xref: /freebsd/sys/kern/kern_prot.c (revision f1d5183124d3e18d410ded61e45adb9a23b23c83)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
5  *	The Regents of the University of California.
6  * (c) UNIX System Laboratories, Inc.
7  * Copyright (c) 2000-2001 Robert N. M. Watson.
8  * All rights reserved.
9  *
10  * All or some portions of this file are derived from material licensed
11  * to the University of California by American Telephone and Telegraph
12  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
13  * the permission of UNIX System Laboratories, Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	@(#)kern_prot.c	8.6 (Berkeley) 1/21/94
40  */
41 
42 /*
43  * System calls related to processes and protection
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include "opt_inet.h"
50 #include "opt_inet6.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/acct.h>
55 #include <sys/kdb.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/loginclass.h>
59 #include <sys/malloc.h>
60 #include <sys/mutex.h>
61 #include <sys/ptrace.h>
62 #include <sys/refcount.h>
63 #include <sys/sx.h>
64 #include <sys/priv.h>
65 #include <sys/proc.h>
66 #ifdef COMPAT_43
67 #include <sys/sysent.h>
68 #endif
69 #include <sys/sysproto.h>
70 #include <sys/jail.h>
71 #include <sys/racct.h>
72 #include <sys/rctl.h>
73 #include <sys/resourcevar.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/syscallsubr.h>
77 #include <sys/sysctl.h>
78 
79 #ifdef REGRESSION
80 FEATURE(regression,
81     "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
82 #endif
83 
84 #include <security/audit/audit.h>
85 #include <security/mac/mac_framework.h>
86 
87 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
88 
89 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
90     "BSD security policy");
91 
92 static void crfree_final(struct ucred *cr);
93 static void crsetgroups_locked(struct ucred *cr, int ngrp,
94     gid_t *groups);
95 
96 #ifndef _SYS_SYSPROTO_H_
97 struct getpid_args {
98 	int	dummy;
99 };
100 #endif
101 /* ARGSUSED */
102 int
103 sys_getpid(struct thread *td, struct getpid_args *uap)
104 {
105 	struct proc *p = td->td_proc;
106 
107 	td->td_retval[0] = p->p_pid;
108 #if defined(COMPAT_43)
109 	if (SV_PROC_FLAG(p, SV_AOUT))
110 		td->td_retval[1] = kern_getppid(td);
111 #endif
112 	return (0);
113 }
114 
115 #ifndef _SYS_SYSPROTO_H_
116 struct getppid_args {
117         int     dummy;
118 };
119 #endif
120 /* ARGSUSED */
121 int
122 sys_getppid(struct thread *td, struct getppid_args *uap)
123 {
124 
125 	td->td_retval[0] = kern_getppid(td);
126 	return (0);
127 }
128 
129 int
130 kern_getppid(struct thread *td)
131 {
132 	struct proc *p = td->td_proc;
133 
134 	return (p->p_oppid);
135 }
136 
137 /*
138  * Get process group ID; note that POSIX getpgrp takes no parameter.
139  */
140 #ifndef _SYS_SYSPROTO_H_
141 struct getpgrp_args {
142         int     dummy;
143 };
144 #endif
145 int
146 sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
147 {
148 	struct proc *p = td->td_proc;
149 
150 	PROC_LOCK(p);
151 	td->td_retval[0] = p->p_pgrp->pg_id;
152 	PROC_UNLOCK(p);
153 	return (0);
154 }
155 
156 /* Get an arbitrary pid's process group id */
157 #ifndef _SYS_SYSPROTO_H_
158 struct getpgid_args {
159 	pid_t	pid;
160 };
161 #endif
162 int
163 sys_getpgid(struct thread *td, struct getpgid_args *uap)
164 {
165 	struct proc *p;
166 	int error;
167 
168 	if (uap->pid == 0) {
169 		p = td->td_proc;
170 		PROC_LOCK(p);
171 	} else {
172 		p = pfind(uap->pid);
173 		if (p == NULL)
174 			return (ESRCH);
175 		error = p_cansee(td, p);
176 		if (error) {
177 			PROC_UNLOCK(p);
178 			return (error);
179 		}
180 	}
181 	td->td_retval[0] = p->p_pgrp->pg_id;
182 	PROC_UNLOCK(p);
183 	return (0);
184 }
185 
186 /*
187  * Get an arbitrary pid's session id.
188  */
189 #ifndef _SYS_SYSPROTO_H_
190 struct getsid_args {
191 	pid_t	pid;
192 };
193 #endif
194 int
195 sys_getsid(struct thread *td, struct getsid_args *uap)
196 {
197 
198 	return (kern_getsid(td, uap->pid));
199 }
200 
201 int
202 kern_getsid(struct thread *td, pid_t pid)
203 {
204 	struct proc *p;
205 	int error;
206 
207 	if (pid == 0) {
208 		p = td->td_proc;
209 		PROC_LOCK(p);
210 	} else {
211 		p = pfind(pid);
212 		if (p == NULL)
213 			return (ESRCH);
214 		error = p_cansee(td, p);
215 		if (error) {
216 			PROC_UNLOCK(p);
217 			return (error);
218 		}
219 	}
220 	td->td_retval[0] = p->p_session->s_sid;
221 	PROC_UNLOCK(p);
222 	return (0);
223 }
224 
225 #ifndef _SYS_SYSPROTO_H_
226 struct getuid_args {
227         int     dummy;
228 };
229 #endif
230 /* ARGSUSED */
231 int
232 sys_getuid(struct thread *td, struct getuid_args *uap)
233 {
234 
235 	td->td_retval[0] = td->td_ucred->cr_ruid;
236 #if defined(COMPAT_43)
237 	td->td_retval[1] = td->td_ucred->cr_uid;
238 #endif
239 	return (0);
240 }
241 
242 #ifndef _SYS_SYSPROTO_H_
243 struct geteuid_args {
244         int     dummy;
245 };
246 #endif
247 /* ARGSUSED */
248 int
249 sys_geteuid(struct thread *td, struct geteuid_args *uap)
250 {
251 
252 	td->td_retval[0] = td->td_ucred->cr_uid;
253 	return (0);
254 }
255 
256 #ifndef _SYS_SYSPROTO_H_
257 struct getgid_args {
258         int     dummy;
259 };
260 #endif
261 /* ARGSUSED */
262 int
263 sys_getgid(struct thread *td, struct getgid_args *uap)
264 {
265 
266 	td->td_retval[0] = td->td_ucred->cr_rgid;
267 #if defined(COMPAT_43)
268 	td->td_retval[1] = td->td_ucred->cr_groups[0];
269 #endif
270 	return (0);
271 }
272 
273 /*
274  * Get effective group ID.  The "egid" is groups[0], and could be obtained
275  * via getgroups.  This syscall exists because it is somewhat painful to do
276  * correctly in a library function.
