xref: /freebsd/sys/kern/kern_racct.c (revision 7cd2dcf07629713e5a3d60472cfe4701b705a167)
1 /*-
2  * Copyright (c) 2010 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * This software was developed by Edward Tomasz Napierala under sponsorship
6  * from the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_kdtrace.h"
36 #include "opt_sched.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/eventhandler.h>
41 #include <sys/jail.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/lock.h>
45 #include <sys/loginclass.h>
46 #include <sys/malloc.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/racct.h>
50 #include <sys/resourcevar.h>
51 #include <sys/sbuf.h>
52 #include <sys/sched.h>
53 #include <sys/sdt.h>
54 #include <sys/smp.h>
55 #include <sys/sx.h>
56 #include <sys/sysctl.h>
57 #include <sys/sysent.h>
58 #include <sys/sysproto.h>
59 #include <sys/umtx.h>
60 #include <machine/smp.h>
61 
62 #ifdef RCTL
63 #include <sys/rctl.h>
64 #endif
65 
66 #ifdef RACCT
67 
68 FEATURE(racct, "Resource Accounting");
69 
70 /*
71  * Do not block processes that have their %cpu usage <= pcpu_threshold.
72  */
73 static int pcpu_threshold = 1;
74 
75 SYSCTL_NODE(_kern, OID_AUTO, racct, CTLFLAG_RW, 0, "Resource Accounting");
76 SYSCTL_UINT(_kern_racct, OID_AUTO, pcpu_threshold, CTLFLAG_RW, &pcpu_threshold,
77     0, "Processes with higher %cpu usage than this value can be throttled.");
78 
79 /*
80  * How many seconds it takes to use the scheduler %cpu calculations.  When a
81  * process starts, we compute its %cpu usage by dividing its runtime by the
82  * process wall clock time.  After RACCT_PCPU_SECS pass, we use the value
83  * provided by the scheduler.
84  */
85 #define RACCT_PCPU_SECS		3
86 
87 static struct mtx racct_lock;
88 MTX_SYSINIT(racct_lock, &racct_lock, "racct lock", MTX_DEF);
89 
90 static uma_zone_t racct_zone;
91 
92 static void racct_sub_racct(struct racct *dest, const struct racct *src);
93 static void racct_sub_cred_locked(struct ucred *cred, int resource,
94 		uint64_t amount);
95 static void racct_add_cred_locked(struct ucred *cred, int resource,
96 		uint64_t amount);
97 
98 SDT_PROVIDER_DEFINE(racct);
99 SDT_PROBE_DEFINE3(racct, kernel, rusage, add, add, "struct proc *", "int",
100     "uint64_t");
101 SDT_PROBE_DEFINE3(racct, kernel, rusage, add_failure, add-failure,
102     "struct proc *", "int", "uint64_t");
103 SDT_PROBE_DEFINE3(racct, kernel, rusage, add_cred, add-cred, "struct ucred *",
104     "int", "uint64_t");
105 SDT_PROBE_DEFINE3(racct, kernel, rusage, add_force, add-force, "struct proc *",
106     "int", "uint64_t");
107 SDT_PROBE_DEFINE3(racct, kernel, rusage, set, set, "struct proc *", "int",
108     "uint64_t");
109 SDT_PROBE_DEFINE3(racct, kernel, rusage, set_failure, set-failure,
110     "struct proc *", "int", "uint64_t");
111 SDT_PROBE_DEFINE3(racct, kernel, rusage, sub, sub, "struct proc *", "int",
112     "uint64_t");
113 SDT_PROBE_DEFINE3(racct, kernel, rusage, sub_cred, sub-cred, "struct ucred *",
114     "int", "uint64_t");
115 SDT_PROBE_DEFINE1(racct, kernel, racct, create, create, "struct racct *");
116 SDT_PROBE_DEFINE1(racct, kernel, racct, destroy, destroy, "struct racct *");
117 SDT_PROBE_DEFINE2(racct, kernel, racct, join, join, "struct racct *",
118     "struct racct *");
119 SDT_PROBE_DEFINE2(racct, kernel, racct, join_failure, join-failure,
120     "struct racct *", "struct racct *");
121 SDT_PROBE_DEFINE2(racct, kernel, racct, leave, leave, "struct racct *",
122     "struct racct *");
123 
124 int racct_types[] = {
125 	[RACCT_CPU] =
126 		RACCT_IN_MILLIONS,
127 	[RACCT_DATA] =
128 		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
129 	[RACCT_STACK] =
130 		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
131 	[RACCT_CORE] =
132 		RACCT_DENIABLE,
133 	[RACCT_RSS] =
134 		RACCT_RECLAIMABLE,
135 	[RACCT_MEMLOCK] =
136 		RACCT_RECLAIMABLE | RACCT_DENIABLE,
137 	[RACCT_NPROC] =
138 		RACCT_RECLAIMABLE | RACCT_DENIABLE,
139 	[RACCT_NOFILE] =
140 		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
141 	[RACCT_VMEM] =
142 		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
143 	[RACCT_NPTS] =
144 		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
145 	[RACCT_SWAP] =
146 		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
147 	[RACCT_NTHR] =
148 		RACCT_RECLAIMABLE | RACCT_DENIABLE,
149 	[RACCT_MSGQQUEUED] =
150 		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
151 	[RACCT_MSGQSIZE] =
152 		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
153 	[RACCT_NMSGQ] =
154 		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
155 	[RACCT_NSEM] =
156 		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
157 	[RACCT_NSEMOP] =
158 		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
159 	[RACCT_NSHM] =
160 		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
161 	[RACCT_SHMSIZE] =
162 		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
163 	[RACCT_WALLCLOCK] =
164 		RACCT_IN_MILLIONS,
165 	[RACCT_PCTCPU] =
166 		RACCT_DECAYING | RACCT_DENIABLE | RACCT_IN_MILLIONS };
167 
168 static const fixpt_t RACCT_DECAY_FACTOR = 0.3 * FSCALE;
169 
170 #ifdef SCHED_4BSD
171 /*
172  * Contains intermediate values for %cpu calculations to avoid using floating
173  * point in the kernel.
