1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2010 The FreeBSD Foundation 5 * All rights reserved. 6 * 7 * This software was developed by Edward Tomasz Napierala under sponsorship 8 * from the FreeBSD Foundation. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $FreeBSD$ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_sched.h" 38 39 #include <sys/param.h> 40 #include <sys/buf.h> 41 #include <sys/systm.h> 42 #include <sys/eventhandler.h> 43 #include <sys/jail.h> 44 #include <sys/kernel.h> 45 #include <sys/kthread.h> 46 #include <sys/lock.h> 47 #include <sys/loginclass.h> 48 #include <sys/malloc.h> 49 #include <sys/mutex.h> 50 #include <sys/proc.h> 51 #include <sys/racct.h> 52 #include <sys/resourcevar.h> 53 #include <sys/sbuf.h> 54 #include <sys/sched.h> 55 #include <sys/sdt.h> 56 #include <sys/smp.h> 57 #include <sys/sx.h> 58 #include <sys/sysctl.h> 59 #include <sys/sysent.h> 60 #include <sys/sysproto.h> 61 #include <sys/umtx.h> 62 #include <machine/smp.h> 63 64 #ifdef RCTL 65 #include <sys/rctl.h> 66 #endif 67 68 #ifdef RACCT 69 70 FEATURE(racct, "Resource Accounting"); 71 72 /* 73 * Do not block processes that have their %cpu usage <= pcpu_threshold. 74 */ 75 static int pcpu_threshold = 1; 76 #ifdef RACCT_DEFAULT_TO_DISABLED 77 bool __read_frequently racct_enable = false; 78 #else 79 bool __read_frequently racct_enable = true; 80 #endif 81 82 SYSCTL_NODE(_kern, OID_AUTO, racct, CTLFLAG_RW, 0, "Resource Accounting"); 83 SYSCTL_BOOL(_kern_racct, OID_AUTO, enable, CTLFLAG_RDTUN, &racct_enable, 84 0, "Enable RACCT/RCTL"); 85 SYSCTL_UINT(_kern_racct, OID_AUTO, pcpu_threshold, CTLFLAG_RW, &pcpu_threshold, 86 0, "Processes with higher %cpu usage than this value can be throttled."); 87 88 /* 89 * How many seconds it takes to use the scheduler %cpu calculations. When a 90 * process starts, we compute its %cpu usage by dividing its runtime by the 91 * process wall clock time. After RACCT_PCPU_SECS pass, we use the value 92 * provided by the scheduler. 93 */ 94 #define RACCT_PCPU_SECS 3 95 96 struct mtx racct_lock; 97 MTX_SYSINIT(racct_lock, &racct_lock, "racct lock", MTX_DEF); 98 99 static uma_zone_t racct_zone; 100 101 static void racct_sub_racct(struct racct *dest, const struct racct *src); 102 static void racct_sub_cred_locked(struct ucred *cred, int resource, 103 uint64_t amount); 104 static void racct_add_cred_locked(struct ucred *cred, int resource, 105 uint64_t amount); 106 107 SDT_PROVIDER_DEFINE(racct); 108 SDT_PROBE_DEFINE3(racct, , rusage, add, 109 "struct proc *", "int", "uint64_t"); 110 SDT_PROBE_DEFINE3(racct, , rusage, add__failure, 111 "struct proc *", "int", "uint64_t"); 112 SDT_PROBE_DEFINE3(racct, , rusage, add__buf, 113 "struct proc *", "const struct buf *", "int"); 114 SDT_PROBE_DEFINE3(racct, , rusage, add__cred, 115 "struct ucred *", "int", "uint64_t"); 116 SDT_PROBE_DEFINE3(racct, , rusage, add__force, 117 "struct proc *", "int", "uint64_t"); 118 SDT_PROBE_DEFINE3(racct, , rusage, set, 119 "struct proc *", "int", "uint64_t"); 120 SDT_PROBE_DEFINE3(racct, , rusage, set__failure, 121 "struct proc *", "int", "uint64_t"); 122 SDT_PROBE_DEFINE3(racct, , rusage, set__force, 123 "struct proc *", "int", "uint64_t"); 124 SDT_PROBE_DEFINE3(racct, , rusage, sub, 125 "struct proc *", "int", "uint64_t"); 126 SDT_PROBE_DEFINE3(racct, , rusage, sub__cred, 127 "struct ucred *", "int", "uint64_t"); 128 SDT_PROBE_DEFINE1(racct, , racct, create, 129 "struct racct *"); 130 SDT_PROBE_DEFINE1(racct, , racct, destroy, 131 "struct racct *"); 132 SDT_PROBE_DEFINE2(racct, , racct, join, 133 "struct racct *", "struct racct *"); 134 SDT_PROBE_DEFINE2(racct, , racct, join__failure, 135 "struct racct *", "struct racct *"); 136 SDT_PROBE_DEFINE2(racct, , racct, leave, 137 "struct racct *", "struct racct *"); 138 139 int racct_types[] = { 140 [RACCT_CPU] = 141 RACCT_IN_MILLIONS, 142 [RACCT_DATA] = 143 RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, 144 [RACCT_STACK] = 145 RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, 146 [RACCT_CORE] = 147 RACCT_DENIABLE, 148 [RACCT_RSS] = 149 RACCT_RECLAIMABLE, 150 [RACCT_MEMLOCK] = 151 RACCT_RECLAIMABLE | RACCT_DENIABLE, 152 [RACCT_NPROC] = 153 RACCT_RECLAIMABLE | RACCT_DENIABLE, 154 [RACCT_NOFILE] = 155 RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, 156 [RACCT_VMEM] = 157 RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, 158 [RACCT_NPTS] = 159 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 160 [RACCT_SWAP] = 161 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 162 [RACCT_NTHR] = 163 RACCT_RECLAIMABLE | RACCT_DENIABLE, 164 [RACCT_MSGQQUEUED] = 165 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 166 [RACCT_MSGQSIZE] = 167 