1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_compat.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/sysproto.h> 45 #include <sys/file.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mutex.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/refcount.h> 53 #include <sys/resourcevar.h> 54 #include <sys/sched.h> 55 #include <sys/sx.h> 56 #include <sys/syscallsubr.h> 57 #include <sys/sysent.h> 58 #include <sys/time.h> 59 60 #include <vm/vm.h> 61 #include <vm/vm_param.h> 62 #include <vm/pmap.h> 63 #include <vm/vm_map.h> 64 65 66 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures"); 67 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures"); 68 #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) 69 static struct mtx uihashtbl_mtx; 70 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl; 71 static u_long uihash; /* size of hash table - 1 */ 72 73 static void calcru1(struct proc *p, struct rusage_ext *ruxp, 74 struct timeval *up, struct timeval *sp); 75 static int donice(struct thread *td, struct proc *chgp, int n); 76 static struct uidinfo *uilookup(uid_t uid); 77 78 /* 79 * Resource controls and accounting. 80 */ 81 82 #ifndef _SYS_SYSPROTO_H_ 83 struct getpriority_args { 84 int which; 85 int who; 86 }; 87 #endif 88 /* 89 * MPSAFE 90 */ 91 int 92 getpriority(td, uap) 93 struct thread *td; 94 register struct getpriority_args *uap; 95 { 96 struct proc *p; 97 struct pgrp *pg; 98 int error, low; 99 100 error = 0; 101 low = PRIO_MAX + 1; 102 switch (uap->which) { 103 104 case PRIO_PROCESS: 105 if (uap->who == 0) 106 low = td->td_proc->p_nice; 107 else { 108 p = pfind(uap->who); 109 if (p == NULL) 110 break; 111 if (p_cansee(td, p) == 0) 112 low = p->p_nice; 113 PROC_UNLOCK(p); 114 } 115 break; 116 117 case PRIO_PGRP: 118 sx_slock(&proctree_lock); 119 if (uap->who == 0) { 120 pg = td->td_proc->p_pgrp; 121 PGRP_LOCK(pg); 122 } else { 123 pg = pgfind(uap->who); 124 if (pg == NULL) { 125 sx_sunlock(&proctree_lock); 126 break; 127 } 128 } 129 sx_sunlock(&proctree_lock); 130 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 131 PROC_LOCK(p); 132 if (!p_cansee(td, p)) { 133 if (p->p_nice < low) 134 low = p->p_nice; 135 } 136 PROC_UNLOCK(p); 137 } 138 PGRP_UNLOCK(pg); 139 break; 140 141 case PRIO_USER: 142 if (uap->who == 0) 143 uap->who = td->td_ucred->cr_uid; 144 sx_slock(&allproc_lock); 145 LIST_FOREACH(p, &allproc, p_list) { 146 PROC_LOCK(p); 147 if (!p_cansee(td, p) && 148 p->p_ucred->cr_uid == uap->who) { 149 if (p->p_nice < low) 150 low = p->p_nice; 151 } 152 PROC_UNLOCK(p); 153 } 154 sx_sunlock(&allproc_lock); 155 break; 156 157 default: 158 error = EINVAL; 159 break; 160 } 161 if (low == PRIO_MAX + 1 && error == 0) 162 error = ESRCH; 163 td->td_retval[0] = low; 164 return (error); 165 } 166 167 #ifndef _SYS_SYSPROTO_H_ 168 struct setpriority_args { 169 int which; 170 int who; 171 int prio; 172 }; 173 #endif 174 /* 175 * MPSAFE 176 */ 177 int 178 setpriority(td, uap) 179 struct thread *td; 180 struct setpriority_args *uap; 181 { 182 struct proc *curp, *p; 183 struct pgrp *pg; 184 int found = 0, error = 0; 185 186 curp = td->td_proc; 187 switch (uap->which) { 188 case PRIO_PROCESS: 189 if (uap->who == 0) { 190 PROC_LOCK(curp); 191 error = donice(td, curp, uap->prio); 192 PROC_UNLOCK(curp); 193 } else { 194 p = pfind(uap->who); 195 if (p == 0) 196 break; 197 if (p_cansee(td, p) == 0) 198 error = donice(td, p, uap->prio); 199 PROC_UNLOCK(p); 200 } 201 found++; 202 break; 203 204 case PRIO_PGRP: 205 sx_slock(&proctree_lock); 206 if (uap->who == 0) { 207 pg = curp->p_pgrp; 208 PGRP_LOCK(pg); 209 } else { 210 pg = pgfind(uap->who); 211 if (pg == NULL) { 212 sx_sunlock(&proctree_lock); 213 break; 214 } 215 } 216 sx_sunlock(&proctree_lock); 217 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 218 PROC_LOCK(p); 219 if (!p_cansee(td, p)) { 220 error = donice(td, p, uap->prio); 221 found++; 222 } 223 PROC_UNLOCK(p); 224 } 225 PGRP_UNLOCK(pg); 226 break; 227 228 case PRIO_USER: 229 if (uap->who == 0) 230 uap->who = td->td_ucred->cr_uid; 231 sx_slock(&allproc_lock); 232 FOREACH_PROC_IN_SYSTEM(p) { 233 PROC_LOCK(p); 234 if (p->p_ucred->cr_uid == uap->who && 235 !p_cansee(td, p)) { 236 error = donice(td, p, uap->prio); 237 found++; 238 } 239 PROC_UNLOCK(p); 240 } 241 sx_sunlock(&allproc_lock); 242 break; 243 244 default: 245 error = EINVAL; 246 break; 247 } 248 if (found == 0 && error == 0) 249 error = ESRCH; 250 return (error); 251 } 252 253 /* 254 * Set "nice" for a (whole) process. 