error;
290 
291 	/* Perform copyin before acquiring locks if needed. */
292 	if (uap->function == RTP_SET)
293 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
294 	else
295 		cierror = 0;
296 
297 	/*
298 	 * Though lwpid is unique, only current process is supported
299 	 * since there is no efficient way to look up a LWP yet.
300 	 */
301 	p = td->td_proc;
302 	PROC_LOCK(p);
303 
304 	switch (uap->function) {
305 	case RTP_LOOKUP:
306 		if ((error = p_cansee(td, p)))
307 			break;
308 		if (uap->lwpid == 0 || uap->lwpid == td->td_tid)
309 			td1 = td;
310 		else
311 			td1 = thread_find(p, uap->lwpid);
312 		if (td1 != NULL)
313 			pri_to_rtp(td1, &rtp);
314 		else
315 			error = ESRCH;
316 		PROC_UNLOCK(p);
317 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
318 	case RTP_SET:
319 		if ((error = p_cansched(td, p)) || (error = cierror))
320 			break;
321 
322 		/* Disallow setting rtprio in most cases if not superuser. */
323 /*
324  * Realtime priority has to be restricted for reasons which should be
325  * obvious.  However, for idle priority, there is a potential for
326  * system deadlock if an idleprio process gains a lock on a resource
327  * that other processes need (and the idleprio process can't run
328  * due to a CPU-bound normal process).  Fix me!  XXX
329  */
330 #if 0
331 		if (RTP_PRIO_IS_REALTIME(rtp.type)) {
332 #else
333 		if (rtp.type != RTP_PRIO_NORMAL) {
334 #endif
335 			error = priv_check(td, PRIV_SCHED_RTPRIO);
336 			if (error)
337 				break;
338 		}
339 
340 		if (uap->lwpid == 0 || uap->lwpid == td->td_tid)
341 			td1 = td;
342 		else
343 			td1 = thread_find(p, uap->lwpid);
344 		if (td1 != NULL)
345 			error = rtp_to_pri(&rtp, td1);
346 		else
347 			error = ESRCH;
348 		break;
349 	default:
350 		error = EINVAL;
351 		break;
352 	}
353 	PROC_UNLOCK(p);
354 	return (error);
355 }
356 
357 /*
358  * Set realtime priority.
359  */
360 #ifndef _SYS_SYSPROTO_H_
361 struct rtprio_args {
362 	int		function;
363 	pid_t		pid;
364 	struct rtprio	*rtp;
365 };
366 #endif
367 int
368 rtprio(td, uap)
369 	struct thread *td;		/* curthread */
370 	register struct rtprio_args *uap;
371 {
372 	struct proc *p;
373 	struct thread *tdp;
374 	struct rtprio rtp;
375 	int cierror, error;
376 
377 	/* Perform copyin before acquiring locks if needed. */
378 	if (uap->function == RTP_SET)
379 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
380 	else
381 		cierror = 0;
382 
383 	if (uap->pid == 0) {
384 		p = td->td_proc;
385 		PROC_LOCK(p);
386 	} else {
387 		p = pfind(uap->pid);
388 		if (p == NULL)
389 			return (ESRCH);
390 	}
391 
392 	switch (uap->function) {
393 	case RTP_LOOKUP:
394 		if ((error = p_cansee(td, p)))
395 			break;
396 		/*
397 		 * Return OUR priority if no pid specified,
398 		 * or if one is, report the highest priority
399 		 * in the process.  There isn't much more you can do as
400 		 * there is only room to return a single priority.
401 		 * Note: specifying our own pid is not the same
402 		 * as leaving it zero.
403 		 */
404 		if (uap->pid == 0) {
405 			pri_to_rtp(td, &rtp);
406 		} else {
407 			struct rtprio rtp2;
408 
409 			rtp.type = RTP_PRIO_IDLE;
410 			rtp.prio = RTP_PRIO_MAX;
411 			FOREACH_THREAD_IN_PROC(p, tdp) {
412 				pri_to_rtp(tdp, &rtp2);
413 				if (rtp2.type <  rtp.type ||
414 				    (rtp2.type == rtp.type &&
415 				    rtp2.prio < rtp.prio)) {
416 					rtp.type = rtp2.type;
417 					rtp.prio = rtp2.prio;
418 				}
419 			}
420 		}
421 		PROC_UNLOCK(p);
422 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
423 	case RTP_SET:
424 		if ((error = p_cansched(td, p)) || (error = cierror))
425 			break;
426 
427 		/* Disallow setting rtprio in most cases if not superuser. */
428 /*
429  * Realtime priority has to be restricted for reasons which should be
430  * obvious.  However, for idle priority, there is a potential for
431  * system deadlock if an idleprio process gains a lock on a resource
432  * that other processes need (and the idleprio process can't run
433  * due to a CPU-bound normal process).  Fix me!  XXX
434  */
435 #if 0
436 		if (RTP_PRIO_IS_REALTIME(rtp.type)) {
437 #else
438 		if (rtp.type != RTP_PRIO_NORMAL) {
439 #endif
440 			error = priv_check(td, PRIV_SCHED_RTPRIO);
441 			if (error)
442 				break;
443 		}
444 
445 		/*
446 		 * If we are setting our own priority, set just our
447 		 * thread but if we are doing another process,
448 		 * do all the threads on that process. If we
449 		 * specify our own pid we do the latter.
