1 /*- 2 * Copyright (c) 2010 The FreeBSD Foundation 3 * All rights reserved. 4 * 5 * This software was developed by Edward Tomasz Napierala under sponsorship 6 * from the FreeBSD Foundation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_sched.h" 36 37 #include <sys/param.h> 38 #include <sys/buf.h> 39 #include <sys/systm.h> 40 #include <sys/eventhandler.h> 41 #include <sys/jail.h> 42 #include <sys/kernel.h> 43 #include <sys/kthread.h> 44 #include <sys/lock.h> 45 #include <sys/loginclass.h> 46 #include <sys/malloc.h> 47 #include <sys/mutex.h> 48 #include <sys/proc.h> 49 #include <sys/racct.h> 50 #include <sys/resourcevar.h> 51 #include <sys/sbuf.h> 52 #include <sys/sched.h> 53 #include <sys/sdt.h> 54 #include <sys/smp.h> 55 #include <sys/sx.h> 56 #include <sys/sysctl.h> 57 #include <sys/sysent.h> 58 #include <sys/sysproto.h> 59 #include <sys/umtx.h> 60 #include <machine/smp.h> 61 62 #ifdef RCTL 63 #include <sys/rctl.h> 64 #endif 65 66 #ifdef RACCT 67 68 FEATURE(racct, "Resource Accounting"); 69 70 /* 71 * Do not block processes that have their %cpu usage <= pcpu_threshold. 72 */ 73 static int pcpu_threshold = 1; 74 #ifdef RACCT_DEFAULT_TO_DISABLED 75 int racct_enable = 0; 76 #else 77 int racct_enable = 1; 78 #endif 79 80 SYSCTL_NODE(_kern, OID_AUTO, racct, CTLFLAG_RW, 0, "Resource Accounting"); 81 SYSCTL_UINT(_kern_racct, OID_AUTO, enable, CTLFLAG_RDTUN, &racct_enable, 82 0, "Enable RACCT/RCTL"); 83 SYSCTL_UINT(_kern_racct, OID_AUTO, pcpu_threshold, CTLFLAG_RW, &pcpu_threshold, 84 0, "Processes with higher %cpu usage than this value can be throttled."); 85 86 /* 87 * How many seconds it takes to use the scheduler %cpu calculations. When a 88 * process starts, we compute its %cpu usage by dividing its runtime by the 89 * process wall clock time. After RACCT_PCPU_SECS pass, we use the value 90 * provided by the scheduler. 91 */ 92 #define RACCT_PCPU_SECS 3 93 94 static struct mtx racct_lock; 95 MTX_SYSINIT(racct_lock, &racct_lock, "racct lock", MTX_DEF); 96 97 #define RACCT_LOCK() mtx_lock(&racct_lock) 98 #define RACCT_UNLOCK() mtx_unlock(&racct_lock) 99 #define RACCT_LOCK_ASSERT() mtx_assert(&racct_lock, MA_OWNED) 100 101 static uma_zone_t racct_zone; 102 103 static void racct_sub_racct(struct racct *dest, const struct racct *src); 104 static void racct_sub_cred_locked(struct ucred *cred, int resource, 105 uint64_t amount); 106 static void racct_add_cred_locked(struct ucred *cred, int resource, 107 uint64_t amount); 108 109 SDT_PROVIDER_DEFINE(racct); 110 SDT_PROBE_DEFINE3(racct, , rusage, add, 111 "struct proc *", "int", "uint64_t"); 112 SDT_PROBE_DEFINE3(racct, , rusage, add__failure, 113 "struct proc *", "int", "uint64_t"); 114 SDT_PROBE_DEFINE3(racct, , rusage, add__cred, 115 "struct ucred *", "int", "uint64_t"); 116 SDT_PROBE_DEFINE3(racct, , rusage, add__force, 117 "struct proc *", "int", "uint64_t"); 118 SDT_PROBE_DEFINE3(racct, , rusage, set, 119 "struct proc *", "int", "uint64_t"); 120 SDT_PROBE_DEFINE3(racct, , rusage, set__failure, 121 "struct proc *", "int", "uint64_t"); 122 SDT_PROBE_DEFINE3(racct, , rusage, set__force, 123 "struct proc *", "int", "uint64_t"); 124 SDT_PROBE_DEFINE3(racct, , rusage, sub, 125 "struct proc *", "int", "uint64_t"); 126 SDT_PROBE_DEFINE3(racct, , rusage, sub__cred, 127 "struct ucred *", "int", "uint64_t"); 128 SDT_PROBE_DEFINE1(racct, , racct, create, 129 "struct racct *"); 130 SDT_PROBE_DEFINE1(racct, , racct, destroy, 131 "struct racct *"); 132 SDT_PROBE_DEFINE2(racct, , racct, join, 133 "struct racct *", "struct racct *"); 134 SDT_PROBE_DEFINE2(racct, , racct, join__failure, 135 "struct racct *", "struct racct *"); 136 SDT_PROBE_DEFINE2(racct, , racct, leave, 137 "struct racct *", "struct racct *"); 138 139 int racct_types[] = { 140 [RACCT_CPU] = 141 RACCT_IN_MILLIONS, 142 [RACCT_DATA] = 143 RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, 144 [RACCT_STACK] = 145 RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, 146 [RACCT_CORE] = 147 RACCT_DENIABLE, 148 [RACCT_RSS] = 149 RACCT_RECLAIMABLE, 150 [RACCT_MEMLOCK] = 151 RACCT_RECLAIMABLE | RACCT_DENIABLE, 152 [RACCT_NPROC] = 153 RACCT_RECLAIMABLE | RACCT_DENIABLE, 154 [RACCT_NOFILE] = 155 RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, 156 [RACCT_VMEM] = 157 RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, 158 [RACCT_NPTS] = 159 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 160 [RACCT_SWAP] = 161 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 162 [RACCT_NTHR] = 163 RACCT_RECLAIMABLE | RACCT_DENIABLE, 164 [RACCT_MSGQQUEUED] = 165 