255 */ 256 static int 257 donice(struct thread *td, struct proc *p, int n) 258 { 259 int error; 260 261 PROC_LOCK_ASSERT(p, MA_OWNED); 262 if ((error = p_cansched(td, p))) 263 return (error); 264 if (n > PRIO_MAX) 265 n = PRIO_MAX; 266 if (n < PRIO_MIN) 267 n = PRIO_MIN; 268 if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0) 269 return (EACCES); 270 mtx_lock_spin(&sched_lock); 271 sched_nice(p, n); 272 mtx_unlock_spin(&sched_lock); 273 return (0); 274 } 275 276 /* 277 * Set realtime priority for LWP. 278 * 279 * MPSAFE 280 */ 281 #ifndef _SYS_SYSPROTO_H_ 282 struct rtprio_thread_args { 283 int function; 284 lwpid_t lwpid; 285 struct rtprio *rtp; 286 }; 287 #endif 288 289 int 290 rtprio_thread(struct thread *td, struct rtprio_thread_args *uap) 291 { 292 struct proc *curp; 293 struct proc *p; 294 struct rtprio rtp; 295 struct thread *td1; 296 int cierror, error; 297 298 /* Perform copyin before acquiring locks if needed. */ 299 if (uap->function == RTP_SET) 300 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 301 else 302 cierror = 0; 303 304 curp = td->td_proc; 305 /* 306 * Though lwpid is unique, only current process is supported 307 * since there is no efficient way to look up a LWP yet. 308 */ 309 p = curp; 310 PROC_LOCK(p); 311 312 switch (uap->function) { 313 case RTP_LOOKUP: 314 if ((error = p_cansee(td, p))) 315 break; 316 mtx_lock_spin(&sched_lock); 317 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) 318 td1 = td; 319 else 320 td1 = thread_find(p, uap->lwpid); 321 if (td1 != NULL) 322 #ifdef KSE 323 pri_to_rtp(td1->td_ksegrp, &rtp); 324 #else 325 pri_to_rtp(td1, &rtp); 326 #endif 327 else 328 error = ESRCH; 329 mtx_unlock_spin(&sched_lock); 330 PROC_UNLOCK(p); 331 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 332 case RTP_SET: 333 if ((error = p_cansched(td, p)) || (error = cierror)) 334 break; 335 336 /* Disallow setting rtprio in most cases if not superuser. */ 337 if (suser(td) != 0) { 338 /* can't set realtime priority */ 339 /* 340 * Realtime priority has to be restricted for reasons which should be 341 * obvious. However, for idle priority, there is a potential for 342 * system deadlock if an idleprio process gains a lock on a resource 343 * that other processes need (and the idleprio process can't run 344 * due to a CPU-bound normal process). Fix me! XXX 345 */ 346 #if 0 347 if (RTP_PRIO_IS_REALTIME(rtp.type)) { 348 #else 349 if (rtp.type != RTP_PRIO_NORMAL) { 350 #endif 351 error = EPERM; 352 break; 353 } 354 } 355 356 mtx_lock_spin(&sched_lock); 357 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) 358 td1 = td; 359 else 360 td1 = thread_find(p, uap->lwpid); 361 if (td1 != NULL) 362 #ifdef KSE 363 error = rtp_to_pri(&rtp, td1->td_ksegrp); 364 #else 365 error = rtp_to_pri(&rtp, td1); 366 #endif 367 else 368 error = ESRCH; 369 mtx_unlock_spin(&sched_lock); 370 break; 371 default: 372 error = EINVAL; 373 break; 374 } 375 PROC_UNLOCK(p); 376 return (error); 377 } 378 379 /* 380 * Set realtime priority. 381 * 382 * MPSAFE 383 */ 384 #ifndef _SYS_SYSPROTO_H_ 385 struct rtprio_args { 386 int function; 387 pid_t pid; 388 struct rtprio *rtp; 389 }; 390 #endif 391 392 int 393 rtprio(td, uap) 394 struct thread *td; /* curthread */ 395 register struct rtprio_args *uap; 396 { 397 struct proc *curp; 398 struct proc *p; 399 #ifdef KSE 400 struct ksegrp *kg; 401 #else 402 struct thread *tdp; 403 #endif 404 struct rtprio rtp; 405 int cierror, error; 406 407 /* Perform copyin before acquiring locks if needed. */ 408 if (uap->function == RTP_SET) 409 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio)); 410 else 411 cierror = 0; 412 413 curp = td->td_proc; 414 if (uap->pid == 0) { 415 p = curp; 416 PROC_LOCK(p); 417 } else { 418 p = pfind(uap->pid); 419 if (p == NULL) 420 return (ESRCH); 421 } 422 423 switch (uap->function) { 424 case RTP_LOOKUP: 425 if ((error = p_cansee(td, p))) 426 break; 427 mtx_lock_spin(&sched_lock); 428 /* 429 * Return OUR priority if no pid specified, 430 * or if one is, report the highest priority 431 * in the process. There isn't much more you can do as 432 * there is only room to return a single priority. 