1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_compat.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/sysproto.h> 45 #include <sys/file.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mutex.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/refcount.h> 53 #include <sys/racct.h> 54 #include <sys/resourcevar.h> 55 #include <sys/rwlock.h> 56 #include <sys/sched.h> 57 #include <sys/sx.h> 58 #include <sys/syscallsubr.h> 59 #include <sys/sysctl.h> 60 #include <sys/sysent.h> 61 #include <sys/time.h> 62 #include <sys/umtx.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_param.h> 66 #include <vm/pmap.h> 67 #include <vm/vm_map.h> 68 69 70 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures"); 71 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 72 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 73 static struct rwlock uihashtbl_lock; 74 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 75 static u_long uihash; /* size of hash table - 1 */ 76 77 static void calcru1(struct proc *p, struct rusage_ext *ruxp, 78 struct timeval *up, struct timeval *sp); 79 static int donice(struct thread *td, struct proc *chgp, int n); 80 static struct uidinfo *uilookup(uid_t uid); 81 static void ruxagg_locked(struct rusage_ext *rux, struct thread *td); 82 83 static __inline int lim_shared(struct plimit *limp); 84 85 /* 86 * Resource controls and accounting. 87 */ 88 #ifndef _SYS_SYSPROTO_H_ 89 struct getpriority_args { 90 int which; 91 int who; 92 }; 93 #endif 94 int 95 sys_getpriority(struct thread *td, register struct getpriority_args *uap) 96 { 97 struct proc *p; 98 struct pgrp *pg; 99 int error, low; 100 101 error = 0; 102 low = PRIO_MAX + 1; 103 switch (uap->which) { 104 105 case PRIO_PROCESS: 106 if (uap->who == 0) 107 low = td->td_proc->p_nice; 108 else { 109 p = pfind(uap->who); 110 if (p == NULL) 111 break; 112 if (p_cansee(td, p) == 0) 113 low = p->p_nice; 114 PROC_UNLOCK(p); 115 } 116 break; 117 118 case PRIO_PGRP: 119 sx_slock(&proctree_lock); 120 if (uap->who == 0) { 121 pg = td->td_proc->p_pgrp; 122 PGRP_LOCK(pg); 123 } else { 124 pg = pgfind(uap->who); 125 if (pg == NULL) { 126 sx_sunlock(&proctree_lock); 127 break; 128 } 129 } 130 sx_sunlock(&proctree_lock); 131 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 132 PROC_LOCK(p); 133 if (p->p_state == PRS_NORMAL && 134 p_cansee(td, p) == 0) { 135 if (p->p_nice < low) 136 low = p->p_nice; 137 } 138 PROC_UNLOCK(p); 139 } 140 PGRP_UNLOCK(pg); 141 break; 142 143 case PRIO_USER: 144 if (uap->who == 0) 145 uap->who = td->td_ucred->cr_uid; 146 sx_slock(&allproc_lock); 147 FOREACH_PROC_IN_SYSTEM(p) { 148 PROC_LOCK(p); 149 if (p->p_state == PRS_NORMAL && 150 p_cansee(td, p) == 0 && 151 p->p_ucred->cr_uid == uap->who) { 152 if (p->p_nice < low) 153 low = p->p_nice; 154 } 155 PROC_UNLOCK(p); 156 } 157 sx_sunlock(&allproc_lock); 158 break; 159 160 default: 161 error = EINVAL; 162 break; 163 } 164 if (low == PRIO_MAX + 1 && error == 0) 165 error = ESRCH; 166 td->td_retval[0] = low; 167 return (error); 168 } 169 170 #ifndef _SYS_SYSPROTO_H_ 171 struct setpriority_args { 172 int which; 173 int who; 174 int prio; 175 }; 176 #endif 177 int 178 sys_setpriority(struct thread *td, struct setpriority_args *uap) 179 { 180 struct proc *curp, *p; 181 struct pgrp *pg; 182 int found = 0, error = 0; 183 184 curp = td->td_proc; 185 switch (uap->which) { 186 case PRIO_PROCESS: 187 if (uap->who == 0) { 188 PROC_LOCK(curp); 189 error = donice(td, curp, uap->prio); 190 PROC_UNLOCK(curp); 191 } else { 192 p = pfind(uap->who); 193 if (p == NULL) 194 break; 195 error = p_cansee(td, p); 196 if (error == 0) 197 error = donice(td, p, uap->prio); 198 PROC_UNLOCK(p); 199 } 200 found++; 201 break; 202 203 case PRIO_PGRP: 204 sx_slock(&proctree_lock); 205 if (uap->who == 0) { 206 pg = curp->p_pgrp; 207 PGRP_LOCK(pg); 208 } else { 209 pg = pgfind(uap->who); 210 if (pg == NULL) { 211 sx_sunlock(&proctree_lock); 212 break; 213 } 214 } 215 sx_sunlock(&proctree_lock); 216 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 217 PROC_LOCK(p); 218 if (p->p_state == PRS_NORMAL && 219 p_cansee(td, p) == 0) { 220 error = donice(td, p, uap->prio); 221 found++; 222 } 223 PROC_UNLOCK(p); 224 } 225 PGRP_UNLOCK(pg); 226 break; 227 228 case PRIO_USER: 229 if (uap->who == 0) 230 uap->who = td->td_ucred->cr_uid; 231 sx_slock(&allproc_lock); 232 FOREACH_PROC_IN_SYSTEM(p) { 233 PROC_LOCK(p); 234 if (p->p_state == PRS_NORMAL && 235 p->p_ucred->cr_uid == uap->who && 236 p_cansee(td, p) == 0) { 237 error = donice(td, p, uap->prio); 238 found++; 239 } 240 PROC_UNLOCK(p); 241 } 242 sx_sunlock(&allproc_lock); 243 break; 244 245 default: 246 error = EINVAL; 247 break; 248 } 249 if (found == 0 && error == 0) 250 error = ESRCH; 251 return (error); 252 } 253 254 /* 255 * Set "nice" for a (whole) process. 