277  */
278 #ifndef _SYS_SYSPROTO_H_
279 struct getegid_args {
280         int     dummy;
281 };
282 #endif
283 /* ARGSUSED */
284 int
285 sys_getegid(struct thread *td, struct getegid_args *uap)
286 {
287 
288 	td->td_retval[0] = td->td_ucred->cr_groups[0];
289 	return (0);
290 }
291 
292 #ifndef _SYS_SYSPROTO_H_
293 struct getgroups_args {
294 	int	gidsetsize;
295 	gid_t	*gidset;
296 };
297 #endif
298 int
299 sys_getgroups(struct thread *td, struct getgroups_args *uap)
300 {
301 	struct ucred *cred;
302 	int ngrp, error;
303 
304 	cred = td->td_ucred;
305 	ngrp = cred->cr_ngroups;
306 
307 	if (uap->gidsetsize == 0) {
308 		error = 0;
309 		goto out;
310 	}
311 	if (uap->gidsetsize < ngrp)
312 		return (EINVAL);
313 
314 	error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
315 out:
316 	td->td_retval[0] = ngrp;
317 	return (error);
318 }
319 
320 #ifndef _SYS_SYSPROTO_H_
321 struct setsid_args {
322         int     dummy;
323 };
324 #endif
325 /* ARGSUSED */
326 int
327 sys_setsid(struct thread *td, struct setsid_args *uap)
328 {
329 	struct pgrp *pgrp;
330 	int error;
331 	struct proc *p = td->td_proc;
332 	struct pgrp *newpgrp;
333 	struct session *newsess;
334 
335 	pgrp = NULL;
336 
337 	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
338 	newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
339 
340 again:
341 	error = 0;
342 	sx_xlock(&proctree_lock);
343 
344 	if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
345 		if (pgrp != NULL)
346 			PGRP_UNLOCK(pgrp);
347 		error = EPERM;
348 	} else {
349 		error = enterpgrp(p, p->p_pid, newpgrp, newsess);
350 		if (error == ERESTART)
351 			goto again;
352 		MPASS(error == 0);
353 		td->td_retval[0] = p->p_pid;
354 		newpgrp = NULL;
355 		newsess = NULL;
356 	}
357 
358 	sx_xunlock(&proctree_lock);
359 
360 	uma_zfree(pgrp_zone, newpgrp);
361 	free(newsess, M_SESSION);
362 
363 	return (error);
364 }
365 
366 /*
367  * set process group (setpgid/old setpgrp)
368  *
369  * caller does setpgid(targpid, targpgid)
370  *
371  * pid must be caller or child of caller (ESRCH)
372  * if a child
373  *	pid must be in same session (EPERM)
374  *	pid can't have done an exec (EACCES)
375  * if pgid != pid
376  * 	there must exist some pid in same session having pgid (EPERM)
377  * pid must not be session leader (EPERM)
378  */
379 #ifndef _SYS_SYSPROTO_H_
380 struct setpgid_args {
381 	int	pid;		/* target process id */
382 	int	pgid;		/* target pgrp id */
383 };
384 #endif
385 /* ARGSUSED */
386 int
387 sys_setpgid(struct thread *td, struct setpgid_args *uap)
388 {
389 	struct proc *curp = td->td_proc;
390 	struct proc *targp;	/* target process */
391 	struct pgrp *pgrp;	/* target pgrp */
392 	int error;
393 	struct pgrp *newpgrp;
394 
395 	if (uap->pgid < 0)
396 		return (EINVAL);
397 
398 	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
399 
400 again:
401 	error = 0;
402 
403 	sx_xlock(&proctree_lock);
404 	if (uap->pid != 0 && uap->pid != curp->p_pid) {
405 		if ((targp = pfind(uap->pid)) == NULL) {
406 			error = ESRCH;
407 			goto done;
408 		}
409 		if (!inferior(targp)) {
410 			PROC_UNLOCK(targp);
411 			error = ESRCH;
412 			goto done;
413 		}
414 		if ((error = p_cansee(td, targp))) {
415 			PROC_UNLOCK(targp);
416 			goto done;
417 		}
418 		if (targp->p_pgrp == NULL ||
419 		    targp->p_session != curp->p_session) {
420 			PROC_UNLOCK(targp);
421 			error = EPERM;
422 			goto done;
423 		}
424 		if (targp->p_flag & P_EXEC) {
425 			PROC_UNLOCK(targp);
426 			error = EACCES;
427 			goto done;
428 		}
429 		PROC_UNLOCK(targp);
430 	} else
431 		targp = curp;
432 	if (SESS_LEADER(targp)) {
433 		error = EPERM;
434 		goto done;
435 	}
436 	if (uap->pgid == 0)
437 		uap->pgid = targp->p_pid;
438 	if ((pgrp = pgfind(uap->pgid)) == NULL) {
439 		if (uap->pgid == targp->p_pid) {
440 			error = enterpgrp(targp, uap->pgid, newpgrp,
441 			    NULL);
442 			if (error == 0)
443 				newpgrp = NULL;
444 		} else
445 			error = EPERM;
446 	} else {
447 		if (pgrp == targp->p_pgrp) {
448 			PGRP_UNLOCK(pgrp);
449 			goto done;
450 		}
451 		if (pgrp->pg_id != targp->p_pid &&
452 		    pgrp->pg_session != curp->p_session) {
453 			PGRP_UNLOCK(pgrp);
454 			error = EPERM;
455 			goto done;
456 		}
457 		PGRP_UNLOCK(pgrp);
458 		error = enterthispgrp(targp, pgrp);
459 	}
460 done:
461 	KASSERT(error == 0 || newpgrp != NULL,
462 	    ("setpgid failed and newpgrp is NULL"));
463 	if (error == ERESTART)
464 		goto again;
465 	sx_xunlock(&proctree_lock);
466 	uma_zfree(pgrp_zone, newpgrp);
467 	return (error);
468 }
469 
470 /*
471  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
472  * compatible.  It says that setting the uid/gid to euid/egid is a special
473  * case of "appropriate privilege".  Once the rules are expanded out, this
474  * basically means that setuid(nnn) sets all three id's, in all permitted
475  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
476  * does not set the saved id - this is dangerous for traditional BSD
477  * programs.  For this reason, we *really* do not want to set
478  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
479  */
480 #define POSIX_APPENDIX_B_4_2_2
481 
482 #ifndef _SYS_SYSPROTO_H_
483 struct setuid_args {
484 	uid_t	uid;
485 };
486 #endif
487 /* ARGSUSED */
488 int
489 sys_setuid(struct thread *td, struct setuid_args *uap)
490 {
491 	struct proc *p = td->td_proc;
492 	struct ucred *newcred, *oldcred;
493 	uid_t uid;
494 	struct uidinfo *uip;
495 	int error;
496 
497 	uid = uap->uid;
498 	AUDIT_ARG_UID(uid);
499 	newcred = crget();
500 	uip = uifind(uid);
501 	PROC_LOCK(p);
502 	/*
503 	 * Copy credentials so other references do not see our changes.
504 	 */
505 	oldcred = crcopysafe(p, newcred);
506 
507 #ifdef MAC
508 	error = mac_cred_check_setuid(oldcred, uid);
509 	if (error)
510 		goto fail;
511 #endif
512 
513 	/*
514 	 * See if we have "permission" by POSIX 1003.1 rules.
515 	 *
516 	 * Note that setuid(geteuid()) is a special case of
517 	 * "appropriate privileges" in appendix B.4.2.2.  We need
518 	 * to use this clause to be compatible with traditional BSD
519 	 * semantics.  Basically, it means that "setuid(xx)" sets all
520 	 * three id's (assuming you have privs).
521 	 *
522 	 * Notes on the logic.  We do things in three steps.
523 	 * 1: We determine if the euid is going to change, and do EPERM
524 	 *    right away.  We unconditionally change the euid later if this
525 	 *    test is satisfied, simplifying that part of the logic.
526 	 * 2: We determine if the real and/or saved uids are going to
527 	 *    change.  Determined by compile options.
528 	 * 3: Change euid last. (after tests in #2 for "appropriate privs")
529 	 */
530 	if (uid != oldcred->cr_ruid &&		/* allow setuid(getuid()) */
531 #ifdef _POSIX_SAVED_IDS
532 	    uid != oldcred->cr_svuid &&		/* allow setuid(saved gid) */
533 #endif
534 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
535 	    uid != oldcred->cr_uid &&		/* allow setuid(geteuid()) */
536 #endif
537 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETUID)) != 0)
538 		goto fail;
539 
540 #ifdef _POSIX_SAVED_IDS
541 	/*
542 	 * Do we have "appropriate privileges" (are we root or uid == euid)
543 	 * If so, we are changing the real uid and/or saved uid.
544 	 */
545 	if (
546 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use the clause from B.4.2.2 */
547 	    uid == oldcred->cr_uid ||
548 #endif
549 	    /* We are using privs. */
550 	    priv_check_cred(oldcred, PRIV_CRED_SETUID) == 0)
551 #endif
552 	{
553 		/*
554 		 * Set the real uid and transfer proc count to new user.
555 		 */
556 		if (uid != oldcred->cr_ruid) {
557 			change_ruid(newcred, uip);
558 			setsugid(p);
559 		}
560 		/*
561 		 * Set saved uid
562 		 *
563 		 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
564 		 * the security of seteuid() depends on it.  B.4.2.2 says it
565 		 * is important that we should do this.
566 		 */
567 		if (uid != oldcred->cr_svuid) {
568 			change_svuid(newcred, uid);
569 			setsugid(p);
570 		}
571 	}
572 
573 	/*
574 	 * In all permitted cases, we are changing the euid.