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 168 [RACCT_NMSGQ] = 169 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 170 [RACCT_NSEM] = 171 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 172 [RACCT_NSEMOP] = 173 RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, 174 [RACCT_NSHM] = 175 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 176 [RACCT_SHMSIZE] = 177 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 178 [RACCT_WALLCLOCK] = 179 RACCT_IN_MILLIONS, 180 [RACCT_PCTCPU] = 181 RACCT_DECAYING | RACCT_DENIABLE | RACCT_IN_MILLIONS, 182 [RACCT_READBPS] = 183 RACCT_DECAYING, 184 [RACCT_WRITEBPS] = 185 RACCT_DECAYING, 186 [RACCT_READIOPS] = 187 RACCT_DECAYING, 188 [RACCT_WRITEIOPS] = 189 RACCT_DECAYING }; 190 191 static const fixpt_t RACCT_DECAY_FACTOR = 0.3 * FSCALE; 192 193 #ifdef SCHED_4BSD 194 /* 195 * Contains intermediate values for %cpu calculations to avoid using floating 196 * point in the kernel. 197 * ccpu_exp[k] = FSCALE * (ccpu/FSCALE)^k = FSCALE * exp(-k/20) 198 * It is needed only for the 4BSD scheduler, because in ULE, the ccpu equals to 199 * zero so the calculations are more straightforward. 200 */ 201 fixpt_t ccpu_exp[] = { 202 [0] = FSCALE * 1, 203 [1] = FSCALE * 0.95122942450071400909, 204 [2] = FSCALE * 0.90483741803595957316, 205 [3] = FSCALE * 0.86070797642505780722, 206 [4] = FSCALE * 0.81873075307798185866, 207 [5] = FSCALE * 0.77880078307140486824, 208 [6] = FSCALE * 0.74081822068171786606, 209 [7] = FSCALE * 0.70468808971871343435, 210 [8] = FSCALE * 0.67032004603563930074, 211 [9] = FSCALE * 0.63762815162177329314, 212 [10] = FSCALE * 0.60653065971263342360, 213 [11] = FSCALE * 0.57694981038048669531, 214 [12] = FSCALE * 0.54881163609402643262, 215 [13] = FSCALE * 0.52204577676101604789, 216 [14] = FSCALE * 0.49658530379140951470, 217 [15] = FSCALE * 0.47236655274101470713, 218 [16] = FSCALE * 0.44932896411722159143, 219 [17] = FSCALE * 0.42741493194872666992, 220 [18] = FSCALE * 0.40656965974059911188, 221 [19] = FSCALE * 0.38674102345450120691, 222 [20] = FSCALE * 0.36787944117144232159, 223 [21] = FSCALE * 0.34993774911115535467, 224 [22] = FSCALE * 0.33287108369807955328, 225 [23] = FSCALE * 0.31663676937905321821, 226 [24] = FSCALE * 0.30119421191220209664, 227 [25] = FSCALE * 0.28650479686019010032, 228 [26] = FSCALE * 0.27253179303401260312, 229 [27] = FSCALE * 0.25924026064589150757, 230 [28] = FSCALE * 0.24659696394160647693, 231 [29] = FSCALE * 0.23457028809379765313, 232 [30] = FSCALE * 0.22313016014842982893, 233 [31] = FSCALE * 0.21224797382674305771, 234 [32] = FSCALE * 0.20189651799465540848, 235 [33] = FSCALE * 0.19204990862075411423, 236 [34] = FSCALE * 0.18268352405273465022, 237 [35] = FSCALE * 0.17377394345044512668, 238 [36] = FSCALE * 0.16529888822158653829, 239 [37] = FSCALE * 0.15723716631362761621, 240 [38] = FSCALE * 0.14956861922263505264, 241 [39] = FSCALE * 0.14227407158651357185, 242 [40] = FSCALE * 0.13533528323661269189, 243 [41] = FSCALE * 0.12873490358780421886, 244 [42] = FSCALE * 0.12245642825298191021, 245 [43] = FSCALE * 0.11648415777349695786, 246 [44] = FSCALE * 0.11080315836233388333, 247 [45] = FSCALE * 0.10539922456186433678, 248 [46] = FSCALE * 0.10025884372280373372, 249 [47] = FSCALE * 0.09536916221554961888, 250 [48] = FSCALE * 0.09071795328941250337, 251 [49] = FSCALE * 0.08629358649937051097, 252 [50] = FSCALE * 0.08208499862389879516, 253 [51] = FSCALE * 0.07808166600115315231, 254 [52] = FSCALE * 0.07427357821433388042, 255 [53] = FSCALE * 0.07065121306042958674, 256 [54] = FSCALE * 0.06720551273974976512, 257 [55] = FSCALE * 0.06392786120670757270, 258 [56] = FSCALE * 0.06081006262521796499, 259 [57] = FSCALE * 0.05784432087483846296, 260 [58] = FSCALE * 0.05502322005640722902, 261 [59] = FSCALE * 0.05233970594843239308, 262 [60] = FSCALE * 0.04978706836786394297, 263 [61] = FSCALE * 0.04735892439114092119, 264 [62] = FSCALE * 0.04504920239355780606, 265 [63] = FSCALE * 0.04285212686704017991, 266 [64] = FSCALE * 0.04076220397836621516, 267 [65] = FSCALE * 0.03877420783172200988, 268 [66] = FSCALE * 0.03688316740124000544, 269 [67] = FSCALE * 0.03508435410084502588, 270 [68] = FSCALE * 0.03337326996032607948, 271 [69] = FSCALE * 0.03174563637806794323, 272 [70] = FSCALE * 0.03019738342231850073, 273 [71] = FSCALE * 0.02872463965423942912, 274 [72] = FSCALE * 0.02732372244729256080, 275 [73] = FSCALE * 0.02599112877875534358, 276 [74] = FSCALE * 0.02472352647033939120, 277 [75] = FSCALE * 0.02351774585600910823, 278 [76] = FSCALE * 0.02237077185616559577, 279 [77] = FSCALE * 0.02127973643837716938, 280 [78] = FSCALE * 0.02024191144580438847, 281 [79] = FSCALE * 0.01925470177538692429, 282 [80] = FSCALE * 