174  * ccpu_exp[k] = FSCALE * (ccpu/FSCALE)^k = FSCALE * exp(-k/20)
175  * It is needed only for the 4BSD scheduler, because in ULE, the ccpu equals to
176  * zero so the calculations are more straightforward.
177  */
178 fixpt_t ccpu_exp[] = {
179 	[0] = FSCALE * 1,
180 	[1] = FSCALE * 0.95122942450071400909,
181 	[2] = FSCALE * 0.90483741803595957316,
182 	[3] = FSCALE * 0.86070797642505780722,
183 	[4] = FSCALE * 0.81873075307798185866,
184 	[5] = FSCALE * 0.77880078307140486824,
185 	[6] = FSCALE * 0.74081822068171786606,
186 	[7] = FSCALE * 0.70468808971871343435,
187 	[8] = FSCALE * 0.67032004603563930074,
188 	[9] = FSCALE * 0.63762815162177329314,
189 	[10] = FSCALE * 0.60653065971263342360,
190 	[11] = FSCALE * 0.57694981038048669531,
191 	[12] = FSCALE * 0.54881163609402643262,
192 	[13] = FSCALE * 0.52204577676101604789,
193 	[14] = FSCALE * 0.49658530379140951470,
194 	[15] = FSCALE * 0.47236655274101470713,
195 	[16] = FSCALE * 0.44932896411722159143,
196 	[17] = FSCALE * 0.42741493194872666992,
197 	[18] = FSCALE * 0.40656965974059911188,
198 	[19] = FSCALE * 0.38674102345450120691,
199 	[20] = FSCALE * 0.36787944117144232159,
200 	[21] = FSCALE * 0.34993774911115535467,
201 	[22] = FSCALE * 0.33287108369807955328,
202 	[23] = FSCALE * 0.31663676937905321821,
203 	[24] = FSCALE * 0.30119421191220209664,
204 	[25] = FSCALE * 0.28650479686019010032,
205 	[26] = FSCALE * 0.27253179303401260312,
206 	[27] = FSCALE * 0.25924026064589150757,
207 	[28] = FSCALE * 0.24659696394160647693,
208 	[29] = FSCALE * 0.23457028809379765313,
209 	[30] = FSCALE * 0.22313016014842982893,
210 	[31] = FSCALE * 0.21224797382674305771,
211 	[32] = FSCALE * 0.20189651799465540848,
212 	[33] = FSCALE * 0.19204990862075411423,
213 	[34] = FSCALE * 0.18268352405273465022,
214 	[35] = FSCALE * 0.17377394345044512668,
215 	[36] = FSCALE * 0.16529888822158653829,
216 	[37] = FSCALE * 0.15723716631362761621,
217 	[38] = FSCALE * 0.14956861922263505264,
218 	[39] = FSCALE * 0.14227407158651357185,
219 	[40] = FSCALE * 0.13533528323661269189,
220 	[41] = FSCALE * 0.12873490358780421886,
221 	[42] = FSCALE * 0.12245642825298191021,
222 	[43] = FSCALE * 0.11648415777349695786,
223 	[44] = FSCALE * 0.11080315836233388333,
224 	[45] = FSCALE * 0.10539922456186433678,
225 	[46] = FSCALE * 0.10025884372280373372,
226 	[47] = FSCALE * 0.09536916221554961888,
227 	[48] = FSCALE * 0.09071795328941250337,
228 	[49] = FSCALE * 0.08629358649937051097,
229 	[50] = FSCALE * 0.08208499862389879516,
230 	[51] = FSCALE * 0.07808166600115315231,
231 	[52] = FSCALE * 0.07427357821433388042,
232 	[53] = FSCALE * 0.07065121306042958674,
233 	[54] = FSCALE * 0.06720551273974976512,
234 	[55] = FSCALE * 0.06392786120670757270,
235 	[56] = FSCALE * 0.06081006262521796499,
236 	[57] = FSCALE * 0.05784432087483846296,
237 	[58] = FSCALE * 0.05502322005640722902,
238 	[59] = FSCALE * 0.05233970594843239308,
239 	[60] = FSCALE * 0.04978706836786394297,
240 	[61] = FSCALE * 0.04735892439114092119,
241 	[62] = FSCALE * 0.04504920239355780606,
242 	[63] = FSCALE * 0.04285212686704017991,
243 	[64] = FSCALE * 0.04076220397836621516,
244 	[65] = FSCALE * 0.03877420783172200988,
245 	[66] = FSCALE * 0.03688316740124000544,
246 	[67] = FSCALE * 0.03508435410084502588,
247 	[68] = FSCALE * 0.03337326996032607948,
248 	[69] = FSCALE * 0.03174563637806794323,
249 	[70] = FSCALE * 0.03019738342231850073,
250 	[71] = FSCALE * 0.02872463965423942912,
251 	[72] = FSCALE * 0.02732372244729256080,
252 	[73] = FSCALE * 0.02599112877875534358,
253 	[74] = FSCALE * 0.02472352647033939120,
254 	[75] = FSCALE * 0.02351774585600910823,
255 	[76] = FSCALE * 0.02237077185616559577,
256 	[77] = FSCALE * 0.02127973643837716938,
257 	[78] = FSCALE * 0.02024191144580438847,
258 	[79] = FSCALE * 0.01925470177538692429,
259 	[80] = FSCALE * 0.01831563888873418029,
260 	[81] = FSCALE * 0.01742237463949351138,
261 	[82] = FSCALE * 0.01657267540176124754,
262 	[83] = FSCALE * 0.01576441648485449082,
263 	[84] = FSCALE * 0.01499557682047770621,
264 	[85] = FSCALE * 0.01426423390899925527,
265 	[86] = FSCALE * 0.01356855901220093175,
266 	[87] = FSCALE * 0.01290681258047986886,
267 	[88] = FSCALE * 0.01227733990306844117,
268 	[89] = FSCALE * 0.01167856697039544521,
269 	[90] = FSCALE * 0.01110899653824230649,
270 	[91] = FSCALE * 0.01056720438385265337,
271 	[92] = FSCALE * 0.01005183574463358164,
272 	[93] = FSCALE * 0.00956160193054350793,
273 	[94] = FSCALE * 0.00909527710169581709,
274 	[95] = FSCALE * 0.00865169520312063417,
275 	[96] = FSCALE * 0.00822974704902002884,
276 	[97] = FSCALE * 0.00782837754922577143,
277 	[98] = FSCALE * 0.00744658307092434051,
278 	[99] = FSCALE * 0.00708340892905212004,
279 	[100] = FSCALE * 0.00673794699908546709,
280 	[101] = FSCALE * 0.00640933344625638184,
281 	[102] = FSCALE * 0.00609674656551563610,
282 	[103] = FSCALE * 0.00579940472684214321,
283 	[104] = FSCALE * 0.00551656442076077241,
284 	[105] = FSCALE * 0.00524751839918138427,
285 	[106] = FSCALE * 0.00499159390691021621,
286 	[107] = FSCALE * 0.00474815099941147558,
287 	[108] = FSCALE * 0.00451658094261266798,
288 	[109] = FSCALE * 0.00429630469075234057,
289 	[110] = FSCALE * 0.00408677143846406699,
290 };
291 #endif
292 
293 #define	CCPU_EXP_MAX	110
294 
295 /*
296  * This function is analogical to the getpcpu() function in the ps(1) command.
