xref: /freebsd/sys/kern/kern_resource.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_resource.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysproto.h>
45 #include <sys/file.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/proc.h>
51 #include <sys/refcount.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/sx.h>
55 #include <sys/syscallsubr.h>
56 #include <sys/sysent.h>
57 #include <sys/time.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_param.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_map.h>
63 
64 
65 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
66 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
67 #define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
68 static struct mtx uihashtbl_mtx;
69 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
70 static u_long uihash;		/* size of hash table - 1 */
71 
72 static void	calcru1(struct proc *p, struct rusage_ext *ruxp,
73 		    struct timeval *up, struct timeval *sp);
74 static int	donice(struct thread *td, struct proc *chgp, int n);
75 static struct uidinfo *uilookup(uid_t uid);
76 
77 /*
78  * Resource controls and accounting.
79  */
80 
81 #ifndef _SYS_SYSPROTO_H_
82 struct getpriority_args {
83 	int	which;
84 	int	who;
85 };
86 #endif
87 /*
88  * MPSAFE
89  */
90 int
91 getpriority(td, uap)
92 	struct thread *td;
93 	register struct getpriority_args *uap;
94 {
95 	struct proc *p;
96 	struct pgrp *pg;
97 	int error, low;
98 
99 	error = 0;
100 	low = PRIO_MAX + 1;
101 	switch (uap->which) {
102 
103 	case PRIO_PROCESS:
104 		if (uap->who == 0)
105 			low = td->td_proc->p_nice;
106 		else {
107 			p = pfind(uap->who);
108 			if (p == NULL)
109 				break;
110 			if (p_cansee(td, p) == 0)
111 				low = p->p_nice;
112 			PROC_UNLOCK(p);
113 		}
114 		break;
115 
116 	case PRIO_PGRP:
117 		sx_slock(&proctree_lock);
118 		if (uap->who == 0) {
119 			pg = td->td_proc->p_pgrp;
120 			PGRP_LOCK(pg);
121 		} else {
122 			pg = pgfind(uap->who);
123 			if (pg == NULL) {
124 				sx_sunlock(&proctree_lock);
125 				break;
126 			}
127 		}
128 		sx_sunlock(&proctree_lock);
129 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
130 			PROC_LOCK(p);
131 			if (!p_cansee(td, p)) {
132 				if (p->p_nice < low)
133 					low = p->p_nice;
134 			}
135 			PROC_UNLOCK(p);
136 		}
137 		PGRP_UNLOCK(pg);
138 		break;
139 
140 	case PRIO_USER:
141 		if (uap->who == 0)
142 			uap->who = td->td_ucred->cr_uid;
143 		sx_slock(&allproc_lock);
144 		LIST_FOREACH(p, &allproc, p_list) {
145 			PROC_LOCK(p);
146 			if (!p_cansee(td, p) &&
147 			    p->p_ucred->cr_uid == uap->who) {
148 				if (p->p_nice < low)
149 					low = p->p_nice;
150 			}
151 			PROC_UNLOCK(p);
152 		}
153 		sx_sunlock(&allproc_lock);
154 		break;
155 
156 	default:
157 		error = EINVAL;
158 		break;
159 	}
160 	if (low == PRIO_MAX + 1 && error == 0)
161 		error = ESRCH;
162 	td->td_retval[0] = low;
163 	return (error);
164 }
165 
166 #ifndef _SYS_SYSPROTO_H_
167 struct setpriority_args {
168 	int	which;
169 	int	who;
170 	int	prio;
171 };
172 #endif
173 /*
174  * MPSAFE
175  */
176 int
177 setpriority(td, uap)
178 	struct thread *td;
179 	struct setpriority_args *uap;
180 {
181 	struct proc *curp, *p;
182 	struct pgrp *pg;
183 	int found = 0, error = 0;
184 
185 	curp = td->td_proc;
186 	switch (uap->which) {
187 	case PRIO_PROCESS:
188 		if (uap->who == 0) {
189 			PROC_LOCK(curp);
190 			error = donice(td, curp, uap->prio);
191 			PROC_UNLOCK(curp);
192 		} else {
193 			p = pfind(uap->who);
194 			if (p == 0)
195 				break;
196 			if (p_cansee(td, p) == 0)
197 				error = donice(td, p, uap->prio);
198 			PROC_UNLOCK(p);
199 		}
200 		found++;
201 		break;
202 
203 	case PRIO_PGRP:
204 		sx_slock(&proctree_lock);
205 		if (uap->who == 0) {
206 			pg = curp->p_pgrp;
207 			PGRP_LOCK(pg);
208 		} else {
209 			pg = pgfind(uap->who);
210 			if (pg == NULL) {
211 				sx_sunlock(&proctree_lock);
212 				break;
213 			}
214 		}
215 		sx_sunlock(&proctree_lock);
216 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
217 			PROC_LOCK(p);
218 			if (!p_cansee(td, p)) {
219 				error = donice(td, p, uap->prio);
220 				found++;
221 			}
222 			PROC_UNLOCK(p);
223 		}
224 		PGRP_UNLOCK(pg);
225 		break;
226 
227 	case PRIO_USER:
228 		if (uap->who == 0)
229 			uap->who = td->td_ucred->cr_uid;
230 		sx_slock(&allproc_lock);
231 		FOREACH_PROC_IN_SYSTEM(p) {
232 			PROC_LOCK(p);
233 			if (p->p_ucred->cr_uid == uap->who &&
234 			    !p_cansee(td, p)) {
235 				error = donice(td, p, uap->prio);
236 				found++;
237 			}
238 			PROC_UNLOCK(p);
239 		}
240 		sx_sunlock(&allproc_lock);
241 		break;
242 
243 	default:
244 		error = EINVAL;
245 		break;
246 	}
247 	if (found == 0 && error == 0)
248 		error = ESRCH;
249 	return (error);
250 }
251 
252 /*
253  * Set "nice" for a (whole) process.