433 * XXXKSE: maybe need a new interface to report 434 * priorities of multiple system scope threads. 435 * Note: specifying our own pid is not the same 436 * as leaving it zero. 437 */ 438 if (uap->pid == 0) { 439 #ifdef KSE 440 pri_to_rtp(td->td_ksegrp, &rtp); 441 #else 442 pri_to_rtp(td, &rtp); 443 #endif 444 } else { 445 struct rtprio rtp2; 446 447 rtp.type = RTP_PRIO_IDLE; 448 rtp.prio = RTP_PRIO_MAX; 449 #ifdef KSE 450 FOREACH_KSEGRP_IN_PROC(p, kg) { 451 pri_to_rtp(kg, &rtp2); 452 #else 453 FOREACH_THREAD_IN_PROC(p, tdp) { 454 pri_to_rtp(tdp, &rtp2); 455 #endif 456 if (rtp2.type < rtp.type || 457 (rtp2.type == rtp.type && 458 rtp2.prio < rtp.prio)) { 459 rtp.type = rtp2.type; 460 rtp.prio = rtp2.prio; 461 } 462 } 463 } 464 mtx_unlock_spin(&sched_lock); 465 PROC_UNLOCK(p); 466 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio))); 467 case RTP_SET: 468 if ((error = p_cansched(td, p)) || (error = cierror)) 469 break; 470 471 /* Disallow setting rtprio in most cases if not superuser. */ 472 if (priv_check(td, PRIV_SCHED_RTPRIO) != 0) { 473 /* can't set someone else's */ 474 if (uap->pid) { 475 error = EPERM; 476 break; 477 } 478 /* can't set realtime priority */ 479 /* 480 * Realtime priority has to be restricted for reasons which should be 481 * obvious. However, for idle priority, there is a potential for 482 * system deadlock if an idleprio process gains a lock on a resource 483 * that other processes need (and the idleprio process can't run 484 * due to a CPU-bound normal process). Fix me! XXX 485 */ 486 #if 0 487 if (RTP_PRIO_IS_REALTIME(rtp.type)) { 488 #else 489 if (rtp.type != RTP_PRIO_NORMAL) { 490 #endif 491 error = EPERM; 492 break; 493 } 494 } 495 496 #ifdef KSE 497 /* 498 * If we are setting our own priority, set just our 499 * KSEGRP but if we are doing another process, 500 * do all the groups on that process. If we 501 * specify our own pid we do the latter. 502 */ 503 #else 504 /* 505 * If we are setting our own priority, set just our 506 * thread but if we are doing another process, 507 * do all the threads on that process. If we 508 * specify our own pid we do the latter. 509 */ 510 #endif 511 mtx_lock_spin(&sched_lock); 512 if (uap->pid == 0) { 513 #ifdef KSE 514 error = rtp_to_pri(&rtp, td->td_ksegrp); 515 #else 516 error = rtp_to_pri(&rtp, td); 517 #endif 518 } else { 519 #ifdef KSE 520 FOREACH_KSEGRP_IN_PROC(p, kg) { 521 if ((error = rtp_to_pri(&rtp, kg)) != 0) { 522 break; 523 } 524 #else 525 FOREACH_THREAD_IN_PROC(p, td) { 526 if ((error = rtp_to_pri(&rtp, td)) != 0) 527 break; 528 #endif 529 } 530 } 531 mtx_unlock_spin(&sched_lock); 532 break; 533 default: 534 error = EINVAL; 535 break; 536 } 537 PROC_UNLOCK(p); 538 return (error); 539 } 540 541 int 542 #ifdef KSE 543 rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg) 544 #else 545 rtp_to_pri(struct rtprio *rtp, struct thread *td) 546 #endif 547 { 548 549 mtx_assert(&sched_lock, MA_OWNED); 550 if (rtp->prio > RTP_PRIO_MAX) 551 return (EINVAL); 552 switch (RTP_PRIO_BASE(rtp->type)) { 553 case RTP_PRIO_REALTIME: 554 #ifdef KSE 555 kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio; 556 #else 557 td->td_user_pri = PRI_MIN_REALTIME + rtp->prio; 558 #endif 559 break; 560 case RTP_PRIO_NORMAL: 561 #ifdef KSE 562 kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio; 563 #else 564 td->td_user_pri = PRI_MIN_TIMESHARE + rtp->prio; 565 #endif 566 break; 567 case RTP_PRIO_IDLE: 568 #ifdef KSE 569 kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio; 570 #else 571 td->td_user_pri = PRI_MIN_IDLE + rtp->prio; 572 #endif 573 