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 166 [RACCT_MSGQSIZE] = 167 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 168 [RACCT_NMSGQ] = 169 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 170 [RACCT_NSEM] = 171 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 172 [RACCT_NSEMOP] = 173 RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, 174 [RACCT_NSHM] = 175 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 176 [RACCT_SHMSIZE] = 177 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 178 [RACCT_WALLCLOCK] = 179 RACCT_IN_MILLIONS, 180 [RACCT_PCTCPU] = 181 RACCT_DECAYING | RACCT_DENIABLE | RACCT_IN_MILLIONS, 182 [RACCT_READBPS] = 183 RACCT_DECAYING, 184 [RACCT_WRITEBPS] = 185 RACCT_DECAYING, 186 [RACCT_READIOPS] = 187 RACCT_DECAYING, 188 [RACCT_WRITEIOPS] = 189 RACCT_DECAYING }; 190 191 static const fixpt_t RACCT_DECAY_FACTOR = 0.3 * FSCALE; 192 193 #ifdef SCHED_4BSD 194 /* 195 * Contains intermediate values for %cpu calculations to avoid using floating 196 * point in the kernel. 197 * ccpu_exp[k] = FSCALE * (ccpu/FSCALE)^k = FSCALE * exp(-k/20) 198 * It is needed only for the 4BSD scheduler, because in ULE, the ccpu equals to 199 * zero so the calculations are more straightforward. 200 */ 201 fixpt_t ccpu_exp[] = { 202 [0] = FSCALE * 1, 203 [1] = FSCALE * 0.95122942450071400909, 204 [2] = FSCALE * 0.90483741803595957316, 205 [3] = FSCALE * 0.86070797642505780722, 206 [4] = FSCALE * 0.81873075307798185866, 207 [5] = FSCALE * 0.77880078307140486824, 208 [6] = FSCALE * 0.74081822068171786606, 209 [7] = FSCALE * 0.70468808971871343435, 210 [8] = FSCALE * 0.67032004603563930074, 211 [9] = FSCALE * 0.63762815162177329314, 212 [10] = FSCALE * 0.60653065971263342360, 213 [11] = FSCALE * 0.57694981038048669531, 214 [12] = FSCALE * 0.54881163609402643262, 215 [13] = FSCALE * 0.52204577676101604789, 216 [14] = FSCALE * 0.49658530379140951470, 217 [15] = FSCALE * 0.47236655274101470713, 218 [16] = FSCALE * 0.44932896411722159143, 219 [17] = FSCALE * 0.42741493194872666992, 220 [18] = FSCALE * 0.40656965974059911188, 221 [19] = FSCALE * 0.38674102345450120691, 222 [20] = FSCALE * 0.36787944117144232159, 223 [21] = FSCALE * 0.34993774911115535467, 224 [22] = FSCALE * 0.33287108369807955328, 225 [23] = FSCALE * 0.31663676937905321821, 226 [24] = FSCALE * 0.30119421191220209664, 227 [25] = FSCALE * 0.28650479686019010032, 228 [26] = FSCALE * 0.27253179303401260312, 229 [27] = FSCALE * 0.25924026064589150757, 230 [28] = FSCALE * 0.24659696394160647693, 231 [29] = FSCALE * 0.23457028809379765313, 232 [30] = FSCALE * 0.22313016014842982893, 233 [31] = FSCALE * 0.21224797382674305771, 234 [32] = FSCALE * 0.20189651799465540848, 235 [33] = FSCALE * 0.19204990862075411423, 236 [34] = FSCALE * 0.18268352405273465022, 237 [35] = FSCALE * 0.17377394345044512668, 238 [36] = FSCALE * 0.16529888822158653829, 239 [37] = FSCALE * 0.15723716631362761621, 240 [38] = FSCALE * 0.14956861922263505264, 241 [39] = FSCALE * 0.14227407158651357185, 242 [40] = FSCALE * 0.13533528323661269189, 243 [41] = FSCALE * 0.12873490358780421886, 244 [42] = FSCALE * 0.12245642825298191021, 245 [43] = FSCALE * 0.11648415777349695786, 246 [44] = FSCALE * 0.11080315836233388333, 247 [45] = FSCALE * 0.10539922456186433678, 248 [46] = FSCALE * 0.10025884372280373372, 249 [47] = FSCALE * 0.09536916221554961888, 250 [48] = FSCALE * 0.09071795328941250337, 251 [49] = FSCALE * 0.08629358649937051097, 252 [50] = FSCALE * 0.08208499862389879516, 253 [51] = FSCALE * 0.07808166600115315231, 254 [52] = FSCALE * 0.07427357821433388042, 255 [53] = FSCALE * 0.07065121306042958674, 256 [54] = FSCALE * 0.06720551273974976512, 257 [55] = FSCALE * 0.06392786120670757270, 258 [56] = FSCALE * 0.06081006262521796499, 259 [57] = FSCALE * 0.05784432087483846296, 260 [58] = FSCALE * 0.05502322005640722902, 261 [59] = FSCALE * 0.05233970594843239308, 262 [60] = FSCALE * 0.04978706836786394297, 263 [61] = FSCALE * 0.04735892439114092119, 264 [62] = FSCALE * 0.04504920239355780606, 265 [63] = FSCALE * 0.04285212686704017991, 266 [64] = FSCALE * 0.04076220397836621516, 267 [65] = FSCALE * 0.03877420783172200988, 268 [66] = FSCALE * 0.03688316740124000544, 269 [67] = FSCALE * 0.03508435410084502588, 270 [68] = FSCALE * 0.03337326996032607948, 271 [69] = FSCALE * 0.03174563637806794323, 272 [70] = FSCALE * 0.03019738342231850073, 273 [71] = FSCALE * 0.02872463965423942912, 274 [72] = FSCALE * 0.02732372244729256080, 275 [73] = FSCALE * 0.02599112877875534358, 276 [74] = FSCALE * 0.02472352647033939120, 277 [75] = FSCALE * 0.02351774585600910823, 278 [76] = FSCALE * 0.02237077185616559577, 279 [77] = FSCALE * 0.02127973643837716938, 280 [78] = FSCALE * 0.02024191144580438847, 281 [79] = FSCALE * 0.01925470177538692429, 282 [80] = FSCALE * 0.01831563888873418029, 283 [81] = FSCALE * 0.01742237463949351138, 284 [82] = FSCALE * 0.01657267540176124754, 285 [83] = FSCALE * 0.01576441648485449082, 286 [84] = FSCALE * 0.01499557682047770621, 287 [85] = FSCALE * 0.01426423390899925527, 288 [86] = FSCALE * 0.01356855901220093175, 289 [87] = FSCALE * 0.01290681258047986886, 290 [88] = FSCALE * 0.01227733990306844117, 291 [89] = FSCALE * 0.01167856697039544521, 292 [90] = FSCALE * 0.01110899653824230649, 293 [91] = FSCALE * 0.01056720438385265337, 294 [92] = FSCALE * 0.01005183574463358164, 295 [93] = FSCALE * 0.00956160193054350793, 296 [94] = FSCALE * 0.00909527710169581709, 297 [95] = FSCALE * 0.00865169520312063417, 298 [96] = FSCALE * 0.00822974704902002884, 299 [97] = FSCALE * 0.00782837754922577143, 300 [98] = FSCALE * 0.00744658307092434051, 301 [99] = FSCALE * 0.00708340892905212004, 302 [100] = FSCALE * 0.00673794699908546709, 303 [101] = FSCALE * 0.00640933344625638184, 304 [102] = FSCALE * 0.00609674656551563610, 305 [103] = FSCALE * 0.00579940472684214321, 306 [104] = FSCALE * 0.00551656442076077241, 307 [105] = FSCALE * 0.00524751839918138427, 308 [106] = FSCALE * 0.00499159390691021621, 309 [107] = FSCALE * 0.00474815099941147558, 310 [108] = FSCALE * 0.00451658094261266798, 311 [109] = FSCALE * 0.00429630469075234057, 312 [110] = FSCALE * 0.00408677143846406699, 313 }; 314 #endif 315 316 #define CCPU_EXP_MAX 110 317 318 /* 319 * This function is analogical to the getpcpu() function in the ps(1) command. 320 * They should both calculate in the same way so that the racct %cpu 321 * calculations are consistent with the values showed by the ps(1) tool. 322 * The calculations are more complex in the 4BSD scheduler because of the value 323 * of the ccpu variable. In ULE it is defined to be zero which saves us some 324 * work. 325 */ 326 static uint64_t 327 racct_getpcpu(struct proc *p, u_int pcpu) 328 { 329 u_int swtime; 330 #ifdef SCHED_4BSD 331 fixpt_t pctcpu, pctcpu_next; 332 #endif 333 #ifdef SMP 334 struct pcpu *pc; 335 int found; 336 #endif 337 fixpt_t p_pctcpu; 338 struct thread *td; 339 340 ASSERT_RACCT_ENABLED(); 341 342 /* 343 * If the process is swapped out, we count its %cpu usage as zero. 344 * This behaviour is consistent with the userland ps(1) tool. 345 */ 346 if ((p->p_flag & P_INMEM) == 0) 347 return (0); 348 swtime = (ticks - p->p_swtick) / hz; 349 350 /* 351 * For short-lived processes, the sched_pctcpu() returns small 352 * values even for cpu intensive processes. Therefore we use 353 * our own estimate in this case. 354 */ 355 if (swtime < RACCT_PCPU_SECS) 356 return (pcpu); 357 358 p_pctcpu = 0; 359 FOREACH_THREAD_IN_PROC(p, td) { 360 if (td == PCPU_GET(idlethread)) 361 continue; 362 #ifdef SMP 363 found = 0; 364 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { 365 if (td == pc->pc_idlethread) { 366 found = 1; 367 break; 368 } 369 } 370 if (found) 371 continue; 372 #endif 373 thread_lock(td); 374 #ifdef SCHED_4BSD 375 pctcpu = sched_pctcpu(td); 376 /* Count also the yet unfinished second. */ 377 pctcpu_next = (pctcpu * ccpu_exp[1]) >> FSHIFT; 378 pctcpu_next += sched_pctcpu_delta(td); 379 p_pctcpu += max(pctcpu, pctcpu_next); 380 #else 381 /* 382 * In ULE the %cpu statistics are updated on every 383 * sched_pctcpu() call. So special calculations to 384 * account for the latest (unfinished) second are 385 * not needed. 386 */ 387 p_pctcpu += sched_pctcpu(td); 388 #endif 389 thread_unlock(td); 390 } 391 392 #ifdef SCHED_4BSD 393 if (swtime <= CCPU_EXP_MAX) 394 return ((100 * (uint64_t)p_pctcpu * 1000000) / 395 (FSCALE - ccpu_exp[swtime])); 396 #endif 397 398 return ((100 * (uint64_t)p_pctcpu * 1000000) / FSCALE); 399 } 400 401 static void 402 racct_add_racct(struct racct *dest, const struct racct *src) 403 { 404 int i; 405 406 ASSERT_RACCT_ENABLED(); 407 RACCT_LOCK_ASSERT(); 408 409 /* 410 * Update resource usage in dest. 411 */ 412 for (i = 0; i <= RACCT_MAX; i++) { 413 KASSERT(dest->r_resources[i] >= 0, 414 ("%s: resource %d propagation meltdown: dest < 0", 415 __func__, i)); 416 KASSERT(src->r_resources[i] >= 0, 417 ("%s: resource %d propagation meltdown: src < 0", 418 __func__, i)); 419 dest->r_resources[i] += src->r_resources[i]; 420 } 421 } 422 423 static void 424 racct_sub_racct(struct racct *dest, const struct racct *src) 425 { 426 int i; 427 428 ASSERT_RACCT_ENABLED(); 429 RACCT_LOCK_ASSERT(); 430 431 /* 432 * Update resource usage in dest. 433 */ 434 for (i = 0; i <= RACCT_MAX; i++) { 435 if (!RACCT_IS_SLOPPY(i) && !RACCT_IS_DECAYING(i)) { 436 KASSERT(dest->r_resources[i] >= 0, 437 ("%s: resource %d propagation meltdown: dest < 0", 438 __func__, i)); 439 KASSERT(src->r_resources[i] >= 0, 440 ("%s: resource %d propagation meltdown: src < 0", 441 __func__, i)); 442 KASSERT(src->r_resources[i] <= dest->r_resources[i], 443 ("%s: resource %d propagation meltdown: src > dest", 444 __func__, i)); 445 } 446 if (RACCT_CAN_DROP(i)) { 447 dest->r_resources[i] -= src->r_resources[i]; 448 if (dest->r_resources[i] < 0) { 449 KASSERT(RACCT_IS_SLOPPY(i) || 450 RACCT_IS_DECAYING(i), 451 ("%s: resource %d usage < 0", __func__, i)); 452 dest->r_resources[i] = 0; 453 } 454 } 455 } 456 } 457 458 void 459 racct_create(struct racct **racctp) 460 { 461 462 if (!racct_enable) 463 return; 464 465 SDT_PROBE1(racct, , racct, create, racctp); 466 467 KASSERT(*racctp == NULL, ("racct already allocated")); 468 469 *racctp = uma_zalloc(racct_zone, M_WAITOK | M_ZERO); 470 } 471 472 static void 473 racct_destroy_locked(struct racct **racctp) 474 { 475 int i; 476 struct racct *racct; 477 478 ASSERT_RACCT_ENABLED(); 479 480 SDT_PROBE1(racct, , racct, destroy, racctp); 481 482 RACCT_LOCK_ASSERT(); 483 KASSERT(racctp != NULL, ("NULL racctp")); 484 KASSERT(*racctp != NULL, ("NULL racct")); 485 486 racct = *racctp; 487 488 for (i = 0; i <= RACCT_MAX; i++) { 489 if (RACCT_IS_SLOPPY(i)) 490 continue; 491 if (!RACCT_IS_RECLAIMABLE(i)) 492 continue; 493 KASSERT(racct->r_resources[i] == 0, 494 ("destroying non-empty racct: " 495 "%ju allocated for resource %d\n", 496 racct->r_resources[i], i)); 497 } 498 uma_zfree(racct_zone, racct); 499 *racctp = NULL; 500 } 501 502 void 503 racct_destroy(struct racct **racct) 504 { 505 506 if (!racct_enable) 507 return; 508 509 RACCT_LOCK(); 510 racct_destroy_locked(racct); 511 RACCT_UNLOCK(); 512 } 513 514 /* 515 * Increase consumption of 'resource' by 'amount' for 'racct', 516 * but not its parents. Differently from other cases, 'amount' here 517 * may be less than zero. 518 */ 519 static void 520 racct_adjust_resource(struct racct *racct, int resource, 521 int64_t amount) 522 { 523 524 ASSERT_RACCT_ENABLED(); 525 RACCT_LOCK_ASSERT(); 526 KASSERT(racct != NULL, ("NULL racct")); 527 528 racct->r_resources[resource] += amount; 529 if (racct->r_resources[resource] < 0) { 530 KASSERT(RACCT_IS_SLOPPY(resource) || RACCT_IS_DECAYING(resource), 531 ("%s: resource %d usage < 0", __func__, resource)); 532 racct->r_resources[resource] = 0; 533 } 534 535 /* 536 * There are some cases where the racct %cpu resource would grow 537 * beyond 100% per core. For example in racct_proc_exit() we add 538 * the process %cpu usage to the ucred racct containers. If too 539 * many processes terminated in a short time span, the ucred %cpu 540 * resource could grow too much. Also, the 4BSD scheduler sometimes 541 * returns for a thread more than 100% cpu usage. So we set a sane 542 * boundary here to 100% * the maxumum number of CPUs. 543 */ 544 if ((resource == RACCT_PCTCPU) && 545 (racct->r_resources[RACCT_PCTCPU] > 100 * 1000000 * (int64_t)MAXCPU)) 546 racct->r_resources[RACCT_PCTCPU] = 100 * 1000000 * (int64_t)MAXCPU; 547 } 548 549 static int 550 racct_add_locked(struct proc *p, int resource, uint64_t amount, int force) 551 { 552 #ifdef RCTL 553 int error; 554 #endif 555 556 ASSERT_RACCT_ENABLED(); 557 558 /* 559 * We need proc lock to dereference p->p_ucred. 560 */ 561 PROC_LOCK_ASSERT(p, MA_OWNED); 562 563 #ifdef RCTL 564 error = rctl_enforce(p, resource, amount); 565 if (error && !force && RACCT_IS_DENIABLE(resource)) { 566 SDT_PROBE3(racct, , rusage, add__failure, p, resource, amount); 567 return (error); 568 } 569 #endif 570 racct_adjust_resource(p->p_racct, resource, amount); 571 racct_add_cred_locked(p->p_ucred, resource, amount); 572 573 return (0); 574 } 575 576 /* 577 * Increase allocation of 'resource' by 'amount' for process 'p'. 578 * Return 0 if it's below limits, or errno, if it's not. 579 */ 580 int 581 racct_add(struct proc *p, int resource, uint64_t amount) 582 { 583 int error; 584 585 if (!racct_enable) 586 return (0); 587 588 SDT_PROBE3(racct, , rusage, add, p, resource, amount); 589 590 RACCT_LOCK(); 591 error = racct_add_locked(p, resource, amount, 0); 592 RACCT_UNLOCK(); 593 return (error); 594 } 595 596 /* 597 * Increase allocation of 'resource' by 'amount' for process 'p'. 598 * Doesn't check for limits and never fails. 