254  */
255 static int
256 donice(struct thread *td, struct proc *p, int n)
257 {
258 	int error;
259 
260 	PROC_LOCK_ASSERT(p, MA_OWNED);
261 	if ((error = p_cansched(td, p)))
262 		return (error);
263 	if (n > PRIO_MAX)
264 		n = PRIO_MAX;
265 	if (n < PRIO_MIN)
266 		n = PRIO_MIN;
267  	if (n < p->p_nice && suser(td) != 0)
268 		return (EACCES);
269 	mtx_lock_spin(&sched_lock);
270 	sched_nice(p, n);
271 	mtx_unlock_spin(&sched_lock);
272 	return (0);
273 }
274 
275 /*
276  * Set realtime priority.
277  *
278  * MPSAFE
279  */
280 #ifndef _SYS_SYSPROTO_H_
281 struct rtprio_args {
282 	int		function;
283 	pid_t		pid;
284 	struct rtprio	*rtp;
285 };
286 #endif
287 
288 int
289 rtprio(td, uap)
290 	struct thread *td;		/* curthread */
291 	register struct rtprio_args *uap;
292 {
293 	struct proc *curp;
294 	struct proc *p;
295 	struct ksegrp *kg;
296 	struct rtprio rtp;
297 	int cierror, error;
298 
299 	/* Perform copyin before acquiring locks if needed. */
300 	if (uap->function == RTP_SET)
301 		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
302 	else
303 		cierror = 0;
304 
305 	curp = td->td_proc;
306 	if (uap->pid == 0) {
307 		p = curp;
308 		PROC_LOCK(p);
309 	} else {
310 		p = pfind(uap->pid);
311 		if (p == NULL)
312 			return (ESRCH);
313 	}
314 
315 	switch (uap->function) {
316 	case RTP_LOOKUP:
317 		if ((error = p_cansee(td, p)))
318 			break;
319 		mtx_lock_spin(&sched_lock);
320 		/*
321 		 * Return OUR priority if no pid specified,
322 		 * or if one is, report the highest priority
323 		 * in the process.  There isn't much more you can do as
324 		 * there is only room to return a single priority.
325 		 * XXXKSE: maybe need a new interface to report
326 		 * priorities of multiple system scope threads.
327 		 * Note: specifying our own pid is not the same
328 		 * as leaving it zero.