297  * They should both calculate in the same way so that the racct %cpu
298  * calculations are consistent with the values showed by the ps(1) tool.
299  * The calculations are more complex in the 4BSD scheduler because of the value
300  * of the ccpu variable.  In ULE it is defined to be zero which saves us some
301  * work.
302  */
303 static uint64_t
304 racct_getpcpu(struct proc *p, u_int pcpu)
305 {
306 	u_int swtime;
307 #ifdef SCHED_4BSD
308 	fixpt_t pctcpu, pctcpu_next;
309 #endif
310 #ifdef SMP
311 	struct pcpu *pc;
312 	int found;
313 #endif
314 	fixpt_t p_pctcpu;
315 	struct thread *td;
316 
317 	/*
318 	 * If the process is swapped out, we count its %cpu usage as zero.
319 	 * This behaviour is consistent with the userland ps(1) tool.
320 	 */
321 	if ((p->p_flag & P_INMEM) == 0)
322 		return (0);
323 	swtime = (ticks - p->p_swtick) / hz;
324 
325 	/*
326 	 * For short-lived processes, the sched_pctcpu() returns small
327 	 * values even for cpu intensive processes.  Therefore we use
328 	 * our own estimate in this case.
329 	 */
330 	if (swtime < RACCT_PCPU_SECS)
331 		return (pcpu);
332 
333 	p_pctcpu = 0;
334 	FOREACH_THREAD_IN_PROC(p, td) {
335 		if (td == PCPU_GET(idlethread))
336 			continue;
337 #ifdef SMP
338 		found = 0;
339 		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
340 			if (td == pc->pc_idlethread) {
341 				found = 1;
342 				break;
343 			}
344 		}
345 		if (found)
346 			continue;
347 #endif
348 		thread_lock(td);
349 #ifdef SCHED_4BSD
350 		pctcpu = sched_pctcpu(td);
351 		/* Count also the yet unfinished second. */
352 		pctcpu_next = (pctcpu * ccpu_exp[1]) >> FSHIFT;
353 		pctcpu_next += sched_pctcpu_delta(td);
354 		p_pctcpu += max(pctcpu, pctcpu_next);
355 #else
356 		/*
357 		 * In ULE the %cpu statistics are updated on every
358 		 * sched_pctcpu() call.  So special calculations to
359 		 * account for the latest (unfinished) second are
360 		 * not needed.
361 		 */
362 		p_pctcpu += sched_pctcpu(td);
363 #endif
364 		thread_unlock(td);
365 	}
366 
367 #ifdef SCHED_4BSD
368 	if (swtime <= CCPU_EXP_MAX)
369 		return ((100 * (uint64_t)p_pctcpu * 1000000) /
370 		    (FSCALE - ccpu_exp[swtime]));
371 #endif
372 
373 	return ((100 * (uint64_t)p_pctcpu * 1000000) / FSCALE);
374 }
375 
376 static void
377 racct_add_racct(struct racct *dest, const struct racct *src)
378 {
379 	int i;
380 
381 	mtx_assert(&racct_lock, MA_OWNED);
382 
383 	/*
384 	 * Update resource usage in dest.
385 	 */
386 	for (i = 0; i <= RACCT_MAX; i++) {
387 		KASSERT(dest->r_resources[i] >= 0,
388 		    ("racct propagation meltdown: dest < 0"));
389 		KASSERT(src->r_resources[i] >= 0,
390 		    ("racct propagation meltdown: src < 0"));
391 		dest->r_resources[i] += src->r_resources[i];
392 	}
393 }
394 
395 static void
396 racct_sub_racct(struct racct *dest, const struct racct *src)
397 {
398 	int i;
399 
400 	mtx_assert(&racct_lock, MA_OWNED);
401 
402 	/*
403 	 * Update resource usage in dest.
