1 /*- 2 * Copyright (c) 2010 The FreeBSD Foundation 3 * All rights reserved. 4 * 5 * This software was developed by Edward Tomasz Napierala under sponsorship 6 * from the FreeBSD Foundation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_sched.h" 36 37 #include <sys/param.h> 38 #include <sys/buf.h> 39 #include <sys/systm.h> 40 #include <sys/eventhandler.h> 41 #include <sys/jail.h> 42 #include <sys/kernel.h> 43 #include <sys/kthread.h> 44 #include <sys/lock.h> 45 #include <sys/loginclass.h> 46 #include <sys/malloc.h> 47 #include <sys/mutex.h> 48 #include <sys/proc.h> 49 #include <sys/racct.h> 50 #include <sys/resourcevar.h> 51 #include <sys/sbuf.h> 52 #include <sys/sched.h> 53 #include <sys/sdt.h> 54 #include <sys/smp.h> 55 #include <sys/sx.h> 56 #include <sys/sysctl.h> 57 #include <sys/sysent.h> 58 #include <sys/sysproto.h> 59 #include <sys/umtx.h> 60 #include <machine/smp.h> 61 62 #ifdef RCTL 63 #include <sys/rctl.h> 64 #endif 65 66 #ifdef RACCT 67 68 FEATURE(racct, "Resource Accounting"); 69 70 /* 71 * Do not block processes that have their %cpu usage <= pcpu_threshold. 72 */ 73 static int pcpu_threshold = 1; 74 #ifdef RACCT_DEFAULT_TO_DISABLED 75 int racct_enable = 0; 76 #else 77 int racct_enable = 1; 78 #endif 79 80 SYSCTL_NODE(_kern, OID_AUTO, racct, CTLFLAG_RW, 0, "Resource Accounting"); 81 SYSCTL_UINT(_kern_racct, OID_AUTO, enable, CTLFLAG_RDTUN, &racct_enable, 82 0, "Enable RACCT/RCTL"); 83 SYSCTL_UINT(_kern_racct, OID_AUTO, pcpu_threshold, CTLFLAG_RW, &pcpu_threshold, 84 0, "Processes with higher %cpu usage than this value can be throttled."); 85 86 /* 87 * How many seconds it takes to use the scheduler %cpu calculations. When a 88 * process starts, we compute its %cpu usage by dividing its runtime by the 89 * process wall clock time. After RACCT_PCPU_SECS pass, we use the value 90 * provided by the scheduler. 91 */ 92 #define RACCT_PCPU_SECS 3 93 94 struct mtx racct_lock; 95 MTX_SYSINIT(racct_lock, &racct_lock, "racct lock", MTX_DEF); 96 97 static uma_zone_t racct_zone; 98 99 static void racct_sub_racct(struct racct *dest, const struct racct *src); 100 static void racct_sub_cred_locked(struct ucred *cred, int resource, 101 uint64_t amount); 102 static void racct_add_cred_locked(struct ucred *cred, int resource, 103 uint64_t amount); 104 105 SDT_PROVIDER_DEFINE(racct); 106 SDT_PROBE_DEFINE3(racct, , rusage, add, 107 "struct proc *", "int", "uint64_t"); 108 SDT_PROBE_DEFINE3(racct, , rusage, add__failure, 109 "struct proc *", "int", "uint64_t"); 110 SDT_PROBE_DEFINE3(racct, , rusage, add__buf, 111 "struct proc *", "const struct buf *", "int"); 112 SDT_PROBE_DEFINE3(racct, , rusage, add__cred, 113 "struct ucred *", "int", "uint64_t"); 114 SDT_PROBE_DEFINE3(racct, , rusage, add__force, 115 "struct proc *", "int", "uint64_t"); 116 SDT_PROBE_DEFINE3(racct, , rusage, set, 117 "struct proc *", "int", "uint64_t"); 118 SDT_PROBE_DEFINE3(racct, , rusage, set__failure, 119 "struct proc *", "int", "uint64_t"); 120 SDT_PROBE_DEFINE3(racct, , rusage, set__force, 121 "struct proc *", "int", "uint64_t"); 122 SDT_PROBE_DEFINE3(racct, , rusage, sub, 123 "struct proc *", "int", "uint64_t"); 124 SDT_PROBE_DEFINE3(racct, , rusage, sub__cred, 125 "struct ucred *", "int", "uint64_t"); 126 SDT_PROBE_DEFINE1(racct, , racct, create, 127 "struct racct *"); 128 SDT_PROBE_DEFINE1(racct, , racct, destroy, 129 "struct racct *"); 130 SDT_PROBE_DEFINE2(racct, , racct, join, 131 "struct racct *", "struct racct *"); 132 SDT_PROBE_DEFINE2(racct, , racct, join__failure, 133 "struct racct *", "struct racct *"); 134 SDT_PROBE_DEFINE2(racct, , racct, leave, 135 "struct racct *", "struct racct *"); 136 137 int racct_types[] = { 138 [RACCT_CPU] = 139 RACCT_IN_MILLIONS, 140 [RACCT_DATA] = 141 RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, 142 [RACCT_STACK] = 143 RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, 144 [RACCT_CORE] = 145 RACCT_DENIABLE, 146 [RACCT_RSS] = 147 RACCT_RECLAIMABLE, 148 [RACCT_MEMLOCK] = 149 RACCT_RECLAIMABLE | RACCT_DENIABLE, 150 [RACCT_NPROC] = 151 RACCT_RECLAIMABLE | RACCT_DENIABLE, 152 [RACCT_NOFILE] = 153 RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, 154 [RACCT_VMEM] = 155 RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, 156 [RACCT_NPTS] = 157 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 158 [RACCT_SWAP] = 159 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 160 [RACCT_NTHR] = 161 RACCT_RECLAIMABLE | RACCT_DENIABLE, 162 [RACCT_MSGQQUEUED] = 163 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 164 [RACCT_MSGQSIZE] = 165 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 