450 		 */
451 		if (uap->pid == 0) {
452 			error = rtp_to_pri(&rtp, td);
453 		} else {
454 			FOREACH_THREAD_IN_PROC(p, td) {
455 				if ((error = rtp_to_pri(&rtp, td)) != 0)
456 					break;
457 			}
458 		}
459 		break;
460 	default:
461 		error = EINVAL;
462 		break;
463 	}
464 	PROC_UNLOCK(p);
465 	return (error);
466 }
467 
468 int
469 rtp_to_pri(struct rtprio *rtp, struct thread *td)
470 {
471 	u_char	newpri;
472 	u_char	oldpri;
473 
474 	if (rtp->prio > RTP_PRIO_MAX)
475 		return (EINVAL);
476 	thread_lock(td);
477 	switch (RTP_PRIO_BASE(rtp->type)) {
478 	case RTP_PRIO_REALTIME:
479 		newpri = PRI_MIN_REALTIME + rtp->prio;
480 		break;
481 	case RTP_PRIO_NORMAL:
482 		newpri = PRI_MIN_TIMESHARE + rtp->prio;
483 		break;
484 	case RTP_PRIO_IDLE:
485 		newpri = PRI_MIN_IDLE + rtp->prio;
486 		break;
487 	default:
488 		thread_unlock(td);
489 		return (EINVAL);
490 	}
491 	sched_class(td, rtp->type);	/* XXX fix */
492 	oldpri = td->td_user_pri;
493 	sched_user_prio(td, newpri);
494 	if (curthread == td)
495 		sched_prio(curthread, td->td_user_pri); /* XXX dubious */
496 	if (TD_ON_UPILOCK(td) && oldpri != newpri) {
497 		thread_unlock(td);
498 		umtx_pi_adjust(td, oldpri);
499 	} else
500 		thread_unlock(td);
501 	return (0);
502 }
503 
504 void
505 pri_to_rtp(struct thread *td, struct rtprio *rtp)
506 {
507 
508 	thread_lock(td);
509 	switch (PRI_BASE(td->td_pri_class)) {
510 	case PRI_REALTIME:
511 		rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
512 		break;
513 	case PRI_TIMESHARE:
514 		rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
515 		break;
516 	case PRI_IDLE:
517 		rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
518 		break;
519 	default:
520 		break;
521 	}
522 	rtp->type = td->td_pri_class;
523 	thread_unlock(td);
524 }
525 
526 #if defined(COMPAT_43)
527 #ifndef _SYS_SYSPROTO_H_
528 struct osetrlimit_args {
529 	u_int	which;
530 	struct	orlimit *rlp;
531 };
532 #endif
533 int
534 osetrlimit(td, uap)
535 	struct thread *td;
536 	register struct osetrlimit_args *uap;
537 {
538 	struct orlimit olim;
539 	struct rlimit lim;
540 	int error;
541 
542 	if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
543 		return (error);
544 	lim.rlim_cur = olim.rlim_cur;
545 	lim.rlim_max = olim.rlim_max;
546 	error = kern_setrlimit(td, uap->which, &lim);
547 	return (error);
548 }
549 
550 #ifndef _SYS_SYSPROTO_H_
551 struct ogetrlimit_args {
552 	u_int	which;
553 	struct	orlimit *rlp;
554 };
555 #endif
556 int
557 ogetrlimit(td, uap)
558 	struct thread *td;
559 	register struct ogetrlimit_args *uap;
560 {
561 	struct orlimit olim;
562 	struct rlimit rl;
563 	struct proc *p;
564 	int error;
565 
566 	if (uap->which >= RLIM_NLIMITS)
567 		return (EINVAL);
568 	p = td->td_proc;
569 	PROC_LOCK(p);
570 	lim_rlimit(p, uap->which, &rl);
571 	PROC_UNLOCK(p);
572 
573 	/*
574 	 * XXX would be more correct to convert only RLIM_INFINITY to the
575 	 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
576 	 * values.  Most 64->32 and 32->16 conversions, including not
577 	 * unimportant ones of uids are even more broken than what we
578 	 * do here (they blindly truncate).  We don't do this correctly
579 	 * here since we have little experience with EOVERFLOW yet.