404 	 */
405 	for (i = 0; i <= RACCT_MAX; i++) {
406 		if (!RACCT_IS_SLOPPY(i)) {
407 			KASSERT(dest->r_resources[i] >= 0,
408 			    ("racct propagation meltdown: dest < 0"));
409 			KASSERT(src->r_resources[i] >= 0,
410 			    ("racct propagation meltdown: src < 0"));
411 			KASSERT(src->r_resources[i] <= dest->r_resources[i],
412 			    ("racct propagation meltdown: src > dest"));
413 		}
414 		if (RACCT_CAN_DROP(i)) {
415 			dest->r_resources[i] -= src->r_resources[i];
416 			if (dest->r_resources[i] < 0) {
417 				KASSERT(RACCT_IS_SLOPPY(i),
418 				    ("racct_sub_racct: usage < 0"));
419 				dest->r_resources[i] = 0;
420 			}
421 		}
422 	}
423 }
424 
425 void
426 racct_create(struct racct **racctp)
427 {
428 
429 	SDT_PROBE(racct, kernel, racct, create, racctp, 0, 0, 0, 0);
430 
431 	KASSERT(*racctp == NULL, ("racct already allocated"));
432 
433 	*racctp = uma_zalloc(racct_zone, M_WAITOK | M_ZERO);
434 }
435 
436 static void
437 racct_destroy_locked(struct racct **racctp)
438 {
439 	int i;
440 	struct racct *racct;
441 
442 	SDT_PROBE(racct, kernel, racct, destroy, racctp, 0, 0, 0, 0);
443 
444 	mtx_assert(&racct_lock, MA_OWNED);
445 	KASSERT(racctp != NULL, ("NULL racctp"));
446 	KASSERT(*racctp != NULL, ("NULL racct"));
447 
448 	racct = *racctp;
449 
450 	for (i = 0; i <= RACCT_MAX; i++) {
451 		if (RACCT_IS_SLOPPY(i))
452 			continue;
453 		if (!RACCT_IS_RECLAIMABLE(i))
454 			continue;
455 		KASSERT(racct->r_resources[i] == 0,
456 		    ("destroying non-empty racct: "
457 		    "%ju allocated for resource %d\n",
458 		    racct->r_resources[i], i));
459 	}
460 	uma_zfree(racct_zone, racct);
461 	*racctp = NULL;
462 }
463 
464 void
465 racct_destroy(struct racct **racct)
466 {
467 
468 	mtx_lock(&racct_lock);
469 	racct_destroy_locked(racct);
470 	mtx_unlock(&racct_lock);
471 }
472 
473 /*
474  * Increase consumption of 'resource' by 'amount' for 'racct'
475  * and all its parents.  Differently from other cases, 'amount' here
476  * may be less than zero.
477  */
478 static void
479 racct_alloc_resource(struct racct *racct, int resource,
480     uint64_t amount)
481 {
482 
483 	mtx_assert(&racct_lock, MA_OWNED);
484 	KASSERT(racct != NULL, ("NULL racct"));
485 
486 	racct->r_resources[resource] += amount;
487 	if (racct->r_resources[resource] < 0) {
488 		KASSERT(RACCT_IS_SLOPPY(resource) || RACCT_IS_DECAYING(resource),
489 		    ("racct_alloc_resource: usage < 0"));
490 		racct->r_resources[resource] = 0;
491 	}
492 
493 	/*
494 	 * There are some cases where the racct %cpu resource would grow
495 	 * beyond 100%.
496 	 * For example in racct_proc_exit() we add the process %cpu usage
497 	 * to the ucred racct containers.  If too many processes terminated
498 	 * in a short time span, the ucred %cpu resource could grow too much.
499 	 * Also, the 4BSD scheduler sometimes returns for a thread more than
500 	 * 100% cpu usage.  So we set a boundary here to 100%.
501 	 */
502 	if ((resource == RACCT_PCTCPU) &&
503 	    (racct->r_resources[RACCT_PCTCPU] > 100 * 1000000))
504 		racct->r_resources[RACCT_PCTCPU] = 100 * 1000000;
505 }
506 
507 static int
508 racct_add_locked(struct proc *p, int resource, uint64_t amount)
509 {
510 #ifdef RCTL
511 	int error;
512 #endif
513 
514 	SDT_PROBE(racct, kernel, rusage, add, p, resource, amount, 0, 0);
515 
516 	/*
517 	 * We need proc lock to dereference p->p_ucred.
518 	 */
519 	PROC_LOCK_ASSERT(p, MA_OWNED);
520 
521 #ifdef RCTL
522 	error = rctl_enforce(p, resource, amount);
523 	if (error && RACCT_IS_DENIABLE(resource)) {
524 		SDT_PROBE(racct, kernel, rusage, add_failure, p, resource,
525 		    amount, 0, 0);
526 		return (error);
527 	}
528 #endif
529 	racct_alloc_resource(p->p_racct, resource, amount);
530 	racct_add_cred_locked(p->p_ucred, resource, amount);
531 
532 	return (0);
533 }
534 
535 /*
536  * Increase allocation of 'resource' by 'amount' for process 'p'.
537  * Return 0 if it's below limits, or errno, if it's not.
538  */
539 int
540 racct_add(struct proc *p, int resource, uint64_t amount)
541 {
542 	int error;
543 
544 	mtx_lock(&racct_lock);
545 	error = racct_add_locked(p, resource, amount);
546 	mtx_unlock(&racct_lock);
547 	return (error);
548 }
549 
550 static void
551 racct_add_cred_locked(struct ucred *cred, int resource, uint64_t amount)
552 {
553 	struct prison *pr;
554 
555 	SDT_PROBE(racct, kernel, rusage, add_cred, cred, resource, amount,
556 	    0, 0);
557 
558 	racct_alloc_resource(cred->cr_ruidinfo->ui_racct, resource, amount);
559 	for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent)
560 		racct_alloc_resource(pr->pr_prison_racct->prr_racct, resource,
561 		    amount);
562 	racct_alloc_resource(cred->cr_loginclass->lc_racct, resource, amount);
563 }
564 
565 /*
566  * Increase allocation of 'resource' by 'amount' for credential 'cred'.
567  * Doesn't check for limits and never fails.
568  *
569  * XXX: Shouldn't this ever return an error?
570  */
571 void
572 racct_add_cred(struct ucred *cred, int resource, uint64_t amount)
573 {
574 
575 	mtx_lock(&racct_lock);
576 	racct_add_cred_locked(cred, resource, amount);
577 	mtx_unlock(&racct_lock);
578 }
579 
580 /*
581  * Increase allocation of 'resource' by 'amount' for process 'p'.
582  * Doesn't check for limits and never fails.