575 	 */
576 	if (uid != oldcred->cr_uid) {
577 		change_euid(newcred, uip);
578 		setsugid(p);
579 	}
580 	proc_set_cred(p, newcred);
581 #ifdef RACCT
582 	racct_proc_ucred_changed(p, oldcred, newcred);
583 	crhold(newcred);
584 #endif
585 	PROC_UNLOCK(p);
586 #ifdef RCTL
587 	rctl_proc_ucred_changed(p, newcred);
588 	crfree(newcred);
589 #endif
590 	uifree(uip);
591 	crfree(oldcred);
592 	return (0);
593 
594 fail:
595 	PROC_UNLOCK(p);
596 	uifree(uip);
597 	crfree(newcred);
598 	return (error);
599 }
600 
601 #ifndef _SYS_SYSPROTO_H_
602 struct seteuid_args {
603 	uid_t	euid;
604 };
605 #endif
606 /* ARGSUSED */
607 int
608 sys_seteuid(struct thread *td, struct seteuid_args *uap)
609 {
610 	struct proc *p = td->td_proc;
611 	struct ucred *newcred, *oldcred;
612 	uid_t euid;
613 	struct uidinfo *euip;
614 	int error;
615 
616 	euid = uap->euid;
617 	AUDIT_ARG_EUID(euid);
618 	newcred = crget();
619 	euip = uifind(euid);
620 	PROC_LOCK(p);
621 	/*
622 	 * Copy credentials so other references do not see our changes.
623 	 */
624 	oldcred = crcopysafe(p, newcred);
625 
626 #ifdef MAC
627 	error = mac_cred_check_seteuid(oldcred, euid);
628 	if (error)
629 		goto fail;
630 #endif
631 
632 	if (euid != oldcred->cr_ruid &&		/* allow seteuid(getuid()) */
633 	    euid != oldcred->cr_svuid &&	/* allow seteuid(saved uid) */
634 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID)) != 0)
635 		goto fail;
636 
637 	/*
638 	 * Everything's okay, do it.
639 	 */
640 	if (oldcred->cr_uid != euid) {
641 		change_euid(newcred, euip);
642 		setsugid(p);
643 	}
644 	proc_set_cred(p, newcred);
645 	PROC_UNLOCK(p);
646 	uifree(euip);
647 	crfree(oldcred);
648 	return (0);
649 
650 fail:
651 	PROC_UNLOCK(p);
652 	uifree(euip);
653 	crfree(newcred);
654 	return (error);
655 }
656 
657 #ifndef _SYS_SYSPROTO_H_
658 struct setgid_args {
659 	gid_t	gid;
660 };
661 #endif
662 /* ARGSUSED */
663 int
664 sys_setgid(struct thread *td, struct setgid_args *uap)
665 {
666 	struct proc *p = td->td_proc;
667 	struct ucred *newcred, *oldcred;
668 	gid_t gid;
669 	int error;
670 
671 	gid = uap->gid;
672 	AUDIT_ARG_GID(gid);
673 	newcred = crget();
674 	PROC_LOCK(p);
675 	oldcred = crcopysafe(p, newcred);
676 
677 #ifdef MAC
678 	error = mac_cred_check_setgid(oldcred, gid);
679 	if (error)
680 		goto fail;
681 #endif
682 
683 	/*
684 	 * See if we have "permission" by POSIX 1003.1 rules.
685 	 *
686 	 * Note that setgid(getegid()) is a special case of
687 	 * "appropriate privileges" in appendix B.4.2.2.  We need
688 	 * to use this clause to be compatible with traditional BSD
689 	 * semantics.  Basically, it means that "setgid(xx)" sets all
690 	 * three id's (assuming you have privs).
691 	 *
692 	 * For notes on the logic here, see setuid() above.
693 	 */
694 	if (gid != oldcred->cr_rgid &&		/* allow setgid(getgid()) */
695 #ifdef _POSIX_SAVED_IDS
696 	    gid != oldcred->cr_svgid &&		/* allow setgid(saved gid) */
697 #endif
698 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
699 	    gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
700 #endif
701 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETGID)) != 0)
702 		goto fail;
703 
704 #ifdef _POSIX_SAVED_IDS
705 	/*
706 	 * Do we have "appropriate privileges" (are we root or gid == egid)
707 	 * If so, we are changing the real uid and saved gid.
708 	 */
709 	if (
710 #ifdef POSIX_APPENDIX_B_4_2_2	/* use the clause from B.4.2.2 */
711 	    gid == oldcred->cr_groups[0] ||
712 #endif
713 	    /* We are using privs. */
714 	    priv_check_cred(oldcred, PRIV_CRED_SETGID) == 0)
715 #endif
716 	{
717 		/*
718 		 * Set real gid
719 		 */
720 		if (oldcred->cr_rgid != gid) {
721 			change_rgid(newcred, gid);
722 			setsugid(p);
723 		}
724 		/*
725 		 * Set saved gid
726 		 *
727 		 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
728 		 * the security of setegid() depends on it.  B.4.2.2 says it
729 		 * is important that we should do this.
730 		 */
731 		if (oldcred->cr_svgid != gid) {
732 			change_svgid(newcred, gid);
733 			setsugid(p);
734 		}
735 	}
736 	/*
737 	 * In all cases permitted cases, we are changing the egid.
738 	 * Copy credentials so other references do not see our changes.
739 	 */
740 	if (oldcred->cr_groups[0] != gid) {
741 		change_egid(newcred, gid);
742 		setsugid(p);
743 	}
744 	proc_set_cred(p, newcred);
745 	PROC_UNLOCK(p);
746 	crfree(oldcred);
747 	return (0);
748 
749 fail:
750 	PROC_UNLOCK(p);
751 	crfree(newcred);
752 	return (error);
753 }
754 
755 #ifndef _SYS_SYSPROTO_H_
756 struct setegid_args {
757 	gid_t	egid;
758 };
759 #endif
760 /* ARGSUSED */
761 int
762 sys_setegid(struct thread *td, struct setegid_args *uap)
763 {
764 	struct proc *p = td->td_proc;
765 	struct ucred *newcred, *oldcred;
766 	gid_t egid;
767 	int error;
768 
769 	egid = uap->egid;
770 	AUDIT_ARG_EGID(egid);
771 	newcred = crget();
772 	PROC_LOCK(p);
773 	oldcred = crcopysafe(p, newcred);
774 
775 #ifdef MAC
776 	error = mac_cred_check_setegid(oldcred, egid);
777 	if (error)
778 		goto fail;
779 #endif
780 
781 	if (egid != oldcred->cr_rgid &&		/* allow setegid(getgid()) */
782 	    egid != oldcred->cr_svgid &&	/* allow setegid(saved gid) */
783 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID)) != 0)
784 		goto fail;
785 
786 	if (oldcred->cr_groups[0] != egid) {
787 		change_egid(newcred, egid);
788 		setsugid(p);
789 	}
790 	proc_set_cred(p, newcred);
791 	PROC_UNLOCK(p);
792 	crfree(oldcred);
793 	return (0);
794 
795 fail:
796 	PROC_UNLOCK(p);
797 	crfree(newcred);
798 	return (error);
799 }
800 
801 #ifndef _SYS_SYSPROTO_H_
802 struct setgroups_args {
803 	int	gidsetsize;
804 	gid_t	*gidset;
805 };
806 #endif
807 /* ARGSUSED */
808 int
809 sys_setgroups(struct thread *td, struct setgroups_args *uap)
810 {
811 	gid_t smallgroups[XU_NGROUPS];
812 	gid_t *groups;
813 	int gidsetsize, error;
814 
815 	gidsetsize = uap->gidsetsize;
816 	if (gidsetsize > ngroups_max + 1 || gidsetsize < 0)
817 		return (EINVAL);
818 
819 	if (gidsetsize > XU_NGROUPS)
820 		groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
821 	else
822 		groups = smallgroups;
823 
824 	error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
825 	if (error == 0)
826 		error = kern_setgroups(td, gidsetsize, groups);
827 
828 	if (gidsetsize > XU_NGROUPS)
829 		free(groups, M_TEMP);
830 	return (error);
831 }
832 
833 int
834 kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups)
835 {
836 	struct proc *p = td->td_proc;
837 	struct ucred *newcred, *oldcred;
838 	int error;
839 
840 	MPASS(ngrp <= ngroups_max + 1);
841 	AUDIT_ARG_GROUPSET(groups, ngrp);
842 	newcred = crget();
843 	crextend(newcred, ngrp);
844 	PROC_LOCK(p);
845 	oldcred = crcopysafe(p, newcred);
846 
847 #ifdef MAC
848 	error = mac_cred_check_setgroups(oldcred, ngrp, groups);
849 	if (error)
850 		goto fail;
851 #endif
852 
853 	error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS);
854 	if (error)
855 		goto fail;
856 
857 	if (ngrp == 0) {
858 		/*
859 		 * setgroups(0, NULL) is a legitimate way of clearing the
860 		 * groups vector on non-BSD systems (which generally do not
861 		 * have the egid in the groups[0]).  We risk security holes
862 		 * when running non-BSD software if we do not do the same.