329 		 */
330 		if (uap->pid == 0) {
331 			pri_to_rtp(td->td_ksegrp, &rtp);
332 		} else {
333 			struct rtprio rtp2;
334 
335 			rtp.type = RTP_PRIO_IDLE;
336 			rtp.prio = RTP_PRIO_MAX;
337 			FOREACH_KSEGRP_IN_PROC(p, kg) {
338 				pri_to_rtp(kg, &rtp2);
339 				if (rtp2.type <  rtp.type ||
340 				    (rtp2.type == rtp.type &&
341 				    rtp2.prio < rtp.prio)) {
342 					rtp.type = rtp2.type;
343 					rtp.prio = rtp2.prio;
344 				}
345 			}
346 		}
347 		mtx_unlock_spin(&sched_lock);
348 		PROC_UNLOCK(p);
349 		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
350 	case RTP_SET:
351 		if ((error = p_cansched(td, p)) || (error = cierror))
352 			break;
353 
354 		/* Disallow setting rtprio in most cases if not superuser. */
355 		if (suser(td) != 0) {
356 			/* can't set someone else's */
357 			if (uap->pid) {
358 				error = EPERM;
359 				break;
360 			}
361 			/* can't set realtime priority */
362 /*
363  * Realtime priority has to be restricted for reasons which should be
364  * obvious.  However, for idle priority, there is a potential for
365  * system deadlock if an idleprio process gains a lock on a resource
366  * that other processes need (and the idleprio process can't run
367  * due to a CPU-bound normal process).  Fix me!  XXX
368  */
369 #if 0
370  			if (RTP_PRIO_IS_REALTIME(rtp.type)) {
371 #else
372 			if (rtp.type != RTP_PRIO_NORMAL) {
373 #endif
374 				error = EPERM;
375 				break;
376 			}
377 		}
378 
379 		/*
380 		 * If we are setting our own priority, set just our
381 		 * KSEGRP but if we are doing another process,
382 		 * do all the groups on that process. If we
383 		 * specify our own pid we do the latter.
384 		 */
385 		mtx_lock_spin(&sched_lock);
386 		if (uap->pid == 0) {
387 			error = rtp_to_pri(&rtp, td->td_ksegrp);
388 		} else {
389 			FOREACH_KSEGRP_IN_PROC(p, kg) {
390 				if ((error = rtp_to_pri(&rtp, kg)) != 0) {
391 					break;
392 				}
393 			}
394 		}
395 		mtx_unlock_spin(&sched_lock);
396 		break;
397 	default:
398 		error = EINVAL;
399 		break;
400 	}
401 	PROC_UNLOCK(p);
402 	return (error);
403 }
404 
405 int
406 rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg)
407 {
408 
409 	mtx_assert(&sched_lock, MA_OWNED);
410 	if (rtp->prio > RTP_PRIO_MAX)
411 		return (EINVAL);
412 	switch (RTP_PRIO_BASE(rtp->type)) {
413 	case RTP_PRIO_REALTIME:
414 		kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio;
415 		break;
416 	case RTP_PRIO_NORMAL:
417 		kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio;
418 		break;
419 	case RTP_PRIO_IDLE:
420 		kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio;
421 		break;
422 	default:
423 		return (EINVAL);
424 	}
425 	sched_class(kg, rtp->type);
426 	if (curthread->td_ksegrp == kg) {
427 		sched_prio(curthread, kg->kg_user_pri); /* XXX dubious */
428 	}
429 	return (0);
430 }
431 
432 void
433 pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp)
434 {
435 
436 	mtx_assert(&sched_lock, MA_OWNED);
437 	switch (PRI_BASE(kg->kg_pri_class)) {
438 	case PRI_REALTIME:
439 		rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME;
440 		break;
441 	case PRI_TIMESHARE:
442 		rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE;
443 		break;
444 	case PRI_IDLE:
445 		rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE;
446 		break;
447 	default:
448 		break;
449 	}
450 	rtp->type = kg->kg_pri_class;
451 }
452 
453 #if defined(COMPAT_43)
454 #ifndef _SYS_SYSPROTO_H_
455 struct osetrlimit_args {
456 	u_int	which;
457 	struct	orlimit *rlp;
458 };
459 #endif
460 /*
461  * MPSAFE
462  */
463 int
464 osetrlimit(td, uap)
465 	struct thread *td;
466 	register struct osetrlimit_args *uap;
467 {
468 	struct orlimit olim;
469 	struct rlimit lim;
470 	int error;
471 
472 	if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
473 		return (error);
474 	lim.rlim_cur = olim.rlim_cur;
475 	lim.rlim_max = olim.rlim_max;
476 	error = kern_setrlimit(td, uap->which, &lim);
477 	return (error);
478 }
479 
480 #ifndef _SYS_SYSPROTO_H_
481 struct ogetrlimit_args {
482 	u_int	which;
483 	struct	orlimit *rlp;
484 };
485 #endif
486 /*
487  * MPSAFE
488  */
489 int
490 ogetrlimit(td, uap)
491 	struct thread *td;
492 	register struct ogetrlimit_args *uap;
493 {
494 	struct orlimit olim;
495 	struct rlimit rl;
496 	struct proc *p;
497 	int error;
498 
499 	if (uap->which >= RLIM_NLIMITS)
500 		return (EINVAL);
501 	p = td->td_proc;
502 	PROC_LOCK(p);
503 	lim_rlimit(p, uap->which, &rl);
504 	PROC_UNLOCK(p);
505 
506 	/*
507 	 * XXX would be more correct to convert only RLIM_INFINITY to the
508 	 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
509 	 * values.  Most 64->32 and 32->16 conversions, including not
510 	 * unimportant ones of uids are even more broken than what we
511 	 * do here (they blindly truncate).  We don't do this correctly
512 	 * here since we have little experience with EOVERFLOW yet.