583  */
584 void
585 racct_add_force(struct proc *p, int resource, uint64_t amount)
586 {
587 
588 	SDT_PROBE(racct, kernel, rusage, add_force, p, resource, amount, 0, 0);
589 
590 	/*
591 	 * We need proc lock to dereference p->p_ucred.
592 	 */
593 	PROC_LOCK_ASSERT(p, MA_OWNED);
594 
595 	mtx_lock(&racct_lock);
596 	racct_alloc_resource(p->p_racct, resource, amount);
597 	mtx_unlock(&racct_lock);
598 	racct_add_cred(p->p_ucred, resource, amount);
599 }
600 
601 static int
602 racct_set_locked(struct proc *p, int resource, uint64_t amount)
603 {
604 	int64_t old_amount, decayed_amount;
605 	int64_t diff_proc, diff_cred;
606 #ifdef RCTL
607 	int error;
608 #endif
609 
610 	SDT_PROBE(racct, kernel, rusage, set, p, resource, amount, 0, 0);
611 
612 	/*
613 	 * We need proc lock to dereference p->p_ucred.
614 	 */
615 	PROC_LOCK_ASSERT(p, MA_OWNED);
616 
617 	old_amount = p->p_racct->r_resources[resource];
618 	/*
619 	 * The diffs may be negative.
620 	 */
621 	diff_proc = amount - old_amount;
622 	if (RACCT_IS_DECAYING(resource)) {
623 		/*
624 		 * Resources in per-credential racct containers may decay.
625 		 * If this is the case, we need to calculate the difference
626 		 * between the new amount and the proportional value of the
627 		 * old amount that has decayed in the ucred racct containers.
628 		 */
629 		decayed_amount = old_amount * RACCT_DECAY_FACTOR / FSCALE;
630 		diff_cred = amount - decayed_amount;
631 	} else
632 		diff_cred = diff_proc;
633 #ifdef notyet
634 	KASSERT(diff_proc >= 0 || RACCT_CAN_DROP(resource),
635 	    ("racct_set: usage of non-droppable resource %d dropping",
636 	     resource));
637 #endif
638 #ifdef RCTL
639 	if (diff_proc > 0) {
640 		error = rctl_enforce(p, resource, diff_proc);
641 		if (error && RACCT_IS_DENIABLE(resource)) {
642 			SDT_PROBE(racct, kernel, rusage, set_failure, p,
643 			    resource, amount, 0, 0);
644 			return (error);
645 		}
646 	}
647 #endif
648 	racct_alloc_resource(p->p_racct, resource, diff_proc);
649 	if (diff_cred > 0)
650 		racct_add_cred_locked(p->p_ucred, resource, diff_cred);
651 	else if (diff_cred < 0)
652 		racct_sub_cred_locked(p->p_ucred, resource, -diff_cred);
653 
654 	return (0);
655 }
656 
657 /*
658  * Set allocation of 'resource' to 'amount' for process 'p'.
659  * Return 0 if it's below limits, or errno, if it's not.
660  *
661  * Note that decreasing the allocation always returns 0,
662  * even if it's above the limit.
663  */
664 int
665 racct_set(struct proc *p, int resource, uint64_t amount)
666 {
667 	int error;
668 
669 	mtx_lock(&racct_lock);
670 	error = racct_set_locked(p, resource, amount);
671 	mtx_unlock(&racct_lock);
672 	return (error);
673 }
674 
675 static void
676 racct_set_force_locked(struct proc *p, int resource, uint64_t amount)
677 {
678 	int64_t old_amount, decayed_amount;
679 	int64_t diff_proc, diff_cred;
680 
681 	SDT_PROBE(racct, kernel, rusage, set, p, resource, amount, 0, 0);
682 
683 	/*
684 	 * We need proc lock to dereference p->p_ucred.
685 	 */
686 	PROC_LOCK_ASSERT(p, MA_OWNED);
687 
688 	old_amount = p->p_racct->r_resources[resource];
689 	/*
690 	 * The diffs may be negative.
691 	 */
692 	diff_proc = amount - old_amount;
693 	if (RACCT_IS_DECAYING(resource)) {
694 		/*
695 		 * Resources in per-credential racct containers may decay.
696 		 * If this is the case, we need to calculate the difference
697 		 * between the new amount and the proportional value of the
698 		 * old amount that has decayed in the ucred racct containers.
699 		 */
700 		decayed_amount = old_amount * RACCT_DECAY_FACTOR / FSCALE;
701 		diff_cred = amount - decayed_amount;
702 	} else
703 		diff_cred = diff_proc;
704 
705 	racct_alloc_resource(p->p_racct, resource, diff_proc);
706 	if (diff_cred > 0)
707 		racct_add_cred_locked(p->p_ucred, resource, diff_cred);
708 	else if (diff_cred < 0)
709 		racct_sub_cred_locked(p->p_ucred, resource, -diff_cred);
710 }
711 
712 void
713 racct_set_force(struct proc *p, int resource, uint64_t amount)
714 {
715 	mtx_lock(&racct_lock);
716 	racct_set_force_locked(p, resource, amount);
717 	mtx_unlock(&racct_lock);
718 }
719 
720 /*
721  * Returns amount of 'resource' the process 'p' can keep allocated.
722  * Allocating more than that would be denied, unless the resource
723  * is marked undeniable.  Amount of already allocated resource does
724  * not matter.
725  */
726 uint64_t
727 racct_get_limit(struct proc *p, int resource)
728 {
729 
730 #ifdef RCTL
731 	return (rctl_get_limit(p, resource));
732 #else
733 	return (UINT64_MAX);
734 #endif
735 }
736 
737 /*
738  * Returns amount of 'resource' the process 'p' can keep allocated.
739  * Allocating more than that would be denied, unless the resource
740  * is marked undeniable.  Amount of already allocated resource does
741  * matter.
742  */
743 uint64_t
744 racct_get_available(struct proc *p, int resource)
745 {
746 
747 #ifdef RCTL
748 	return (rctl_get_available(p, resource));
749 #else
750 	return (UINT64_MAX);
751 #endif
752 }
753 
754 /*
755  * Returns amount of the %cpu resource that process 'p' can add to its %cpu
756  * utilization.  Adding more than that would lead to the process being
757  * throttled.