break; 574 default: 575 return (EINVAL); 576 } 577 #ifdef KSE 578 sched_class(kg, rtp->type); 579 if (curthread->td_ksegrp == kg) { 580 sched_prio(curthread, kg->kg_user_pri); /* XXX dubious */ 581 } 582 #else 583 sched_class(td, rtp->type); /* XXX fix */ 584 if (curthread == td) 585 sched_prio(curthread, td->td_user_pri); /* XXX dubious */ 586 #endif 587 return (0); 588 } 589 590 void 591 #ifdef KSE 592 pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp) 593 #else 594 pri_to_rtp(struct thread *td, struct rtprio *rtp) 595 #endif 596 { 597 598 mtx_assert(&sched_lock, MA_OWNED); 599 #ifdef KSE 600 switch (PRI_BASE(kg->kg_pri_class)) { 601 #else 602 switch (PRI_BASE(td->td_pri_class)) { 603 #endif 604 case PRI_REALTIME: 605 #ifdef KSE 606 rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME; 607 #else 608 rtp->prio = td->td_user_pri - PRI_MIN_REALTIME; 609 #endif 610 break; 611 case PRI_TIMESHARE: 612 #ifdef KSE 613 rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE; 614 #else 615 rtp->prio = td->td_user_pri - PRI_MIN_TIMESHARE; 616 #endif 617 break; 618 case PRI_IDLE: 619 #ifdef KSE 620 rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE; 621 #else 622 rtp->prio = td->td_user_pri - PRI_MIN_IDLE; 623 #endif 624 break; 625 default: 626 break; 627 } 628 #ifdef KSE 629 rtp->type = kg->kg_pri_class; 630 #else 631 rtp->type = td->td_pri_class; 632 #endif 633 } 634 635 #if defined(COMPAT_43) 636 #ifndef _SYS_SYSPROTO_H_ 637 struct osetrlimit_args { 638 u_int which; 639 struct orlimit *rlp; 640 }; 641 #endif 642 /* 643 * MPSAFE 644 */ 645 int 646 osetrlimit(td, uap) 647 struct thread *td; 648 register struct osetrlimit_args *uap; 649 { 650 struct orlimit olim; 651 struct rlimit lim; 652 int error; 653 654 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit)))) 655 return (error); 656 lim.rlim_cur = olim.rlim_cur; 657 lim.rlim_max = olim.rlim_max; 658 error = kern_setrlimit(td, uap->which, &lim); 659 return (error); 660 } 661 662 #ifndef _SYS_SYSPROTO_H_ 663 struct ogetrlimit_args { 664 u_int which; 665 struct orlimit *rlp; 666 }; 667 #endif 668 /* 669 * MPSAFE 670 */ 671 int 672 ogetrlimit(td, uap) 673 struct thread *td; 674 register struct ogetrlimit_args *uap; 675 { 676 struct orlimit olim; 677 struct rlimit rl; 678 struct proc *p; 679 int error; 680 681 if (uap->which >= RLIM_NLIMITS) 682 return (EINVAL); 683 p = td->td_proc; 684 PROC_LOCK(p); 685 lim_rlimit(p, uap->which, &rl); 686 PROC_UNLOCK(p); 687 688 /* 689 * XXX would be more correct to convert only RLIM_INFINITY to the 690 * old RLIM_INFINITY and fail with EOVERFLOW for other larger 691 * values. Most 64->32 and 32->16 conversions, including not 692 * unimportant ones of uids are even more broken than what we 693 * do here (they blindly truncate). We don't do this correctly 694 * here since we have little experience with EOVERFLOW yet. 695 * Elsewhere, getuid() can't fail... 696 */ 697 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur; 698 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max; 699 error = copyout(&olim, uap->rlp, sizeof(olim)); 700 return (error); 701 } 702 #endif /* COMPAT_43 */ 703 704 #ifndef _SYS_SYSPROTO_H_ 705 struct __setrlimit_args { 706 u_int which; 707 struct rlimit *rlp; 708 }; 709 #endif 710 /* 711 * MPSAFE 712 */ 713 int 714 setrlimit(td, uap) 715 struct thread *td; 716 register struct __setrlimit_args *uap; 717 { 718 struct rlimit alim; 719 int error; 720 721 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit)))) 722 return (error); 723 error = kern_setrlimit(td, uap->which, &alim); 724 return (error); 725 } 726 727 int 728 kern_setrlimit(td, which, limp) 729 struct thread *td; 730 u_int which; 731 struct rlimit *limp; 732 { 733 struct plimit *newlim, *oldlim; 734 struct proc *p; 735 register struct rlimit *alimp; 736 rlim_t oldssiz; 737 int error; 738 739 if (which >= RLIM_NLIMITS) 740 return (EINVAL); 741 742 /* 743 * Preserve historical bugs by treating negative limits as unsigned. 