256 */ 257 static int 258 donice(struct thread *td, struct proc *p, int n) 259 { 260 int error; 261 262 PROC_LOCK_ASSERT(p, MA_OWNED); 263 if ((error = p_cansched(td, p))) 264 return (error); 265 if (n > PRIO_MAX) 266 n = PRIO_MAX; 267 if (n < PRIO_MIN) 268 n = PRIO_MIN; 269 if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0) 270 return (EACCES); 271 sched_nice(p, n); 272 return (0); 273 } 274 275 static int unprivileged_idprio; 276 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW, 277 &unprivileged_idprio, 0, "Allow non-root users to set an idle priority"); 278 279 /* 280 * Set realtime priority for LWP. 281 */ 282 #ifndef _SYS_SYSPROTO_H_ 283 struct rtprio_thread_args { 284 int function; 285 lwpid_t lwpid; 286 struct rtprio *rtp; 287 }; 288 #endif 289 int 290 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap) 291 { 292 struct proc *p; 293 struct rtprio rtp; 294 struct thread *td1; 295 int cierror, error; 296 297 /* Perform copyin before acquiring locks if needed. */ 298 if (uap->function == RTP_SET) 299 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 300 else 301 cierror = 0; 302 303 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) { 304 p = td->td_proc; 305 td1 = td; 306 PROC_LOCK(p); 307 } else { 308 /* Only look up thread in current process */ 309 td1 = tdfind(uap->lwpid, curproc->p_pid); 310 if (td1 == NULL) 311 return (ESRCH); 312 p = td1->td_proc; 313 } 314 315 switch (uap->function) { 316 case RTP_LOOKUP: 317 if ((error = p_cansee(td, p))) 318 break; 319 pri_to_rtp(td1, &rtp); 320 PROC_UNLOCK(p); 321 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 322 case RTP_SET: 323 if ((error = p_cansched(td, p)) || (error = cierror)) 324 break; 325 326 /* Disallow setting rtprio in most cases if not superuser. */ 327 328 /* 329 * Realtime priority has to be restricted for reasons which 330 * should be obvious. However, for idleprio processes, there is 331 * a potential for system deadlock if an idleprio process gains 332 * a lock on a resource that other processes need (and the 333 * idleprio process can't run due to a CPU-bound normal 334 * process). Fix me! XXX 335 * 336 * This problem is not only related to idleprio process. 337 * A user level program can obtain a file lock and hold it 338 * indefinitely. Additionally, without idleprio processes it is 339 * still conceivable that a program with low priority will never 340 * get to run. In short, allowing this feature might make it 341 * easier to lock a resource indefinitely, but it is not the 342 * only thing that makes it possible. 343 */ 344 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME || 345 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 346 unprivileged_idprio == 0)) { 347 error = priv_check(td, PRIV_SCHED_RTPRIO); 348 if (error) 349 break; 350 } 351 error = rtp_to_pri(&rtp, td1); 352 break; 353 default: 354 error = EINVAL; 355 break; 356 } 357 PROC_UNLOCK(p); 358 return (error); 359 } 360 361 /* 362 * Set realtime priority. 363 */ 364 #ifndef _SYS_SYSPROTO_H_ 365 struct rtprio_args { 366 int function; 367 pid_t pid; 368 struct rtprio *rtp; 369 }; 370 #endif 371 int 372 sys_rtprio(struct thread *td, register struct rtprio_args *uap) 373 { 374 struct proc *p; 375 struct thread *tdp; 376 struct rtprio rtp; 377 int cierror, error; 378 379 /* Perform copyin before acquiring locks if needed. */ 380 if (uap->function == RTP_SET) 381 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 382 else 383 cierror = 0; 384 385 if (uap->pid == 0) { 386 p = td->td_proc; 387 PROC_LOCK(p); 388 } else { 389 p = pfind(uap->pid); 390 if (p == NULL) 391 return (ESRCH); 392 } 393 394 switch (uap->function) { 395 case RTP_LOOKUP: 396 if ((error = p_cansee(td, p))) 397 break; 398 /* 399 * Return OUR priority if no pid specified, 400 * or if one is, report the highest priority 401 * in the process. There isn't much more you can do as 402 * there is only room to return a single priority. 