580 	 * Elsewhere, getuid() can't fail...
581 	 */
582 	olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
583 	olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
584 	error = copyout(&olim, uap->rlp, sizeof(olim));
585 	return (error);
586 }
587 #endif /* COMPAT_43 */
588 
589 #ifndef _SYS_SYSPROTO_H_
590 struct __setrlimit_args {
591 	u_int	which;
592 	struct	rlimit *rlp;
593 };
594 #endif
595 int
596 setrlimit(td, uap)
597 	struct thread *td;
598 	register struct __setrlimit_args *uap;
599 {
600 	struct rlimit alim;
601 	int error;
602 
603 	if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
604 		return (error);
605 	error = kern_setrlimit(td, uap->which, &alim);
606 	return (error);
607 }
608 
609 static void
610 lim_cb(void *arg)
611 {
612 	struct rlimit rlim;
613 	struct thread *td;
614 	struct proc *p;
615 
616 	p = arg;
617 	PROC_LOCK_ASSERT(p, MA_OWNED);
618 	/*
619 	 * Check if the process exceeds its cpu resource allocation.  If
620 	 * it reaches the max, arrange to kill the process in ast().
621 	 */
622 	if (p->p_cpulimit == RLIM_INFINITY)
623 		return;
624 	PROC_SLOCK(p);
625 	FOREACH_THREAD_IN_PROC(p, td) {
626 		thread_lock(td);
627 		ruxagg(&p->p_rux, td);
628 		thread_unlock(td);
629 	}
630 	PROC_SUNLOCK(p);
631 	if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
632 		lim_rlimit(p, RLIMIT_CPU, &rlim);
633 		if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
634 			killproc(p, "exceeded maximum CPU limit");
635 		} else {
636 			if (p->p_cpulimit < rlim.rlim_max)
637 				p->p_cpulimit += 5;
638 			psignal(p, SIGXCPU);
639 		}
640 	}
641 	if ((p->p_flag & P_WEXIT) == 0)
642 		callout_reset(&p->p_limco, hz, lim_cb, p);
643 }
644 
645 int
646 kern_setrlimit(td, which, limp)
647 	struct thread *td;
648 	u_int which;
649 	struct rlimit *limp;
650 {
651 	struct plimit *newlim, *oldlim;
652 	struct proc *p;
653 	register struct rlimit *alimp;
654 	struct rlimit oldssiz;
655 	int error;
656 
657 	if (which >= RLIM_NLIMITS)
658 		return (EINVAL);
659 
660 	/*
661 	 * Preserve historical bugs by treating negative limits as unsigned.
662 	 */
663 	if (limp->rlim_cur < 0)
664 		limp->rlim_cur = RLIM_INFINITY;
665 	if (limp->rlim_max < 0)
666 		limp->rlim_max = RLIM_INFINITY;
667 
668 	oldssiz.rlim_cur = 0;
669 	p = td->td_proc;
670 	newlim = lim_alloc();
671 	PROC_LOCK(p);
672 	oldlim = p->p_limit;
673 	alimp = &oldlim->pl_rlimit[which];
674 	if (limp->rlim_cur > alimp->rlim_max ||
675 	    limp->rlim_max > alimp->rlim_max)
676 		if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
677 			PROC_UNLOCK(p);
678 			lim_free(newlim);
679 			return (error);
680 		}
681 	if (limp->rlim_cur > limp->rlim_max)
682 		limp->rlim_cur = limp->rlim_max;
683 	lim_copy(newlim, oldlim);
684 	alimp = &newlim->pl_rlimit[which];
685 
686 	switch (which) {
687 
688 	case RLIMIT_CPU:
689 		if (limp->rlim_cur != RLIM_INFINITY &&
690 		    p->p_cpulimit == RLIM_INFINITY)
691 			callout_reset(&p->p_limco, hz, lim_cb, p);
692 		p->p_cpulimit = limp->rlim_cur;
693 		break;
694 	case RLIMIT_DATA:
695 		if (limp->rlim_cur > maxdsiz)
696 			limp->rlim_cur = maxdsiz;
697 		if (limp->rlim_max > maxdsiz)
698 			limp->rlim_max = maxdsiz;
699 		break;
700 
701 	case RLIMIT_STACK:
702 		if (limp->rlim_cur > maxssiz)
703 			limp->rlim_cur = maxssiz;
704 		if (limp->rlim_max > maxssiz)