599 */ 600 void 601 racct_add_force(struct proc *p, int resource, uint64_t amount) 602 { 603 604 if (!racct_enable) 605 return; 606 607 SDT_PROBE3(racct, , rusage, add__force, p, resource, amount); 608 609 RACCT_LOCK(); 610 racct_add_locked(p, resource, amount, 1); 611 RACCT_UNLOCK(); 612 } 613 614 static void 615 racct_add_cred_locked(struct ucred *cred, int resource, uint64_t amount) 616 { 617 struct prison *pr; 618 619 ASSERT_RACCT_ENABLED(); 620 621 SDT_PROBE3(racct, , rusage, add__cred, cred, resource, amount); 622 623 racct_adjust_resource(cred->cr_ruidinfo->ui_racct, resource, amount); 624 for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent) 625 racct_adjust_resource(pr->pr_prison_racct->prr_racct, resource, 626 amount); 627 racct_adjust_resource(cred->cr_loginclass->lc_racct, resource, amount); 628 } 629 630 /* 631 * Increase allocation of 'resource' by 'amount' for credential 'cred'. 632 * Doesn't check for limits and never fails. 633 */ 634 void 635 racct_add_cred(struct ucred *cred, int resource, uint64_t amount) 636 { 637 638 if (!racct_enable) 639 return; 640 641 RACCT_LOCK(); 642 racct_add_cred_locked(cred, resource, amount); 643 RACCT_UNLOCK(); 644 } 645 646 /* 647 * Account for disk IO resource consumption. Checks for limits, 648 * but never fails, due to disk limits being undeniable. 649 */ 650 void 651 racct_add_buf(struct proc *p, const struct buf *bp, int is_write) 652 { 653 654 ASSERT_RACCT_ENABLED(); 655 PROC_LOCK_ASSERT(p, MA_OWNED); 656 657 RACCT_LOCK(); 658 if (is_write) { 659 racct_add_locked(curproc, RACCT_WRITEBPS, bp->b_bcount, 1); 660 racct_add_locked(curproc, RACCT_WRITEIOPS, 1, 1); 661 } else { 662 racct_add_locked(curproc, RACCT_READBPS, bp->b_bcount, 1); 663 racct_add_locked(curproc, RACCT_READIOPS, 1, 1); 664 } 665 RACCT_UNLOCK(); 666 } 667 668 static int 669 racct_set_locked(struct proc *p, int resource, uint64_t amount, int force) 670 { 671 int64_t old_amount, decayed_amount; 672 int64_t diff_proc, diff_cred; 673 #ifdef RCTL 674 int error; 675 #endif 676 677 ASSERT_RACCT_ENABLED(); 678 679 /* 680 * We need proc lock to dereference p->p_ucred. 681 */ 682 PROC_LOCK_ASSERT(p, MA_OWNED); 683 684 old_amount = p->p_racct->r_resources[resource]; 685 /* 686 * The diffs may be negative. 687 */ 688 diff_proc = amount - old_amount; 689 if (resource == RACCT_PCTCPU) { 690 /* 691 * Resources in per-credential racct containers may decay. 692 * If this is the case, we need to calculate the difference 693 * between the new amount and the proportional value of the 694 * old amount that has decayed in the ucred racct containers. 695 */ 696 decayed_amount = old_amount * RACCT_DECAY_FACTOR / FSCALE; 697 diff_cred = amount - decayed_amount; 698 } else 699 diff_cred = diff_proc; 700 #ifdef notyet 701 KASSERT(diff_proc >= 0 || RACCT_CAN_DROP(resource), 702 ("%s: usage of non-droppable resource %d dropping", __func__, 703 resource)); 704 #endif 705 #ifdef RCTL 706 if (diff_proc > 0) { 707 error = rctl_enforce(p, resource, diff_proc); 708 if (error && !force && RACCT_IS_DENIABLE(resource)) { 709 SDT_PROBE3(racct, , rusage, set__failure, p, resource, 710 amount); 711 return (error); 712 } 713 } 714 #endif 715 racct_adjust_resource(p->p_racct, resource, diff_proc); 716 if (diff_cred > 0) 717 racct_add_cred_locked(p->p_ucred, resource, diff_cred); 718 else if (diff_cred < 0) 719 racct_sub_cred_locked(p->p_ucred, resource, -diff_cred); 720 721 return (0); 722 } 723 724 /* 725 * Set allocation of 'resource' to 'amount' for process 'p'. 726 * Return 0 if it's below limits, or errno, if it's not. 727 * 728 * Note that decreasing the allocation always returns 0, 729 * even if it's above the limit. 730 */ 731 int 732 racct_set(struct proc *p, int resource, uint64_t amount) 733 { 734 int error; 735 736 if (!racct_enable) 737 return (0); 738 739 SDT_PROBE3(racct, , rusage, set__force, p, resource, amount); 740 741 RACCT_LOCK(); 742 error = racct_set_locked(p, resource, amount, 0); 743 RACCT_UNLOCK(); 744 return (error); 745 } 746 747 void 748 racct_set_force(struct proc *p, int resource, uint64_t amount) 749 { 750 751 if (!racct_enable) 752 return; 753 754 SDT_PROBE3(racct, , rusage, set, p, resource, amount); 755 756 RACCT_LOCK(); 757 racct_set_locked(p, resource, amount, 1); 758 RACCT_UNLOCK(); 759 } 760 761 /* 762 * Returns amount of 'resource' the process 'p' can keep allocated. 763 * Allocating more than that would be denied, unless the resource 764 * is marked undeniable. Amount of already allocated resource does 765 * not matter. 