744 */ 745 if (limp->rlim_cur < 0) 746 limp->rlim_cur = RLIM_INFINITY; 747 if (limp->rlim_max < 0) 748 limp->rlim_max = RLIM_INFINITY; 749 750 oldssiz = 0; 751 p = td->td_proc; 752 newlim = lim_alloc(); 753 PROC_LOCK(p); 754 oldlim = p->p_limit; 755 alimp = &oldlim->pl_rlimit[which]; 756 if (limp->rlim_cur > alimp->rlim_max || 757 limp->rlim_max > alimp->rlim_max) 758 if ((error = priv_check_cred(td->td_ucred, 759 PRIV_PROC_SETRLIMIT, SUSER_ALLOWJAIL))) { 760 PROC_UNLOCK(p); 761 lim_free(newlim); 762 return (error); 763 } 764 if (limp->rlim_cur > limp->rlim_max) 765 limp->rlim_cur = limp->rlim_max; 766 lim_copy(newlim, oldlim); 767 alimp = &newlim->pl_rlimit[which]; 768 769 switch (which) { 770 771 case RLIMIT_CPU: 772 mtx_lock_spin(&sched_lock); 773 p->p_cpulimit = limp->rlim_cur; 774 mtx_unlock_spin(&sched_lock); 775 break; 776 case RLIMIT_DATA: 777 if (limp->rlim_cur > maxdsiz) 778 limp->rlim_cur = maxdsiz; 779 if (limp->rlim_max > maxdsiz) 780 limp->rlim_max = maxdsiz; 781 break; 782 783 case RLIMIT_STACK: 784 if (limp->rlim_cur > maxssiz) 785 limp->rlim_cur = maxssiz; 786 if (limp->rlim_max > maxssiz) 787 limp->rlim_max = maxssiz; 788 oldssiz = alimp->rlim_cur; 789 break; 790 791 case RLIMIT_NOFILE: 792 if (limp->rlim_cur > maxfilesperproc) 793 limp->rlim_cur = maxfilesperproc; 794 if (limp->rlim_max > maxfilesperproc) 795 limp->rlim_max = maxfilesperproc; 796 break; 797 798 case RLIMIT_NPROC: 799 if (limp->rlim_cur > maxprocperuid) 800 limp->rlim_cur = maxprocperuid; 801 if (limp->rlim_max > maxprocperuid) 802 limp->rlim_max = maxprocperuid; 803 if (limp->rlim_cur < 1) 804 limp->rlim_cur = 1; 805 if (limp->rlim_max < 1) 806 limp->rlim_max = 1; 807 break; 808 } 809 *alimp = *limp; 810 p->p_limit = newlim; 811 PROC_UNLOCK(p); 812 lim_free(oldlim); 813 814 if (which == RLIMIT_STACK) { 815 /* 816 * Stack is allocated to the max at exec time with only 817 * "rlim_cur" bytes accessible. If stack limit is going 818 * up make more accessible, if going down make inaccessible. 819 */ 820 if (limp->rlim_cur != oldssiz) { 821 vm_offset_t addr; 822 vm_size_t size; 823 vm_prot_t prot; 824 825 if (limp->rlim_cur > oldssiz) { 826 prot = p->p_sysent->sv_stackprot; 827 size = limp->rlim_cur - oldssiz; 828 addr = p->p_sysent->sv_usrstack - 829 limp->rlim_cur; 830 } else { 831 prot = VM_PROT_NONE; 832 size = oldssiz - limp->rlim_cur; 833 addr = p->p_sysent->sv_usrstack - oldssiz; 834 } 835 addr = trunc_page(addr); 836 size = round_page(size); 837 (void)vm_map_protect(&p->p_vmspace->vm_map, 838 addr, addr + size, prot, FALSE); 839 } 840 } 841 842 /* 843 * The data size limit may need to be changed to a value 844 * that makes sense for the 32 bit binary. 845 */ 846 if (p->p_sysent->sv_fixlimits != NULL) 847 p->p_sysent->sv_fixlimits(p); 848 return (0); 849 } 850 851 #ifndef _SYS_SYSPROTO_H_ 852 struct __getrlimit_args { 853 u_int which; 854 struct rlimit *rlp; 855 }; 856 #endif 857 /* 858 * MPSAFE 859 */ 860 /* ARGSUSED */ 861 int 862 getrlimit(td, uap) 863 struct thread *td; 864 register struct __getrlimit_args *uap; 865 { 866 struct rlimit rlim; 867 struct proc *p; 868 int error; 869 870 if (uap->which >= RLIM_NLIMITS) 871 return (EINVAL); 872 p = td->td_proc; 873 PROC_LOCK(p); 874 lim_rlimit(p, uap->which, &rlim); 875 PROC_UNLOCK(p); 876 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit)); 877 return (error); 878 } 879 880 /* 881 * Transform the running time and tick information for children of proc p 882 * into user and system time usage. 883 */ 884 void 885 calccru(p, up, sp) 886 struct proc *p; 887 struct timeval *up; 888 struct timeval *sp; 889 { 890 891 PROC_LOCK_ASSERT(p, MA_OWNED); 892 calcru1(p, &p->p_crux, up, sp); 893 } 894 895 /* 896 * Transform the running time and tick information in proc p into user 897 * and system time usage. If appropriate, include the current time slice 898 * on this CPU. 899 */ 900 void 901 calcru(struct proc *p, struct timeval *up, struct timeval *sp) 902 { 903 struct rusage_ext rux; 904 struct thread *td; 905 uint64_t u; 906 907 PROC_LOCK_ASSERT(p, MA_OWNED); 908 mtx_assert(&sched_lock, MA_NOTOWNED); 909 mtx_lock_spin(&sched_lock); 910 911 /* 912 * If we are getting stats for the current process, then add in the 913 * stats that this thread has accumulated in its current time slice. 