705 			limp->rlim_max = maxssiz;
706 		oldssiz = *alimp;
707 		if (td->td_proc->p_sysent->sv_fixlimit != NULL)
708 			td->td_proc->p_sysent->sv_fixlimit(&oldssiz,
709 			    RLIMIT_STACK);
710 		break;
711 
712 	case RLIMIT_NOFILE:
713 		if (limp->rlim_cur > maxfilesperproc)
714 			limp->rlim_cur = maxfilesperproc;
715 		if (limp->rlim_max > maxfilesperproc)
716 			limp->rlim_max = maxfilesperproc;
717 		break;
718 
719 	case RLIMIT_NPROC:
720 		if (limp->rlim_cur > maxprocperuid)
721 			limp->rlim_cur = maxprocperuid;
722 		if (limp->rlim_max > maxprocperuid)
723 			limp->rlim_max = maxprocperuid;
724 		if (limp->rlim_cur < 1)
725 			limp->rlim_cur = 1;
726 		if (limp->rlim_max < 1)
727 			limp->rlim_max = 1;
728 		break;
729 	}
730 	if (td->td_proc->p_sysent->sv_fixlimit != NULL)
731 		td->td_proc->p_sysent->sv_fixlimit(limp, which);
732 	*alimp = *limp;
733 	p->p_limit = newlim;
734 	PROC_UNLOCK(p);
735 	lim_free(oldlim);
736 
737 	if (which == RLIMIT_STACK) {
738 		/*
739 		 * Stack is allocated to the max at exec time with only
740 		 * "rlim_cur" bytes accessible.  If stack limit is going
741 		 * up make more accessible, if going down make inaccessible.
742 		 */
743 		if (limp->rlim_cur != oldssiz.rlim_cur) {
744 			vm_offset_t addr;
745 			vm_size_t size;
746 			vm_prot_t prot;
747 
748 			if (limp->rlim_cur > oldssiz.rlim_cur) {
749 				prot = p->p_sysent->sv_stackprot;
750 				size = limp->rlim_cur - oldssiz.rlim_cur;
751 				addr = p->p_sysent->sv_usrstack -
752 				    limp->rlim_cur;
753 			} else {
754 				prot = VM_PROT_NONE;
755 				size = oldssiz.rlim_cur - limp->rlim_cur;
756 				addr = p->p_sysent->sv_usrstack -
757 				    oldssiz.rlim_cur;
758 			}
759 			addr = trunc_page(addr);
760 			size = round_page(size);
761 			(void)vm_map_protect(&p->p_vmspace->vm_map,
762 			    addr, addr + size, prot, FALSE);
763 		}
764 	}
765 
766 	return (0);
767 }
768 
769 #ifndef _SYS_SYSPROTO_H_
770 struct __getrlimit_args {
771 	u_int	which;
772 	struct	rlimit *rlp;
773 };
774 #endif
775 /* ARGSUSED */
776 int
777 getrlimit(td, uap)
778 	struct thread *td;
779 	register struct __getrlimit_args *uap;
780 {
781 	struct rlimit rlim;
782 	struct proc *p;
783 	int error;
784 
785 	if (uap->which >= RLIM_NLIMITS)
786 		return (EINVAL);
787 	p = td->td_proc;
788 	PROC_LOCK(p);
789 	lim_rlimit(p, uap->which, &rlim);
790 	PROC_UNLOCK(p);
791 	error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
792 	return (error);
793 }
794 
795 /*
796  * Transform the running time and tick information for children of proc p
797  * into user and system time usage.
798  */
799 void
800 calccru(p, up, sp)
801 	struct proc *p;
802 	struct timeval *up;
803 	struct timeval *sp;
804 {
805 
806 	PROC_LOCK_ASSERT(p, MA_OWNED);
807 	calcru1(p, &p->p_crux, up, sp);
808 }
809 
810 /*
811  * Transform the running time and tick information in proc p into user
812  * and system time usage.  If appropriate, include the current time slice
813  * on this CPU.
814  */
815 void
816 calcru(struct proc *p, struct timeval *up, struct timeval *sp)
817 {
818 	struct thread *td;
819 	uint64_t u;
820 
821 	PROC_LOCK_ASSERT(p, MA_OWNED);
822 	PROC_SLOCK_ASSERT(p, MA_OWNED);
823 	/*
824 	 * If we are getting stats for the current process, then add in the
825 	 * stats that this thread has accumulated in its current time slice.