513 	 * Elsewhere, getuid() can't fail...
514 	 */
515 	olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
516 	olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
517 	error = copyout(&olim, uap->rlp, sizeof(olim));
518 	return (error);
519 }
520 #endif /* COMPAT_43 */
521 
522 #ifndef _SYS_SYSPROTO_H_
523 struct __setrlimit_args {
524 	u_int	which;
525 	struct	rlimit *rlp;
526 };
527 #endif
528 /*
529  * MPSAFE
530  */
531 int
532 setrlimit(td, uap)
533 	struct thread *td;
534 	register struct __setrlimit_args *uap;
535 {
536 	struct rlimit alim;
537 	int error;
538 
539 	if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
540 		return (error);
541 	error = kern_setrlimit(td, uap->which, &alim);
542 	return (error);
543 }
544 
545 int
546 kern_setrlimit(td, which, limp)
547 	struct thread *td;
548 	u_int which;
549 	struct rlimit *limp;
550 {
551 	struct plimit *newlim, *oldlim;
552 	struct proc *p;
553 	register struct rlimit *alimp;
554 	rlim_t oldssiz;
555 	int error;
556 
557 	if (which >= RLIM_NLIMITS)
558 		return (EINVAL);
559 
560 	/*
561 	 * Preserve historical bugs by treating negative limits as unsigned.
562 	 */
563 	if (limp->rlim_cur < 0)
564 		limp->rlim_cur = RLIM_INFINITY;
565 	if (limp->rlim_max < 0)
566 		limp->rlim_max = RLIM_INFINITY;
567 
568 	oldssiz = 0;
569 	p = td->td_proc;
570 	newlim = lim_alloc();
571 	PROC_LOCK(p);
572 	oldlim = p->p_limit;
573 	alimp = &oldlim->pl_rlimit[which];
574 	if (limp->rlim_cur > alimp->rlim_max ||
575 	    limp->rlim_max > alimp->rlim_max)
576 		if ((error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL))) {
577 			PROC_UNLOCK(p);
578 			lim_free(newlim);
579 			return (error);
580 		}
581 	if (limp->rlim_cur > limp->rlim_max)
582 		limp->rlim_cur = limp->rlim_max;
583 	lim_copy(newlim, oldlim);
584 	alimp = &newlim->pl_rlimit[which];
585 
586 	switch (which) {
587 
588 	case RLIMIT_CPU:
589 		mtx_lock_spin(&sched_lock);
590 		p->p_cpulimit = limp->rlim_cur;
591 		mtx_unlock_spin(&sched_lock);
592 		break;
593 	case RLIMIT_DATA:
594 		if (limp->rlim_cur > maxdsiz)
595 			limp->rlim_cur = maxdsiz;
596 		if (limp->rlim_max > maxdsiz)
597 			limp->rlim_max = maxdsiz;
598 		break;
599 
600 	case RLIMIT_STACK:
601 		if (limp->rlim_cur > maxssiz)
602 			limp->rlim_cur = maxssiz;
603 		if (limp->rlim_max > maxssiz)
604 			limp->rlim_max = maxssiz;
605 		oldssiz = alimp->rlim_cur;
606 		break;
607 
608 	case RLIMIT_NOFILE:
609 		if (limp->rlim_cur > maxfilesperproc)
610 			limp->rlim_cur = maxfilesperproc;
611 		if (limp->rlim_max > maxfilesperproc)
612 			limp->rlim_max = maxfilesperproc;
613 		break;
614 
615 	case RLIMIT_NPROC:
616 		if (limp->rlim_cur > maxprocperuid)
617 			limp->rlim_cur = maxprocperuid;
618 		if (limp->rlim_max > maxprocperuid)
619 			limp->rlim_max = maxprocperuid;
620 		if (limp->rlim_cur < 1)
621 			limp->rlim_cur = 1;
622 		if (limp->rlim_max < 1)
623 			limp->rlim_max = 1;
624 		break;
625 	}
626 	*alimp = *limp;
627 	p->p_limit = newlim;
628 	PROC_UNLOCK(p);
629 	lim_free(oldlim);
630 
631 	if (which == RLIMIT_STACK) {
632 		/*
633 		 * Stack is allocated to the max at exec time with only
634 		 * "rlim_cur" bytes accessible.  If stack limit is going
635 		 * up make more accessible, if going down make inaccessible.