403 * Note: specifying our own pid is not the same 404 * as leaving it zero. 405 */ 406 if (uap->pid == 0) { 407 pri_to_rtp(td, &rtp); 408 } else { 409 struct rtprio rtp2; 410 411 rtp.type = RTP_PRIO_IDLE; 412 rtp.prio = RTP_PRIO_MAX; 413 FOREACH_THREAD_IN_PROC(p, tdp) { 414 pri_to_rtp(tdp, &rtp2); 415 if (rtp2.type < rtp.type || 416 (rtp2.type == rtp.type && 417 rtp2.prio < rtp.prio)) { 418 rtp.type = rtp2.type; 419 rtp.prio = rtp2.prio; 420 } 421 } 422 } 423 PROC_UNLOCK(p); 424 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 425 case RTP_SET: 426 if ((error = p_cansched(td, p)) || (error = cierror)) 427 break; 428 429 /* 430 * Disallow setting rtprio in most cases if not superuser. 431 * See the comment in sys_rtprio_thread about idprio 432 * threads holding a lock. 433 */ 434 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME || 435 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE && 436 !unprivileged_idprio)) { 437 error = priv_check(td, PRIV_SCHED_RTPRIO); 438 if (error) 439 break; 440 } 441 442 /* 443 * If we are setting our own priority, set just our 444 * thread but if we are doing another process, 445 * do all the threads on that process. If we 446 * specify our own pid we do the latter. 447 */ 448 if (uap->pid == 0) { 449 error = rtp_to_pri(&rtp, td); 450 } else { 451 FOREACH_THREAD_IN_PROC(p, td) { 452 if ((error = rtp_to_pri(&rtp, td)) != 0) 453 break; 454 } 455 } 456 break; 457 default: 458 error = EINVAL; 459 break; 460 } 461 PROC_UNLOCK(p); 462 return (error); 463 } 464 465 int 466 rtp_to_pri(struct rtprio *rtp, struct thread *td) 467 { 468 u_char newpri, oldclass, oldpri; 469 470 switch (RTP_PRIO_BASE(rtp->type)) { 471 case RTP_PRIO_REALTIME: 472 if (rtp->prio > RTP_PRIO_MAX) 473 return (EINVAL); 474 newpri = PRI_MIN_REALTIME + rtp->prio; 475 break; 476 case RTP_PRIO_NORMAL: 477 if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE)) 478 return (EINVAL); 479 newpri = PRI_MIN_TIMESHARE + rtp->prio; 480 break; 481 case RTP_PRIO_IDLE: 482 if (rtp->prio > RTP_PRIO_MAX) 483 return (EINVAL); 484 newpri = PRI_MIN_IDLE + rtp->prio; 485 break; 486 default: 487 return (EINVAL); 488 } 489 490 thread_lock(td); 491 oldclass = td->td_pri_class; 492 sched_class(td, rtp->type); /* XXX fix */ 493 oldpri = td->td_user_pri; 494 sched_user_prio(td, newpri); 495 if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL || 496 td->td_pri_class != RTP_PRIO_NORMAL)) 497 sched_prio(td, td->td_user_pri); 498 if (TD_ON_UPILOCK(td) && oldpri != newpri) { 499 critical_enter(); 500 thread_unlock(td); 501 umtx_pi_adjust(td, oldpri); 502 critical_exit(); 503 } else 504 thread_unlock(td); 505 return (0); 506 } 507 508 void 509 pri_to_rtp(struct thread *td, struct rtprio *rtp) 510 { 511 512 thread_lock(td); 513 switch (PRI_BASE(td->td_pri_class)) { 514 case PRI_REALTIME: 515 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME; 516 break; 517 case PRI_TIMESHARE: 518 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE; 519 break; 520 case PRI_IDLE: 521 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE; 522 break; 523 default: 524 break; 525 } 526 rtp->type = td->td_pri_class; 527 thread_unlock(td); 528 } 529 530 #if defined(COMPAT_43) 531 #ifndef _SYS_SYSPROTO_H_ 532 struct osetrlimit_args { 533 u_int which; 534 struct orlimit *rlp; 535 }; 536 #endif 537 int 538 osetrlimit(struct thread *td, register struct osetrlimit_args *uap) 539 { 540 struct orlimit olim; 541 struct rlimit lim; 542 int error; 543 544 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 545 return (error); 546 lim.rlim_cur = olim.rlim_cur; 547 lim.rlim_max = olim.rlim_max; 548 error = kern_setrlimit(td, uap->which, &lim); 549 return (error); 550 } 551 552 #ifndef _SYS_SYSPROTO_H_ 553 struct ogetrlimit_args { 554 u_int which; 555 struct orlimit *rlp; 556 }; 557 #endif 558 int 559 ogetrlimit(struct thread *td, register struct ogetrlimit_args *uap) 560 { 561 struct orlimit olim; 562 struct rlimit rl; 563 struct proc *p; 564 int error; 565 566 if (uap->which >= RLIM_NLIMITS) 567 return (EINVAL); 568 p = td->td_proc; 569 PROC_LOCK(p); 570 lim_rlimit(p, uap->which, &rl); 571 PROC_UNLOCK(p); 572 573 /* 574 * XXX would be more correct to convert only RLIM_INFINITY to the 575 * old RLIM_INFINITY and fail with EOVERFLOW for other larger 576 * values. Most 64->32 and 32->16 conversions, including not 577 * unimportant ones of uids are even more broken than what we 578 * do here (they blindly truncate). We don't do this correctly 579 * here since we have little experience with EOVERFLOW yet. 580 * Elsewhere, getuid() can't fail... 581 */ 582 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur; 583 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max; 584 error = copyout(&olim, uap->rlp, sizeof(olim)); 585 return (error); 586 } 587 #endif /* COMPAT_43 */ 588 589 #ifndef _SYS_SYSPROTO_H_ 590 struct __setrlimit_args { 591 u_int which; 592 struct rlimit *rlp; 593 }; 594 #endif 595 int 596 sys_setrlimit(struct thread *td, register struct __setrlimit_args *uap) 597 { 598 struct rlimit alim; 599 int error; 600 601 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit)))) 602 return (error); 603 error = kern_setrlimit(td, uap->which, &alim); 604 return (error); 605 } 606 607 static void 608 lim_cb(void *arg) 609 { 610 struct rlimit rlim; 611 struct thread *td; 612 struct proc *p; 613 614 p = arg; 615 PROC_LOCK_ASSERT(p, MA_OWNED); 616 /* 617 * Check if the process exceeds its cpu resource allocation. If 618 * it reaches the max, arrange to kill the process in ast(). 619 */ 620 if (p->p_cpulimit == RLIM_INFINITY) 621 return; 622 PROC_STATLOCK(p); 623 FOREACH_THREAD_IN_PROC(p, td) { 624 ruxagg(p, td); 625 } 626 PROC_STATUNLOCK(p); 627 if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) { 628 lim_rlimit(p, RLIMIT_CPU, &rlim); 629 if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) { 630 killproc(p, "exceeded maximum CPU limit"); 631 } else { 632 if (p->p_cpulimit < rlim.rlim_max) 633 p->p_cpulimit += 5; 634 kern_psignal(p, SIGXCPU); 635 } 636 } 637 if ((p->p_flag & P_WEXIT) == 0) 638 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 639 lim_cb, p, C_PREL(1)); 640 } 641 642 int 643 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp) 644 { 645 646 return (kern_proc_setrlimit(td, td->td_proc, which, limp)); 647 } 648 649 int 650 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which, 651 struct rlimit *limp) 652 { 653 struct plimit *newlim, *oldlim; 654 register struct rlimit *alimp; 655 struct rlimit oldssiz; 656 int error; 657 658 if (which >= RLIM_NLIMITS) 659 return (EINVAL); 660 661 /* 662 * Preserve historical bugs by treating negative limits as unsigned. 663 */ 664 if (limp->rlim_cur < 0) 665 limp->rlim_cur = RLIM_INFINITY; 666 if (limp->rlim_max < 0) 667 limp->rlim_max = RLIM_INFINITY; 668 669 oldssiz.rlim_cur = 0; 670 newlim = NULL; 671 PROC_LOCK(p); 672 if (lim_shared(p->p_limit)) { 673 PROC_UNLOCK(p); 674 newlim = lim_alloc(); 675 PROC_LOCK(p); 676 } 677 oldlim = p->p_limit; 678 alimp = &oldlim->pl_rlimit[which]; 679 if (limp->rlim_cur > alimp->rlim_max || 680 limp->rlim_max > alimp->rlim_max) 681 if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) { 682 PROC_UNLOCK(p); 683 if (newlim != NULL) 684 lim_free(newlim); 685 return (error); 686 } 687 if (limp->rlim_cur > limp->rlim_max) 688 limp->rlim_cur = limp->rlim_max; 689 if (newlim != NULL) { 690 lim_copy(newlim, oldlim); 691 alimp = &newlim->pl_rlimit[which]; 692 } 693 694 switch (which) { 695 696 case RLIMIT_CPU: 697 if (limp->rlim_cur != RLIM_INFINITY && 698 p->p_cpulimit == RLIM_INFINITY) 699 callout_reset_sbt(&p->p_limco, SBT_1S, 0, 700 lim_cb, p, C_PREL(1)); 701 p->p_cpulimit = limp->rlim_cur; 702 break; 703 case RLIMIT_DATA: 704 if (limp->rlim_cur > maxdsiz) 705 limp->rlim_cur = maxdsiz; 706 if (limp->rlim_max > maxdsiz) 707 limp->rlim_max = maxdsiz; 708 break; 709 710 case RLIMIT_STACK: 711 if (limp->rlim_cur > maxssiz) 712 limp->rlim_cur = maxssiz; 713 if (limp->rlim_max > maxssiz) 714 limp->rlim_max = maxssiz; 715 oldssiz = *alimp; 716 if (p->p_sysent->sv_fixlimit != NULL) 717 p->p_sysent->sv_fixlimit(&oldssiz, 718 RLIMIT_STACK); 719 break; 720 721 case RLIMIT_NOFILE: 722 if (limp->rlim_cur > maxfilesperproc) 723 limp->rlim_cur = maxfilesperproc; 724 if (limp->rlim_max > maxfilesperproc) 725 limp->rlim_max = maxfilesperproc; 726 break; 727 728 case RLIMIT_NPROC: 729 if (limp->rlim_cur > maxprocperuid) 730 limp->rlim_cur = maxprocperuid; 731 if (limp->rlim_max > maxprocperuid) 732 limp->rlim_max = maxprocperuid; 733 if (limp->rlim_cur < 1) 734 limp->rlim_cur = 1; 735 if (limp->rlim_max < 1) 736 limp->rlim_max = 1; 737 break; 738 } 739 if (p->p_sysent->sv_fixlimit != NULL) 740 p->p_sysent->sv_fixlimit(limp, which); 741 *alimp = *limp; 742 if (newlim != NULL) 743 p->p_limit = newlim; 744 PROC_UNLOCK(p); 745 if (newlim != NULL) 746 lim_free(oldlim); 747 748 if (which == RLIMIT_STACK && 749 /* 750 * Skip calls from exec_new_vmspace(), done when stack is 751 * not mapped yet. 752 */ 753 (td != curthread || (p->p_flag & P_INEXEC) == 0)) { 754 /* 755 * Stack is allocated to the max at exec time with only 756 * "rlim_cur" bytes accessible. If stack limit is going 757 * up make more accessible, if going down make inaccessible. 