826 	 * We reset the thread and CPU state as if we had performed a context
827 	 * switch right here.
828 	 */
829 	td = curthread;
830 	if (td->td_proc == p) {
831 		u = cpu_ticks();
832 		p->p_rux.rux_runtime += u - PCPU_GET(switchtime);
833 		PCPU_SET(switchtime, u);
834 	}
835 	/* Make sure the per-thread stats are current. */
836 	FOREACH_THREAD_IN_PROC(p, td) {
837 		if (td->td_incruntime == 0)
838 			continue;
839 		thread_lock(td);
840 		ruxagg(&p->p_rux, td);
841 		thread_unlock(td);
842 	}
843 	calcru1(p, &p->p_rux, up, sp);
844 }
845 
846 static void
847 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
848     struct timeval *sp)
849 {
850 	/* {user, system, interrupt, total} {ticks, usec}: */
851 	u_int64_t ut, uu, st, su, it, tt, tu;
852 
853 	ut = ruxp->rux_uticks;
854 	st = ruxp->rux_sticks;
855 	it = ruxp->rux_iticks;
856 	tt = ut + st + it;
857 	if (tt == 0) {
858 		/* Avoid divide by zero */
859 		st = 1;
860 		tt = 1;
861 	}
862 	tu = cputick2usec(ruxp->rux_runtime);
863 	if ((int64_t)tu < 0) {
864 		/* XXX: this should be an assert /phk */
865 		printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
866 		    (intmax_t)tu, p->p_pid, p->p_comm);
867 		tu = ruxp->rux_tu;
868 	}
869 
870 	if (tu >= ruxp->rux_tu) {
871 		/*
872 		 * The normal case, time increased.
873 		 * Enforce monotonicity of bucketed numbers.
874 		 */
875 		uu = (tu * ut) / tt;
876 		if (uu < ruxp->rux_uu)
877 			uu = ruxp->rux_uu;
878 		su = (tu * st) / tt;
879 		if (su < ruxp->rux_su)
880 			su = ruxp->rux_su;
881 	} else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
882 		/*
883 		 * When we calibrate the cputicker, it is not uncommon to
884 		 * see the presumably fixed frequency increase slightly over
885 		 * time as a result of thermal stabilization and NTP
886 		 * discipline (of the reference clock).  We therefore ignore
887 		 * a bit of backwards slop because we  expect to catch up
888 		 * shortly.  We use a 3 microsecond limit to catch low
889 		 * counts and a 1% limit for high counts.
890 		 */
891 		uu = ruxp->rux_uu;
892 		su = ruxp->rux_su;
893 		tu = ruxp->rux_tu;
894 	} else { /* tu < ruxp->rux_tu */
895 		/*
896 		 * What happened here was likely that a laptop, which ran at
897 		 * a reduced clock frequency at boot, kicked into high gear.
898 		 * The wisdom of spamming this message in that case is
899 		 * dubious, but it might also be indicative of something
900 		 * serious, so lets keep it and hope laptops can be made
901 		 * more truthful about their CPU speed via ACPI.
902 		 */
903 		printf("calcru: runtime went backwards from %ju usec "
904 		    "to %ju usec for pid %d (%s)\n",
905 		    (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
906 		    p->p_pid, p->p_comm);
907 		uu = (tu * ut) / tt;
908 		su = (tu * st) / tt;
909 	}
910 
911 	ruxp->rux_uu = uu;
912 	ruxp->rux_su = su;
913 	ruxp->rux_tu = tu;
914 
915 	up->tv_sec = uu / 1000000;
916 	up->tv_usec = uu % 1000000;
917 	sp->tv_sec = su / 1000000;
918 	sp->tv_usec = su % 1000000;
919 }
920 
921 #ifndef _SYS_SYSPROTO_H_
922 struct getrusage_args {
923 	int	who;
924 	struct	rusage *rusage;
925 };
926 #endif
927 int
928 getrusage(td, uap)
929 	register struct thread *td;
930 	register struct getrusage_args *uap;
931 {
932 	struct rusage ru;
933 	int error;
934 
935 	error = kern_getrusage(td, uap->who, &ru);
936 	if (error == 0)
937 		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
938 	return (error);
939 }
940 
941 int
942 kern_getrusage(td, who, rup)
943 	struct thread *td;
944 	int who;
945 	struct rusage *rup;
946 {
947 	struct proc *p;
948 	int error;
949 
950 	error = 0;
951 	p = td->td_proc;
952 	PROC_LOCK(p);