863 		 */
864 		newcred->cr_ngroups = 1;
865 	} else {
866 		crsetgroups_locked(newcred, ngrp, groups);
867 	}
868 	setsugid(p);
869 	proc_set_cred(p, newcred);
870 	PROC_UNLOCK(p);
871 	crfree(oldcred);
872 	return (0);
873 
874 fail:
875 	PROC_UNLOCK(p);
876 	crfree(newcred);
877 	return (error);
878 }
879 
880 #ifndef _SYS_SYSPROTO_H_
881 struct setreuid_args {
882 	uid_t	ruid;
883 	uid_t	euid;
884 };
885 #endif
886 /* ARGSUSED */
887 int
888 sys_setreuid(struct thread *td, struct setreuid_args *uap)
889 {
890 	struct proc *p = td->td_proc;
891 	struct ucred *newcred, *oldcred;
892 	uid_t euid, ruid;
893 	struct uidinfo *euip, *ruip;
894 	int error;
895 
896 	euid = uap->euid;
897 	ruid = uap->ruid;
898 	AUDIT_ARG_EUID(euid);
899 	AUDIT_ARG_RUID(ruid);
900 	newcred = crget();
901 	euip = uifind(euid);
902 	ruip = uifind(ruid);
903 	PROC_LOCK(p);
904 	oldcred = crcopysafe(p, newcred);
905 
906 #ifdef MAC
907 	error = mac_cred_check_setreuid(oldcred, ruid, euid);
908 	if (error)
909 		goto fail;
910 #endif
911 
912 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
913 	      ruid != oldcred->cr_svuid) ||
914 	     (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
915 	      euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
916 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID)) != 0)
917 		goto fail;
918 
919 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
920 		change_euid(newcred, euip);
921 		setsugid(p);
922 	}
923 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
924 		change_ruid(newcred, ruip);
925 		setsugid(p);
926 	}
927 	if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
928 	    newcred->cr_svuid != newcred->cr_uid) {
929 		change_svuid(newcred, newcred->cr_uid);
930 		setsugid(p);
931 	}
932 	proc_set_cred(p, newcred);
933 #ifdef RACCT
934 	racct_proc_ucred_changed(p, oldcred, newcred);
935 	crhold(newcred);
936 #endif
937 	PROC_UNLOCK(p);
938 #ifdef RCTL
939 	rctl_proc_ucred_changed(p, newcred);
940 	crfree(newcred);
941 #endif
942 	uifree(ruip);
943 	uifree(euip);
944 	crfree(oldcred);
945 	return (0);
946 
947 fail:
948 	PROC_UNLOCK(p);
949 	uifree(ruip);
950 	uifree(euip);
951 	crfree(newcred);
952 	return (error);
953 }
954 
955 #ifndef _SYS_SYSPROTO_H_
956 struct setregid_args {
957 	gid_t	rgid;
958 	gid_t	egid;
959 };
960 #endif
961 /* ARGSUSED */
962 int
963 sys_setregid(struct thread *td, struct setregid_args *uap)
964 {
965 	struct proc *p = td->td_proc;
966 	struct ucred *newcred, *oldcred;
967 	gid_t egid, rgid;
968 	int error;
969 
970 	egid = uap->egid;
971 	rgid = uap->rgid;
972 	AUDIT_ARG_EGID(egid);
973 	AUDIT_ARG_RGID(rgid);
974 	newcred = crget();
975 	PROC_LOCK(p);
976 	oldcred = crcopysafe(p, newcred);
977 
978 #ifdef MAC
979 	error = mac_cred_check_setregid(oldcred, rgid, egid);
980 	if (error)
981 		goto fail;
982 #endif
983 
984 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
985 	    rgid != oldcred->cr_svgid) ||
986 	     (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
987 	     egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
988 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID)) != 0)
989 		goto fail;
990 
991 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
992 		change_egid(newcred, egid);
993 		setsugid(p);
994 	}
995 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
996 		change_rgid(newcred, rgid);
997 		setsugid(p);
998 	}
999 	if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
1000 	    newcred->cr_svgid != newcred->cr_groups[0]) {
1001 		change_svgid(newcred, newcred->cr_groups[0]);
1002 		setsugid(p);
1003 	}
1004 	proc_set_cred(p, newcred);
1005 	PROC_UNLOCK(p);
1006 	crfree(oldcred);
1007 	return (0);
1008 
1009 fail:
1010 	PROC_UNLOCK(p);
1011 	crfree(newcred);
1012 	return (error);
1013 }
1014 
1015 /*
1016  * setresuid(ruid, euid, suid) is like setreuid except control over the saved
1017  * uid is explicit.
1018  */
1019 #ifndef _SYS_SYSPROTO_H_
1020 struct setresuid_args {
1021 	uid_t	ruid;
1022 	uid_t	euid;
1023 	uid_t	suid;
1024 };
1025 #endif
1026 /* ARGSUSED */
1027 int
1028 sys_setresuid(struct thread *td, struct setresuid_args *uap)
1029 {
1030 	struct proc *p = td->td_proc;
1031 	struct ucred *newcred, *oldcred;
1032 	uid_t euid, ruid, suid;
1033 	struct uidinfo *euip, *ruip;
1034 	int error;
1035 
1036 	euid = uap->euid;
1037 	ruid = uap->ruid;
1038 	suid = uap->suid;
1039 	AUDIT_ARG_EUID(euid);
1040 	AUDIT_ARG_RUID(ruid);
1041 	AUDIT_ARG_SUID(suid);
1042 	newcred = crget();
1043 	euip = uifind(euid);
1044 	ruip = uifind(ruid);
1045 	PROC_LOCK(p);
1046 	oldcred = crcopysafe(p, newcred);
1047 
1048 #ifdef MAC
1049 	error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
1050 	if (error)
1051 		goto fail;
1052 #endif
1053 
1054 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1055 	     ruid != oldcred->cr_svuid &&
1056 	      ruid != oldcred->cr_uid) ||
1057 	     (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
1058 	    euid != oldcred->cr_svuid &&
1059 	      euid != oldcred->cr_uid) ||
1060 	     (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
1061 	    suid != oldcred->cr_svuid &&
1062 	      suid != oldcred->cr_uid)) &&
1063 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID)) != 0)
1064 		goto fail;
1065 
1066 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1067 		change_euid(newcred, euip);
1068 		setsugid(p);
1069 	}
1070 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1071 		change_ruid(newcred, ruip);
1072 		setsugid(p);
1073 	}
1074 	if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
1075 		change_svuid(newcred, suid);
1076 		setsugid(p);
1077 	}
1078 	proc_set_cred(p, newcred);
1079 #ifdef RACCT
1080 	racct_proc_ucred_changed(p, oldcred, newcred);
1081 	crhold(newcred);
1082 #endif
1083 	PROC_UNLOCK(p);
1084 #ifdef RCTL
1085 	rctl_proc_ucred_changed(p, newcred);
1086 	crfree(newcred);
1087 #endif
1088 	uifree(ruip);
1089 	uifree(euip);
1090 	crfree(oldcred);
1091 	return (0);
1092 
1093 fail:
1094 	PROC_UNLOCK(p);
1095 	uifree(ruip);
1096 	uifree(euip);
1097 	crfree(newcred);
1098 	return (error);
1099 
1100 }
1101 
1102 /*
1103  * setresgid(rgid, egid, sgid) is like setregid except control over the saved
1104  * gid is explicit.