766 */ 767 uint64_t 768 racct_get_limit(struct proc *p, int resource) 769 { 770 771 if (!racct_enable) 772 return (UINT64_MAX); 773 774 #ifdef RCTL 775 return (rctl_get_limit(p, resource)); 776 #else 777 return (UINT64_MAX); 778 #endif 779 } 780 781 /* 782 * Returns amount of 'resource' the process 'p' can keep allocated. 783 * Allocating more than that would be denied, unless the resource 784 * is marked undeniable. Amount of already allocated resource does 785 * matter. 786 */ 787 uint64_t 788 racct_get_available(struct proc *p, int resource) 789 { 790 791 if (!racct_enable) 792 return (UINT64_MAX); 793 794 #ifdef RCTL 795 return (rctl_get_available(p, resource)); 796 #else 797 return (UINT64_MAX); 798 #endif 799 } 800 801 /* 802 * Returns amount of the %cpu resource that process 'p' can add to its %cpu 803 * utilization. Adding more than that would lead to the process being 804 * throttled. 805 */ 806 static int64_t 807 racct_pcpu_available(struct proc *p) 808 { 809 810 ASSERT_RACCT_ENABLED(); 811 812 #ifdef RCTL 813 return (rctl_pcpu_available(p)); 814 #else 815 return (INT64_MAX); 816 #endif 817 } 818 819 /* 820 * Decrease allocation of 'resource' by 'amount' for process 'p'. 821 */ 822 void 823 racct_sub(struct proc *p, int resource, uint64_t amount) 824 { 825 826 if (!racct_enable) 827 return; 828 829 SDT_PROBE3(racct, , rusage, sub, p, resource, amount); 830 831 /* 832 * We need proc lock to dereference p->p_ucred. 833 */ 834 PROC_LOCK_ASSERT(p, MA_OWNED); 835 KASSERT(RACCT_CAN_DROP(resource), 836 ("%s: called for non-droppable resource %d", __func__, resource)); 837 838 RACCT_LOCK(); 839 KASSERT(amount <= p->p_racct->r_resources[resource], 840 ("%s: freeing %ju of resource %d, which is more " 841 "than allocated %jd for %s (pid %d)", __func__, amount, resource, 842 (intmax_t)p->p_racct->r_resources[resource], p->p_comm, p->p_pid)); 843 844 racct_adjust_resource(p->p_racct, resource, -amount); 845 racct_sub_cred_locked(p->p_ucred, resource, amount); 846 RACCT_UNLOCK(); 847 } 848 849 static void 850 racct_sub_cred_locked(struct ucred *cred, int resource, uint64_t amount) 851 { 852 struct prison *pr; 853 854 ASSERT_RACCT_ENABLED(); 855 856 SDT_PROBE3(racct, , rusage, sub__cred, cred, resource, amount); 857 858 #ifdef notyet 859 KASSERT(RACCT_CAN_DROP(resource), 860 ("%s: called for resource %d which can not drop", __func__, 861 resource)); 862 #endif 863 864 racct_adjust_resource(cred->cr_ruidinfo->ui_racct, resource, -amount); 865 for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent) 866 racct_adjust_resource(pr->pr_prison_racct->prr_racct, resource, 867 -amount); 868 racct_adjust_resource(cred->cr_loginclass->lc_racct, resource, -amount); 869 } 870 871 /* 872 * Decrease allocation of 'resource' by 'amount' for credential 'cred'. 873 */ 874 void 875 racct_sub_cred(struct ucred *cred, int resource, uint64_t amount) 876 { 877 878 if (!racct_enable) 879 return; 880 881 RACCT_LOCK(); 882 racct_sub_cred_locked(cred, resource, amount); 883 RACCT_UNLOCK(); 884 } 885 886 /* 887 * Inherit resource usage information from the parent process. 888 */ 889 int 890 racct_proc_fork(struct proc *parent, struct proc *child) 891 { 892 int i, error = 0; 893 894 if (!racct_enable) 895 return (0); 896 897 /* 898 * Create racct for the child process. 899 */ 900 racct_create(&child->p_racct); 901 902 PROC_LOCK(parent); 903 PROC_LOCK(child); 904 RACCT_LOCK(); 905 906 #ifdef RCTL 907 error = rctl_proc_fork(parent, child); 908 if (error != 0) 909 goto out; 910 #endif 911 912 /* Init process cpu time. */ 913 child->p_prev_runtime = 0; 914 child->p_throttled = 0; 915 916 /* 917 * Inherit resource usage. 918 */ 919 for (i = 0; i <= RACCT_MAX; i++) { 920 if (parent->p_racct->r_resources[i] == 0 || 921 !RACCT_IS_INHERITABLE(i)) 922 continue; 923 924 error = racct_set_locked(child, i, 925 parent->p_racct->r_resources[i], 0); 926 if (error != 0) 927 goto out; 928 } 929 930 error = racct_add_locked(child, RACCT_NPROC, 1, 0); 931 error += racct_add_locked(child, RACCT_NTHR, 1, 0); 932 933 out: 934 RACCT_UNLOCK(); 935 PROC_UNLOCK(child); 936 PROC_UNLOCK(parent); 937 938 if (error != 0) 939 racct_proc_exit(child); 940 941 return (error); 942 } 943 944 /* 945 * Called at the end of fork1(), to handle rules that require the process 946 * to be fully initialized. 