166 [RACCT_NMSGQ] = 167 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 168 [RACCT_NSEM] = 169 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 170 [RACCT_NSEMOP] = 171 RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, 172 [RACCT_NSHM] = 173 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 174 [RACCT_SHMSIZE] = 175 RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, 176 [RACCT_WALLCLOCK] = 177 RACCT_IN_MILLIONS, 178 [RACCT_PCTCPU] = 179 RACCT_DECAYING | RACCT_DENIABLE | RACCT_IN_MILLIONS, 180 [RACCT_READBPS] = 181 RACCT_DECAYING, 182 [RACCT_WRITEBPS] = 183 RACCT_DECAYING, 184 [RACCT_READIOPS] = 185 RACCT_DECAYING, 186 [RACCT_WRITEIOPS] = 187 RACCT_DECAYING }; 188 189 static const fixpt_t RACCT_DECAY_FACTOR = 0.3 * FSCALE; 190 191 #ifdef SCHED_4BSD 192 /* 193 * Contains intermediate values for %cpu calculations to avoid using floating 194 * point in the kernel. 195 * ccpu_exp[k] = FSCALE * (ccpu/FSCALE)^k = FSCALE * exp(-k/20) 196 * It is needed only for the 4BSD scheduler, because in ULE, the ccpu equals to 197 * zero so the calculations are more straightforward. 198 */ 199 fixpt_t ccpu_exp[] = { 200 [0] = FSCALE * 1, 201 [1] = FSCALE * 0.95122942450071400909, 202 [2] = FSCALE * 0.90483741803595957316, 203 [3] = FSCALE * 0.86070797642505780722, 204 [4] = FSCALE * 0.81873075307798185866, 205 [5] = FSCALE * 0.77880078307140486824, 206 [6] = FSCALE * 0.74081822068171786606, 207 [7] = FSCALE * 0.70468808971871343435, 208 [8] = FSCALE * 0.67032004603563930074, 209 [9] = FSCALE * 0.63762815162177329314, 210 [10] = FSCALE * 0.60653065971263342360, 211 [11] = FSCALE * 0.57694981038048669531, 212 [12] = FSCALE * 0.54881163609402643262, 213 [13] = FSCALE * 0.52204577676101604789, 214 [14] = FSCALE * 0.49658530379140951470, 215 [15] = FSCALE * 0.47236655274101470713, 216 [16] = FSCALE * 0.44932896411722159143, 217 [17] = FSCALE * 0.42741493194872666992, 218 [18] = FSCALE * 0.40656965974059911188, 219 [19] = FSCALE * 0.38674102345450120691, 220 [20] = FSCALE * 0.36787944117144232159, 221 [21] = FSCALE * 0.34993774911115535467, 222 [22] = FSCALE * 0.33287108369807955328, 223 [23] = FSCALE * 0.31663676937905321821, 224 [24] = FSCALE * 0.30119421191220209664, 225 [25] = FSCALE * 0.28650479686019010032, 226 [26] = FSCALE * 0.27253179303401260312, 227 [27] = FSCALE * 0.25924026064589150757, 228 [28] = FSCALE * 0.24659696394160647693, 229 [29] = FSCALE * 0.23457028809379765313, 230 [30] = FSCALE * 0.22313016014842982893, 231 [31] = FSCALE * 0.21224797382674305771, 232 [32] = FSCALE * 0.20189651799465540848, 233 [33] = FSCALE * 0.19204990862075411423, 234 [34] = FSCALE * 0.18268352405273465022, 235 [35] = FSCALE * 0.17377394345044512668, 236 [36] = FSCALE * 0.16529888822158653829, 237 [37] = FSCALE * 0.15723716631362761621, 238 [38] = FSCALE * 0.14956861922263505264, 239 [39] = FSCALE * 0.14227407158651357185, 240 [40] = FSCALE * 0.13533528323661269189, 241 [41] = FSCALE * 0.12873490358780421886, 242 [42] = FSCALE * 0.12245642825298191021, 243 [43] = FSCALE * 0.11648415777349695786, 244 [44] = FSCALE * 0.11080315836233388333, 245 [45] = FSCALE * 0.10539922456186433678, 246 [46] = FSCALE * 0.10025884372280373372, 247 [47] = FSCALE * 0.09536916221554961888, 248 [48] = FSCALE * 0.09071795328941250337, 249 [49] = FSCALE * 0.08629358649937051097, 250 [50] = FSCALE * 0.08208499862389879516, 251 [51] = FSCALE * 0.07808166600115315231, 252 [52] = FSCALE * 0.07427357821433388042, 253 [53] = FSCALE * 0.07065121306042958674, 254 [54] = FSCALE * 0.06720551273974976512, 255 [55] = FSCALE * 0.06392786120670757270, 256 [56] = FSCALE * 0.06081006262521796499, 257 [57] = FSCALE * 0.05784432087483846296, 258 [58] = FSCALE * 0.05502322005640722902, 259 [59] = FSCALE * 0.05233970594843239308, 260 [60] = FSCALE * 0.04978706836786394297, 261 [61] = FSCALE * 0.04735892439114092119, 262 [62] = FSCALE * 0.04504920239355780606, 263 [63] = FSCALE * 0.04285212686704017991, 264 [64] = FSCALE * 0.04076220397836621516, 265 [65] = FSCALE * 0.03877420783172200988, 266 [66] = FSCALE * 0.03688316740124000544, 267 [67] = FSCALE * 0.03508435410084502588, 268 [68] = FSCALE * 0.03337326996032607948, 269 [69] = FSCALE * 0.03174563637806794323, 270 [70] = FSCALE * 0.03019738342231850073, 271 [71] = FSCALE * 0.02872463965423942912, 272 [72] = FSCALE * 0.02732372244729256080, 273 [73] = FSCALE * 0.02599112877875534358, 274 [74] = FSCALE * 0.02472352647033939120, 275 [75] = FSCALE * 0.02351774585600910823, 276 [76] = FSCALE * 0.02237077185616559577, 277 [77] = FSCALE * 0.02127973643837716938, 278 [78] = FSCALE * 0.02024191144580438847, 279 [79] = FSCALE * 0.01925470177538692429, 280 [80] = FSCALE * 0.01831563888873418029, 281 [81] = FSCALE * 0.01742237463949351138, 282 [82] = FSCALE * 0.01657267540176124754, 283 [83] = FSCALE * 0.01576441648485449082, 284 [84] = FSCALE * 0.01499557682047770621, 285 [85] = FSCALE * 0.01426423390899925527, 286 [86] = FSCALE * 0.01356855901220093175, 287 [87] = FSCALE * 0.01290681258047986886, 288 [88] = FSCALE * 0.01227733990306844117, 289 [89] = FSCALE * 0.01167856697039544521, 290 [90] = FSCALE * 0.01110899653824230649, 291 [91] = FSCALE * 0.01056720438385265337, 292 [92] = FSCALE * 0.01005183574463358164, 293 [93] = FSCALE * 0.00956160193054350793, 294 [94] = FSCALE * 0.00909527710169581709, 295 [95] = FSCALE * 0.00865169520312063417, 296 [96] = FSCALE * 0.00822974704902002884, 297 [97] = FSCALE * 0.00782837754922577143, 298 [98] = FSCALE * 0.00744658307092434051, 299 [99] = FSCALE * 0.00708340892905212004, 300 [100] = FSCALE * 0.00673794699908546709, 301 [101] = FSCALE * 0.00640933344625638184, 302 [102] = FSCALE * 0.00609674656551563610, 303 [103] = FSCALE * 0.00579940472684214321, 304 [104] = FSCALE * 0.00551656442076077241, 305 [105] = FSCALE * 0.00524751839918138427, 306 [106] = FSCALE * 0.00499159390691021621, 307 [107] = FSCALE * 0.00474815099941147558, 308 [108] = FSCALE * 0.00451658094261266798, 309 [109] = FSCALE * 0.00429630469075234057, 310 [110] = FSCALE * 0.00408677143846406699, 311 }; 312 #endif 313 314 #define CCPU_EXP_MAX 110 315 316 /* 317 * This function is analogical to the getpcpu() function in the ps(1) command. 318 * They should both calculate in the same way so that the racct %cpu 319 * calculations are consistent with the values showed by the ps(1) tool. 320 * The calculations are more complex in the 4BSD scheduler because of the value 321 * of the ccpu variable. In ULE it is defined to be zero which saves us some 322 * work. 323 */ 324 static uint64_t 325 racct_getpcpu(struct proc *p, u_int pcpu) 326 { 327 u_int swtime; 328 #ifdef SCHED_4BSD 329 fixpt_t pctcpu, pctcpu_next; 330 #endif 331 #ifdef SMP 332 struct pcpu *pc; 333 int found; 334 #endif 335 fixpt_t p_pctcpu; 336 struct thread *td; 337 338 ASSERT_RACCT_ENABLED(); 339 340 /* 341 * If the process is swapped out, we count its %cpu usage as zero. 342 * This behaviour is consistent with the userland ps(1) tool. 343 */ 344 if ((p->p_flag & P_INMEM) == 0) 345 return (0); 346 swtime = (ticks - p->p_swtick) / hz; 347 348 /* 349 * For short-lived processes, the sched_pctcpu() returns small 350 * values even for cpu intensive processes. Therefore we use 351 * our own estimate in this case. 352 */ 353 if (swtime < RACCT_PCPU_SECS) 354 return (pcpu); 355 356 p_pctcpu = 0; 357 FOREACH_THREAD_IN_PROC(p, td) { 358 if (td == PCPU_GET(idlethread)) 359 continue; 360 #ifdef SMP 361 found = 0; 362 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { 363 if (td == pc->pc_idlethread) { 364 found = 1; 365 break; 366 } 367 } 368 if (found) 369 continue; 370 #endif 371 thread_lock(td); 372 #ifdef SCHED_4BSD 373 pctcpu = sched_pctcpu(td); 374 /* Count also the yet unfinished second. */ 375 pctcpu_next = (pctcpu * ccpu_exp[1]) >> FSHIFT; 376 pctcpu_next += sched_pctcpu_delta(td); 377 p_pctcpu += max(pctcpu, pctcpu_next); 378 #else 379 /* 380 * In ULE the %cpu statistics are updated on every 381 * sched_pctcpu() call. So special calculations to 382 * account for the latest (unfinished) second are 383 * not needed. 384 */ 385 p_pctcpu += sched_pctcpu(td); 386 #endif 387 thread_unlock(td); 388 } 389 390 #ifdef SCHED_4BSD 391 if (swtime <= CCPU_EXP_MAX) 392 return ((100 * (uint64_t)p_pctcpu * 1000000) / 393 (FSCALE - ccpu_exp[swtime])); 394 #endif 395 396 return ((100 * (uint64_t)p_pctcpu * 1000000) / FSCALE); 397 } 398 399 static void 400 racct_add_racct(struct racct *dest, const struct racct *src) 401 { 402 int i; 403 404 ASSERT_RACCT_ENABLED(); 405 RACCT_LOCK_ASSERT(); 406 407 /* 408 * Update resource usage in dest. 409 */ 410 for (i = 0; i <= RACCT_MAX; i++) { 411 KASSERT(dest->r_resources[i] >= 0, 412 ("%s: resource %d propagation meltdown: dest < 0", 413 __func__, i)); 414 KASSERT(src->r_resources[i] >= 0, 415 ("%s: resource %d propagation meltdown: src < 0", 416 __func__, i)); 417 dest->r_resources[i] += src->r_resources[i]; 418 } 419 } 420 421 static void 422 racct_sub_racct(struct racct *dest, const struct racct *src) 423 { 424 int i; 425 426 ASSERT_RACCT_ENABLED(); 427 RACCT_LOCK_ASSERT(); 428 429 /* 430 * Update resource usage in dest. 431 */ 432 for (i = 0; i <= RACCT_MAX; i++) { 433 if (!RACCT_IS_SLOPPY(i) && !RACCT_IS_DECAYING(i)) { 434 KASSERT(dest->r_resources[i] >= 