914 * We reset the thread and CPU state as if we had performed a context 915 * switch right here. 916 */ 917 if (curthread->td_proc == p) { 918 td = curthread; 919 u = cpu_ticks(); 920 p->p_rux.rux_runtime += u - PCPU_GET(switchtime); 921 PCPU_SET(switchtime, u); 922 p->p_rux.rux_uticks += td->td_uticks; 923 td->td_uticks = 0; 924 p->p_rux.rux_iticks += td->td_iticks; 925 td->td_iticks = 0; 926 p->p_rux.rux_sticks += td->td_sticks; 927 td->td_sticks = 0; 928 } 929 /* Work on a copy of p_rux so we can let go of sched_lock */ 930 rux = p->p_rux; 931 mtx_unlock_spin(&sched_lock); 932 calcru1(p, &rux, up, sp); 933 /* Update the result from the p_rux copy */ 934 p->p_rux.rux_uu = rux.rux_uu; 935 p->p_rux.rux_su = rux.rux_su; 936 p->p_rux.rux_tu = rux.rux_tu; 937 } 938 939 static void 940 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up, 941 struct timeval *sp) 942 { 943 /* {user, system, interrupt, total} {ticks, usec}: */ 944 u_int64_t ut, uu, st, su, it, tt, tu; 945 946 ut = ruxp->rux_uticks; 947 st = ruxp->rux_sticks; 948 it = ruxp->rux_iticks; 949 tt = ut + st + it; 950 if (tt == 0) { 951 /* Avoid divide by zero */ 952 st = 1; 953 tt = 1; 954 } 955 tu = cputick2usec(ruxp->rux_runtime); 956 if ((int64_t)tu < 0) { 957 /* XXX: this should be an assert /phk */ 958 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n", 959 (intmax_t)tu, p->p_pid, p->p_comm); 960 tu = ruxp->rux_tu; 961 } 962 963 if (tu >= ruxp->rux_tu) { 964 /* 965 * The normal case, time increased. 966 * Enforce monotonicity of bucketed numbers. 967 */ 968 uu = (tu * ut) / tt; 969 if (uu < ruxp->rux_uu) 970 uu = ruxp->rux_uu; 971 su = (tu * st) / tt; 972 if (su < ruxp->rux_su) 973 su = ruxp->rux_su; 974 } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) { 975 /* 976 * When we calibrate the cputicker, it is not uncommon to 977 * see the presumably fixed frequency increase slightly over 978 * time as a result of thermal stabilization and NTP 979 * discipline (of the reference clock). We therefore ignore 980 * a bit of backwards slop because we expect to catch up 981 * shortly. We use a 3 microsecond limit to catch low 982 * counts and a 1% limit for high counts. 983 */ 984 uu = ruxp->rux_uu; 985 su = ruxp->rux_su; 986 tu = ruxp->rux_tu; 987 } else { /* tu < ruxp->rux_tu */ 988 /* 989 * What happene here was likely that a laptop, which ran at 990 * a reduced clock frequency at boot, kicked into high gear. 991 * The wisdom of spamming this message in that case is 992 * dubious, but it might also be indicative of something 993 * serious, so lets keep it and hope laptops can be made 994 * more truthful about their CPU speed via ACPI. 995 */ 996 printf("calcru: runtime went backwards from %ju usec " 997 "to %ju usec for pid %d (%s)\n", 998 (uintmax_t)ruxp->rux_tu, (uintmax_t)tu, 999 p->p_pid, p->p_comm); 1000 uu = (tu * ut) / tt; 1001 su = (tu * st) / tt; 1002 } 1003 1004 ruxp->rux_uu = uu; 1005 ruxp->rux_su = su; 1006 ruxp->rux_tu = tu; 1007 1008 up->tv_sec = uu / 1000000; 1009 up->tv_usec = uu % 1000000; 1010 sp->tv_sec = su / 1000000; 1011 sp->tv_usec = su % 1000000; 1012 } 1013 1014 #ifndef _SYS_SYSPROTO_H_ 1015 struct getrusage_args { 1016 int who; 1017 struct rusage *rusage; 1018 }; 1019 #endif 1020 /* 1021 * MPSAFE 1022 */ 1023 int 1024 getrusage(td, uap) 1025 register struct thread *td; 1026 register struct getrusage_args *uap; 1027 { 1028 struct rusage ru; 1029 int error; 1030 1031 error = kern_getrusage(td, uap->who, &ru); 1032 if (error == 0) 1033 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 1034 return (error); 1035 } 1036 1037 int 1038 kern_getrusage(td, who, rup) 1039 struct thread *td; 1040 int who; 1041 struct rusage *rup; 1042 { 1043 struct proc *p; 1044 1045 p = td->td_proc; 1046 PROC_LOCK(p); 1047 switch (who) { 1048 1049 case RUSAGE_SELF: 1050 *rup = p->p_stats->p_ru; 1051 calcru(p, &rup->ru_utime, &rup->ru_stime); 1052 break; 1053 1054 case RUSAGE_CHILDREN: 1055 *rup = p->p_stats->p_cru; 1056 calccru(p, &rup->ru_utime, &rup->ru_stime); 1057 break; 1058 1059 default: 1060 PROC_UNLOCK(p); 1061 return (EINVAL); 1062 } 1063 PROC_UNLOCK(p); 1064 return (0); 1065 } 1066 1067 void 1068 ruadd(ru, rux, ru2, rux2) 1069 struct rusage *ru; 1070 struct rusage_ext *rux; 1071 struct rusage *ru2; 1072 struct rusage_ext *rux2; 1073 { 1074 register long *ip, *ip2; 1075 register int i; 1076 1077 rux->rux_runtime += rux2->rux_runtime; 1078 rux->rux_uticks += rux2->rux_uticks; 1079 rux->rux_sticks += rux2->rux_sticks; 1080 rux->rux_iticks += rux2->rux_iticks; 1081 rux->rux_uu += rux2->rux_uu; 1082 rux->rux_su += rux2->rux_su; 1083 rux->rux_tu += rux2->rux_tu; 1084 if (ru->ru_maxrss < ru2->ru_maxrss) 1085 ru->ru_maxrss = ru2->ru_maxrss; 1086 ip = &ru->ru_first; 1087 ip2 = &ru2->ru_first; 1088 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) 1089 *ip++ += *ip2++; 1090 } 1091 1092 /* 1093 * Allocate a new resource limits structure and initialize its 1094 * reference count and mutex pointer. 1095 */ 1096 struct plimit * 1097 lim_alloc() 1098 { 1099 struct plimit *limp; 1100 1101 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK); 1102 refcount_init(&limp->pl_refcnt, 1); 1103 return (limp); 1104 } 1105 1106 struct plimit * 1107 lim_hold(limp) 1108 struct plimit *limp; 1109 { 1110 1111 refcount_acquire(&limp->pl_refcnt); 1112 return (limp); 1113 } 1114 1115 void 1116 lim_free(limp) 1117 struct plimit *limp; 1118 { 1119 1120 KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow")); 1121 if (refcount_release(&limp->pl_refcnt)) 1122 free((void *)limp, M_PLIMIT); 1123 } 1124 1125 /* 1126 * Make a copy of the plimit structure. 1127 * We share these structures copy-on-write after fork. 1128 */ 1129 void 1130 lim_copy(dst, src) 1131 struct plimit *dst, *src; 1132 { 1133 1134 KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit")); 1135 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit)); 1136 } 1137 1138 /* 1139 * Return the hard limit for a particular system resource. The 1140 * which parameter specifies the index into the rlimit array. 1141 */ 1142 rlim_t 1143 lim_max(struct proc *p, int which) 1144 { 1145 struct rlimit rl; 1146 1147 lim_rlimit(p, which, &rl); 1148 return (rl.rlim_max); 1149 } 1150 1151 /* 1152 * Return the current (soft) limit for a particular system resource. 1153 * The which parameter which specifies the index into the rlimit array 1154 */ 1155 rlim_t 1156 lim_cur(struct proc *p, int which) 1157 { 1158 struct rlimit rl; 1159 1160 lim_rlimit(p, which, &rl); 1161 return (rl.rlim_cur); 1162 } 1163 1164 /* 1165 * Return a copy of the entire rlimit structure for the system limit 1166 * specified by 'which' in the rlimit structure pointed to by 'rlp'. 1167 */ 1168 void 1169 lim_rlimit(struct proc *p, int which, struct rlimit *rlp) 1170 { 1171 1172 PROC_LOCK_ASSERT(p, MA_OWNED); 1173 KASSERT(which >= 0 && which < RLIM_NLIMITS, 1174 ("request for invalid resource limit")); 1175 *rlp = p->p_limit->pl_rlimit[which]; 1176 } 1177 1178 /* 1179 * Find the uidinfo structure for a uid. This structure is used to 1180 * track the total resource consumption (process count, socket buffer 1181 * size, etc.) for the uid and impose limits. 1182 */ 1183 void 1184 uihashinit() 1185 { 1186 1187 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash); 1188 mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF); 1189 } 1190 1191 /* 1192 * Look up a uidinfo struct for the parameter uid. 1193 * uihashtbl_mtx must be locked. 1194 */ 1195 static struct uidinfo * 1196 uilookup(uid) 1197 uid_t uid; 1198 { 1199 struct uihashhead *uipp; 1200 struct uidinfo *uip; 1201 1202 mtx_assert(&uihashtbl_mtx, MA_OWNED); 1203 uipp = UIHASH(uid); 1204 LIST_FOREACH(uip, uipp, ui_hash) 1205 if (uip->ui_uid == uid) 1206 break; 1207 1208 return (uip); 1209 } 1210 1211 /* 1212 * Find or allocate a struct uidinfo for a particular uid. 1213 * Increase refcount on uidinfo struct returned. 1214 * uifree() should be called on a struct uidinfo when released. 