1105  */
1106 #ifndef _SYS_SYSPROTO_H_
1107 struct setresgid_args {
1108 	gid_t	rgid;
1109 	gid_t	egid;
1110 	gid_t	sgid;
1111 };
1112 #endif
1113 /* ARGSUSED */
1114 int
1115 sys_setresgid(struct thread *td, struct setresgid_args *uap)
1116 {
1117 	struct proc *p = td->td_proc;
1118 	struct ucred *newcred, *oldcred;
1119 	gid_t egid, rgid, sgid;
1120 	int error;
1121 
1122 	egid = uap->egid;
1123 	rgid = uap->rgid;
1124 	sgid = uap->sgid;
1125 	AUDIT_ARG_EGID(egid);
1126 	AUDIT_ARG_RGID(rgid);
1127 	AUDIT_ARG_SGID(sgid);
1128 	newcred = crget();
1129 	PROC_LOCK(p);
1130 	oldcred = crcopysafe(p, newcred);
1131 
1132 #ifdef MAC
1133 	error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
1134 	if (error)
1135 		goto fail;
1136 #endif
1137 
1138 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1139 	      rgid != oldcred->cr_svgid &&
1140 	      rgid != oldcred->cr_groups[0]) ||
1141 	     (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
1142 	      egid != oldcred->cr_svgid &&
1143 	      egid != oldcred->cr_groups[0]) ||
1144 	     (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
1145 	      sgid != oldcred->cr_svgid &&
1146 	      sgid != oldcred->cr_groups[0])) &&
1147 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID)) != 0)
1148 		goto fail;
1149 
1150 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
1151 		change_egid(newcred, egid);
1152 		setsugid(p);
1153 	}
1154 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1155 		change_rgid(newcred, rgid);
1156 		setsugid(p);
1157 	}
1158 	if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
1159 		change_svgid(newcred, sgid);
1160 		setsugid(p);
1161 	}
1162 	proc_set_cred(p, newcred);
1163 	PROC_UNLOCK(p);
1164 	crfree(oldcred);
1165 	return (0);
1166 
1167 fail:
1168 	PROC_UNLOCK(p);
1169 	crfree(newcred);
1170 	return (error);
1171 }
1172 
1173 #ifndef _SYS_SYSPROTO_H_
1174 struct getresuid_args {
1175 	uid_t	*ruid;
1176 	uid_t	*euid;
1177 	uid_t	*suid;
1178 };
1179 #endif
1180 /* ARGSUSED */
1181 int
1182 sys_getresuid(struct thread *td, struct getresuid_args *uap)
1183 {
1184 	struct ucred *cred;
1185 	int error1 = 0, error2 = 0, error3 = 0;
1186 
1187 	cred = td->td_ucred;
1188 	if (uap->ruid)
1189 		error1 = copyout(&cred->cr_ruid,
1190 		    uap->ruid, sizeof(cred->cr_ruid));
1191 	if (uap->euid)
1192 		error2 = copyout(&cred->cr_uid,
1193 		    uap->euid, sizeof(cred->cr_uid));
1194 	if (uap->suid)
1195 		error3 = copyout(&cred->cr_svuid,
1196 		    uap->suid, sizeof(cred->cr_svuid));
1197 	return (error1 ? error1 : error2 ? error2 : error3);
1198 }
1199 
1200 #ifndef _SYS_SYSPROTO_H_
1201 struct getresgid_args {
1202 	gid_t	*rgid;
1203 	gid_t	*egid;
1204 	gid_t	*sgid;
1205 };
1206 #endif
1207 /* ARGSUSED */
1208 int
1209 sys_getresgid(struct thread *td, struct getresgid_args *uap)
1210 {
1211 	struct ucred *cred;
1212 	int error1 = 0, error2 = 0, error3 = 0;
1213 
1214 	cred = td->td_ucred;
1215 	if (uap->rgid)
1216 		error1 = copyout(&cred->cr_rgid,
1217 		    uap->rgid, sizeof(cred->cr_rgid));
1218 	if (uap->egid)
1219 		error2 = copyout(&cred->cr_groups[0],
1220 		    uap->egid, sizeof(cred->cr_groups[0]));
1221 	if (uap->sgid)
1222 		error3 = copyout(&cred->cr_svgid,
1223 		    uap->sgid, sizeof(cred->cr_svgid));
1224 	return (error1 ? error1 : error2 ? error2 : error3);
1225 }
1226 
1227 #ifndef _SYS_SYSPROTO_H_
1228 struct issetugid_args {
1229 	int dummy;
1230 };
1231 #endif
1232 /* ARGSUSED */
1233 int
1234 sys_issetugid(struct thread *td, struct issetugid_args *uap)
1235 {
1236 	struct proc *p = td->td_proc;
1237 
1238 	/*
1239 	 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
1240 	 * we use P_SUGID because we consider changing the owners as
1241 	 * "tainting" as well.
1242 	 * This is significant for procs that start as root and "become"
1243 	 * a user without an exec - programs cannot know *everything*
1244 	 * that libc *might* have put in their data segment.
1245 	 */
1246 	td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
1247 	return (0);
1248 }
1249 
1250 int
1251 sys___setugid(struct thread *td, struct __setugid_args *uap)
1252 {
1253 #ifdef REGRESSION
1254 	struct proc *p;
1255 
1256 	p = td->td_proc;
1257 	switch (uap->flag) {
1258 	case 0:
1259 		PROC_LOCK(p);
1260 		p->p_flag &= ~P_SUGID;
1261 		PROC_UNLOCK(p);
1262 		return (0);
1263 	case 1:
1264 		PROC_LOCK(p);
1265 		p->p_flag |= P_SUGID;
1266 		PROC_UNLOCK(p);
1267 		return (0);
1268 	default:
1269 		return (EINVAL);
1270 	}
1271 #else /* !REGRESSION */
1272 
1273 	return (ENOSYS);
1274 #endif /* REGRESSION */
1275 }
1276 
1277 /*
1278  * Check if gid is a member of the group set.
1279  */
1280 int
1281 groupmember(gid_t gid, struct ucred *cred)
1282 {
1283 	int l;
1284 	int h;
1285 	int m;
1286 
1287 	if (cred->cr_groups[0] == gid)
1288 		return(1);
1289 
1290 	/*
1291 	 * If gid was not our primary group, perform a binary search
1292 	 * of the supplemental groups.  This is possible because we
1293 	 * sort the groups in crsetgroups().
1294 	 */
1295 	l = 1;
1296 	h = cred->cr_ngroups;
1297 	while (l < h) {
1298 		m = l + ((h - l) / 2);
1299 		if (cred->cr_groups[m] < gid)
1300 			l = m + 1;
1301 		else
1302 			h = m;
1303 	}
1304 	if ((l < cred->cr_ngroups) && (cred->cr_groups[l] == gid))
1305 		return (1);
1306 
1307 	return (0);
1308 }
1309 
1310 /*
1311  * Test the active securelevel against a given level.  securelevel_gt()
1312  * implements (securelevel > level).  securelevel_ge() implements
1313  * (securelevel >= level).  Note that the logic is inverted -- these
1314  * functions return EPERM on "success" and 0 on "failure".
1315  *
1316  * Due to care taken when setting the securelevel, we know that no jail will
1317  * be less secure that its parent (or the physical system), so it is sufficient
1318  * to test the current jail only.
1319  *
1320  * XXXRW: Possibly since this has to do with privilege, it should move to
1321  * kern_priv.c.
1322  */
1323 int
1324 securelevel_gt(struct ucred *cr, int level)
1325 {
1326 
1327 	return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
1328 }
1329 
1330 int
1331 securelevel_ge(struct ucred *cr, int level)
1332 {
1333 
1334 	return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
1335 }
1336 
1337 /*
1338  * 'see_other_uids' determines whether or not visibility of processes
1339  * and sockets with credentials holding different real uids is possible
1340  * using a variety of system MIBs.
1341  * XXX: data declarations should be together near the beginning of the file.
1342  */
1343 static int	see_other_uids = 1;
1344 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
1345     &see_other_uids, 0,
1346     "Unprivileged processes may see subjects/objects with different real uid");
1347 
1348 /*-
1349  * Determine if u1 "can see" the subject specified by u2, according to the
1350  * 'see_other_uids' policy.
1351  * Returns: 0 for permitted, ESRCH otherwise
1352  * Locks: none
1353  * References: *u1 and *u2 must not change during the call
1354  *             u1 may equal u2, in which case only one reference is required
1355  */
1356 int
1357 cr_canseeotheruids(struct ucred *u1, struct ucred *u2)
1358 {
1359 
1360 	if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
1361 		if (priv_check_cred(u1, PRIV_SEEOTHERUIDS) != 0)
1362 			return (ESRCH);
1363 	}
1364 	return (0);
1365 }
1366 
1367 /*
1368  * 'see_other_gids' determines whether or not visibility of processes
1369  * and sockets with credentials holding different real gids is possible
1370  * using a variety of system MIBs.
1371  * XXX: data declarations should be together near the beginning of the file.
1372  */
1373 static int	see_other_gids = 1;
1374 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
1375     &see_other_gids, 0,
1376     "Unprivileged processes may see subjects/objects with different real gid");
1377 
1378 /*
1379  * Determine if u1 can "see" the subject specified by u2, according to the
1380  * 'see_other_gids' policy.