953 	switch (who) {
954 	case RUSAGE_SELF:
955 		rufetchcalc(p, rup, &rup->ru_utime,
956 		    &rup->ru_stime);
957 		break;
958 
959 	case RUSAGE_CHILDREN:
960 		*rup = p->p_stats->p_cru;
961 		calccru(p, &rup->ru_utime, &rup->ru_stime);
962 		break;
963 
964 	default:
965 		error = EINVAL;
966 	}
967 	PROC_UNLOCK(p);
968 	return (error);
969 }
970 
971 void
972 rucollect(struct rusage *ru, struct rusage *ru2)
973 {
974 	long *ip, *ip2;
975 	int i;
976 
977 	if (ru->ru_maxrss < ru2->ru_maxrss)
978 		ru->ru_maxrss = ru2->ru_maxrss;
979 	ip = &ru->ru_first;
980 	ip2 = &ru2->ru_first;
981 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
982 		*ip++ += *ip2++;
983 }
984 
985 void
986 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
987     struct rusage_ext *rux2)
988 {
989 
990 	rux->rux_runtime += rux2->rux_runtime;
991 	rux->rux_uticks += rux2->rux_uticks;
992 	rux->rux_sticks += rux2->rux_sticks;
993 	rux->rux_iticks += rux2->rux_iticks;
994 	rux->rux_uu += rux2->rux_uu;
995 	rux->rux_su += rux2->rux_su;
996 	rux->rux_tu += rux2->rux_tu;
997 	rucollect(ru, ru2);
998 }
999 
1000 /*
1001  * Aggregate tick counts into the proc's rusage_ext.
1002  */
1003 void
1004 ruxagg(struct rusage_ext *rux, struct thread *td)
1005 {
1006 
1007 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1008 	PROC_SLOCK_ASSERT(td->td_proc, MA_OWNED);
1009 	rux->rux_runtime += td->td_incruntime;
1010 	rux->rux_uticks += td->td_uticks;
1011 	rux->rux_sticks += td->td_sticks;
1012 	rux->rux_iticks += td->td_iticks;
1013 	td->td_incruntime = 0;
1014 	td->td_uticks = 0;
1015 	td->td_iticks = 0;
1016 	td->td_sticks = 0;
1017 }
1018 
1019 /*
1020  * Update the rusage_ext structure and fetch a valid aggregate rusage
1021  * for proc p if storage for one is supplied.
1022  */
1023 void
1024 rufetch(struct proc *p, struct rusage *ru)
1025 {
1026 	struct thread *td;
1027 
1028 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1029 
1030 	*ru = p->p_ru;
1031 	if (p->p_numthreads > 0)  {
1032 		FOREACH_THREAD_IN_PROC(p, td) {
1033 			thread_lock(td);
1034 			ruxagg(&p->p_rux, td);
1035 			thread_unlock(td);
1036 			rucollect(ru, &td->td_ru);
1037 		}
1038 	}
1039 }
1040 
1041 /*
1042  * Atomically perform a rufetch and a calcru together.
1043  * Consumers, can safely assume the calcru is executed only once
1044  * rufetch is completed.
1045  */
1046 void
1047 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
1048     struct timeval *sp)
1049 {
1050 
1051 	PROC_SLOCK(p);
1052 	rufetch(p, ru);
1053 	calcru(p, up, sp);
1054 	PROC_SUNLOCK(p);
1055 }
1056 
1057 /*
1058  * Allocate a new resource limits structure and initialize its
1059  * reference count and mutex pointer.
1060  */
1061 struct plimit *
1062 lim_alloc()
1063 {
1064 	struct plimit *limp;
1065 
1066 	limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
1067 	refcount_init(&limp->pl_refcnt, 1);
1068 	return (limp);
1069 }
1070 
1071 struct plimit *
1072 lim_hold(limp)
1073 	struct plimit *limp;
1074 {
1075 
1076 	refcount_acquire(&limp->pl_refcnt);
1077 	return (limp);
1078 }
1079 
1080 void
1081 lim_fork(struct proc *p1, struct proc *p2)
1082 {
1083 	p2->p_limit = lim_hold(p1->p_limit);
1084 	callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
1085 	if (p1->p_cpulimit != RLIM_INFINITY)
1086 		callout_reset(&p2->p_limco, hz, lim_cb, p2);
1087 }
1088 
1089 void
1090 lim_free(limp)
1091 	struct plimit *limp;
1092 {
1093 
1094 	KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
1095 	if (refcount_release(&limp->pl_refcnt))
1096 		free((void *)limp, M_PLIMIT);
1097 }
1098 
1099 /*
1100  * Make a copy of the plimit structure.
1101  * We share these structures copy-on-write after fork.