0.01831563888873418029, 283 [81] = FSCALE * 0.01742237463949351138, 284 [82] = FSCALE * 0.01657267540176124754, 285 [83] = FSCALE * 0.01576441648485449082, 286 [84] = FSCALE * 0.01499557682047770621, 287 [85] = FSCALE * 0.01426423390899925527, 288 [86] = FSCALE * 0.01356855901220093175, 289 [87] = FSCALE * 0.01290681258047986886, 290 [88] = FSCALE * 0.01227733990306844117, 291 [89] = FSCALE * 0.01167856697039544521, 292 [90] = FSCALE * 0.01110899653824230649, 293 [91] = FSCALE * 0.01056720438385265337, 294 [92] = FSCALE * 0.01005183574463358164, 295 [93] = FSCALE * 0.00956160193054350793, 296 [94] = FSCALE * 0.00909527710169581709, 297 [95] = FSCALE * 0.00865169520312063417, 298 [96] = FSCALE * 0.00822974704902002884, 299 [97] = FSCALE * 0.00782837754922577143, 300 [98] = FSCALE * 0.00744658307092434051, 301 [99] = FSCALE * 0.00708340892905212004, 302 [100] = FSCALE * 0.00673794699908546709, 303 [101] = FSCALE * 0.00640933344625638184, 304 [102] = FSCALE * 0.00609674656551563610, 305 [103] = FSCALE * 0.00579940472684214321, 306 [104] = FSCALE * 0.00551656442076077241, 307 [105] = FSCALE * 0.00524751839918138427, 308 [106] = FSCALE * 0.00499159390691021621, 309 [107] = FSCALE * 0.00474815099941147558, 310 [108] = FSCALE * 0.00451658094261266798, 311 [109] = FSCALE * 0.00429630469075234057, 312 [110] = FSCALE * 0.00408677143846406699, 313 }; 314 #endif 315 316 #define CCPU_EXP_MAX 110 317 318 /* 319 * This function is analogical to the getpcpu() function in the ps(1) command. 320 * They should both calculate in the same way so that the racct %cpu 321 * calculations are consistent with the values showed by the ps(1) tool. 322 * The calculations are more complex in the 4BSD scheduler because of the value 323 * of the ccpu variable. In ULE it is defined to be zero which saves us some 324 * work. 325 */ 326 static uint64_t 327 racct_getpcpu(struct proc *p, u_int pcpu) 328 { 329 u_int swtime; 330 #ifdef SCHED_4BSD 331 fixpt_t pctcpu, pctcpu_next; 332 #endif 333 #ifdef SMP 334 struct pcpu *pc; 335 int found; 336 #endif 337 fixpt_t p_pctcpu; 338 struct thread *td; 339 340 ASSERT_RACCT_ENABLED(); 341 342 /* 343 * If the process is swapped out, we count its %cpu usage as zero. 344 * This behaviour is consistent with the userland ps(1) tool. 345 */ 346 if ((p->p_flag & P_INMEM) == 0) 347 return (0); 348 swtime = (ticks - p->p_swtick) / hz; 349 350 /* 351 * For short-lived processes, the sched_pctcpu() returns small 352 * values even for cpu intensive processes. Therefore we use 353 * our own estimate in this case. 354 */ 355 if (swtime < RACCT_PCPU_SECS) 356 return (pcpu); 357 358 p_pctcpu = 0; 359 FOREACH_THREAD_IN_PROC(p, td) { 360 if (td == PCPU_GET(idlethread)) 361 continue; 362 #ifdef SMP 363 found = 0; 364 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { 365 if (td == pc->pc_idlethread) { 366 found = 1; 367 break; 368 } 369 } 370 if (found) 371 continue; 372 #endif 373 thread_lock(td); 374 #ifdef SCHED_4BSD 375 pctcpu = sched_pctcpu(td); 376 /* Count also the yet unfinished second. */ 377 pctcpu_next = (pctcpu * ccpu_exp[1]) >> FSHIFT; 378 pctcpu_next += sched_pctcpu_delta(td); 379 p_pctcpu += max(pctcpu, pctcpu_next); 380 #else 381 /* 382 * In ULE the %cpu statistics are updated on every 383 * sched_pctcpu() call. So special calculations to 384 * account for the latest (unfinished) second are 385 * not needed. 386 */ 387 p_pctcpu += sched_pctcpu(td); 388 #endif 389 thread_unlock(td); 390 } 391 392 #ifdef SCHED_4BSD 393 if (swtime <= CCPU_EXP_MAX) 394 return ((100 * (uint64_t)p_pctcpu * 1000000) / 395 (FSCALE - ccpu_exp[swtime])); 396 #endif 397 398 return ((100 * (uint64_t)p_pctcpu * 1000000) / FSCALE); 399 } 400 401 static void 402 racct_add_racct(struct racct *dest, const struct racct *src) 403 { 404 int i; 405 406 ASSERT_RACCT_ENABLED(); 407 RACCT_LOCK_ASSERT(); 408 409 /* 410 * Update resource usage in dest. 411 */ 412 for (i = 0; i <= RACCT_MAX; i++) { 413 KASSERT(dest->r_resources[i] >= 0, 414 ("%s: resource %d propagation meltdown: dest < 0", 415 __func__, i)); 416 KASSERT(src->r_resources[i] >= 0, 417 ("%s: resource %d propagation meltdown: src < 0", 418 __func__, i)); 419 dest->r_resources[i] += src->r_resources[i]; 420 } 421 } 422 423 static void 424 racct_sub_racct(struct racct *dest, const struct racct *src) 425 { 426 int i; 427 428 ASSERT_RACCT_ENABLED(); 429 RACCT_LOCK_ASSERT(); 430 431 /* 432 * Update resource usage in dest. 433 */ 434 for (i = 0; i <= RACCT_MAX; i++) { 435 if (!RACCT_IS_SLOPPY(i) && !RACCT_IS_DECAYING(i)) { 436 KASSERT(dest->r_resources[i] >= 0, 437 ("%s: resource %d propagation meltdown: dest < 0", 438 __func__, i)); 439 KASSERT(src->r_resources[i] >= 0, 440 ("%s: resource %d