0, 435 ("%s: resource %d propagation meltdown: dest < 0", 436 __func__, i)); 437 KASSERT(src->r_resources[i] >= 0, 438 ("%s: resource %d propagation meltdown: src < 0", 439 __func__, i)); 440 KASSERT(src->r_resources[i] <= dest->r_resources[i], 441 ("%s: resource %d propagation meltdown: src > dest", 442 __func__, i)); 443 } 444 if (RACCT_CAN_DROP(i)) { 445 dest->r_resources[i] -= src->r_resources[i]; 446 if (dest->r_resources[i] < 0) { 447 KASSERT(RACCT_IS_SLOPPY(i) || 448 RACCT_IS_DECAYING(i), 449 ("%s: resource %d usage < 0", __func__, i)); 450 dest->r_resources[i] = 0; 451 } 452 } 453 } 454 } 455 456 void 457 racct_create(struct racct **racctp) 458 { 459 460 if (!racct_enable) 461 return; 462 463 SDT_PROBE1(racct, , racct, create, racctp); 464 465 KASSERT(*racctp == NULL, ("racct already allocated")); 466 467 *racctp = uma_zalloc(racct_zone, M_WAITOK | M_ZERO); 468 } 469 470 static void 471 racct_destroy_locked(struct racct **racctp) 472 { 473 struct racct *racct; 474 int i; 475 476 ASSERT_RACCT_ENABLED(); 477 478 SDT_PROBE1(racct, , racct, destroy, racctp); 479 480 RACCT_LOCK_ASSERT(); 481 KASSERT(racctp != NULL, ("NULL racctp")); 482 KASSERT(*racctp != NULL, ("NULL racct")); 483 484 racct = *racctp; 485 486 for (i = 0; i <= RACCT_MAX; i++) { 487 if (RACCT_IS_SLOPPY(i)) 488 continue; 489 if (!RACCT_IS_RECLAIMABLE(i)) 490 continue; 491 KASSERT(racct->r_resources[i] == 0, 492 ("destroying non-empty racct: " 493 "%ju allocated for resource %d\n", 494 racct->r_resources[i], i)); 495 } 496 uma_zfree(racct_zone, racct); 497 *racctp = NULL; 498 } 499 500 void 501 racct_destroy(struct racct **racct) 502 { 503 504 if (!racct_enable) 505 return; 506 507 RACCT_LOCK(); 508 racct_destroy_locked(racct); 509 RACCT_UNLOCK(); 510 } 511 512 /* 513 * Increase consumption of 'resource' by 'amount' for 'racct', 514 * but not its parents. Differently from other cases, 'amount' here 515 * may be less than zero. 516 */ 517 static void 518 racct_adjust_resource(struct racct *racct, int resource, 519 int64_t amount) 520 { 521 522 ASSERT_RACCT_ENABLED(); 523 RACCT_LOCK_ASSERT(); 524 KASSERT(racct != NULL, ("NULL racct")); 525 526 racct->r_resources[resource] += amount; 527 if (racct->r_resources[resource] < 0) { 528 KASSERT(RACCT_IS_SLOPPY(resource) || RACCT_IS_DECAYING(resource), 529 ("%s: resource %d usage < 0", __func__, resource)); 530 racct->r_resources[resource] = 0; 531 } 532 533 /* 534 * There are some cases where the racct %cpu resource would grow 535 * beyond 100% per core. For example in racct_proc_exit() we add 536 * the process %cpu usage to the ucred racct containers. If too 537 * many processes terminated in a short time span, the ucred %cpu 538 * resource could grow too much. Also, the 4BSD scheduler sometimes 539 * returns for a thread more than 100% cpu usage. So we set a sane 540 * boundary here to 100% * the maxumum number of CPUs. 541 */ 542 if ((resource == RACCT_PCTCPU) && 543 (racct->r_resources[RACCT_PCTCPU] > 100 * 1000000 * (int64_t)MAXCPU)) 544 racct->r_resources[RACCT_PCTCPU] = 100 * 1000000 * (int64_t)MAXCPU; 545 } 546 547 static int 548 racct_add_locked(struct proc *p, int resource, uint64_t amount, int force) 549 { 550 #ifdef RCTL 551 int error; 552 #endif 553 554 ASSERT_RACCT_ENABLED(); 555 556 /* 557 * We need proc lock to dereference p->p_ucred. 558 */ 559 PROC_LOCK_ASSERT(p, MA_OWNED); 560 561 #ifdef RCTL 562 error = rctl_enforce(p, resource, amount); 563 if (error && !force && RACCT_IS_DENIABLE(resource)) { 564 SDT_PROBE3(racct, , rusage, add__failure, p, resource, amount); 565 return (error); 566 } 567 #endif 568 racct_adjust_resource(p->p_racct, resource, amount); 569 racct_add_cred_locked(p->p_ucred, resource, amount); 570 571 return (0); 572 } 573 574 /* 575 * Increase allocation of 'resource' by 'amount' for process 'p'. 576 * Return 0 if it's below limits, or errno, if it's not. 577 */ 578 int 579 racct_add(struct proc *p, int resource, uint64_t amount) 580 { 581 int error; 582 583 if (!racct_enable) 584 return (0); 585 586 SDT_PROBE3(racct, , rusage, add, p, resource, amount); 587 588 RACCT_LOCK(); 589 error = racct_add_locked(p, resource, amount, 0); 590 RACCT_UNLOCK(); 591 return (error); 592 } 593 594 /* 595 * Increase allocation of 'resource' by 'amount' for process 'p'. 596 * Doesn't check for limits and never fails. 