947 */ 948 void 949 racct_proc_fork_done(struct proc *child) 950 { 951 952 PROC_LOCK_ASSERT(child, MA_OWNED); 953 #ifdef RCTL 954 if (!racct_enable) 955 return; 956 957 RACCT_LOCK(); 958 rctl_enforce(child, RACCT_NPROC, 0); 959 rctl_enforce(child, RACCT_NTHR, 0); 960 RACCT_UNLOCK(); 961 #endif 962 } 963 964 void 965 racct_proc_exit(struct proc *p) 966 { 967 int i; 968 uint64_t runtime; 969 struct timeval wallclock; 970 uint64_t pct_estimate, pct; 971 972 if (!racct_enable) 973 return; 974 975 PROC_LOCK(p); 976 /* 977 * We don't need to calculate rux, proc_reap() has already done this. 978 */ 979 runtime = cputick2usec(p->p_rux.rux_runtime); 980 #ifdef notyet 981 KASSERT(runtime >= p->p_prev_runtime, ("runtime < p_prev_runtime")); 982 #else 983 if (runtime < p->p_prev_runtime) 984 runtime = p->p_prev_runtime; 985 #endif 986 microuptime(&wallclock); 987 timevalsub(&wallclock, &p->p_stats->p_start); 988 if (wallclock.tv_sec > 0 || wallclock.tv_usec > 0) { 989 pct_estimate = (1000000 * runtime * 100) / 990 ((uint64_t)wallclock.tv_sec * 1000000 + 991 wallclock.tv_usec); 992 } else 993 pct_estimate = 0; 994 pct = racct_getpcpu(p, pct_estimate); 995 996 RACCT_LOCK(); 997 racct_set_locked(p, RACCT_CPU, runtime, 0); 998 racct_add_cred_locked(p->p_ucred, RACCT_PCTCPU, pct); 999 1000 for (i = 0; i <= RACCT_MAX; i++) { 1001 if (p->p_racct->r_resources[i] == 0) 1002 continue; 1003 if (!RACCT_IS_RECLAIMABLE(i)) 1004 continue; 1005 racct_set_locked(p, i, 0, 0); 1006 } 1007 1008 RACCT_UNLOCK(); 1009 PROC_UNLOCK(p); 1010 1011 #ifdef RCTL 1012 rctl_racct_release(p->p_racct); 1013 #endif 1014 racct_destroy(&p->p_racct); 1015 } 1016 1017 /* 1018 * Called after credentials change, to move resource utilisation 1019 * between raccts. 1020 */ 1021 void 1022 racct_proc_ucred_changed(struct proc *p, struct ucred *oldcred, 1023 struct ucred *newcred) 1024 { 1025 struct uidinfo *olduip, *newuip; 1026 struct loginclass *oldlc, *newlc; 1027 struct prison *oldpr, *newpr, *pr; 1028 1029 if (!racct_enable) 1030 return; 1031 1032 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1033 1034 newuip = newcred->cr_ruidinfo; 1035 olduip = oldcred->cr_ruidinfo; 1036 newlc = newcred->cr_loginclass; 1037 oldlc = oldcred->cr_loginclass; 1038 newpr = newcred->cr_prison; 1039 oldpr = oldcred->cr_prison; 1040 1041 RACCT_LOCK(); 1042 if (newuip != olduip) { 1043 racct_sub_racct(olduip->ui_racct, p->p_racct); 1044 racct_add_racct(newuip->ui_racct, p->p_racct); 1045 } 1046 if (newlc != oldlc) { 1047 racct_sub_racct(oldlc->lc_racct, p->p_racct); 1048 racct_add_racct(newlc->lc_racct, p->p_racct); 1049 } 1050 if (newpr != oldpr) { 1051 for (pr = oldpr; pr != NULL; pr = pr->pr_parent) 1052 racct_sub_racct(pr->pr_prison_racct->prr_racct, 1053 p->p_racct); 1054 for (pr = newpr; pr != NULL; pr = pr->pr_parent) 1055 racct_add_racct(pr->pr_prison_racct->prr_racct, 1056 p->p_racct); 1057 } 1058 RACCT_UNLOCK(); 1059 1060 #ifdef RCTL 1061 rctl_proc_ucred_changed(p, newcred); 1062 #endif 1063 } 1064 1065 void 1066 racct_move(struct racct *dest, struct racct *src) 1067 { 1068 1069 ASSERT_RACCT_ENABLED(); 1070 1071 RACCT_LOCK(); 1072 racct_add_racct(dest, src); 1073 racct_sub_racct(src, src); 1074 RACCT_UNLOCK(); 1075 } 1076 1077 /* 1078 * Make the process sleep in userret() for 'timeout' ticks. Setting 1079 * timeout to -1 makes it sleep until woken up by racct_proc_wakeup(). 1080 */ 1081 void 1082 racct_proc_throttle(struct proc *p, int timeout) 1083 { 1084 struct thread *td; 1085 #ifdef SMP 1086 int cpuid; 1087 #endif 1088 1089 KASSERT(timeout != 0, ("timeout %d", timeout)); 1090 ASSERT_RACCT_ENABLED(); 1091 PROC_LOCK_ASSERT(p, MA_OWNED); 1092 1093 /* 1094 * Do not block kernel processes. Also do not block processes with 1095 * low %cpu utilization to improve interactivity. 1096 */ 1097 if ((p->p_flag & (P_SYSTEM | P_KPROC)) != 0) 1098 return; 1099 1100 if (p->p_throttled < 0 || (timeout > 0 && p->p_throttled > timeout)) 1101 return; 1102 1103 p->p_throttled = timeout; 1104 1105 FOREACH_THREAD_IN_PROC(p, td) { 1106 thread_lock(td); 1107 switch (td->td_state) { 1108 case TDS_RUNQ: 1109 /* 1110 * If the thread is on the scheduler run-queue, we can 1111 * not just remove it from there. So we set the flag 1112 * TDF_NEEDRESCHED for the thread, so that once it is 1113 * running, it is taken off the cpu as soon as possible. 