propagation meltdown: src < 0", 441 __func__, i)); 442 KASSERT(src->r_resources[i] <= dest->r_resources[i], 443 ("%s: resource %d propagation meltdown: src > dest", 444 __func__, i)); 445 } 446 if (RACCT_CAN_DROP(i)) { 447 dest->r_resources[i] -= src->r_resources[i]; 448 if (dest->r_resources[i] < 0) 449 dest->r_resources[i] = 0; 450 } 451 } 452 } 453 454 void 455 racct_create(struct racct **racctp) 456 { 457 458 if (!racct_enable) 459 return; 460 461 SDT_PROBE1(racct, , racct, create, racctp); 462 463 KASSERT(*racctp == NULL, ("racct already allocated")); 464 465 *racctp = uma_zalloc(racct_zone, M_WAITOK | M_ZERO); 466 } 467 468 static void 469 racct_destroy_locked(struct racct **racctp) 470 { 471 struct racct *racct; 472 int i; 473 474 ASSERT_RACCT_ENABLED(); 475 476 SDT_PROBE1(racct, , racct, destroy, racctp); 477 478 RACCT_LOCK_ASSERT(); 479 KASSERT(racctp != NULL, ("NULL racctp")); 480 KASSERT(*racctp != NULL, ("NULL racct")); 481 482 racct = *racctp; 483 484 for (i = 0; i <= RACCT_MAX; i++) { 485 if (RACCT_IS_SLOPPY(i)) 486 continue; 487 if (!RACCT_IS_RECLAIMABLE(i)) 488 continue; 489 KASSERT(racct->r_resources[i] == 0, 490 ("destroying non-empty racct: " 491 "%ju allocated for resource %d\n", 492 racct->r_resources[i], i)); 493 } 494 uma_zfree(racct_zone, racct); 495 *racctp = NULL; 496 } 497 498 void 499 racct_destroy(struct racct **racct) 500 { 501 502 if (!racct_enable) 503 return; 504 505 RACCT_LOCK(); 506 racct_destroy_locked(racct); 507 RACCT_UNLOCK(); 508 } 509 510 /* 511 * Increase consumption of 'resource' by 'amount' for 'racct', 512 * but not its parents. Differently from other cases, 'amount' here 513 * may be less than zero. 514 */ 515 static void 516 racct_adjust_resource(struct racct *racct, int resource, 517 int64_t amount) 518 { 519 520 ASSERT_RACCT_ENABLED(); 521 RACCT_LOCK_ASSERT(); 522 KASSERT(racct != NULL, ("NULL racct")); 523 524 racct->r_resources[resource] += amount; 525 if (racct->r_resources[resource] < 0) { 526 KASSERT(RACCT_IS_SLOPPY(resource) || RACCT_IS_DECAYING(resource), 527 ("%s: resource %d usage < 0", __func__, resource)); 528 racct->r_resources[resource] = 0; 529 } 530 531 /* 532 * There are some cases where the racct %cpu resource would grow 533 * beyond 100% per core. For example in racct_proc_exit() we add 534 * the process %cpu usage to the ucred racct containers. If too 535 * many processes terminated in a short time span, the ucred %cpu 536 * resource could grow too much. Also, the 4BSD scheduler sometimes 537 * returns for a thread more than 100% cpu usage. So we set a sane 538 * boundary here to 100% * the maxumum number of CPUs. 539 */ 540 if ((resource == RACCT_PCTCPU) && 541 (racct->r_resources[RACCT_PCTCPU] > 100 * 1000000 * (int64_t)MAXCPU)) 542 racct->r_resources[RACCT_PCTCPU] = 100 * 1000000 * (int64_t)MAXCPU; 543 } 544 545 static int 546 racct_add_locked(struct proc *p, int resource, uint64_t amount, int force) 547 { 548 #ifdef RCTL 549 int error; 550 #endif 551 552 ASSERT_RACCT_ENABLED(); 553 554 /* 555 * We need proc lock to dereference p->p_ucred. 556 */ 557 PROC_LOCK_ASSERT(p, MA_OWNED); 558 559 #ifdef RCTL 560 error = rctl_enforce(p, resource, amount); 561 if (error && !force && RACCT_IS_DENIABLE(resource)) { 562 SDT_PROBE3(racct, , rusage, add__failure, p, resource, amount); 563 return (error); 564 } 565 #endif 566 racct_adjust_resource(p->p_racct, resource, amount); 567 racct_add_cred_locked(p->p_ucred, resource, amount); 568 569 return (0); 570 } 571 572 /* 573 * Increase allocation of 'resource' by 'amount' for process 'p'. 574 * Return 0 if it's below limits, or errno, if it's not. 575 */ 576 int 577 racct_add(struct proc *p, int resource, uint64_t amount) 578 { 579 int error; 580 581 if (!racct_enable) 582 return (0); 583 584 SDT_PROBE3(racct, , rusage, add, p, resource, amount); 585 586 RACCT_LOCK(); 587 error = racct_add_locked(p, resource, amount, 0); 588 RACCT_UNLOCK(); 589 return (error); 590 } 591 592 /* 593 * Increase allocation of 'resource' by 'amount' for process 'p'. 594 * Doesn't check for limits and never fails. 595 */ 596 void 597 racct_add_force(struct proc *p, int resource, uint64_t amount) 598 { 599 600 if (!racct_enable) 601 return; 602 603 SDT_PROBE3(racct, , rusage, add__force, p, resource, amount); 604 605 RACCT_LOCK(); 606 racct_add_locked(p, resource, amount, 1); 607 RACCT_UNLOCK(); 608 } 609 610 static void 611 racct_add_cred_locked(struct ucred *cred, int resource, uint64_t amount) 612 { 613 struct prison *pr; 614 615 ASSERT_RACCT_ENABLED(); 616 617 racct_adjust_resource(cred->cr_ruidinfo->ui_racct, resource, amount); 618 for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent) 619 racct_adjust_resource(pr->pr_prison_racct->prr_racct, resource, 620 amount); 621 racct_adjust_resource(cred->cr_loginclass->lc_racct, resource, amount); 622 } 623 624 /* 625 * Increase allocation of 'resource' by 'amount' for credential 'cred'. 