1102  */
1103 void
1104 lim_copy(dst, src)
1105 	struct plimit *dst, *src;
1106 {
1107 
1108 	KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
1109 	bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
1110 }
1111 
1112 /*
1113  * Return the hard limit for a particular system resource.  The
1114  * which parameter specifies the index into the rlimit array.
1115  */
1116 rlim_t
1117 lim_max(struct proc *p, int which)
1118 {
1119 	struct rlimit rl;
1120 
1121 	lim_rlimit(p, which, &rl);
1122 	return (rl.rlim_max);
1123 }
1124 
1125 /*
1126  * Return the current (soft) limit for a particular system resource.
1127  * The which parameter which specifies the index into the rlimit array
1128  */
1129 rlim_t
1130 lim_cur(struct proc *p, int which)
1131 {
1132 	struct rlimit rl;
1133 
1134 	lim_rlimit(p, which, &rl);
1135 	return (rl.rlim_cur);
1136 }
1137 
1138 /*
1139  * Return a copy of the entire rlimit structure for the system limit
1140  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
1141  */
1142 void
1143 lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
1144 {
1145 
1146 	PROC_LOCK_ASSERT(p, MA_OWNED);
1147 	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1148 	    ("request for invalid resource limit"));
1149 	*rlp = p->p_limit->pl_rlimit[which];
1150 	if (p->p_sysent->sv_fixlimit != NULL)
1151 		p->p_sysent->sv_fixlimit(rlp, which);
1152 }
1153 
1154 /*
1155  * Find the uidinfo structure for a uid.  This structure is used to
1156  * track the total resource consumption (process count, socket buffer
1157  * size, etc.) for the uid and impose limits.
1158  */
1159 void
1160 uihashinit()
1161 {
1162 
1163 	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
1164 	rw_init(&uihashtbl_lock, "uidinfo hash");
1165 }
1166 
1167 /*
1168  * Look up a uidinfo struct for the parameter uid.
1169  * uihashtbl_lock must be locked.
1170  */
1171 static struct uidinfo *
1172 uilookup(uid)
1173 	uid_t uid;
1174 {
1175 	struct uihashhead *uipp;
1176 	struct uidinfo *uip;
1177 
1178 	rw_assert(&uihashtbl_lock, RA_LOCKED);
1179 	uipp = UIHASH(uid);
1180 	LIST_FOREACH(uip, uipp, ui_hash)
1181 		if (uip->ui_uid == uid)
1182 			break;
1183 
1184 	return (uip);
1185 }
1186 
1187 /*
1188  * Find or allocate a struct uidinfo for a particular uid.
1189  * Increase refcount on uidinfo struct returned.
1190  * uifree() should be called on a struct uidinfo when released.
1191  */
1192 struct uidinfo *
1193 uifind(uid)
1194 	uid_t uid;
1195 {
1196 	struct uidinfo *old_uip, *uip;
1197 
1198 	rw_rlock(&uihashtbl_lock);
1199 	uip = uilookup(uid);
1200 	if (uip == NULL) {
1201 		rw_runlock(&uihashtbl_lock);
1202 		uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
1203 		rw_wlock(&uihashtbl_lock);
1204 		/*
1205 		 * There's a chance someone created our uidinfo while we
1206 		 * were in malloc and not holding the lock, so we have to
1207 		 * make sure we don't insert a duplicate uidinfo.
1208 		 */
1209 		if ((old_uip = uilookup(uid)) != NULL) {
1210 			/* Someone else beat us to it. */
1211 			free(uip, M_UIDINFO);
1212 			uip = old_uip;
1213 		} else {
1214 			refcount_init(&uip->ui_ref, 0);
1215 			uip->ui_uid = uid;
1216 			mtx_init(&uip->ui_vmsize_mtx, "ui_vmsize", NULL,
1217 			    MTX_DEF);
1218 			LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
1219 		}
1220 	}
1221 	uihold(uip);
1222 	rw_unlock(&uihashtbl_lock);
1223 	return (uip);
1224 }
1225 
1226 /*
1227  * Place another refcount on a uidinfo struct.
1228  */
1229 void
1230 uihold(uip)
1231 	struct uidinfo *uip;
1232 {
1233 
1234 	refcount_acquire(&uip->ui_ref);
1235 }
1236 
1237 /*-
1238  * Since uidinfo structs have a long lifetime, we use an
1239  * opportunistic refcounting scheme to avoid locking the lookup hash
1240  * for each release.
1241  *
1242  * If the refcount hits 0, we need to free the structure,
1243  * which means we need to lock the hash.
1244  * Optimal case:
1245  *   After locking the struct and lowering the refcount, if we find
1246  *   that we don't need to free, simply unlock and return.