758 */ 759 if (limp->rlim_cur != oldssiz.rlim_cur) { 760 vm_offset_t addr; 761 vm_size_t size; 762 vm_prot_t prot; 763 764 if (limp->rlim_cur > oldssiz.rlim_cur) { 765 prot = p->p_sysent->sv_stackprot; 766 size = limp->rlim_cur - oldssiz.rlim_cur; 767 addr = p->p_sysent->sv_usrstack - 768 limp->rlim_cur; 769 } else { 770 prot = VM_PROT_NONE; 771 size = oldssiz.rlim_cur - limp->rlim_cur; 772 addr = p->p_sysent->sv_usrstack - 773 oldssiz.rlim_cur; 774 } 775 addr = trunc_page(addr); 776 size = round_page(size); 777 (void)vm_map_protect(&p->p_vmspace->vm_map, 778 addr, addr + size, prot, FALSE); 779 } 780 } 781 782 return (0); 783 } 784 785 #ifndef _SYS_SYSPROTO_H_ 786 struct __getrlimit_args { 787 u_int which; 788 struct rlimit *rlp; 789 }; 790 #endif 791 /* ARGSUSED */ 792 int 793 sys_getrlimit(struct thread *td, register struct __getrlimit_args *uap) 794 { 795 struct rlimit rlim; 796 struct proc *p; 797 int error; 798 799 if (uap->which >= RLIM_NLIMITS) 800 return (EINVAL); 801 p = td->td_proc; 802 PROC_LOCK(p); 803 lim_rlimit(p, uap->which, &rlim); 804 PROC_UNLOCK(p); 805 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit)); 806 return (error); 807 } 808 809 /* 810 * Transform the running time and tick information for children of proc p 811 * into user and system time usage. 812 */ 813 void 814 calccru(struct proc *p, struct timeval *up, struct timeval *sp) 815 { 816 817 PROC_LOCK_ASSERT(p, MA_OWNED); 818 calcru1(p, &p->p_crux, up, sp); 819 } 820 821 /* 822 * Transform the running time and tick information in proc p into user 823 * and system time usage. If appropriate, include the current time slice 824 * on this CPU. 825 */ 826 void 827 calcru(struct proc *p, struct timeval *up, struct timeval *sp) 828 { 829 struct thread *td; 830 uint64_t runtime, u; 831 832 PROC_LOCK_ASSERT(p, MA_OWNED); 833 PROC_STATLOCK_ASSERT(p, MA_OWNED); 834 /* 835 * If we are getting stats for the current process, then add in the 836 * stats that this thread has accumulated in its current time slice. 837 * We reset the thread and CPU state as if we had performed a context 838 * switch right here. 839 */ 840 td = curthread; 841 if (td->td_proc == p) { 842 u = cpu_ticks(); 843 runtime = u - PCPU_GET(switchtime); 844 td->td_runtime += runtime; 845 td->td_incruntime += runtime; 846 PCPU_SET(switchtime, u); 847 } 848 /* Make sure the per-thread stats are current. */ 849 FOREACH_THREAD_IN_PROC(p, td) { 850 if (td->td_incruntime == 0) 851 continue; 852 ruxagg(p, td); 853 } 854 calcru1(p, &p->p_rux, up, sp); 855 } 856 857 /* Collect resource usage for a single thread. */ 858 void 859 rufetchtd(struct thread *td, struct rusage *ru) 860 { 861 struct proc *p; 862 uint64_t runtime, u; 863 864 p = td->td_proc; 865 PROC_STATLOCK_ASSERT(p, MA_OWNED); 866 THREAD_LOCK_ASSERT(td, MA_OWNED); 867 /* 868 * If we are getting stats for the current thread, then add in the 869 * stats that this thread has accumulated in its current time slice. 870 * We reset the thread and CPU state as if we had performed a context 871 * switch right here. 872 */ 873 if (td == curthread) { 874 u = cpu_ticks(); 875 runtime = u - PCPU_GET(switchtime); 876 td->td_runtime += runtime; 877 td->td_incruntime += runtime; 878 PCPU_SET(switchtime, u); 879 } 880 ruxagg(p, td); 881 *ru = td->td_ru; 882 calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime); 883 } 884 885 static void 886 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up, 887 struct timeval *sp) 888 { 889 /* {user, system, interrupt, total} {ticks, usec}: */ 890 uint64_t ut, uu, st, su, it, tt, tu; 891 892 ut = ruxp->rux_uticks; 893 st = ruxp->rux_sticks; 894 it = ruxp->rux_iticks; 895 tt = ut + st + it; 896 if (tt == 0) { 897 /* Avoid divide by zero */ 898 st = 1; 899 tt = 1; 900 } 901 tu = cputick2usec(ruxp->rux_runtime); 902 if ((int64_t)tu < 0) { 903 /* XXX: this should be an assert /phk */ 904 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n", 905 (intmax_t)tu, p->p_pid, p->p_comm); 906 tu = ruxp->rux_tu; 907 } 908 909 if (tu >= ruxp->rux_tu) { 910 /* 911 * The normal case, time increased. 912 * Enforce monotonicity of bucketed numbers. 913 */ 914 uu = (tu * ut) / tt; 915 if (uu < ruxp->rux_uu) 916 uu = ruxp->rux_uu; 917 su = (tu * st) / tt; 918 if (su < ruxp->rux_su) 919 su = ruxp->rux_su; 920 } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) { 921 /* 922 * When we calibrate the cputicker, it is not uncommon to 923 * see the presumably fixed frequency increase slightly over 924 * time as a result of thermal stabilization and NTP 925 * discipline (of the reference clock). We therefore ignore 926 * a bit of backwards slop because we expect to catch up 927 * shortly. We use a 3 microsecond limit to catch low 928 * counts and a 1% limit for high counts. 