597 */ 598 void 599 racct_add_force(struct proc *p, int resource, uint64_t amount) 600 { 601 602 if (!racct_enable) 603 return; 604 605 SDT_PROBE3(racct, , rusage, add__force, p, resource, amount); 606 607 RACCT_LOCK(); 608 racct_add_locked(p, resource, amount, 1); 609 RACCT_UNLOCK(); 610 } 611 612 static void 613 racct_add_cred_locked(struct ucred *cred, int resource, uint64_t amount) 614 { 615 struct prison *pr; 616 617 ASSERT_RACCT_ENABLED(); 618 619 racct_adjust_resource(cred->cr_ruidinfo->ui_racct, resource, amount); 620 for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent) 621 racct_adjust_resource(pr->pr_prison_racct->prr_racct, resource, 622 amount); 623 racct_adjust_resource(cred->cr_loginclass->lc_racct, resource, amount); 624 } 625 626 /* 627 * Increase allocation of 'resource' by 'amount' for credential 'cred'. 628 * Doesn't check for limits and never fails. 629 */ 630 void 631 racct_add_cred(struct ucred *cred, int resource, uint64_t amount) 632 { 633 634 if (!racct_enable) 635 return; 636 637 SDT_PROBE3(racct, , rusage, add__cred, cred, resource, amount); 638 639 RACCT_LOCK(); 640 racct_add_cred_locked(cred, resource, amount); 641 RACCT_UNLOCK(); 642 } 643 644 /* 645 * Account for disk IO resource consumption. Checks for limits, 646 * but never fails, due to disk limits being undeniable. 647 */ 648 void 649 racct_add_buf(struct proc *p, const struct buf *bp, int is_write) 650 { 651 652 ASSERT_RACCT_ENABLED(); 653 PROC_LOCK_ASSERT(p, MA_OWNED); 654 655 SDT_PROBE3(racct, , rusage, add__buf, p, bp, is_write); 656 657 RACCT_LOCK(); 658 if (is_write) { 659 racct_add_locked(curproc, RACCT_WRITEBPS, bp->b_bcount, 1); 660 racct_add_locked(curproc, RACCT_WRITEIOPS, 1, 1); 661 } else { 662 racct_add_locked(curproc, RACCT_READBPS, bp->b_bcount, 1); 663 racct_add_locked(curproc, RACCT_READIOPS, 1, 1); 664 } 665 RACCT_UNLOCK(); 666 } 667 668 static int 669 racct_set_locked(struct proc *p, int resource, uint64_t amount, int force) 670 { 671 int64_t old_amount, decayed_amount, diff_proc, diff_cred; 672 #ifdef RCTL 673 int error; 674 #endif 675 676 ASSERT_RACCT_ENABLED(); 677 678 /* 679 * We need proc lock to dereference p->p_ucred. 680 */ 681 PROC_LOCK_ASSERT(p, MA_OWNED); 682 683 old_amount = p->p_racct->r_resources[resource]; 684 /* 685 * The diffs may be negative. 686 */ 687 diff_proc = amount - old_amount; 688 if (resource == RACCT_PCTCPU) { 689 /* 690 * Resources in per-credential racct containers may decay. 691 * If this is the case, we need to calculate the difference 692 * between the new amount and the proportional value of the 693 * old amount that has decayed in the ucred racct containers. 694 */ 695 decayed_amount = old_amount * RACCT_DECAY_FACTOR / FSCALE; 696 diff_cred = amount - decayed_amount; 697 } else 698 diff_cred = diff_proc; 699 #ifdef notyet 700 KASSERT(diff_proc >= 0 || RACCT_CAN_DROP(resource), 701 ("%s: usage of non-droppable resource %d dropping", __func__, 702 resource)); 703 #endif 704 #ifdef RCTL 705 if (diff_proc > 0) { 706 error = rctl_enforce(p, resource, diff_proc); 707 if (error && !force && RACCT_IS_DENIABLE(resource)) { 708 SDT_PROBE3(racct, , rusage, set__failure, p, resource, 709 amount); 710 return (error); 711 } 712 } 713 #endif 714 racct_adjust_resource(p->p_racct, resource, diff_proc); 715 if (diff_cred > 0) 716 racct_add_cred_locked(p->p_ucred, resource, diff_cred); 717 else if (diff_cred < 0) 718 racct_sub_cred_locked(p->p_ucred, resource, -diff_cred); 719 720 return (0); 721 } 722 723 /* 724 * Set allocation of 'resource' to 'amount' for process 'p'. 725 * Return 0 if it's below limits, or errno, if it's not. 726 * 727 * Note that decreasing the allocation always returns 0, 728 * even if it's above the limit. 729 */ 730 int 731 racct_set(struct proc *p, int resource, uint64_t amount) 732 { 733 int error; 734 735 if (!racct_enable) 736 return (0); 737 738 SDT_PROBE3(racct, , rusage, set__force, p, resource, amount); 739 740 RACCT_LOCK(); 741 error = racct_set_locked(p, resource, amount, 0); 742 RACCT_UNLOCK(); 743 return (error); 744 } 745 746 void 747 racct_set_force(struct proc *p, int resource, uint64_t amount) 748 { 749 750 if (!racct_enable) 751 return; 752 753 SDT_PROBE3(racct, , rusage, set, p, resource, amount); 754 755 RACCT_LOCK(); 756 racct_set_locked(p, resource, amount, 1); 757 RACCT_UNLOCK(); 758 } 759 760 /* 761 * Returns amount of 'resource' the process 'p' can keep allocated. 762 * Allocating more than that would be denied, unless the resource 763 * is marked undeniable. Amount of already allocated resource does 764 * not matter. 765 */ 766 uint64_t 767 racct_get_limit(struct proc *p, int resource) 768 { 769 #ifdef RCTL 770 uint64_t available; 771 772 if (!racct_enable) 773 return (UINT64_MAX); 774 775 RACCT_LOCK(); 776 available = rctl_get_limit(p, resource); 777 RACCT_UNLOCK(); 778 779 return (available); 780 #else 781 782 return (UINT64_MAX); 783 #endif 784 } 785 786 /* 787 * Returns amount of 'resource' the process 'p' can keep allocated. 