758  */
759 static int64_t
760 racct_pcpu_available(struct proc *p)
761 {
762 
763 #ifdef RCTL
764 	return (rctl_pcpu_available(p));
765 #else
766 	return (INT64_MAX);
767 #endif
768 }
769 
770 /*
771  * Decrease allocation of 'resource' by 'amount' for process 'p'.
772  */
773 void
774 racct_sub(struct proc *p, int resource, uint64_t amount)
775 {
776 
777 	SDT_PROBE(racct, kernel, rusage, sub, p, resource, amount, 0, 0);
778 
779 	/*
780 	 * We need proc lock to dereference p->p_ucred.
781 	 */
782 	PROC_LOCK_ASSERT(p, MA_OWNED);
783 	KASSERT(RACCT_CAN_DROP(resource),
784 	    ("racct_sub: called for non-droppable resource %d", resource));
785 
786 	mtx_lock(&racct_lock);
787 	KASSERT(amount <= p->p_racct->r_resources[resource],
788 	    ("racct_sub: freeing %ju of resource %d, which is more "
789 	     "than allocated %jd for %s (pid %d)", amount, resource,
790 	    (intmax_t)p->p_racct->r_resources[resource], p->p_comm, p->p_pid));
791 
792 	racct_alloc_resource(p->p_racct, resource, -amount);
793 	racct_sub_cred_locked(p->p_ucred, resource, amount);
794 	mtx_unlock(&racct_lock);
795 }
796 
797 static void
798 racct_sub_cred_locked(struct ucred *cred, int resource, uint64_t amount)
799 {
800 	struct prison *pr;
801 
802 	SDT_PROBE(racct, kernel, rusage, sub_cred, cred, resource, amount,
803 	    0, 0);
804 
805 #ifdef notyet
806 	KASSERT(RACCT_CAN_DROP(resource),
807 	    ("racct_sub_cred: called for resource %d which can not drop",
808 	     resource));
809 #endif
810 
811 	racct_alloc_resource(cred->cr_ruidinfo->ui_racct, resource, -amount);
812 	for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent)
813 		racct_alloc_resource(pr->pr_prison_racct->prr_racct, resource,
814 		    -amount);
815 	racct_alloc_resource(cred->cr_loginclass->lc_racct, resource, -amount);
816 }
817 
818 /*
819  * Decrease allocation of 'resource' by 'amount' for credential 'cred'.
820  */
821 void
822 racct_sub_cred(struct ucred *cred, int resource, uint64_t amount)
823 {
824 
825 	mtx_lock(&racct_lock);
826 	racct_sub_cred_locked(cred, resource, amount);
827 	mtx_unlock(&racct_lock);
828 }
829 
830 /*
831  * Inherit resource usage information from the parent process.
832  */
833 int
834 racct_proc_fork(struct proc *parent, struct proc *child)
835 {
836 	int i, error = 0;
837 
838 	/*
839 	 * Create racct for the child process.
840 	 */
841 	racct_create(&child->p_racct);
842 
843 	PROC_LOCK(parent);
844 	PROC_LOCK(child);
845 	mtx_lock(&racct_lock);
846 
847 #ifdef RCTL
848 	error = rctl_proc_fork(parent, child);
849 	if (error != 0)
850 		goto out;
851 #endif
852 
853 	/* Init process cpu time. */
854 	child->p_prev_runtime = 0;
855 	child->p_throttled = 0;
856 
857 	/*
858 	 * Inherit resource usage.
859 	 */
860 	for (i = 0; i <= RACCT_MAX; i++) {
861 		if (parent->p_racct->r_resources[i] == 0 ||
862 		    !RACCT_IS_INHERITABLE(i))
863 			continue;
864 
865 		error = racct_set_locked(child, i,
866 		    parent->p_racct->r_resources[i]);
867 		if (error != 0)
868 			goto out;
869 	}
870 
871 	error = racct_add_locked(child, RACCT_NPROC, 1);
872 	error += racct_add_locked(child, RACCT_NTHR, 1);
873 
874 out:
875 	mtx_unlock(&racct_lock);
876 	PROC_UNLOCK(child);
877 	PROC_UNLOCK(parent);
878 
879 	if (error != 0)
880 		racct_proc_exit(child);
881 
882 	return (error);
883 }
884 
885 /*
886  * Called at the end of fork1(), to handle rules that require the process
887  * to be fully initialized.
888  */
889 void
890 racct_proc_fork_done(struct proc *child)
891 {
892 
893 #ifdef RCTL
894 	PROC_LOCK(child);
895 	mtx_lock(&racct_lock);
896 	rctl_enforce(child, RACCT_NPROC, 0);
897 	rctl_enforce(child, RACCT_NTHR, 0);
898 	mtx_unlock(&racct_lock);
899 	PROC_UNLOCK(child);
900 #endif
901 }
902 
903 void
904 racct_proc_exit(struct proc *p)
905 {
906 	int i;
907 	uint64_t runtime;
908 	struct timeval wallclock;
909 	uint64_t pct_estimate, pct;
910 
911 	PROC_LOCK(p);
912 	/*
913 	 * We don't need to calculate rux, proc_reap() has already done this.