636 		 */
637 		if (limp->rlim_cur != oldssiz) {
638 			vm_offset_t addr;
639 			vm_size_t size;
640 			vm_prot_t prot;
641 
642 			if (limp->rlim_cur > oldssiz) {
643 				prot = p->p_sysent->sv_stackprot;
644 				size = limp->rlim_cur - oldssiz;
645 				addr = p->p_sysent->sv_usrstack -
646 				    limp->rlim_cur;
647 			} else {
648 				prot = VM_PROT_NONE;
649 				size = oldssiz - limp->rlim_cur;
650 				addr = p->p_sysent->sv_usrstack - oldssiz;
651 			}
652 			addr = trunc_page(addr);
653 			size = round_page(size);
654 			(void)vm_map_protect(&p->p_vmspace->vm_map,
655 			    addr, addr + size, prot, FALSE);
656 		}
657 	}
658 
659 	/*
660 	 * The data size limit may need to be changed to a value
661 	 * that makes sense for the 32 bit binary.
662 	 */
663 	if (p->p_sysent->sv_fixlimits != NULL)
664 		p->p_sysent->sv_fixlimits(p);
665 	return (0);
666 }
667 
668 #ifndef _SYS_SYSPROTO_H_
669 struct __getrlimit_args {
670 	u_int	which;
671 	struct	rlimit *rlp;
672 };
673 #endif
674 /*
675  * MPSAFE
676  */
677 /* ARGSUSED */
678 int
679 getrlimit(td, uap)
680 	struct thread *td;
681 	register struct __getrlimit_args *uap;
682 {
683 	struct rlimit rlim;
684 	struct proc *p;
685 	int error;
686 
687 	if (uap->which >= RLIM_NLIMITS)
688 		return (EINVAL);
689 	p = td->td_proc;
690 	PROC_LOCK(p);
691 	lim_rlimit(p, uap->which, &rlim);
692 	PROC_UNLOCK(p);
693 	error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
694 	return (error);
695 }
696 
697 /*
698  * Transform the running time and tick information in proc p into user,
699  * system, and interrupt time usage.
700  */
701 void
702 calcru(p, up, sp)
703 	struct proc *p;
704 	struct timeval *up;
705 	struct timeval *sp;
706 {
707 	struct bintime bt;
708 	struct rusage_ext rux;
709 	struct thread *td;
710 	int bt_valid;
711 
712 	PROC_LOCK_ASSERT(p, MA_OWNED);
713 	mtx_assert(&sched_lock, MA_NOTOWNED);
714 	bt_valid = 0;
715 	mtx_lock_spin(&sched_lock);
716 	rux = p->p_rux;
717 	FOREACH_THREAD_IN_PROC(p, td) {
718 		if (TD_IS_RUNNING(td)) {
719 			/*
720 			 * Adjust for the current time slice.  This is
721 			 * actually fairly important since the error here is
722 			 * on the order of a time quantum which is much
723 			 * greater than the precision of binuptime().
724 			 */
725 			KASSERT(td->td_oncpu != NOCPU,
726 			    ("%s: running thread has no CPU", __func__));
727 			if (!bt_valid) {
728 				binuptime(&bt);
729 				bt_valid = 1;
730 			}
731 			bintime_add(&rux.rux_runtime, &bt);
732 			bintime_sub(&rux.rux_runtime,
733 			    &pcpu_find(td->td_oncpu)->pc_switchtime);
734 		}
735 	}
736 	mtx_unlock_spin(&sched_lock);
737 	calcru1(p, &rux, up, sp);
738 	p->p_rux.rux_uu = rux.rux_uu;
739 	p->p_rux.rux_su = rux.rux_su;
740 	p->p_rux.rux_iu = rux.rux_iu;
741 }
742 
743 void
744 calccru(p, up, sp)
745 	struct proc *p;
746 	struct timeval *up;
747 	struct timeval *sp;
748 {
749 
750 	PROC_LOCK_ASSERT(p, MA_OWNED);
751 	calcru1(p, &p->p_crux, up, sp);
752 }
753 
754 static void
755 calcru1(p, ruxp, up, sp)
756 	struct proc *p;
757 	struct rusage_ext *ruxp;
758 	struct timeval *up;
759 	struct timeval *sp;
760 {
761 	struct timeval tv;
762 	/* {user, system, interrupt, total} {ticks, usec}; previous tu: */
763 	u_int64_t ut, uu, st, su, it, iu, tt, tu, ptu;
764 
765 	ut = ruxp->rux_uticks;
766 	st = ruxp->rux_sticks;
767 	it = ruxp->rux_iticks;
768 	tt = ut + st + it;
769 	if (tt == 0) {
770 		st = 1;
771 		tt = 1;