1215 */ 1216 struct uidinfo * 1217 uifind(uid) 1218 uid_t uid; 1219 { 1220 struct uidinfo *old_uip, *uip; 1221 1222 mtx_lock(&uihashtbl_mtx); 1223 uip = uilookup(uid); 1224 if (uip == NULL) { 1225 mtx_unlock(&uihashtbl_mtx); 1226 uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO); 1227 mtx_lock(&uihashtbl_mtx); 1228 /* 1229 * There's a chance someone created our uidinfo while we 1230 * were in malloc and not holding the lock, so we have to 1231 * make sure we don't insert a duplicate uidinfo. 1232 */ 1233 if ((old_uip = uilookup(uid)) != NULL) { 1234 /* Someone else beat us to it. */ 1235 free(uip, M_UIDINFO); 1236 uip = old_uip; 1237 } else { 1238 uip->ui_mtxp = mtx_pool_alloc(mtxpool_sleep); 1239 uip->ui_uid = uid; 1240 LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash); 1241 } 1242 } 1243 uihold(uip); 1244 mtx_unlock(&uihashtbl_mtx); 1245 return (uip); 1246 } 1247 1248 /* 1249 * Place another refcount on a uidinfo struct. 1250 */ 1251 void 1252 uihold(uip) 1253 struct uidinfo *uip; 1254 { 1255 1256 UIDINFO_LOCK(uip); 1257 uip->ui_ref++; 1258 UIDINFO_UNLOCK(uip); 1259 } 1260 1261 /*- 1262 * Since uidinfo structs have a long lifetime, we use an 1263 * opportunistic refcounting scheme to avoid locking the lookup hash 1264 * for each release. 1265 * 1266 * If the refcount hits 0, we need to free the structure, 1267 * which means we need to lock the hash. 1268 * Optimal case: 1269 * After locking the struct and lowering the refcount, if we find 1270 * that we don't need to free, simply unlock and return. 1271 * Suboptimal case: 1272 * If refcount lowering results in need to free, bump the count 1273 * back up, lose the lock and aquire the locks in the proper 1274 * order to try again. 1275 */ 1276 void 1277 uifree(uip) 1278 struct uidinfo *uip; 1279 { 1280 1281 /* Prepare for optimal case. */ 1282 UIDINFO_LOCK(uip); 1283 1284 if (--uip->ui_ref != 0) { 1285 UIDINFO_UNLOCK(uip); 1286 return; 1287 } 1288 1289 /* Prepare for suboptimal case. */ 1290 uip->ui_ref++; 1291 UIDINFO_UNLOCK(uip); 1292 mtx_lock(&uihashtbl_mtx); 1293 UIDINFO_LOCK(uip); 1294 1295 /* 1296 * We must subtract one from the count again because we backed out 1297 * our initial subtraction before dropping the lock. 1298 * Since another thread may have added a reference after we dropped the 1299 * initial lock we have to test for zero again. 1300 */ 1301 if (--uip->ui_ref == 0) { 1302 LIST_REMOVE(uip, ui_hash); 1303 mtx_unlock(&uihashtbl_mtx); 1304 if (uip->ui_sbsize != 0) 1305 printf("freeing uidinfo: uid = %d, sbsize = %jd\n", 1306 uip->ui_uid, (intmax_t)uip->ui_sbsize); 1307 if (uip->ui_proccnt != 0) 1308 printf("freeing uidinfo: uid = %d, proccnt = %ld\n", 1309 uip->ui_uid, uip->ui_proccnt); 1310 UIDINFO_UNLOCK(uip); 1311 FREE(uip, M_UIDINFO); 1312 return; 1313 } 1314 1315 mtx_unlock(&uihashtbl_mtx); 1316 UIDINFO_UNLOCK(uip); 1317 } 1318 1319 /* 1320 * Change the count associated with number of processes 1321 * a given user is using. When 'max' is 0, don't enforce a limit 1322 */ 1323 int 1324 chgproccnt(uip, diff, max) 1325 struct uidinfo *uip; 1326 int diff; 1327 int max; 1328 { 1329 1330 UIDINFO_LOCK(uip); 1331 /* Don't allow them to exceed max, but allow subtraction. */ 1332 if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) { 1333 UIDINFO_UNLOCK(uip); 1334 return (0); 1335 } 1336 uip->ui_proccnt += diff; 1337 if (uip->ui_proccnt < 0) 1338 printf("negative proccnt for uid = %d\n", uip->ui_uid); 1339 UIDINFO_UNLOCK(uip); 1340 return (1); 1341 } 1342 1343 /* 1344 * Change the total socket buffer size a user has used. 1345 */ 1346 int 1347 chgsbsize(uip, hiwat, to, max) 1348 struct uidinfo *uip; 1349 u_int *hiwat; 1350 u_int to; 1351 rlim_t max; 1352 { 1353 rlim_t new; 1354 1355 UIDINFO_LOCK(uip); 1356 new = uip->ui_sbsize + to - *hiwat; 1357 /* Don't allow them to exceed max, but allow subtraction. */ 1358 if (to > *hiwat && new > max) { 1359 UIDINFO_UNLOCK(uip); 1360 return (0); 1361 } 1362 uip->ui_sbsize = new; 1363 UIDINFO_UNLOCK(uip); 1364 *hiwat = to; 1365 if (new < 0) 1366 printf("negative sbsize for uid = %d\n", uip->ui_uid); 1367 return (1); 1368 } 1369