914 	 */
915 	runtime = cputick2usec(p->p_rux.rux_runtime);
916 #ifdef notyet
917 	KASSERT(runtime >= p->p_prev_runtime, ("runtime < p_prev_runtime"));
918 #else
919 	if (runtime < p->p_prev_runtime)
920 		runtime = p->p_prev_runtime;
921 #endif
922 	microuptime(&wallclock);
923 	timevalsub(&wallclock, &p->p_stats->p_start);
924 	pct_estimate = (1000000 * runtime * 100) /
925 	    ((uint64_t)wallclock.tv_sec * 1000000 +
926 	    wallclock.tv_usec);
927 	pct = racct_getpcpu(p, pct_estimate);
928 
929 	mtx_lock(&racct_lock);
930 	racct_set_locked(p, RACCT_CPU, runtime);
931 	racct_add_cred_locked(p->p_ucred, RACCT_PCTCPU, pct);
932 
933 	for (i = 0; i <= RACCT_MAX; i++) {
934 		if (p->p_racct->r_resources[i] == 0)
935 			continue;
936 	    	if (!RACCT_IS_RECLAIMABLE(i))
937 			continue;
938 		racct_set_locked(p, i, 0);
939 	}
940 
941 	mtx_unlock(&racct_lock);
942 	PROC_UNLOCK(p);
943 
944 #ifdef RCTL
945 	rctl_racct_release(p->p_racct);
946 #endif
947 	racct_destroy(&p->p_racct);
948 }
949 
950 /*
951  * Called after credentials change, to move resource utilisation
952  * between raccts.
953  */
954 void
955 racct_proc_ucred_changed(struct proc *p, struct ucred *oldcred,
956     struct ucred *newcred)
957 {
958 	struct uidinfo *olduip, *newuip;
959 	struct loginclass *oldlc, *newlc;
960 	struct prison *oldpr, *newpr, *pr;
961 
962 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
963 
964 	newuip = newcred->cr_ruidinfo;
965 	olduip = oldcred->cr_ruidinfo;
966 	newlc = newcred->cr_loginclass;
967 	oldlc = oldcred->cr_loginclass;
968 	newpr = newcred->cr_prison;
969 	oldpr = oldcred->cr_prison;
970 
971 	mtx_lock(&racct_lock);
972 	if (newuip != olduip) {
973 		racct_sub_racct(olduip->ui_racct, p->p_racct);
974 		racct_add_racct(newuip->ui_racct, p->p_racct);
975 	}
976 	if (newlc != oldlc) {
977 		racct_sub_racct(oldlc->lc_racct, p->p_racct);
978 		racct_add_racct(newlc->lc_racct, p->p_racct);
979 	}
980 	if (newpr != oldpr) {
981 		for (pr = oldpr; pr != NULL; pr = pr->pr_parent)
982 			racct_sub_racct(pr->pr_prison_racct->prr_racct,
983 			    p->p_racct);
984 		for (pr = newpr; pr != NULL; pr = pr->pr_parent)
985 			racct_add_racct(pr->pr_prison_racct->prr_racct,
986 			    p->p_racct);
987 	}
988 	mtx_unlock(&racct_lock);
989 
990 #ifdef RCTL
991 	rctl_proc_ucred_changed(p, newcred);
992 #endif
993 }
994 
995 void
996 racct_move(struct racct *dest, struct racct *src)
997 {
998 
999 	mtx_lock(&racct_lock);
1000 
1001 	racct_add_racct(dest, src);
1002 	racct_sub_racct(src, src);
1003 
1004 	mtx_unlock(&racct_lock);
1005 }
1006 
1007 static void
1008 racct_proc_throttle(struct proc *p)
1009 {
1010 	struct thread *td;
1011 #ifdef SMP
1012 	int cpuid;
1013 #endif
1014 
1015 	PROC_LOCK_ASSERT(p, MA_OWNED);
1016 
1017 	/*
1018 	 * Do not block kernel processes.  Also do not block processes with
1019 	 * low %cpu utilization to improve interactivity.
1020 	 */
1021 	if (((p->p_flag & (P_SYSTEM | P_KTHREAD)) != 0) ||
1022 	    (p->p_racct->r_resources[RACCT_PCTCPU] <= pcpu_threshold))
1023 		return;
1024 	p->p_throttled = 1;
1025 
1026 	FOREACH_THREAD_IN_PROC(p, td) {
1027 		switch (td->td_state) {
1028 		case TDS_RUNQ:
1029 			/*
1030 			 * If the thread is on the scheduler run-queue, we can
1031 			 * not just remove it from there.  So we set the flag
1032 			 * TDF_NEEDRESCHED for the thread, so that once it is
1033 			 * running, it is taken off the cpu as soon as possible.
1034 			 */
1035 			thread_lock(td);
1036 			td->td_flags |= TDF_NEEDRESCHED;
1037 			thread_unlock(td);
1038 			break;
1039 		case TDS_RUNNING:
1040 			/*
1041 			 * If the thread is running, we request a context
1042 			 * switch for it by setting the TDF_NEEDRESCHED flag.