772 	}
773 	bintime2timeval(&ruxp->rux_runtime, &tv);
774 	tu = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
775 	ptu = ruxp->rux_uu + ruxp->rux_su + ruxp->rux_iu;
776 	if (tu < ptu) {
777 		printf(
778 "calcru: runtime went backwards from %ju usec to %ju usec for pid %d (%s)\n",
779 		    (uintmax_t)ptu, (uintmax_t)tu, p->p_pid, p->p_comm);
780 		tu = ptu;
781 	}
782 	if ((int64_t)tu < 0) {
783 		printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
784 		    (intmax_t)tu, p->p_pid, p->p_comm);
785 		tu = ptu;
786 	}
787 
788 	/* Subdivide tu. */
789 	uu = (tu * ut) / tt;
790 	su = (tu * st) / tt;
791 	iu = tu - uu - su;
792 
793 	/* Enforce monotonicity. */
794 	if (uu < ruxp->rux_uu || su < ruxp->rux_su || iu < ruxp->rux_iu) {
795 		if (uu < ruxp->rux_uu)
796 			uu = ruxp->rux_uu;
797 		else if (uu + ruxp->rux_su + ruxp->rux_iu > tu)
798 			uu = tu - ruxp->rux_su - ruxp->rux_iu;
799 		if (st == 0)
800 			su = ruxp->rux_su;
801 		else {
802 			su = ((tu - uu) * st) / (st + it);
803 			if (su < ruxp->rux_su)
804 				su = ruxp->rux_su;
805 			else if (uu + su + ruxp->rux_iu > tu)
806 				su = tu - uu - ruxp->rux_iu;
807 		}
808 		KASSERT(uu + su + ruxp->rux_iu <= tu,
809 		    ("calcru: monotonisation botch 1"));
810 		iu = tu - uu - su;
811 		KASSERT(iu >= ruxp->rux_iu,
812 		    ("calcru: monotonisation botch 2"));
813 	}
814 	ruxp->rux_uu = uu;
815 	ruxp->rux_su = su;
816 	ruxp->rux_iu = iu;
817 
818 	up->tv_sec = uu / 1000000;
819 	up->tv_usec = uu % 1000000;
820 	sp->tv_sec = su / 1000000;
821 	sp->tv_usec = su % 1000000;
822 }
823 
824 #ifndef _SYS_SYSPROTO_H_
825 struct getrusage_args {
826 	int	who;
827 	struct	rusage *rusage;
828 };
829 #endif
830 /*
831  * MPSAFE
832  */
833 int
834 getrusage(td, uap)
835 	register struct thread *td;
836 	register struct getrusage_args *uap;
837 {
838 	struct rusage ru;
839 	int error;
840 
841 	error = kern_getrusage(td, uap->who, &ru);
842 	if (error == 0)
843 		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
844 	return (error);
845 }
846 
847 int
848 kern_getrusage(td, who, rup)
849 	struct thread *td;
850 	int who;
851 	struct rusage *rup;
852 {
853 	struct proc *p;
854 
855 	p = td->td_proc;
856 	PROC_LOCK(p);
857 	switch (who) {
858 
859 	case RUSAGE_SELF:
860 		*rup = p->p_stats->p_ru;
861 		calcru(p, &rup->ru_utime, &rup->ru_stime);
862 		break;
863 
864 	case RUSAGE_CHILDREN:
865 		*rup = p->p_stats->p_cru;
866 		calccru(p, &rup->ru_utime, &rup->ru_stime);
867 		break;
868 
869 	default:
870 		PROC_UNLOCK(p);
871 		return (EINVAL);
872 	}
873 	PROC_UNLOCK(p);
874 	return (0);
875 }
876 
877 void
878 ruadd(ru, rux, ru2, rux2)
879 	struct rusage *ru;
880 	struct rusage_ext *rux;
881 	struct rusage *ru2;
882 	struct rusage_ext *rux2;
883 {
884 	register long *ip, *ip2;
885 	register int i;
886 
887 	bintime_add(&rux->rux_runtime, &rux2->rux_runtime);
888 	rux->rux_uticks += rux2->rux_uticks;
889 	rux->rux_sticks += rux2->rux_sticks;
890 	rux->rux_iticks += rux2->rux_iticks;
891 	rux->rux_uu += rux2->rux_uu;
892 	rux->rux_su += rux2->rux_su;
893 	rux->rux_iu += rux2->rux_iu;
894 	if (ru->ru_maxrss < ru2->ru_maxrss)
895 		ru->ru_maxrss = ru2->ru_maxrss;
896 	ip = &ru->ru_first;
897 	ip2 = &ru2->ru_first;
898 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
899 		*ip++ += *ip2++;
900 }
901 
902 /*
903  * Allocate a new resource limits structure and initialize its
904  * reference count and mutex pointer.