626 * Doesn't check for limits and never fails. 627 */ 628 void 629 racct_add_cred(struct ucred *cred, int resource, uint64_t amount) 630 { 631 632 if (!racct_enable) 633 return; 634 635 SDT_PROBE3(racct, , rusage, add__cred, cred, resource, amount); 636 637 RACCT_LOCK(); 638 racct_add_cred_locked(cred, resource, amount); 639 RACCT_UNLOCK(); 640 } 641 642 /* 643 * Account for disk IO resource consumption. Checks for limits, 644 * but never fails, due to disk limits being undeniable. 645 */ 646 void 647 racct_add_buf(struct proc *p, const struct buf *bp, int is_write) 648 { 649 650 ASSERT_RACCT_ENABLED(); 651 PROC_LOCK_ASSERT(p, MA_OWNED); 652 653 SDT_PROBE3(racct, , rusage, add__buf, p, bp, is_write); 654 655 RACCT_LOCK(); 656 if (is_write) { 657 racct_add_locked(curproc, RACCT_WRITEBPS, bp->b_bcount, 1); 658 racct_add_locked(curproc, RACCT_WRITEIOPS, 1, 1); 659 } else { 660 racct_add_locked(curproc, RACCT_READBPS, bp->b_bcount, 1); 661 racct_add_locked(curproc, RACCT_READIOPS, 1, 1); 662 } 663 RACCT_UNLOCK(); 664 } 665 666 static int 667 racct_set_locked(struct proc *p, int resource, uint64_t amount, int force) 668 { 669 int64_t old_amount, decayed_amount, diff_proc, diff_cred; 670 #ifdef RCTL 671 int error; 672 #endif 673 674 ASSERT_RACCT_ENABLED(); 675 676 /* 677 * We need proc lock to dereference p->p_ucred. 678 */ 679 PROC_LOCK_ASSERT(p, MA_OWNED); 680 681 old_amount = p->p_racct->r_resources[resource]; 682 /* 683 * The diffs may be negative. 684 */ 685 diff_proc = amount - old_amount; 686 if (resource == RACCT_PCTCPU) { 687 /* 688 * Resources in per-credential racct containers may decay. 689 * If this is the case, we need to calculate the difference 690 * between the new amount and the proportional value of the 691 * old amount that has decayed in the ucred racct containers. 692 */ 693 decayed_amount = old_amount * RACCT_DECAY_FACTOR / FSCALE; 694 diff_cred = amount - decayed_amount; 695 } else 696 diff_cred = diff_proc; 697 #ifdef notyet 698 KASSERT(diff_proc >= 0 || RACCT_CAN_DROP(resource), 699 ("%s: usage of non-droppable resource %d dropping", __func__, 700 resource)); 701 #endif 702 #ifdef RCTL 703 if (diff_proc > 0) { 704 error = rctl_enforce(p, resource, diff_proc); 705 if (error && !force && RACCT_IS_DENIABLE(resource)) { 706 SDT_PROBE3(racct, , rusage, set__failure, p, resource, 707 amount); 708 return (error); 709 } 710 } 711 #endif 712 racct_adjust_resource(p->p_racct, resource, diff_proc); 713 if (diff_cred > 0) 714 racct_add_cred_locked(p->p_ucred, resource, diff_cred); 715 else if (diff_cred < 0) 716 racct_sub_cred_locked(p->p_ucred, resource, -diff_cred); 717 718 return (0); 719 } 720 721 /* 722 * Set allocation of 'resource' to 'amount' for process 'p'. 723 * Return 0 if it's below limits, or errno, if it's not. 724 * 725 * Note that decreasing the allocation always returns 0, 726 * even if it's above the limit. 727 */ 728 int 729 racct_set_unlocked(struct proc *p, int resource, uint64_t amount) 730 { 731 int error; 732 733 ASSERT_RACCT_ENABLED(); 734 PROC_LOCK(p); 735 error = racct_set(p, resource, amount); 736 PROC_UNLOCK(p); 737 return (error); 738 } 739 740 int 741 racct_set(struct proc *p, int resource, uint64_t amount) 742 { 743 int error; 744 745 if (!racct_enable) 746 return (0); 747 748 SDT_PROBE3(racct, , rusage, set__force, p, resource, amount); 749 750 RACCT_LOCK(); 751 error = racct_set_locked(p, resource, amount, 0); 752 RACCT_UNLOCK(); 753 return (error); 754 } 755 756 void 757 racct_set_force(struct proc *p, int resource, uint64_t amount) 758 { 759 760 if (!racct_enable) 761 return; 762 763 SDT_PROBE3(racct, , rusage, set, p, resource, amount); 764 765 RACCT_LOCK(); 766 racct_set_locked(p, resource, amount, 1); 767 RACCT_UNLOCK(); 768 } 769 770 /* 771 * Returns amount of 'resource' the process 'p' can keep allocated. 772 * Allocating more than that would be denied, unless the resource 773 * is marked undeniable. Amount of already allocated resource does 774 * not matter. 775 */ 776 uint64_t 777 racct_get_limit(struct proc *p, int resource) 778 { 779 #ifdef RCTL 780 uint64_t available; 781 782 if (!racct_enable) 783 return (UINT64_MAX); 784 785 RACCT_LOCK(); 786 available = rctl_get_limit(p, resource); 787 RACCT_UNLOCK(); 788 789 return (available); 790 #else 791 792 return (UINT64_MAX); 793 #endif 794 } 795 796 /* 797 * Returns amount of 'resource' the process 'p' can keep allocated. 798 * Allocating more than that would be denied, unless the resource 799 * is marked undeniable. Amount of already allocated resource does 800 * matter. 