1247  * Suboptimal case:
1248  *   If refcount lowering results in need to free, bump the count
1249  *   back up, lose the lock and acquire the locks in the proper
1250  *   order to try again.
1251  */
1252 void
1253 uifree(uip)
1254 	struct uidinfo *uip;
1255 {
1256 	int old;
1257 
1258 	/* Prepare for optimal case. */
1259 	old = uip->ui_ref;
1260 	if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1))
1261 		return;
1262 
1263 	/* Prepare for suboptimal case. */
1264 	rw_wlock(&uihashtbl_lock);
1265 	if (refcount_release(&uip->ui_ref)) {
1266 		LIST_REMOVE(uip, ui_hash);
1267 		rw_wunlock(&uihashtbl_lock);
1268 		if (uip->ui_sbsize != 0)
1269 			printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
1270 			    uip->ui_uid, uip->ui_sbsize);
1271 		if (uip->ui_proccnt != 0)
1272 			printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1273 			    uip->ui_uid, uip->ui_proccnt);
1274 		if (uip->ui_vmsize != 0)
1275 			printf("freeing uidinfo: uid = %d, swapuse = %lld\n",
1276 			    uip->ui_uid, (unsigned long long)uip->ui_vmsize);
1277 		mtx_destroy(&uip->ui_vmsize_mtx);
1278 		free(uip, M_UIDINFO);
1279 		return;
1280 	}
1281 	/*
1282 	 * Someone added a reference between atomic_cmpset_int() and
1283 	 * rw_wlock(&uihashtbl_lock).
1284 	 */
1285 	rw_wunlock(&uihashtbl_lock);
1286 }
1287 
1288 /*
1289  * Change the count associated with number of processes
1290  * a given user is using.  When 'max' is 0, don't enforce a limit
1291  */
1292 int
1293 chgproccnt(uip, diff, max)
1294 	struct	uidinfo	*uip;
1295 	int	diff;
1296 	rlim_t	max;
1297 {
1298 
1299 	/* Don't allow them to exceed max, but allow subtraction. */
1300 	if (diff > 0 && max != 0) {
1301 		if (atomic_fetchadd_long(&uip->ui_proccnt, (long)diff) + diff > max) {
1302 			atomic_subtract_long(&uip->ui_proccnt, (long)diff);
1303 			return (0);
1304 		}
1305 	} else {
1306 		atomic_add_long(&uip->ui_proccnt, (long)diff);
1307 		if (uip->ui_proccnt < 0)
1308 			printf("negative proccnt for uid = %d\n", uip->ui_uid);
1309 	}
1310 	return (1);
1311 }
1312 
1313 /*
1314  * Change the total socket buffer size a user has used.
1315  */
1316 int
1317 chgsbsize(uip, hiwat, to, max)
1318 	struct	uidinfo	*uip;
1319 	u_int  *hiwat;
1320 	u_int	to;
1321 	rlim_t	max;
1322 {
1323 	int diff;
1324 
1325 	diff = to - *hiwat;
1326 	if (diff > 0) {
1327 		if (atomic_fetchadd_long(&uip->ui_sbsize, (long)diff) + diff > max) {
1328 			atomic_subtract_long(&uip->ui_sbsize, (long)diff);
1329 			return (0);
1330 		}
1331 	} else {
1332 		atomic_add_long(&uip->ui_sbsize, (long)diff);
1333 		if (uip->ui_sbsize < 0)
1334 			printf("negative sbsize for uid = %d\n", uip->ui_uid);
1335 	}
1336 	*hiwat = to;
1337 	return (1);
1338 }
1339 
1340 /*
1341  * Change the count associated with number of pseudo-terminals
1342  * a given user is using.  When 'max' is 0, don't enforce a limit
1343  */
1344 int
1345 chgptscnt(uip, diff, max)
1346 	struct	uidinfo	*uip;
1347 	int	diff;
1348 	rlim_t	max;
1349 {
1350 
1351 	/* Don't allow them to exceed max, but allow subtraction. */
1352 	if (diff > 0 && max != 0) {
1353 		if (atomic_fetchadd_long(&uip->ui_ptscnt, (long)diff) + diff > max) {
1354 			atomic_subtract_long(&uip->ui_ptscnt, (long)diff);
1355 			return (0);
1356 		}
1357 	} else {
1358 		atomic_add_long(&uip->ui_ptscnt, (long)diff);
1359 		if (uip->ui_ptscnt < 0)
1360 			printf("negative ptscnt for uid = %d\n", uip->ui_uid);
1361 	}
1362 	return (1);
1363 }
1364