905  */
906 struct plimit *
907 lim_alloc()
908 {
909 	struct plimit *limp;
910 
911 	limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
912 	refcount_init(&limp->pl_refcnt, 1);
913 	return (limp);
914 }
915 
916 struct plimit *
917 lim_hold(limp)
918 	struct plimit *limp;
919 {
920 
921 	refcount_acquire(&limp->pl_refcnt);
922 	return (limp);
923 }
924 
925 void
926 lim_free(limp)
927 	struct plimit *limp;
928 {
929 
930 	KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
931 	if (refcount_release(&limp->pl_refcnt))
932 		free((void *)limp, M_PLIMIT);
933 }
934 
935 /*
936  * Make a copy of the plimit structure.
937  * We share these structures copy-on-write after fork.
938  */
939 void
940 lim_copy(dst, src)
941 	struct plimit *dst, *src;
942 {
943 
944 	KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
945 	bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
946 }
947 
948 /*
949  * Return the hard limit for a particular system resource.  The
950  * which parameter specifies the index into the rlimit array.
951  */
952 rlim_t
953 lim_max(struct proc *p, int which)
954 {
955 	struct rlimit rl;
956 
957 	lim_rlimit(p, which, &rl);
958 	return (rl.rlim_max);
959 }
960 
961 /*
962  * Return the current (soft) limit for a particular system resource.
963  * The which parameter which specifies the index into the rlimit array
964  */
965 rlim_t
966 lim_cur(struct proc *p, int which)
967 {
968 	struct rlimit rl;
969 
970 	lim_rlimit(p, which, &rl);
971 	return (rl.rlim_cur);
972 }
973 
974 /*
975  * Return a copy of the entire rlimit structure for the system limit
976  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
977  */
978 void
979 lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
980 {
981 
982 	PROC_LOCK_ASSERT(p, MA_OWNED);
983 	KASSERT(which >= 0 && which < RLIM_NLIMITS,
984 	    ("request for invalid resource limit"));
985 	*rlp = p->p_limit->pl_rlimit[which];
986 }
987 
988 /*
989  * Find the uidinfo structure for a uid.  This structure is used to
990  * track the total resource consumption (process count, socket buffer
991  * size, etc.) for the uid and impose limits.
992  */
993 void
994 uihashinit()
995 {
996 
997 	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
998 	mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF);
999 }
1000 
1001 /*
1002  * Look up a uidinfo struct for the parameter uid.
1003  * uihashtbl_mtx must be locked.
1004  */
1005 static struct uidinfo *
1006 uilookup(uid)
1007 	uid_t uid;
1008 {
1009 	struct uihashhead *uipp;
1010 	struct uidinfo *uip;
1011 
1012 	mtx_assert(&uihashtbl_mtx, MA_OWNED);
1013 	uipp = UIHASH(uid);
1014 	LIST_FOREACH(uip, uipp, ui_hash)
1015 		if (uip->ui_uid == uid)
1016 			break;
1017 
1018 	return (uip);
1019 }
1020 
1021 /*
1022  * Find or allocate a struct uidinfo for a particular uid.
1023  * Increase refcount on uidinfo struct returned.
1024  * uifree() should be called on a struct uidinfo when released.
1025  */
1026 struct uidinfo *
1027 uifind(uid)
1028 	uid_t uid;
1029 {
1030 	struct uidinfo *old_uip, *uip;
1031 
1032 	mtx_lock(&uihashtbl_mtx);
1033 	uip = uilookup(uid);
1034 	if (uip == NULL) {
1035 		mtx_unlock(&uihashtbl_mtx);
1036 		uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
1037 		mtx_lock(&uihashtbl_mtx);
1038 		/*
1039 		 * There's a chance someone created our uidinfo while we
1040 		 * were in malloc and not holding the lock, so we have to
1041 		 * make sure we don't insert a duplicate uidinfo.
1042 		 */
1043 		if ((old_uip = uilookup(uid)) != NULL) {
1044 			/* Someone else beat us to it. */
1045 			free(uip, M_UIDINFO);
1046 			uip = old_uip;
1047 		} else {
1048 			uip->ui_mtxp = mtx_pool_alloc(mtxpool_sleep);
1049 			uip->ui_uid = uid;
1050 			LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
1051 		}
1052 	}
1053 	uihold(uip);
1054 	mtx_unlock(&uihashtbl_mtx);
1055 	return (uip);
1056 }
1057 
1058 /*
1059  * Place another refcount on a uidinfo struct.