801 */ 802 uint64_t 803 racct_get_available(struct proc *p, int resource) 804 { 805 #ifdef RCTL 806 uint64_t available; 807 808 if (!racct_enable) 809 return (UINT64_MAX); 810 811 RACCT_LOCK(); 812 available = rctl_get_available(p, resource); 813 RACCT_UNLOCK(); 814 815 return (available); 816 #else 817 818 return (UINT64_MAX); 819 #endif 820 } 821 822 /* 823 * Returns amount of the %cpu resource that process 'p' can add to its %cpu 824 * utilization. Adding more than that would lead to the process being 825 * throttled. 826 */ 827 static int64_t 828 racct_pcpu_available(struct proc *p) 829 { 830 #ifdef RCTL 831 uint64_t available; 832 833 ASSERT_RACCT_ENABLED(); 834 835 RACCT_LOCK(); 836 available = rctl_pcpu_available(p); 837 RACCT_UNLOCK(); 838 839 return (available); 840 #else 841 842 return (INT64_MAX); 843 #endif 844 } 845 846 /* 847 * Decrease allocation of 'resource' by 'amount' for process 'p'. 848 */ 849 void 850 racct_sub(struct proc *p, int resource, uint64_t amount) 851 { 852 853 if (!racct_enable) 854 return; 855 856 SDT_PROBE3(racct, , rusage, sub, p, resource, amount); 857 858 /* 859 * We need proc lock to dereference p->p_ucred. 860 */ 861 PROC_LOCK_ASSERT(p, MA_OWNED); 862 KASSERT(RACCT_CAN_DROP(resource), 863 ("%s: called for non-droppable resource %d", __func__, resource)); 864 865 RACCT_LOCK(); 866 KASSERT(amount <= p->p_racct->r_resources[resource], 867 ("%s: freeing %ju of resource %d, which is more " 868 "than allocated %jd for %s (pid %d)", __func__, amount, resource, 869 (intmax_t)p->p_racct->r_resources[resource], p->p_comm, p->p_pid)); 870 871 racct_adjust_resource(p->p_racct, resource, -amount); 872 racct_sub_cred_locked(p->p_ucred, resource, amount); 873 RACCT_UNLOCK(); 874 } 875 876 static void 877 racct_sub_cred_locked(struct ucred *cred, int resource, uint64_t amount) 878 { 879 struct prison *pr; 880 881 ASSERT_RACCT_ENABLED(); 882 883 racct_adjust_resource(cred->cr_ruidinfo->ui_racct, resource, -amount); 884 for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent) 885 racct_adjust_resource(pr->pr_prison_racct->prr_racct, resource, 886 -amount); 887 racct_adjust_resource(cred->cr_loginclass->lc_racct, resource, -amount); 888 } 889 890 /* 891 * Decrease allocation of 'resource' by 'amount' for credential 'cred'. 892 */ 893 void 894 racct_sub_cred(struct ucred *cred, int resource, uint64_t amount) 895 { 896 897 if (!racct_enable) 898 return; 899 900 SDT_PROBE3(racct, , rusage, sub__cred, cred, resource, amount); 901 902 #ifdef notyet 903 KASSERT(RACCT_CAN_DROP(resource), 904 ("%s: called for resource %d which can not drop", __func__, 905 resource)); 906 #endif 907 908 RACCT_LOCK(); 909 racct_sub_cred_locked(cred, resource, amount); 910 RACCT_UNLOCK(); 911 } 912 913 /* 914 * Inherit resource usage information from the parent process. 915 */ 916 int 917 racct_proc_fork(struct proc *parent, struct proc *child) 918 { 919 int i, error = 0; 920 921 if (!racct_enable) 922 return (0); 923 924 /* 925 * Create racct for the child process. 926 */ 927 racct_create(&child->p_racct); 928 929 PROC_LOCK(parent); 930 PROC_LOCK(child); 931 RACCT_LOCK(); 932 933 #ifdef RCTL 934 error = rctl_proc_fork(parent, child); 935 if (error != 0) 936 goto out; 937 #endif 938 939 /* Init process cpu time. */ 940 child->p_prev_runtime = 0; 941 child->p_throttled = 0; 942 943 /* 944 * Inherit resource usage. 945 */ 946 for (i = 0; i <= RACCT_MAX; i++) { 947 if (parent->p_racct->r_resources[i] == 0 || 948 !RACCT_IS_INHERITABLE(i)) 949 continue; 950 951 error = racct_set_locked(child, i, 952 parent->p_racct->r_resources[i], 0); 953 if (error != 0) 954 goto out; 955 } 956 957 error = racct_add_locked(child, RACCT_NPROC, 1, 0); 958 error += racct_add_locked(child, RACCT_NTHR, 1, 0); 959 960 out: 961 RACCT_UNLOCK(); 962 PROC_UNLOCK(child); 963 PROC_UNLOCK(parent); 964 965 if (error != 0) 966 racct_proc_exit(child); 967 968 return (error); 969 } 970 971 /* 972 * Called at the end of fork1(), to handle rules that require the process 973 * to be fully initialized. 