1381  * Returns: 0 for permitted, ESRCH otherwise
1382  * Locks: none
1383  * References: *u1 and *u2 must not change during the call
1384  *             u1 may equal u2, in which case only one reference is required
1385  */
1386 int
1387 cr_canseeothergids(struct ucred *u1, struct ucred *u2)
1388 {
1389 	int i, match;
1390 
1391 	if (!see_other_gids) {
1392 		match = 0;
1393 		for (i = 0; i < u1->cr_ngroups; i++) {
1394 			if (groupmember(u1->cr_groups[i], u2))
1395 				match = 1;
1396 			if (match)
1397 				break;
1398 		}
1399 		if (!match) {
1400 			if (priv_check_cred(u1, PRIV_SEEOTHERGIDS) != 0)
1401 				return (ESRCH);
1402 		}
1403 	}
1404 	return (0);
1405 }
1406 
1407 /*
1408  * 'see_jail_proc' determines whether or not visibility of processes and
1409  * sockets with credentials holding different jail ids is possible using a
1410  * variety of system MIBs.
1411  *
1412  * XXX: data declarations should be together near the beginning of the file.
1413  */
1414 
1415 static int	see_jail_proc = 1;
1416 SYSCTL_INT(_security_bsd, OID_AUTO, see_jail_proc, CTLFLAG_RW,
1417     &see_jail_proc, 0,
1418     "Unprivileged processes may see subjects/objects with different jail ids");
1419 
1420 /*-
1421  * Determine if u1 "can see" the subject specified by u2, according to the
1422  * 'see_jail_proc' policy.
1423  * Returns: 0 for permitted, ESRCH otherwise
1424  * Locks: none
1425  * References: *u1 and *u2 must not change during the call
1426  *             u1 may equal u2, in which case only one reference is required
1427  */
1428 int
1429 cr_canseejailproc(struct ucred *u1, struct ucred *u2)
1430 {
1431 	if (u1->cr_uid == 0)
1432 		return (0);
1433 	return (!see_jail_proc && u1->cr_prison != u2->cr_prison ? ESRCH : 0);
1434 }
1435 
1436 /*-
1437  * Determine if u1 "can see" the subject specified by u2.
1438  * Returns: 0 for permitted, an errno value otherwise
1439  * Locks: none
1440  * References: *u1 and *u2 must not change during the call
1441  *             u1 may equal u2, in which case only one reference is required
1442  */
1443 int
1444 cr_cansee(struct ucred *u1, struct ucred *u2)
1445 {
1446 	int error;
1447 
1448 	if ((error = prison_check(u1, u2)))
1449 		return (error);
1450 #ifdef MAC
1451 	if ((error = mac_cred_check_visible(u1, u2)))
1452 		return (error);
1453 #endif
1454 	if ((error = cr_canseeotheruids(u1, u2)))
1455 		return (error);
1456 	if ((error = cr_canseeothergids(u1, u2)))
1457 		return (error);
1458 	if ((error = cr_canseejailproc(u1, u2)))
1459 		return (error);
1460 	return (0);
1461 }
1462 
1463 /*-
1464  * Determine if td "can see" the subject specified by p.
1465  * Returns: 0 for permitted, an errno value otherwise
1466  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
1467  *        should be curthread.
1468  * References: td and p must be valid for the lifetime of the call
1469  */
1470 int
1471 p_cansee(struct thread *td, struct proc *p)
1472 {
1473 	/* Wrap cr_cansee() for all functionality. */
1474 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1475 	PROC_LOCK_ASSERT(p, MA_OWNED);
1476 
1477 	if (td->td_proc == p)
1478 		return (0);
1479 	return (cr_cansee(td->td_ucred, p->p_ucred));
1480 }
1481 
1482 /*
1483  * 'conservative_signals' prevents the delivery of a broad class of
1484  * signals by unprivileged processes to processes that have changed their
1485  * credentials since the last invocation of execve().  This can prevent
1486  * the leakage of cached information or retained privileges as a result
1487  * of a common class of signal-related vulnerabilities.  However, this
1488  * may interfere with some applications that expect to be able to
1489  * deliver these signals to peer processes after having given up
1490  * privilege.
1491  */
1492 static int	conservative_signals = 1;
1493 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
1494     &conservative_signals, 0, "Unprivileged processes prevented from "
1495     "sending certain signals to processes whose credentials have changed");
1496 /*-
1497  * Determine whether cred may deliver the specified signal to proc.
1498  * Returns: 0 for permitted, an errno value otherwise.
1499  * Locks: A lock must be held for proc.
1500  * References: cred and proc must be valid for the lifetime of the call.
1501  */
1502 int
1503 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
1504 {
1505 	int error;
1506 
1507 	PROC_LOCK_ASSERT(proc, MA_OWNED);
1508 	/*
1509 	 * Jail semantics limit the scope of signalling to proc in the
1510 	 * same jail as cred, if cred is in jail.
1511 	 */
1512 	error = prison_check(cred, proc->p_ucred);
1513 	if (error)
1514 		return (error);
1515 #ifdef MAC
1516 	if ((error = mac_proc_check_signal(cred, proc, signum)))
1517 		return (error);
1518 #endif
1519 	if ((error = cr_canseeotheruids(cred, proc->p_ucred)))
1520 		return (error);
1521 	if ((error = cr_canseeothergids(cred, proc->p_ucred)))
1522 		return (error);
1523 
1524 	/*
1525 	 * UNIX signal semantics depend on the status of the P_SUGID
1526 	 * bit on the target process.  If the bit is set, then additional
1527 	 * restrictions are placed on the set of available signals.
1528 	 */
1529 	if (conservative_signals && (proc->p_flag & P_SUGID)) {
1530 		switch (signum) {
1531 		case 0:
1532 		case SIGKILL:
1533 		case SIGINT:
1534 		case SIGTERM:
1535 		case SIGALRM:
1536 		case SIGSTOP:
1537 		case SIGTTIN:
1538 		case SIGTTOU:
1539 		case SIGTSTP:
1540 		case SIGHUP:
1541 		case SIGUSR1:
1542 		case SIGUSR2:
1543 			/*
1544 			 * Generally, permit job and terminal control
1545 			 * signals.
1546 			 */
1547 			break;
1548 		default:
1549 			/* Not permitted without privilege. */
1550 			error = priv_check_cred(cred, PRIV_SIGNAL_SUGID);
1551 			if (error)
1552 				return (error);
1553 		}
1554 	}
1555 
1556 	/*
1557 	 * Generally, the target credential's ruid or svuid must match the
1558 	 * subject credential's ruid or euid.
1559 	 */
1560 	if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
1561 	    cred->cr_ruid != proc->p_ucred->cr_svuid &&
1562 	    cred->cr_uid != proc->p_ucred->cr_ruid &&
1563 	    cred->cr_uid != proc->p_ucred->cr_svuid) {
1564 		error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED);
1565 		if (error)
1566 			return (error);
1567 	}
1568 
1569 	return (0);
1570 }
1571 
1572 /*-
1573  * Determine whether td may deliver the specified signal to p.
1574  * Returns: 0 for permitted, an errno value otherwise
1575  * Locks: Sufficient locks to protect various components of td and p
1576  *        must be held.  td must be curthread, and a lock must be
1577  *        held for p.
1578  * References: td and p must be valid for the lifetime of the call
1579  */
1580 int
1581 p_cansignal(struct thread *td, struct proc *p, int signum)
1582 {
1583 
1584 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1585 	PROC_LOCK_ASSERT(p, MA_OWNED);
1586 	if (td->td_proc == p)
1587 		return (0);
1588 
1589 	/*
1590 	 * UNIX signalling semantics require that processes in the same
1591 	 * session always be able to deliver SIGCONT to one another,
1592 	 * overriding the remaining protections.
1593 	 */
1594 	/* XXX: This will require an additional lock of some sort. */
1595 	if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
1596 		return (0);
1597 	/*
1598 	 * Some compat layers use SIGTHR and higher signals for
1599 	 * communication between different kernel threads of the same
1600 	 * process, so that they expect that it's always possible to
1601 	 * deliver them, even for suid applications where cr_cansignal() can
1602 	 * deny such ability for security consideration.  It should be
1603 	 * pretty safe to do since the only way to create two processes
1604 	 * with the same p_leader is via rfork(2).