1060  */
1061 void
1062 uihold(uip)
1063 	struct uidinfo *uip;
1064 {
1065 
1066 	UIDINFO_LOCK(uip);
1067 	uip->ui_ref++;
1068 	UIDINFO_UNLOCK(uip);
1069 }
1070 
1071 /*-
1072  * Since uidinfo structs have a long lifetime, we use an
1073  * opportunistic refcounting scheme to avoid locking the lookup hash
1074  * for each release.
1075  *
1076  * If the refcount hits 0, we need to free the structure,
1077  * which means we need to lock the hash.
1078  * Optimal case:
1079  *   After locking the struct and lowering the refcount, if we find
1080  *   that we don't need to free, simply unlock and return.
1081  * Suboptimal case:
1082  *   If refcount lowering results in need to free, bump the count
1083  *   back up, loose the lock and aquire the locks in the proper
1084  *   order to try again.
1085  */
1086 void
1087 uifree(uip)
1088 	struct uidinfo *uip;
1089 {
1090 
1091 	/* Prepare for optimal case. */
1092 	UIDINFO_LOCK(uip);
1093 
1094 	if (--uip->ui_ref != 0) {
1095 		UIDINFO_UNLOCK(uip);
1096 		return;
1097 	}
1098 
1099 	/* Prepare for suboptimal case. */
1100 	uip->ui_ref++;
1101 	UIDINFO_UNLOCK(uip);
1102 	mtx_lock(&uihashtbl_mtx);
1103 	UIDINFO_LOCK(uip);
1104 
1105 	/*
1106 	 * We must subtract one from the count again because we backed out
1107 	 * our initial subtraction before dropping the lock.
1108 	 * Since another thread may have added a reference after we dropped the
1109 	 * initial lock we have to test for zero again.
1110 	 */
1111 	if (--uip->ui_ref == 0) {
1112 		LIST_REMOVE(uip, ui_hash);
1113 		mtx_unlock(&uihashtbl_mtx);
1114 		if (uip->ui_sbsize != 0)
1115 			printf("freeing uidinfo: uid = %d, sbsize = %jd\n",
1116 			    uip->ui_uid, (intmax_t)uip->ui_sbsize);
1117 		if (uip->ui_proccnt != 0)
1118 			printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1119 			    uip->ui_uid, uip->ui_proccnt);
1120 		UIDINFO_UNLOCK(uip);
1121 		FREE(uip, M_UIDINFO);
1122 		return;
1123 	}
1124 
1125 	mtx_unlock(&uihashtbl_mtx);
1126 	UIDINFO_UNLOCK(uip);
1127 }
1128 
1129 /*
1130  * Change the count associated with number of processes
1131  * a given user is using.  When 'max' is 0, don't enforce a limit
1132  */
1133 int
1134 chgproccnt(uip, diff, max)
1135 	struct	uidinfo	*uip;
1136 	int	diff;
1137 	int	max;
1138 {
1139 
1140 	UIDINFO_LOCK(uip);
1141 	/* Don't allow them to exceed max, but allow subtraction. */
1142 	if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) {
1143 		UIDINFO_UNLOCK(uip);
1144 		return (0);
1145 	}
1146 	uip->ui_proccnt += diff;
1147 	if (uip->ui_proccnt < 0)
1148 		printf("negative proccnt for uid = %d\n", uip->ui_uid);
1149 	UIDINFO_UNLOCK(uip);
1150 	return (1);
1151 }
1152 
1153 /*
1154  * Change the total socket buffer size a user has used.
1155  */
1156 int
1157 chgsbsize(uip, hiwat, to, max)
1158 	struct	uidinfo	*uip;
1159 	u_int  *hiwat;
1160 	u_int	to;
1161 	rlim_t	max;
1162 {
1163 	rlim_t new;
1164 
1165 	UIDINFO_LOCK(uip);
1166 	new = uip->ui_sbsize + to - *hiwat;
1167 	/* Don't allow them to exceed max, but allow subtraction. */
1168 	if (to > *hiwat && new > max) {
1169 		UIDINFO_UNLOCK(uip);
1170 		return (0);
1171 	}
1172 	uip->ui_sbsize = new;
1173 	UIDINFO_UNLOCK(uip);
1174 	*hiwat = to;
1175 	if (new < 0)
1176 		printf("negative sbsize for uid = %d\n", uip->ui_uid);
1177 	return (1);
1178 }
1179