788 * Allocating more than that would be denied, unless the resource 789 * is marked undeniable. Amount of already allocated resource does 790 * matter. 791 */ 792 uint64_t 793 racct_get_available(struct proc *p, int resource) 794 { 795 #ifdef RCTL 796 uint64_t available; 797 798 if (!racct_enable) 799 return (UINT64_MAX); 800 801 RACCT_LOCK(); 802 available = rctl_get_available(p, resource); 803 RACCT_UNLOCK(); 804 805 return (available); 806 #else 807 808 return (UINT64_MAX); 809 #endif 810 } 811 812 /* 813 * Returns amount of the %cpu resource that process 'p' can add to its %cpu 814 * utilization. Adding more than that would lead to the process being 815 * throttled. 816 */ 817 static int64_t 818 racct_pcpu_available(struct proc *p) 819 { 820 #ifdef RCTL 821 uint64_t available; 822 823 ASSERT_RACCT_ENABLED(); 824 825 RACCT_LOCK(); 826 available = rctl_pcpu_available(p); 827 RACCT_UNLOCK(); 828 829 return (available); 830 #else 831 832 return (INT64_MAX); 833 #endif 834 } 835 836 /* 837 * Decrease allocation of 'resource' by 'amount' for process 'p'. 838 */ 839 void 840 racct_sub(struct proc *p, int resource, uint64_t amount) 841 { 842 843 if (!racct_enable) 844 return; 845 846 SDT_PROBE3(racct, , rusage, sub, p, resource, amount); 847 848 /* 849 * We need proc lock to dereference p->p_ucred. 850 */ 851 PROC_LOCK_ASSERT(p, MA_OWNED); 852 KASSERT(RACCT_CAN_DROP(resource), 853 ("%s: called for non-droppable resource %d", __func__, resource)); 854 855 RACCT_LOCK(); 856 KASSERT(amount <= p->p_racct->r_resources[resource], 857 ("%s: freeing %ju of resource %d, which is more " 858 "than allocated %jd for %s (pid %d)", __func__, amount, resource, 859 (intmax_t)p->p_racct->r_resources[resource], p->p_comm, p->p_pid)); 860 861 racct_adjust_resource(p->p_racct, resource, -amount); 862 racct_sub_cred_locked(p->p_ucred, resource, amount); 863 RACCT_UNLOCK(); 864 } 865 866 static void 867 racct_sub_cred_locked(struct ucred *cred, int resource, uint64_t amount) 868 { 869 struct prison *pr; 870 871 ASSERT_RACCT_ENABLED(); 872 873 racct_adjust_resource(cred->cr_ruidinfo->ui_racct, resource, -amount); 874 for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent) 875 racct_adjust_resource(pr->pr_prison_racct->prr_racct, resource, 876 -amount); 877 racct_adjust_resource(cred->cr_loginclass->lc_racct, resource, -amount); 878 } 879 880 /* 881 * Decrease allocation of 'resource' by 'amount' for credential 'cred'. 882 */ 883 void 884 racct_sub_cred(struct ucred *cred, int resource, uint64_t amount) 885 { 886 887 if (!racct_enable) 888 return; 889 890 SDT_PROBE3(racct, , rusage, sub__cred, cred, resource, amount); 891 892 #ifdef notyet 893 KASSERT(RACCT_CAN_DROP(resource), 894 ("%s: called for resource %d which can not drop", __func__, 895 resource)); 896 #endif 897 898 RACCT_LOCK(); 899 racct_sub_cred_locked(cred, resource, amount); 900 RACCT_UNLOCK(); 901 } 902 903 /* 904 * Inherit resource usage information from the parent process. 905 */ 906 int 907 racct_proc_fork(struct proc *parent, struct proc *child) 908 { 909 int i, error = 0; 910 911 if (!racct_enable) 912 return (0); 913 914 /* 915 * Create racct for the child process. 916 */ 917 racct_create(&child->p_racct); 918 919 PROC_LOCK(parent); 920 PROC_LOCK(child); 921 RACCT_LOCK(); 922 923 #ifdef RCTL 924 error = rctl_proc_fork(parent, child); 925 if (error != 0) 926 goto out; 927 #endif 928 929 /* Init process cpu time. */ 930 child->p_prev_runtime = 0; 931 child->p_throttled = 0; 932 933 /* 934 * Inherit resource usage. 935 */ 936 for (i = 0; i <= RACCT_MAX; i++) { 937 if (parent->p_racct->r_resources[i] == 0 || 938 !RACCT_IS_INHERITABLE(i)) 939 continue; 940 941 error = racct_set_locked(child, i, 942 parent->p_racct->r_resources[i], 0); 943 if (error != 0) 944 goto out; 945 } 946 947 error = racct_add_locked(child, RACCT_NPROC, 1, 0); 948 error += racct_add_locked(child, RACCT_NTHR, 1, 0); 949 950 out: 951 RACCT_UNLOCK(); 952 PROC_UNLOCK(child); 953 PROC_UNLOCK(parent); 954 955 if (error != 0) 956 racct_proc_exit(child); 957 958 return (error); 959 } 960 961 /* 962 * Called at the end of fork1(), to handle rules that require the process 963 * to be fully initialized. 