929 */ 930 uu = ruxp->rux_uu; 931 su = ruxp->rux_su; 932 tu = ruxp->rux_tu; 933 } else { /* tu < ruxp->rux_tu */ 934 /* 935 * What happened here was likely that a laptop, which ran at 936 * a reduced clock frequency at boot, kicked into high gear. 937 * The wisdom of spamming this message in that case is 938 * dubious, but it might also be indicative of something 939 * serious, so lets keep it and hope laptops can be made 940 * more truthful about their CPU speed via ACPI. 941 */ 942 printf("calcru: runtime went backwards from %ju usec " 943 "to %ju usec for pid %d (%s)\n", 944 (uintmax_t)ruxp->rux_tu, (uintmax_t)tu, 945 p->p_pid, p->p_comm); 946 uu = (tu * ut) / tt; 947 su = (tu * st) / tt; 948 } 949 950 ruxp->rux_uu = uu; 951 ruxp->rux_su = su; 952 ruxp->rux_tu = tu; 953 954 up->tv_sec = uu / 1000000; 955 up->tv_usec = uu % 1000000; 956 sp->tv_sec = su / 1000000; 957 sp->tv_usec = su % 1000000; 958 } 959 960 #ifndef _SYS_SYSPROTO_H_ 961 struct getrusage_args { 962 int who; 963 struct rusage *rusage; 964 }; 965 #endif 966 int 967 sys_getrusage(register struct thread *td, register struct getrusage_args *uap) 968 { 969 struct rusage ru; 970 int error; 971 972 error = kern_getrusage(td, uap->who, &ru); 973 if (error == 0) 974 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 975 return (error); 976 } 977 978 int 979 kern_getrusage(struct thread *td, int who, struct rusage *rup) 980 { 981 struct proc *p; 982 int error; 983 984 error = 0; 985 p = td->td_proc; 986 PROC_LOCK(p); 987 switch (who) { 988 case RUSAGE_SELF: 989 rufetchcalc(p, rup, &rup->ru_utime, 990 &rup->ru_stime); 991 break; 992 993 case RUSAGE_CHILDREN: 994 *rup = p->p_stats->p_cru; 995 calccru(p, &rup->ru_utime, &rup->ru_stime); 996 break; 997 998 case RUSAGE_THREAD: 999 PROC_STATLOCK(p); 1000 thread_lock(td); 1001 rufetchtd(td, rup); 1002 thread_unlock(td); 1003 PROC_STATUNLOCK(p); 1004 break; 1005 1006 default: 1007 error = EINVAL; 1008 } 1009 PROC_UNLOCK(p); 1010 return (error); 1011 } 1012 1013 void 1014 rucollect(struct rusage *ru, struct rusage *ru2) 1015 { 1016 long *ip, *ip2; 1017 int i; 1018 1019 if (ru->ru_maxrss < ru2->ru_maxrss) 1020 ru->ru_maxrss = ru2->ru_maxrss; 1021 ip = &ru->ru_first; 1022 ip2 = &ru2->ru_first; 1023 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 1024 *ip++ += *ip2++; 1025 } 1026 1027 void 1028 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2, 1029 struct rusage_ext *rux2) 1030 { 1031 1032 rux->rux_runtime += rux2->rux_runtime; 1033 rux->rux_uticks += rux2->rux_uticks; 1034 rux->rux_sticks += rux2->rux_sticks; 1035 rux->rux_iticks += rux2->rux_iticks; 1036 rux->rux_uu += rux2->rux_uu; 1037 rux->rux_su += rux2->rux_su; 1038 rux->rux_tu += rux2->rux_tu; 1039 rucollect(ru, ru2); 1040 } 1041 1042 /* 1043 * Aggregate tick counts into the proc's rusage_ext. 1044 */ 1045 static void 1046 ruxagg_locked(struct rusage_ext *rux, struct thread *td) 1047 { 1048 1049 THREAD_LOCK_ASSERT(td, MA_OWNED); 1050 PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED); 1051 rux->rux_runtime += td->td_incruntime; 1052 rux->rux_uticks += td->td_uticks; 1053 rux->rux_sticks += td->td_sticks; 1054 rux->rux_iticks += td->td_iticks; 1055 } 1056 1057 void 1058 ruxagg(struct proc *p, struct thread *td) 1059 { 1060 1061 thread_lock(td); 1062 ruxagg_locked(&p->p_rux, td); 1063 ruxagg_locked(&td->td_rux, td); 1064 td->td_incruntime = 0; 1065 td->td_uticks = 0; 1066 td->td_iticks = 0; 1067 td->td_sticks = 0; 1068 thread_unlock(td); 1069 } 1070 1071 /* 1072 * Update the rusage_ext structure and fetch a valid aggregate rusage 1073 * for proc p if storage for one is supplied. 1074 */ 1075 void 1076 rufetch(struct proc *p, struct rusage *ru) 1077 { 1078 struct thread *td; 1079 1080 PROC_STATLOCK_ASSERT(p, MA_OWNED); 1081 1082 *ru = p->p_ru; 1083 if (p->p_numthreads > 0) { 1084 FOREACH_THREAD_IN_PROC(p, td) { 1085 ruxagg(p, td); 1086 rucollect(ru, &td->td_ru); 1087 } 1088 } 1089 } 1090 1091 /* 1092 * Atomically perform a rufetch and a calcru together. 1093 * Consumers, can safely assume the calcru is executed only once 1094 * rufetch is completed. 1095 */ 1096 void 1097 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up, 1098 struct timeval *sp) 1099 { 1100 1101 PROC_STATLOCK(p); 1102 rufetch(p, ru); 1103 calcru(p, up, sp); 1104 PROC_STATUNLOCK(p); 1105 } 1106 1107 /* 1108 * Allocate a new resource limits structure and initialize its 1109 * reference count and mutex pointer. 