974 */ 975 void 976 racct_proc_fork_done(struct proc *child) 977 { 978 979 if (!racct_enable) 980 return; 981 982 #ifdef RCTL 983 PROC_LOCK(child); 984 RACCT_LOCK(); 985 rctl_enforce(child, RACCT_NPROC, 0); 986 rctl_enforce(child, RACCT_NTHR, 0); 987 RACCT_UNLOCK(); 988 PROC_UNLOCK(child); 989 #endif 990 } 991 992 void 993 racct_proc_exit(struct proc *p) 994 { 995 struct timeval wallclock; 996 uint64_t pct_estimate, pct, runtime; 997 int i; 998 999 if (!racct_enable) 1000 return; 1001 1002 PROC_LOCK(p); 1003 /* 1004 * We don't need to calculate rux, proc_reap() has already done this. 1005 */ 1006 runtime = cputick2usec(p->p_rux.rux_runtime); 1007 #ifdef notyet 1008 KASSERT(runtime >= p->p_prev_runtime, ("runtime < p_prev_runtime")); 1009 #else 1010 if (runtime < p->p_prev_runtime) 1011 runtime = p->p_prev_runtime; 1012 #endif 1013 microuptime(&wallclock); 1014 timevalsub(&wallclock, &p->p_stats->p_start); 1015 if (wallclock.tv_sec > 0 || wallclock.tv_usec > 0) { 1016 pct_estimate = (1000000 * runtime * 100) / 1017 ((uint64_t)wallclock.tv_sec * 1000000 + 1018 wallclock.tv_usec); 1019 } else 1020 pct_estimate = 0; 1021 pct = racct_getpcpu(p, pct_estimate); 1022 1023 RACCT_LOCK(); 1024 racct_set_locked(p, RACCT_CPU, runtime, 0); 1025 racct_add_cred_locked(p->p_ucred, RACCT_PCTCPU, pct); 1026 1027 KASSERT(p->p_racct->r_resources[RACCT_RSS] == 0, 1028 ("process reaped with %ju allocated for RSS\n", 1029 p->p_racct->r_resources[RACCT_RSS])); 1030 for (i = 0; i <= RACCT_MAX; i++) { 1031 if (p->p_racct->r_resources[i] == 0) 1032 continue; 1033 if (!RACCT_IS_RECLAIMABLE(i)) 1034 continue; 1035 racct_set_locked(p, i, 0, 0); 1036 } 1037 1038 #ifdef RCTL 1039 rctl_racct_release(p->p_racct); 1040 #endif 1041 racct_destroy_locked(&p->p_racct); 1042 RACCT_UNLOCK(); 1043 PROC_UNLOCK(p); 1044 } 1045 1046 /* 1047 * Called after credentials change, to move resource utilisation 1048 * between raccts. 1049 */ 1050 void 1051 racct_proc_ucred_changed(struct proc *p, struct ucred *oldcred, 1052 struct ucred *newcred) 1053 { 1054 struct uidinfo *olduip, *newuip; 1055 struct loginclass *oldlc, *newlc; 1056 struct prison *oldpr, *newpr, *pr; 1057 1058 if (!racct_enable) 1059 return; 1060 1061 PROC_LOCK_ASSERT(p, MA_OWNED); 1062 1063 newuip = newcred->cr_ruidinfo; 1064 olduip = oldcred->cr_ruidinfo; 1065 newlc = newcred->cr_loginclass; 1066 oldlc = oldcred->cr_loginclass; 1067 newpr = newcred->cr_prison; 1068 oldpr = oldcred->cr_prison; 1069 1070 RACCT_LOCK(); 1071 if (newuip != olduip) { 1072 racct_sub_racct(olduip->ui_racct, p->p_racct); 1073 racct_add_racct(newuip->ui_racct, p->p_racct); 1074 } 1075 if (newlc != oldlc) { 1076 racct_sub_racct(oldlc->lc_racct, p->p_racct); 1077 racct_add_racct(newlc->lc_racct, p->p_racct); 1078 } 1079 if (newpr != oldpr) { 1080 for (pr = oldpr; pr != NULL; pr = pr->pr_parent) 1081 racct_sub_racct(pr->pr_prison_racct->prr_racct, 1082 p->p_racct); 1083 for (pr = newpr; pr != NULL; pr = pr->pr_parent) 1084 racct_add_racct(pr->pr_prison_racct->prr_racct, 1085 p->p_racct); 1086 } 1087 RACCT_UNLOCK(); 1088 } 1089 1090 void 1091 racct_move(struct racct *dest, struct racct *src) 1092 { 1093 1094 ASSERT_RACCT_ENABLED(); 1095 1096 RACCT_LOCK(); 1097 racct_add_racct(dest, src); 1098 racct_sub_racct(src, src); 1099 RACCT_UNLOCK(); 1100 } 1101 1102 void 1103 racct_proc_throttled(struct proc *p) 1104 { 1105 1106 ASSERT_RACCT_ENABLED(); 1107 1108 PROC_LOCK(p); 1109 while (p->p_throttled != 0) { 1110 msleep(p->p_racct, &p->p_mtx, 0, "racct", 1111 p->p_throttled < 0 ? 0 : p->p_throttled); 1112 if (p->p_throttled > 0) 1113 p->p_throttled = 0; 1114 } 1115 PROC_UNLOCK(p); 1116 } 1117 1118 /* 1119 * Make the process sleep in userret() for 'timeout' ticks. Setting 1120 * timeout to -1 makes it sleep until woken up by racct_proc_wakeup(). 1121 */ 1122 void 1123 racct_proc_throttle(struct proc *p, int timeout) 1124 { 1125 struct thread *td; 1126 #ifdef SMP 1127 int cpuid; 1128 #endif 1129 1130 KASSERT(timeout != 0, ("timeout %d", timeout)); 1131 ASSERT_RACCT_ENABLED(); 1132 PROC_LOCK_ASSERT(p, MA_OWNED); 1133 1134 /* 1135 * Do not block kernel processes. Also do not block processes with 1136 * low %cpu utilization to improve interactivity. 1137 */ 1138 if ((p->p_flag & (P_SYSTEM | P_KPROC)) != 0) 1139 return; 1140 1141 if (p->p_throttled < 0 || (timeout > 0 && p->p_throttled > timeout)) 1142 return; 1143 1144 p->p_throttled = timeout; 1145 1146 FOREACH_THREAD_IN_PROC(p, td) { 1147 thread_lock(td); 1148 switch (td->td_state) { 1149 case TDS_RUNQ: 1150 /* 1151 * If the thread is on the scheduler run-queue, we can 1152 * not just remove it from there. So we set the flag 1153 * TDF_NEEDRESCHED for the thread, so that once it is 1154 * running, it is taken off the cpu as soon as possible. 