1114 */ 1115 td->td_flags |= TDF_NEEDRESCHED; 1116 break; 1117 case TDS_RUNNING: 1118 /* 1119 * If the thread is running, we request a context 1120 * switch for it by setting the TDF_NEEDRESCHED flag. 1121 */ 1122 td->td_flags |= TDF_NEEDRESCHED; 1123 #ifdef SMP 1124 cpuid = td->td_oncpu; 1125 if ((cpuid != NOCPU) && (td != curthread)) 1126 ipi_cpu(cpuid, IPI_AST); 1127 #endif 1128 break; 1129 default: 1130 break; 1131 } 1132 thread_unlock(td); 1133 } 1134 } 1135 1136 static void 1137 racct_proc_wakeup(struct proc *p) 1138 { 1139 1140 ASSERT_RACCT_ENABLED(); 1141 1142 PROC_LOCK_ASSERT(p, MA_OWNED); 1143 1144 if (p->p_throttled != 0) { 1145 p->p_throttled = 0; 1146 wakeup(p->p_racct); 1147 } 1148 } 1149 1150 static void 1151 racct_decay_callback(struct racct *racct, void *dummy1, void *dummy2) 1152 { 1153 int64_t r_old, r_new; 1154 1155 ASSERT_RACCT_ENABLED(); 1156 RACCT_LOCK_ASSERT(); 1157 1158 #ifdef RCTL 1159 rctl_throttle_decay(racct, RACCT_READBPS); 1160 rctl_throttle_decay(racct, RACCT_WRITEBPS); 1161 rctl_throttle_decay(racct, RACCT_READIOPS); 1162 rctl_throttle_decay(racct, RACCT_WRITEIOPS); 1163 #endif 1164 1165 r_old = racct->r_resources[RACCT_PCTCPU]; 1166 1167 /* If there is nothing to decay, just exit. */ 1168 if (r_old <= 0) 1169 return; 1170 1171 r_new = r_old * RACCT_DECAY_FACTOR / FSCALE; 1172 racct->r_resources[RACCT_PCTCPU] = r_new; 1173 } 1174 1175 static void 1176 racct_decay_pre(void) 1177 { 1178 1179 RACCT_LOCK(); 1180 } 1181 1182 static void 1183 racct_decay_post(void) 1184 { 1185 1186 RACCT_UNLOCK(); 1187 } 1188 1189 static void 1190 racct_decay(void) 1191 { 1192 1193 ASSERT_RACCT_ENABLED(); 1194 1195 ui_racct_foreach(racct_decay_callback, racct_decay_pre, 1196 racct_decay_post, NULL, NULL); 1197 loginclass_racct_foreach(racct_decay_callback, racct_decay_pre, 1198 racct_decay_post, NULL, NULL); 1199 prison_racct_foreach(racct_decay_callback, racct_decay_pre, 1200 racct_decay_post, NULL, NULL); 1201 } 1202 1203 static void 1204 racctd(void) 1205 { 1206 struct thread *td; 1207 struct proc *p; 1208 struct timeval wallclock; 1209 uint64_t runtime; 1210 uint64_t pct, pct_estimate; 1211 1212 ASSERT_RACCT_ENABLED(); 1213 1214 for (;;) { 1215 racct_decay(); 1216 1217 sx_slock(&allproc_lock); 1218 1219 LIST_FOREACH(p, &zombproc, p_list) { 1220 PROC_LOCK(p); 1221 racct_set(p, RACCT_PCTCPU, 0); 1222 PROC_UNLOCK(p); 1223 } 1224 1225 FOREACH_PROC_IN_SYSTEM(p) { 1226 PROC_LOCK(p); 1227 if (p->p_state != PRS_NORMAL) { 1228 PROC_UNLOCK(p); 1229 continue; 1230 } 1231 1232 microuptime(&wallclock); 1233 timevalsub(&wallclock, &p->p_stats->p_start); 1234 PROC_STATLOCK(p); 1235 FOREACH_THREAD_IN_PROC(p, td) 1236 ruxagg(p, td); 1237 runtime = cputick2usec(p->p_rux.rux_runtime); 1238 PROC_STATUNLOCK(p); 1239 #ifdef notyet 1240 KASSERT(runtime >= p->p_prev_runtime, 1241 ("runtime < p_prev_runtime")); 1242 #else 1243 if (runtime < p->p_prev_runtime) 1244 runtime = p->p_prev_runtime; 1245 #endif 1246 p->p_prev_runtime = runtime; 1247 if (wallclock.tv_sec > 0 || wallclock.tv_usec > 0) { 1248 pct_estimate = (1000000 * runtime * 100) / 1249 ((uint64_t)wallclock.tv_sec * 1000000 + 1250 wallclock.tv_usec); 1251 } else 1252 pct_estimate = 0; 1253 pct = racct_getpcpu(p, pct_estimate); 1254 RACCT_LOCK(); 1255 #ifdef RCTL 1256 rctl_throttle_decay(p->p_racct, RACCT_READBPS); 1257 rctl_throttle_decay(p->p_racct, RACCT_WRITEBPS); 1258 rctl_throttle_decay(p->p_racct, RACCT_READIOPS); 1259 rctl_throttle_decay(p->p_racct, RACCT_WRITEIOPS); 1260 #endif 1261 racct_set_locked(p, RACCT_PCTCPU, pct, 1); 1262 racct_set_locked(p, RACCT_CPU, runtime, 0); 1263 racct_set_locked(p, RACCT_WALLCLOCK, 1264 (uint64_t)wallclock.tv_sec * 1000000 + 1265 wallclock.tv_usec, 0); 1266 RACCT_UNLOCK(); 1267 PROC_UNLOCK(p); 1268 } 1269 1270 /* 1271 * To ensure that processes are throttled in a fair way, we need 1272 * to iterate over all processes again and check the limits 1273 * for %cpu resource only after ucred racct containers have been 1274 * properly filled. 1275 */ 1276 FOREACH_PROC_IN_SYSTEM(p) { 1277 PROC_LOCK(p); 1278 if (p->p_state != PRS_NORMAL) { 1279 PROC_UNLOCK(p); 1280 continue; 1281 } 1282 1283 if (racct_pcpu_available(p) <= 0) { 1284 if (p->p_racct->r_resources[RACCT_PCTCPU] > 1285 pcpu_threshold) 1286 racct_proc_throttle(p, -1); 1287 } else if (p->p_throttled == -1) { 1288 racct_proc_wakeup(p); 1289 } 1290 PROC_UNLOCK(p); 1291 } 1292 sx_sunlock(&allproc_lock); 1293 pause("-", hz); 1294 } 1295 } 1296 1297 static struct kproc_desc racctd_kp = { 1298 "racctd", 1299 racctd, 1300 NULL 1301 }; 1302 1303 static void 1304 racctd_init(void) 1305 { 1306 if (!racct_enable) 1307 return; 1308 1309 kproc_start(&racctd_kp); 1310 } 1311 SYSINIT(racctd, SI_SUB_RACCTD, SI_ORDER_FIRST, racctd_init, NULL); 1312 1313 static void 1314 racct_init(void) 1315 { 1316 if (!racct_enable) 1317 return; 1318 1319 racct_zone = uma_zcreate("racct", sizeof(struct racct), 1320 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 1321 /* 1322 * XXX: Move this somewhere. 1323 */ 1324 prison0.pr_prison_racct = prison_racct_find("0"); 1325 } 1326 SYSINIT(racct, SI_SUB_RACCT, SI_ORDER_FIRST, racct_init, NULL); 1327 1328 #endif /* !RACCT */ 1329