1043 			 */
1044 			thread_lock(td);
1045 			td->td_flags |= TDF_NEEDRESCHED;
1046 #ifdef SMP
1047 			cpuid = td->td_oncpu;
1048 			if ((cpuid != NOCPU) && (td != curthread))
1049 				ipi_cpu(cpuid, IPI_AST);
1050 #endif
1051 			thread_unlock(td);
1052 			break;
1053 		default:
1054 			break;
1055 		}
1056 	}
1057 }
1058 
1059 static void
1060 racct_proc_wakeup(struct proc *p)
1061 {
1062 	PROC_LOCK_ASSERT(p, MA_OWNED);
1063 
1064 	if (p->p_throttled) {
1065 		p->p_throttled = 0;
1066 		wakeup(p->p_racct);
1067 	}
1068 }
1069 
1070 static void
1071 racct_decay_resource(struct racct *racct, void * res, void* dummy)
1072 {
1073 	int resource;
1074 	int64_t r_old, r_new;
1075 
1076 	resource = *(int *)res;
1077 	r_old = racct->r_resources[resource];
1078 
1079 	/* If there is nothing to decay, just exit. */
1080 	if (r_old <= 0)
1081 		return;
1082 
1083 	mtx_lock(&racct_lock);
1084 	r_new = r_old * RACCT_DECAY_FACTOR / FSCALE;
1085 	racct->r_resources[resource] = r_new;
1086 	mtx_unlock(&racct_lock);
1087 }
1088 
1089 static void
1090 racct_decay(int resource)
1091 {
1092 	ui_racct_foreach(racct_decay_resource, &resource, NULL);
1093 	loginclass_racct_foreach(racct_decay_resource, &resource, NULL);
1094 	prison_racct_foreach(racct_decay_resource, &resource, NULL);
1095 }
1096 
1097 static void
1098 racctd(void)
1099 {
1100 	struct thread *td;
1101 	struct proc *p;
1102 	struct timeval wallclock;
1103 	uint64_t runtime;
1104 	uint64_t pct, pct_estimate;
1105 
1106 	for (;;) {
1107 		racct_decay(RACCT_PCTCPU);
1108 
1109 		sx_slock(&allproc_lock);
1110 
1111 		LIST_FOREACH(p, &zombproc, p_list) {
1112 			PROC_LOCK(p);
1113 			racct_set(p, RACCT_PCTCPU, 0);
1114 			PROC_UNLOCK(p);
1115 		}
1116 
1117 		FOREACH_PROC_IN_SYSTEM(p) {
1118 			PROC_LOCK(p);
1119 			if (p->p_state != PRS_NORMAL) {
1120 				PROC_UNLOCK(p);
1121 				continue;
1122 			}
1123 
1124 			microuptime(&wallclock);
1125 			timevalsub(&wallclock, &p->p_stats->p_start);
1126 			PROC_SLOCK(p);
1127 			FOREACH_THREAD_IN_PROC(p, td)
1128 				ruxagg(p, td);
1129 			runtime = cputick2usec(p->p_rux.rux_runtime);
1130 			PROC_SUNLOCK(p);
1131 #ifdef notyet
1132 			KASSERT(runtime >= p->p_prev_runtime,
1133 			    ("runtime < p_prev_runtime"));
1134 #else
1135 			if (runtime < p->p_prev_runtime)
1136 				runtime = p->p_prev_runtime;
1137 #endif
1138 			p->p_prev_runtime = runtime;
1139 			pct_estimate = (1000000 * runtime * 100) /
1140 			    ((uint64_t)wallclock.tv_sec * 1000000 +
1141 			    wallclock.tv_usec);
1142 			pct = racct_getpcpu(p, pct_estimate);
1143 			mtx_lock(&racct_lock);
1144 			racct_set_force_locked(p, RACCT_PCTCPU, pct);
1145 			racct_set_locked(p, RACCT_CPU, runtime);
1146 			racct_set_locked(p, RACCT_WALLCLOCK,
1147 			    (uint64_t)wallclock.tv_sec * 1000000 +
1148 			    wallclock.tv_usec);
1149 			mtx_unlock(&racct_lock);
1150 			PROC_UNLOCK(p);
1151 		}
1152 
1153 		/*
1154 		 * To ensure that processes are throttled in a fair way, we need
1155 		 * to iterate over all processes again and check the limits
1156 		 * for %cpu resource only after ucred racct containers have been
1157 		 * properly filled.
1158 		 */
1159 		FOREACH_PROC_IN_SYSTEM(p) {
1160 			PROC_LOCK(p);
1161 			if (p->p_state != PRS_NORMAL) {
1162 				PROC_UNLOCK(p);
1163 				continue;
1164 			}
1165 
1166 			if (racct_pcpu_available(p) <= 0)
1167 				racct_proc_throttle(p);
1168 			else if (p->p_throttled)
1169 				racct_proc_wakeup(p);
1170 			PROC_UNLOCK(p);
1171 		}
1172 		sx_sunlock(&allproc_lock);
1173 		pause("-", hz);
1174 	}
1175 }
1176 
1177 static struct kproc_desc racctd_kp = {
1178 	"racctd",
1179 	racctd,
1180 	NULL
1181 };
1182 SYSINIT(racctd, SI_SUB_RACCTD, SI_ORDER_FIRST, kproc_start, &racctd_kp);
1183 
1184 static void
1185 racct_init(void)
1186 {
1187 
1188 	racct_zone = uma_zcreate("racct", sizeof(struct racct),
1189 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
1190 	/*
1191 	 * XXX: Move this somewhere.
1192 	 */
1193 	prison0.pr_prison_racct = prison_racct_find("0");
1194 }
1195 SYSINIT(racct, SI_SUB_RACCT, SI_ORDER_FIRST, racct_init, NULL);
1196 
1197 #else /* !RACCT */
1198 
1199 int
1200 racct_add(struct proc *p, int resource, uint64_t amount)
1201 {
1202 
1203 	return (0);
1204 }
1205 
1206 void
1207 racct_add_cred(struct ucred *cred, int resource, uint64_t amount)
1208 {
1209 }
1210 
1211 void
1212 racct_add_force(struct proc *p, int resource, uint64_t amount)
1213 {
1214 
1215 	return;
1216 }
1217 
1218 int
1219 racct_set(struct proc *p, int resource, uint64_t amount)
1220 {
1221 
1222 	return (0);
1223 }
1224 
1225 void
1226 racct_set_force(struct proc *p, int resource, uint64_t amount)
1227 {
1228 }
1229 
1230 void
1231 racct_sub(struct proc *p, int resource, uint64_t amount)
1232 {
1233 }
1234 
1235 void
1236 racct_sub_cred(struct ucred *cred, int resource, uint64_t amount)
1237 {
1238 }
1239 
1240 uint64_t
1241 racct_get_limit(struct proc *p, int resource)
1242 {
1243 
1244 	return (UINT64_MAX);
1245 }
1246 
1247 uint64_t
1248 racct_get_available(struct proc *p, int resource)
1249 {
1250 
1251 	return (UINT64_MAX);
1252 }
1253 
1254 void
1255 racct_create(struct racct **racctp)
1256 {
1257 }
1258 
1259 void
1260 racct_destroy(struct racct **racctp)
1261 {
1262 }
1263 
1264 int
1265 racct_proc_fork(struct proc *parent, struct proc *child)
1266 {
1267 
1268 	return (0);
1269 }
1270 
1271 void
1272 racct_proc_fork_done(struct proc *child)
1273 {
1274 }
1275 
1276 void
1277 racct_proc_exit(struct proc *p)
1278 {
1279 }
1280 
1281 #endif /* !RACCT */
1282