1155 */ 1156 td->td_flags |= TDF_NEEDRESCHED; 1157 break; 1158 case TDS_RUNNING: 1159 /* 1160 * If the thread is running, we request a context 1161 * switch for it by setting the TDF_NEEDRESCHED flag. 1162 */ 1163 td->td_flags |= TDF_NEEDRESCHED; 1164 #ifdef SMP 1165 cpuid = td->td_oncpu; 1166 if ((cpuid != NOCPU) && (td != curthread)) 1167 ipi_cpu(cpuid, IPI_AST); 1168 #endif 1169 break; 1170 default: 1171 break; 1172 } 1173 thread_unlock(td); 1174 } 1175 } 1176 1177 static void 1178 racct_proc_wakeup(struct proc *p) 1179 { 1180 1181 ASSERT_RACCT_ENABLED(); 1182 1183 PROC_LOCK_ASSERT(p, MA_OWNED); 1184 1185 if (p->p_throttled != 0) { 1186 p->p_throttled = 0; 1187 wakeup(p->p_racct); 1188 } 1189 } 1190 1191 static void 1192 racct_decay_callback(struct racct *racct, void *dummy1, void *dummy2) 1193 { 1194 int64_t r_old, r_new; 1195 1196 ASSERT_RACCT_ENABLED(); 1197 RACCT_LOCK_ASSERT(); 1198 1199 #ifdef RCTL 1200 rctl_throttle_decay(racct, RACCT_READBPS); 1201 rctl_throttle_decay(racct, RACCT_WRITEBPS); 1202 rctl_throttle_decay(racct, RACCT_READIOPS); 1203 rctl_throttle_decay(racct, RACCT_WRITEIOPS); 1204 #endif 1205 1206 r_old = racct->r_resources[RACCT_PCTCPU]; 1207 1208 /* If there is nothing to decay, just exit. */ 1209 if (r_old <= 0) 1210 return; 1211 1212 r_new = r_old * RACCT_DECAY_FACTOR / FSCALE; 1213 racct->r_resources[RACCT_PCTCPU] = r_new; 1214 } 1215 1216 static void 1217 racct_decay_pre(void) 1218 { 1219 1220 RACCT_LOCK(); 1221 } 1222 1223 static void 1224 racct_decay_post(void) 1225 { 1226 1227 RACCT_UNLOCK(); 1228 } 1229 1230 static void 1231 racct_decay(void) 1232 { 1233 1234 ASSERT_RACCT_ENABLED(); 1235 1236 ui_racct_foreach(racct_decay_callback, racct_decay_pre, 1237 racct_decay_post, NULL, NULL); 1238 loginclass_racct_foreach(racct_decay_callback, racct_decay_pre, 1239 racct_decay_post, NULL, NULL); 1240 prison_racct_foreach(racct_decay_callback, racct_decay_pre, 1241 racct_decay_post, NULL, NULL); 1242 } 1243 1244 static void 1245 racctd(void) 1246 { 1247 struct thread *td; 1248 struct proc *p; 1249 struct timeval wallclock; 1250 uint64_t pct, pct_estimate, runtime; 1251 1252 ASSERT_RACCT_ENABLED(); 1253 1254 for (;;) { 1255 racct_decay(); 1256 1257 sx_slock(&allproc_lock); 1258 1259 sx_slock(&zombproc_lock); 1260 LIST_FOREACH(p, &zombproc, p_list) { 1261 PROC_LOCK(p); 1262 racct_set(p, RACCT_PCTCPU, 0); 1263 PROC_UNLOCK(p); 1264 } 1265 sx_sunlock(&zombproc_lock); 1266 1267 FOREACH_PROC_IN_SYSTEM(p) { 1268 PROC_LOCK(p); 1269 if (p->p_state != PRS_NORMAL) { 1270 PROC_UNLOCK(p); 1271 continue; 1272 } 1273 1274 microuptime(&wallclock); 1275 timevalsub(&wallclock, &p->p_stats->p_start); 1276 PROC_STATLOCK(p); 1277 FOREACH_THREAD_IN_PROC(p, td) 1278 ruxagg(p, td); 1279 runtime = cputick2usec(p->p_rux.rux_runtime); 1280 PROC_STATUNLOCK(p); 1281 #ifdef notyet 1282 KASSERT(runtime >= p->p_prev_runtime, 1283 ("runtime < p_prev_runtime")); 1284 #else 1285 if (runtime < p->p_prev_runtime) 1286 runtime = p->p_prev_runtime; 1287 #endif 1288 p->p_prev_runtime = runtime; 1289 if (wallclock.tv_sec > 0 || wallclock.tv_usec > 0) { 1290 pct_estimate = (1000000 * runtime * 100) / 1291 ((uint64_t)wallclock.tv_sec * 1000000 + 1292 wallclock.tv_usec); 1293 } else 1294 pct_estimate = 0; 1295 pct = racct_getpcpu(p, pct_estimate); 1296 RACCT_LOCK(); 1297 #ifdef RCTL 1298 rctl_throttle_decay(p->p_racct, RACCT_READBPS); 1299 rctl_throttle_decay(p->p_racct, RACCT_WRITEBPS); 1300 rctl_throttle_decay(p->p_racct, RACCT_READIOPS); 1301 rctl_throttle_decay(p->p_racct, RACCT_WRITEIOPS); 1302 #endif 1303 racct_set_locked(p, RACCT_PCTCPU, pct, 1); 1304 racct_set_locked(p, RACCT_CPU, runtime, 0); 1305 racct_set_locked(p, RACCT_WALLCLOCK, 1306 (uint64_t)wallclock.tv_sec * 1000000 + 1307 wallclock.tv_usec, 0); 1308 RACCT_UNLOCK(); 1309 PROC_UNLOCK(p); 1310 } 1311 1312 /* 1313 * To ensure that processes are throttled in a fair way, we need 1314 * to iterate over all processes again and check the limits 1315 * for %cpu resource only after ucred racct containers have been 1316 * properly filled. 1317 */ 1318 FOREACH_PROC_IN_SYSTEM(p) { 1319 PROC_LOCK(p); 1320 if (p->p_state != PRS_NORMAL) { 1321 PROC_UNLOCK(p); 1322 continue; 1323 } 1324 1325 if (racct_pcpu_available(p) <= 0) { 1326 if (p->p_racct->r_resources[RACCT_PCTCPU] > 1327 pcpu_threshold) 1328 racct_proc_throttle(p, -1); 1329 } else if (p->p_throttled == -1) { 1330 racct_proc_wakeup(p); 1331 } 1332 PROC_UNLOCK(p); 1333 } 1334 sx_sunlock(&allproc_lock); 1335 pause("-", hz); 1336 } 1337 } 1338 1339 static struct kproc_desc racctd_kp = { 1340 "racctd", 1341 racctd, 1342 NULL 1343 }; 1344 1345 static void 1346 racctd_init(void) 1347 { 1348 if (!racct_enable) 1349 return; 1350 1351 kproc_start(&racctd_kp); 1352 } 1353 SYSINIT(racctd, SI_SUB_RACCTD, SI_ORDER_FIRST, racctd_init, NULL); 1354 1355 static void 1356 racct_init(void) 1357 { 1358 if (!racct_enable) 1359 return; 1360 1361 racct_zone = uma_zcreate("racct", sizeof(struct racct), 1362 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1363 /* 1364 * XXX: Move this somewhere. 1365 */ 1366 prison0.pr_prison_racct = prison_racct_find("0"); 1367 } 1368 SYSINIT(racct, SI_SUB_RACCT, SI_ORDER_FIRST, racct_init, NULL); 1369 1370 #endif /* !RACCT */ 1371