964 */ 965 void 966 racct_proc_fork_done(struct proc *child) 967 { 968 969 if (!racct_enable) 970 return; 971 972 PROC_LOCK_ASSERT(child, MA_OWNED); 973 974 #ifdef RCTL 975 RACCT_LOCK(); 976 rctl_enforce(child, RACCT_NPROC, 0); 977 rctl_enforce(child, RACCT_NTHR, 0); 978 RACCT_UNLOCK(); 979 #endif 980 } 981 982 void 983 racct_proc_exit(struct proc *p) 984 { 985 struct timeval wallclock; 986 uint64_t pct_estimate, pct, runtime; 987 int i; 988 989 if (!racct_enable) 990 return; 991 992 PROC_LOCK(p); 993 /* 994 * We don't need to calculate rux, proc_reap() has already done this. 995 */ 996 runtime = cputick2usec(p->p_rux.rux_runtime); 997 #ifdef notyet 998 KASSERT(runtime >= p->p_prev_runtime, ("runtime < p_prev_runtime")); 999 #else 1000 if (runtime < p->p_prev_runtime) 1001 runtime = p->p_prev_runtime; 1002 #endif 1003 microuptime(&wallclock); 1004 timevalsub(&wallclock, &p->p_stats->p_start); 1005 if (wallclock.tv_sec > 0 || wallclock.tv_usec > 0) { 1006 pct_estimate = (1000000 * runtime * 100) / 1007 ((uint64_t)wallclock.tv_sec * 1000000 + 1008 wallclock.tv_usec); 1009 } else 1010 pct_estimate = 0; 1011 pct = racct_getpcpu(p, pct_estimate); 1012 1013 RACCT_LOCK(); 1014 racct_set_locked(p, RACCT_CPU, runtime, 0); 1015 racct_add_cred_locked(p->p_ucred, RACCT_PCTCPU, pct); 1016 1017 for (i = 0; i <= RACCT_MAX; i++) { 1018 if (p->p_racct->r_resources[i] == 0) 1019 continue; 1020 if (!RACCT_IS_RECLAIMABLE(i)) 1021 continue; 1022 racct_set_locked(p, i, 0, 0); 1023 } 1024 1025 #ifdef RCTL 1026 rctl_racct_release(p->p_racct); 1027 #endif 1028 racct_destroy_locked(&p->p_racct); 1029 RACCT_UNLOCK(); 1030 PROC_UNLOCK(p); 1031 } 1032 1033 /* 1034 * Called after credentials change, to move resource utilisation 1035 * between raccts. 1036 */ 1037 void 1038 racct_proc_ucred_changed(struct proc *p, struct ucred *oldcred, 1039 struct ucred *newcred) 1040 { 1041 struct uidinfo *olduip, *newuip; 1042 struct loginclass *oldlc, *newlc; 1043 struct prison *oldpr, *newpr, *pr; 1044 1045 if (!racct_enable) 1046 return; 1047 1048 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1049 1050 newuip = newcred->cr_ruidinfo; 1051 olduip = oldcred->cr_ruidinfo; 1052 newlc = newcred->cr_loginclass; 1053 oldlc = oldcred->cr_loginclass; 1054 newpr = newcred->cr_prison; 1055 oldpr = oldcred->cr_prison; 1056 1057 RACCT_LOCK(); 1058 if (newuip != olduip) { 1059 racct_sub_racct(olduip->ui_racct, p->p_racct); 1060 racct_add_racct(newuip->ui_racct, p->p_racct); 1061 } 1062 if (newlc != oldlc) { 1063 racct_sub_racct(oldlc->lc_racct, p->p_racct); 1064 racct_add_racct(newlc->lc_racct, p->p_racct); 1065 } 1066 if (newpr != oldpr) { 1067 for (pr = oldpr; pr != NULL; pr = pr->pr_parent) 1068 racct_sub_racct(pr->pr_prison_racct->prr_racct, 1069 p->p_racct); 1070 for (pr = newpr; pr != NULL; pr = pr->pr_parent) 1071 racct_add_racct(pr->pr_prison_racct->prr_racct, 1072 p->p_racct); 1073 } 1074 RACCT_UNLOCK(); 1075 1076 #ifdef RCTL 1077 rctl_proc_ucred_changed(p, newcred); 1078 #endif 1079 } 1080 1081 void 1082 racct_move(struct racct *dest, struct racct *src) 1083 { 1084 1085 ASSERT_RACCT_ENABLED(); 1086 1087 RACCT_LOCK(); 1088 racct_add_racct(dest, src); 1089 racct_sub_racct(src, src); 1090 RACCT_UNLOCK(); 1091 } 1092 1093 /* 1094 * Make the process sleep in userret() for 'timeout' ticks. Setting 1095 * timeout to -1 makes it sleep until woken up by racct_proc_wakeup(). 1096 */ 1097 void 1098 racct_proc_throttle(struct proc *p, int timeout) 1099 { 1100 struct thread *td; 1101 #ifdef SMP 1102 int cpuid; 1103 #endif 1104 1105 KASSERT(timeout != 0, ("timeout %d", timeout)); 1106 ASSERT_RACCT_ENABLED(); 1107 PROC_LOCK_ASSERT(p, MA_OWNED); 1108 1109 /* 1110 * Do not block kernel processes. Also do not block processes with 1111 * low %cpu utilization to improve interactivity. 1112 */ 1113 if ((p->p_flag & (P_SYSTEM | P_KPROC)) != 0) 1114 return; 1115 1116 if (p->p_throttled < 0 || (timeout > 0 && p->p_throttled > timeout)) 1117 return; 1118 1119 p->p_throttled = timeout; 1120 1121 FOREACH_THREAD_IN_PROC(p, td) { 1122 thread_lock(td); 1123 switch (td->td_state) { 1124 case TDS_RUNQ: 1125 /* 1126 * If the thread is on the scheduler run-queue, we can 1127 * not just remove it from there. So we set the flag 1128 * TDF_NEEDRESCHED for the thread, so that once it is 1129 * running, it is taken off the cpu as soon as possible. 