1605 	 */
1606 	if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
1607 	    signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
1608 		return (0);
1609 
1610 	return (cr_cansignal(td->td_ucred, p, signum));
1611 }
1612 
1613 /*-
1614  * Determine whether td may reschedule p.
1615  * Returns: 0 for permitted, an errno value otherwise
1616  * Locks: Sufficient locks to protect various components of td and p
1617  *        must be held.  td must be curthread, and a lock must
1618  *        be held for p.
1619  * References: td and p must be valid for the lifetime of the call
1620  */
1621 int
1622 p_cansched(struct thread *td, struct proc *p)
1623 {
1624 	int error;
1625 
1626 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1627 	PROC_LOCK_ASSERT(p, MA_OWNED);
1628 	if (td->td_proc == p)
1629 		return (0);
1630 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1631 		return (error);
1632 #ifdef MAC
1633 	if ((error = mac_proc_check_sched(td->td_ucred, p)))
1634 		return (error);
1635 #endif
1636 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1637 		return (error);
1638 	if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
1639 		return (error);
1640 	if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
1641 	    td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
1642 		error = priv_check(td, PRIV_SCHED_DIFFCRED);
1643 		if (error)
1644 			return (error);
1645 	}
1646 	return (0);
1647 }
1648 
1649 /*
1650  * Handle getting or setting the prison's unprivileged_proc_debug
1651  * value.
1652  */
1653 static int
1654 sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS)
1655 {
1656 	int error, val;
1657 
1658 	val = prison_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG);
1659 	error = sysctl_handle_int(oidp, &val, 0, req);
1660 	if (error != 0 || req->newptr == NULL)
1661 		return (error);
1662 	if (val != 0 && val != 1)
1663 		return (EINVAL);
1664 	prison_set_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG, val);
1665 	return (0);
1666 }
1667 
1668 /*
1669  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
1670  * unprivileged inter-process debugging services, including some procfs
1671  * functionality, ptrace(), and ktrace().  In the past, inter-process
1672  * debugging has been involved in a variety of security problems, and sites
1673  * not requiring the service might choose to disable it when hardening
1674  * systems.
1675  */
1676 SYSCTL_PROC(_security_bsd, OID_AUTO, unprivileged_proc_debug,
1677     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_SECURE |
1678     CTLFLAG_MPSAFE, 0, 0, sysctl_unprivileged_proc_debug, "I",
1679     "Unprivileged processes may use process debugging facilities");
1680 
1681 /*-
1682  * Determine whether td may debug p.
1683  * Returns: 0 for permitted, an errno value otherwise
1684  * Locks: Sufficient locks to protect various components of td and p
1685  *        must be held.  td must be curthread, and a lock must
1686  *        be held for p.
1687  * References: td and p must be valid for the lifetime of the call
1688  */
1689 int
1690 p_candebug(struct thread *td, struct proc *p)
1691 {
1692 	int error, grpsubset, i, uidsubset;
1693 
1694 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1695 	PROC_LOCK_ASSERT(p, MA_OWNED);
1696 	if (td->td_proc == p)
1697 		return (0);
1698 	if ((error = priv_check(td, PRIV_DEBUG_UNPRIV)))
1699 		return (error);
1700 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1701 		return (error);
1702 #ifdef MAC
1703 	if ((error = mac_proc_check_debug(td->td_ucred, p)))
1704 		return (error);
1705 #endif
1706 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1707 		return (error);
1708 	if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
1709 		return (error);
1710 
1711 	/*
1712 	 * Is p's group set a subset of td's effective group set?  This
1713 	 * includes p's egid, group access list, rgid, and svgid.
1714 	 */
1715 	grpsubset = 1;
1716 	for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
1717 		if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
1718 			grpsubset = 0;
1719 			break;
1720 		}
1721 	}
1722 	grpsubset = grpsubset &&
1723 	    groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
1724 	    groupmember(p->p_ucred->cr_svgid, td->td_ucred);
1725 
1726 	/*
1727 	 * Are the uids present in p's credential equal to td's
1728 	 * effective uid?  This includes p's euid, svuid, and ruid.
1729 	 */
1730 	uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
1731 	    td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
1732 	    td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
1733 
1734 	/*
1735 	 * If p's gids aren't a subset, or the uids aren't a subset,
1736 	 * or the credential has changed, require appropriate privilege
1737 	 * for td to debug p.
1738 	 */
1739 	if (!grpsubset || !uidsubset) {
1740 		error = priv_check(td, PRIV_DEBUG_DIFFCRED);
1741 		if (error)
1742 			return (error);
1743 	}
1744 
1745 	/*
1746 	 * Has the credential of the process changed since the last exec()?
1747 	 */
1748 	if ((p->p_flag & P_SUGID) != 0) {
1749 		error = priv_check(td, PRIV_DEBUG_SUGID);
1750 		if (error)
1751 			return (error);
1752 	}
1753 
1754 	/* Can't trace init when securelevel > 0. */
1755 	if (p == initproc) {
1756 		error = securelevel_gt(td->td_ucred, 0);
1757 		if (error)
1758 			return (error);
1759 	}
1760 
1761 	/*
1762 	 * Can't trace a process that's currently exec'ing.
1763 	 *
1764 	 * XXX: Note, this is not a security policy decision, it's a
1765 	 * basic correctness/functionality decision.  Therefore, this check
1766 	 * should be moved to the caller's of p_candebug().
1767 	 */
1768 	if ((p->p_flag & P_INEXEC) != 0)
1769 		return (EBUSY);
1770 
1771 	/* Denied explicitly */
1772 	if ((p->p_flag2 & P2_NOTRACE) != 0) {
1773 		error = priv_check(td, PRIV_DEBUG_DENIED);
1774 		if (error != 0)
1775 			return (error);
1776 	}
1777 
1778 	return (0);
1779 }
1780 
1781 /*-
1782  * Determine whether the subject represented by cred can "see" a socket.
1783  * Returns: 0 for permitted, ENOENT otherwise.
1784  */
1785 int
1786 cr_canseesocket(struct ucred *cred, struct socket *so)
1787 {
1788 	int error;
1789 
1790 	error = prison_check(cred, so->so_cred);
1791 	if (error)
1792 		return (ENOENT);
1793 #ifdef MAC
1794 	error = mac_socket_check_visible(cred, so);
1795 	if (error)
1796 		return (error);
1797 #endif
1798 	if (cr_canseeotheruids(cred, so->so_cred))
1799 		return (ENOENT);
1800 	if (cr_canseeothergids(cred, so->so_cred))
1801 		return (ENOENT);
1802 
1803 	return (0);
1804 }
1805 
1806 /*-
1807  * Determine whether td can wait for the exit of p.
1808  * Returns: 0 for permitted, an errno value otherwise
1809  * Locks: Sufficient locks to protect various components of td and p
1810  *        must be held.  td must be curthread, and a lock must
1811  *        be held for p.
1812  * References: td and p must be valid for the lifetime of the call
1813 
1814  */
1815 int
1816 p_canwait(struct thread *td, struct proc *p)
1817 {
1818 	int error;
1819 
1820 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1821 	PROC_LOCK_ASSERT(p, MA_OWNED);
1822 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1823 		return (error);
1824 #ifdef MAC
1825 	if ((error = mac_proc_check_wait(td->td_ucred, p)))
1826 		return (error);
1827 #endif
1828 #if 0
1829 	/* XXXMAC: This could have odd effects on some shells. */
1830 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1831 		return (error);
1832 #endif
1833 
1834 	return (0);
1835 }
1836 
1837 /*
1838  * Credential management.
1839  *
1840  * struct ucred objects are rarely allocated but gain and lose references all
1841  * the time (e.g., on struct file alloc/dealloc) turning refcount updates into
1842  * a significant source of cache-line ping ponging. Common cases are worked
1843  * around by modifying thread-local counter instead if the cred to operate on
1844  * matches td_realucred.
1845  *
1846  * The counter is split into 2 parts:
1847  * - cr_users -- total count of all struct proc and struct thread objects
1848  *   which have given cred in p_ucred and td_ucred respectively
1849  * - cr_ref -- the actual ref count, only valid if cr_users == 0
1850  *
1851  * If users == 0 then cr_ref behaves similarly to refcount(9), in particular if
1852  * the count reaches 0 the object is freeable.
1853  * If users > 0 and curthread->td_realucred == cred, then updates are performed
1854  * against td_ucredref.
1855  * In other cases updates are performed against cr_ref.