1110 */ 1111 struct plimit * 1112 lim_alloc() 1113 { 1114 struct plimit *limp; 1115 1116 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK); 1117 refcount_init(&limp->pl_refcnt, 1); 1118 return (limp); 1119 } 1120 1121 struct plimit * 1122 lim_hold(struct plimit *limp) 1123 { 1124 1125 refcount_acquire(&limp->pl_refcnt); 1126 return (limp); 1127 } 1128 1129 static __inline int 1130 lim_shared(struct plimit *limp) 1131 { 1132 1133 return (limp->pl_refcnt > 1); 1134 } 1135 1136 void 1137 lim_fork(struct proc *p1, struct proc *p2) 1138 { 1139 1140 PROC_LOCK_ASSERT(p1, MA_OWNED); 1141 PROC_LOCK_ASSERT(p2, MA_OWNED); 1142 1143 p2->p_limit = lim_hold(p1->p_limit); 1144 callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0); 1145 if (p1->p_cpulimit != RLIM_INFINITY) 1146 callout_reset_sbt(&p2->p_limco, SBT_1S, 0, 1147 lim_cb, p2, C_PREL(1)); 1148 } 1149 1150 void 1151 lim_free(struct plimit *limp) 1152 { 1153 1154 if (refcount_release(&limp->pl_refcnt)) 1155 free((void *)limp, M_PLIMIT); 1156 } 1157 1158 /* 1159 * Make a copy of the plimit structure. 1160 * We share these structures copy-on-write after fork. 1161 */ 1162 void 1163 lim_copy(struct plimit *dst, struct plimit *src) 1164 { 1165 1166 KASSERT(!lim_shared(dst), ("lim_copy to shared limit")); 1167 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit)); 1168 } 1169 1170 /* 1171 * Return the hard limit for a particular system resource. The 1172 * which parameter specifies the index into the rlimit array. 1173 */ 1174 rlim_t 1175 lim_max(struct proc *p, int which) 1176 { 1177 struct rlimit rl; 1178 1179 lim_rlimit(p, which, &rl); 1180 return (rl.rlim_max); 1181 } 1182 1183 /* 1184 * Return the current (soft) limit for a particular system resource. 1185 * The which parameter which specifies the index into the rlimit array 1186 */ 1187 rlim_t 1188 lim_cur(struct proc *p, int which) 1189 { 1190 struct rlimit rl; 1191 1192 lim_rlimit(p, which, &rl); 1193 return (rl.rlim_cur); 1194 } 1195 1196 /* 1197 * Return a copy of the entire rlimit structure for the system limit 1198 * specified by 'which' in the rlimit structure pointed to by 'rlp'. 1199 */ 1200 void 1201 lim_rlimit(struct proc *p, int which, struct rlimit *rlp) 1202 { 1203 1204 PROC_LOCK_ASSERT(p, MA_OWNED); 1205 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1206 ("request for invalid resource limit")); 1207 *rlp = p->p_limit->pl_rlimit[which]; 1208 if (p->p_sysent->sv_fixlimit != NULL) 1209 p->p_sysent->sv_fixlimit(rlp, which); 1210 } 1211 1212 void 1213 uihashinit() 1214 { 1215 1216 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 1217 rw_init(&uihashtbl_lock, "uidinfo hash"); 1218 } 1219 1220 /* 1221 * Look up a uidinfo struct for the parameter uid. 1222 * uihashtbl_lock must be locked. 1223 * Increase refcount on uidinfo struct returned. 1224 */ 1225 static struct uidinfo * 1226 uilookup(uid_t uid) 1227 { 1228 struct uihashhead *uipp; 1229 struct uidinfo *uip; 1230 1231 rw_assert(&uihashtbl_lock, RA_LOCKED); 1232 uipp = UIHASH(uid); 1233 LIST_FOREACH(uip, uipp, ui_hash) 1234 if (uip->ui_uid == uid) { 1235 uihold(uip); 1236 break; 1237 } 1238 1239 return (uip); 1240 } 1241 1242 /* 1243 * Find or allocate a struct uidinfo for a particular uid. 1244 * Returns with uidinfo struct referenced. 1245 * uifree() should be called on a struct uidinfo when released. 1246 */ 1247 struct uidinfo * 1248 uifind(uid_t uid) 1249 { 1250 struct uidinfo *new_uip, *uip; 1251 1252 rw_rlock(&uihashtbl_lock); 1253 uip = uilookup(uid); 1254 rw_runlock(&uihashtbl_lock); 1255 if (uip != NULL) 1256 return (uip); 1257 1258 new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO); 1259 racct_create(&new_uip->ui_racct); 1260 refcount_init(&new_uip->ui_ref, 1); 1261 new_uip->ui_uid = uid; 1262 mtx_init(&new_uip->ui_vmsize_mtx, "ui_vmsize", NULL, MTX_DEF); 1263 1264 rw_wlock(&uihashtbl_lock); 1265 /* 1266 * There's a chance someone created our uidinfo while we 1267 * were in malloc and not holding the lock, so we have to 1268 * make sure we don't insert a duplicate uidinfo. 1269 */ 1270 if ((uip = uilookup(uid)) == NULL) { 1271 LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash); 1272 rw_wunlock(&uihashtbl_lock); 1273 uip = new_uip; 1274 } else { 1275 rw_wunlock(&uihashtbl_lock); 1276 racct_destroy(&new_uip->ui_racct); 1277 mtx_destroy(&new_uip->ui_vmsize_mtx); 1278 free(new_uip, M_UIDINFO); 1279 } 1280 return (uip); 1281 } 1282 1283 /* 1284 * Place another refcount on a uidinfo struct. 