1130 */ 1131 td->td_flags |= TDF_NEEDRESCHED; 1132 break; 1133 case TDS_RUNNING: 1134 /* 1135 * If the thread is running, we request a context 1136 * switch for it by setting the TDF_NEEDRESCHED flag. 1137 */ 1138 td->td_flags |= TDF_NEEDRESCHED; 1139 #ifdef SMP 1140 cpuid = td->td_oncpu; 1141 if ((cpuid != NOCPU) && (td != curthread)) 1142 ipi_cpu(cpuid, IPI_AST); 1143 #endif 1144 break; 1145 default: 1146 break; 1147 } 1148 thread_unlock(td); 1149 } 1150 } 1151 1152 static void 1153 racct_proc_wakeup(struct proc *p) 1154 { 1155 1156 ASSERT_RACCT_ENABLED(); 1157 1158 PROC_LOCK_ASSERT(p, MA_OWNED); 1159 1160 if (p->p_throttled != 0) { 1161 p->p_throttled = 0; 1162 wakeup(p->p_racct); 1163 } 1164 } 1165 1166 static void 1167 racct_decay_callback(struct racct *racct, void *dummy1, void *dummy2) 1168 { 1169 int64_t r_old, r_new; 1170 1171 ASSERT_RACCT_ENABLED(); 1172 RACCT_LOCK_ASSERT(); 1173 1174 #ifdef RCTL 1175 rctl_throttle_decay(racct, RACCT_READBPS); 1176 rctl_throttle_decay(racct, RACCT_WRITEBPS); 1177 rctl_throttle_decay(racct, RACCT_READIOPS); 1178 rctl_throttle_decay(racct, RACCT_WRITEIOPS); 1179 #endif 1180 1181 r_old = racct->r_resources[RACCT_PCTCPU]; 1182 1183 /* If there is nothing to decay, just exit. */ 1184 if (r_old <= 0) 1185 return; 1186 1187 r_new = r_old * RACCT_DECAY_FACTOR / FSCALE; 1188 racct->r_resources[RACCT_PCTCPU] = r_new; 1189 } 1190 1191 static void 1192 racct_decay_pre(void) 1193 { 1194 1195 RACCT_LOCK(); 1196 } 1197 1198 static void 1199 racct_decay_post(void) 1200 { 1201 1202 RACCT_UNLOCK(); 1203 } 1204 1205 static void 1206 racct_decay(void) 1207 { 1208 1209 ASSERT_RACCT_ENABLED(); 1210 1211 ui_racct_foreach(racct_decay_callback, racct_decay_pre, 1212 racct_decay_post, NULL, NULL); 1213 loginclass_racct_foreach(racct_decay_callback, racct_decay_pre, 1214 racct_decay_post, NULL, NULL); 1215 prison_racct_foreach(racct_decay_callback, racct_decay_pre, 1216 racct_decay_post, NULL, NULL); 1217 } 1218 1219 static void 1220 racctd(void) 1221 { 1222 struct thread *td; 1223 struct proc *p; 1224 struct timeval wallclock; 1225 uint64_t pct, pct_estimate, runtime; 1226 1227 ASSERT_RACCT_ENABLED(); 1228 1229 for (;;) { 1230 racct_decay(); 1231 1232 sx_slock(&allproc_lock); 1233 1234 LIST_FOREACH(p, &zombproc, p_list) { 1235 PROC_LOCK(p); 1236 racct_set(p, RACCT_PCTCPU, 0); 1237 PROC_UNLOCK(p); 1238 } 1239 1240 FOREACH_PROC_IN_SYSTEM(p) { 1241 PROC_LOCK(p); 1242 if (p->p_state != PRS_NORMAL) { 1243 PROC_UNLOCK(p); 1244 continue; 1245 } 1246 1247 microuptime(&wallclock); 1248 timevalsub(&wallclock, &p->p_stats->p_start); 1249 PROC_STATLOCK(p); 1250 FOREACH_THREAD_IN_PROC(p, td) 1251 ruxagg(p, td); 1252 runtime = cputick2usec(p->p_rux.rux_runtime); 1253 PROC_STATUNLOCK(p); 1254 #ifdef notyet 1255 KASSERT(runtime >= p->p_prev_runtime, 1256 ("runtime < p_prev_runtime")); 1257 #else 1258 if (runtime < p->p_prev_runtime) 1259 runtime = p->p_prev_runtime; 1260 #endif 1261 p->p_prev_runtime = runtime; 1262 if (wallclock.tv_sec > 0 || wallclock.tv_usec > 0) { 1263 pct_estimate = (1000000 * runtime * 100) / 1264 ((uint64_t)wallclock.tv_sec * 1000000 + 1265 wallclock.tv_usec); 1266 } else 1267 pct_estimate = 0; 1268 pct = racct_getpcpu(p, pct_estimate); 1269 RACCT_LOCK(); 1270 #ifdef RCTL 1271 rctl_throttle_decay(p->p_racct, RACCT_READBPS); 1272 rctl_throttle_decay(p->p_racct, RACCT_WRITEBPS); 1273 rctl_throttle_decay(p->p_racct, RACCT_READIOPS); 1274 rctl_throttle_decay(p->p_racct, RACCT_WRITEIOPS); 1275 #endif 1276 racct_set_locked(p, RACCT_PCTCPU, pct, 1); 1277 racct_set_locked(p, RACCT_CPU, runtime, 0); 1278 racct_set_locked(p, RACCT_WALLCLOCK, 1279 (uint64_t)wallclock.tv_sec * 1000000 + 1280 wallclock.tv_usec, 0); 1281 RACCT_UNLOCK(); 1282 PROC_UNLOCK(p); 1283 } 1284 1285 /* 1286 * To ensure that processes are throttled in a fair way, we need 1287 * to iterate over all processes again and check the limits 1288 * for %cpu resource only after ucred racct containers have been 1289 * properly filled. 1290 */ 1291 FOREACH_PROC_IN_SYSTEM(p) { 1292 PROC_LOCK(p); 1293 if (p->p_state != PRS_NORMAL) { 1294 PROC_UNLOCK(p); 1295 continue; 1296 } 1297 1298 if (racct_pcpu_available(p) <= 0) { 1299 if (p->p_racct->r_resources[RACCT_PCTCPU] > 1300 pcpu_threshold) 1301 racct_proc_throttle(p, -1); 1302 } else if (p->p_throttled == -1) { 1303 racct_proc_wakeup(p); 1304 } 1305 PROC_UNLOCK(p); 1306 } 1307 sx_sunlock(&allproc_lock); 1308 pause("-", hz); 1309 } 1310 } 1311 1312 static struct kproc_desc racctd_kp = { 1313 "racctd", 1314 racctd, 1315 NULL 1316 }; 1317 1318 static void 1319 racctd_init(void) 1320 { 1321 if (!racct_enable) 1322 return; 1323 1324 kproc_start(&racctd_kp); 1325 } 1326 SYSINIT(racctd, SI_SUB_RACCTD, SI_ORDER_FIRST, racctd_init, NULL); 1327 1328 static void 1329 racct_init(void) 1330 { 1331 if (!racct_enable) 1332 return; 1333 1334 racct_zone = uma_zcreate("racct", sizeof(struct racct), 1335 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1336 /* 1337 * XXX: Move this somewhere. 1338 */ 1339 prison0.pr_prison_racct = prison_racct_find("0"); 1340 } 1341 SYSINIT(racct, SI_SUB_RACCT, SI_ORDER_FIRST, racct_init, NULL); 1342 1343 #endif /* !RACCT */ 1344