1285 */ 1286 void 1287 uihold(struct uidinfo *uip) 1288 { 1289 1290 refcount_acquire(&uip->ui_ref); 1291 } 1292 1293 /*- 1294 * Since uidinfo structs have a long lifetime, we use an 1295 * opportunistic refcounting scheme to avoid locking the lookup hash 1296 * for each release. 1297 * 1298 * If the refcount hits 0, we need to free the structure, 1299 * which means we need to lock the hash. 1300 * Optimal case: 1301 * After locking the struct and lowering the refcount, if we find 1302 * that we don't need to free, simply unlock and return. 1303 * Suboptimal case: 1304 * If refcount lowering results in need to free, bump the count 1305 * back up, lose the lock and acquire the locks in the proper 1306 * order to try again. 1307 */ 1308 void 1309 uifree(struct uidinfo *uip) 1310 { 1311 int old; 1312 1313 /* Prepare for optimal case. */ 1314 old = uip->ui_ref; 1315 if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1)) 1316 return; 1317 1318 /* Prepare for suboptimal case. */ 1319 rw_wlock(&uihashtbl_lock); 1320 if (refcount_release(&uip->ui_ref) == 0) { 1321 rw_wunlock(&uihashtbl_lock); 1322 return; 1323 } 1324 1325 racct_destroy(&uip->ui_racct); 1326 LIST_REMOVE(uip, ui_hash); 1327 rw_wunlock(&uihashtbl_lock); 1328 1329 if (uip->ui_sbsize != 0) 1330 printf("freeing uidinfo: uid = %d, sbsize = %ld\n", 1331 uip->ui_uid, uip->ui_sbsize); 1332 if (uip->ui_proccnt != 0) 1333 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 1334 uip->ui_uid, uip->ui_proccnt); 1335 if (uip->ui_vmsize != 0) 1336 printf("freeing uidinfo: uid = %d, swapuse = %lld\n", 1337 uip->ui_uid, (unsigned long long)uip->ui_vmsize); 1338 mtx_destroy(&uip->ui_vmsize_mtx); 1339 free(uip, M_UIDINFO); 1340 } 1341 1342 #ifdef RACCT 1343 void 1344 ui_racct_foreach(void (*callback)(struct racct *racct, 1345 void *arg2, void *arg3), void *arg2, void *arg3) 1346 { 1347 struct uidinfo *uip; 1348 struct uihashhead *uih; 1349 1350 rw_rlock(&uihashtbl_lock); 1351 for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) { 1352 LIST_FOREACH(uip, uih, ui_hash) { 1353 (callback)(uip->ui_racct, arg2, arg3); 1354 } 1355 } 1356 rw_runlock(&uihashtbl_lock); 1357 } 1358 #endif 1359 1360 /* 1361 * Change the count associated with number of processes 1362 * a given user is using. When 'max' is 0, don't enforce a limit 1363 */ 1364 int 1365 chgproccnt(struct uidinfo *uip, int diff, rlim_t max) 1366 { 1367 1368 /* Don't allow them to exceed max, but allow subtraction. */ 1369 if (diff > 0 && max != 0) { 1370 if (atomic_fetchadd_long(&uip->ui_proccnt, (long)diff) + diff > max) { 1371 atomic_subtract_long(&uip->ui_proccnt, (long)diff); 1372 return (0); 1373 } 1374 } else { 1375 atomic_add_long(&uip->ui_proccnt, (long)diff); 1376 if (uip->ui_proccnt < 0) 1377 printf("negative proccnt for uid = %d\n", uip->ui_uid); 1378 } 1379 return (1); 1380 } 1381 1382 /* 1383 * Change the total socket buffer size a user has used. 1384 */ 1385 int 1386 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max) 1387 { 1388 int diff; 1389 1390 diff = to - *hiwat; 1391 if (diff > 0) { 1392 if (atomic_fetchadd_long(&uip->ui_sbsize, (long)diff) + diff > max) { 1393 atomic_subtract_long(&uip->ui_sbsize, (long)diff); 1394 return (0); 1395 } 1396 } else { 1397 atomic_add_long(&uip->ui_sbsize, (long)diff); 1398 if (uip->ui_sbsize < 0) 1399 printf("negative sbsize for uid = %d\n", uip->ui_uid); 1400 } 1401 *hiwat = to; 1402 return (1); 1403 } 1404 1405 /* 1406 * Change the count associated with number of pseudo-terminals 1407 * a given user is using. When 'max' is 0, don't enforce a limit 1408 */ 1409 int 1410 chgptscnt(struct uidinfo *uip, int diff, rlim_t max) 1411 { 1412 1413 /* Don't allow them to exceed max, but allow subtraction. */ 1414 if (diff > 0 && max != 0) { 1415 if (atomic_fetchadd_long(&uip->ui_ptscnt, (long)diff) + diff > max) { 1416 atomic_subtract_long(&uip->ui_ptscnt, (long)diff); 1417 return (0); 1418 } 1419 } else { 1420 atomic_add_long(&uip->ui_ptscnt, (long)diff); 1421 if (uip->ui_ptscnt < 0) 1422 printf("negative ptscnt for uid = %d\n", uip->ui_uid); 1423 } 1424 return (1); 1425 } 1426 1427 int 1428 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max) 1429 { 1430 1431 if (diff > 0 && max != 0) { 1432 if (atomic_fetchadd_long(&uip->ui_kqcnt, (long)diff) + 1433 diff > max) { 1434 atomic_subtract_long(&uip->ui_kqcnt, (long)diff); 1435 return (0); 1436 } 1437 } else { 1438 atomic_add_long(&uip->ui_kqcnt, (long)diff); 1439 if (uip->ui_kqcnt < 0) 1440 printf("negative kqcnt for uid = %d\n", uip->ui_uid); 1441 } 1442 return (1); 1443 } 1444