1856  *
1857  * Changing td_realucred into something else decrements cr_users and transfers
1858  * accumulated updates.
1859  */
1860 struct ucred *
1861 crcowget(struct ucred *cr)
1862 {
1863 
1864 	mtx_lock(&cr->cr_mtx);
1865 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1866 	    __func__, cr->cr_users, cr));
1867 	cr->cr_users++;
1868 	cr->cr_ref++;
1869 	mtx_unlock(&cr->cr_mtx);
1870 	return (cr);
1871 }
1872 
1873 static struct ucred *
1874 crunuse(struct thread *td)
1875 {
1876 	struct ucred *cr, *crold;
1877 
1878 	MPASS(td->td_realucred == td->td_ucred);
1879 	cr = td->td_realucred;
1880 	mtx_lock(&cr->cr_mtx);
1881 	cr->cr_ref += td->td_ucredref;
1882 	td->td_ucredref = 0;
1883 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1884 	    __func__, cr->cr_users, cr));
1885 	cr->cr_users--;
1886 	if (cr->cr_users == 0) {
1887 		KASSERT(cr->cr_ref > 0, ("%s: ref %ld not > 0 on cred %p",
1888 		    __func__, cr->cr_ref, cr));
1889 		crold = cr;
1890 	} else {
1891 		cr->cr_ref--;
1892 		crold = NULL;
1893 	}
1894 	mtx_unlock(&cr->cr_mtx);
1895 	td->td_realucred = NULL;
1896 	return (crold);
1897 }
1898 
1899 static void
1900 crunusebatch(struct ucred *cr, int users, int ref)
1901 {
1902 
1903 	KASSERT(users > 0, ("%s: passed users %d not > 0 ; cred %p",
1904 	    __func__, users, cr));
1905 	mtx_lock(&cr->cr_mtx);
1906 	KASSERT(cr->cr_users >= users, ("%s: users %d not > %d on cred %p",
1907 	    __func__, cr->cr_users, users, cr));
1908 	cr->cr_users -= users;
1909 	cr->cr_ref += ref;
1910 	cr->cr_ref -= users;
1911 	if (cr->cr_users > 0) {
1912 		mtx_unlock(&cr->cr_mtx);
1913 		return;
1914 	}
1915 	KASSERT(cr->cr_ref >= 0, ("%s: ref %ld not >= 0 on cred %p",
1916 	    __func__, cr->cr_ref, cr));
1917 	if (cr->cr_ref > 0) {
1918 		mtx_unlock(&cr->cr_mtx);
1919 		return;
1920 	}
1921 	crfree_final(cr);
1922 }
1923 
1924 void
1925 crcowfree(struct thread *td)
1926 {
1927 	struct ucred *cr;
1928 
1929 	cr = crunuse(td);
1930 	if (cr != NULL)
1931 		crfree(cr);
1932 }
1933 
1934 struct ucred *
1935 crcowsync(void)
1936 {
1937 	struct thread *td;
1938 	struct proc *p;
1939 	struct ucred *crnew, *crold;
1940 
1941 	td = curthread;
1942 	p = td->td_proc;
1943 	PROC_LOCK_ASSERT(p, MA_OWNED);
1944 
1945 	MPASS(td->td_realucred == td->td_ucred);
1946 	if (td->td_realucred == p->p_ucred)
1947 		return (NULL);
1948 
1949 	crnew = crcowget(p->p_ucred);
1950 	crold = crunuse(td);
1951 	td->td_realucred = crnew;
1952 	td->td_ucred = td->td_realucred;
1953 	return (crold);
1954 }
1955 
1956 /*
1957  * Batching.
1958  */
1959 void
1960 credbatch_add(struct credbatch *crb, struct thread *td)
1961 {
1962 	struct ucred *cr;
1963 
1964 	MPASS(td->td_realucred != NULL);
1965 	MPASS(td->td_realucred == td->td_ucred);
1966 	MPASS(TD_GET_STATE(td) == TDS_INACTIVE);
1967 	cr = td->td_realucred;
1968 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1969 	    __func__, cr->cr_users, cr));
1970 	if (crb->cred != cr) {
1971 		if (crb->users > 0) {
1972 			MPASS(crb->cred != NULL);
1973 			crunusebatch(crb->cred, crb->users, crb->ref);
1974 			crb->users = 0;
1975 			crb->ref = 0;
1976 		}
1977 	}
1978 	crb->cred = cr;
1979 	crb->users++;
1980 	crb->ref += td->td_ucredref;
1981 	td->td_ucredref = 0;
1982 	td->td_realucred = NULL;
1983 }
1984 
1985 void
1986 credbatch_final(struct credbatch *crb)
1987 {
1988 
1989 	MPASS(crb->cred != NULL);
1990 	MPASS(crb->users > 0);
1991 	crunusebatch(crb->cred, crb->users, crb->ref);
1992 }
1993 
1994 /*
1995  * Allocate a zeroed cred structure.
1996  */
1997 struct ucred *
1998 crget(void)
1999 {
2000 	struct ucred *cr;
2001 
2002 	cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
2003 	mtx_init(&cr->cr_mtx, "cred", NULL, MTX_DEF);
2004 	cr->cr_ref = 1;
2005 #ifdef AUDIT
2006 	audit_cred_init(cr);
2007 #endif
2008 #ifdef MAC
2009 	mac_cred_init(cr);
2010 #endif
2011 	cr->cr_groups = cr->cr_smallgroups;
2012 	cr->cr_agroups =
2013 	    sizeof(cr->cr_smallgroups) / sizeof(cr->cr_smallgroups[0]);
2014 	return (cr);
2015 }
2016 
2017 /*
2018  * Claim another reference to a ucred structure.
2019  */
2020 struct ucred *
2021 crhold(struct ucred *cr)
2022 {
2023 	struct thread *td;
2024 
2025 	td = curthread;
2026 	if (__predict_true(td->td_realucred == cr)) {
2027 		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2028 		    __func__, cr->cr_users, cr));
2029 		td->td_ucredref++;
2030 		return (cr);
2031 	}
2032 	mtx_lock(&cr->cr_mtx);
2033 	cr->cr_ref++;
2034 	mtx_unlock(&cr->cr_mtx);
2035 	return (cr);
2036 }
2037 
2038 /*
2039  * Free a cred structure.  Throws away space when ref count gets to 0.
2040  */
2041 void
2042 crfree(struct ucred *cr)
2043 {
2044 	struct thread *td;
2045 
2046 	td = curthread;
2047 	if (__predict_true(td->td_realucred == cr)) {
2048 		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2049 		    __func__, cr->cr_users, cr));
2050 		td->td_ucredref--;
2051 		return;
2052 	}
2053 	mtx_lock(&cr->cr_mtx);
2054 	KASSERT(cr->cr_users >= 0, ("%s: users %d not >= 0 on cred %p",
2055 	    __func__, cr->cr_users, cr));
2056 	cr->cr_ref--;
2057 	if (cr->cr_users > 0) {
2058 		mtx_unlock(&cr->cr_mtx);
2059 		return;
2060 	}
2061 	KASSERT(cr->cr_ref >= 0, ("%s: ref %ld not >= 0 on cred %p",
2062 	    __func__, cr->cr_ref, cr));
2063 	if (cr->cr_ref > 0) {
2064 		mtx_unlock(&cr->cr_mtx);
2065 		return;
2066 	}
2067 	crfree_final(cr);
2068 }
2069 
2070 static void
2071 crfree_final(struct ucred *cr)
2072 {
2073 
2074 	KASSERT(cr->cr_users == 0, ("%s: users %d not == 0 on cred %p",
2075 	    __func__, cr->cr_users, cr));
2076 	KASSERT(cr->cr_ref == 0, ("%s: ref %ld not == 0 on cred %p",
2077 	    __func__, cr->cr_ref, cr));
2078 
2079 	/*
2080 	 * Some callers of crget(), such as nfs_statfs(), allocate a temporary
2081 	 * credential, but don't allocate a uidinfo structure.
2082 	 */
2083 	if (cr->cr_uidinfo != NULL)
2084 		uifree(cr->cr_uidinfo);
2085 	if (cr->cr_ruidinfo != NULL)
2086 		uifree(cr->cr_ruidinfo);
2087 	if (cr->cr_prison != NULL)
2088 		prison_free(cr->cr_prison);
2089 	if (cr->cr_loginclass != NULL)
2090 		loginclass_free(cr->cr_loginclass);
2091 #ifdef AUDIT
2092 	audit_cred_destroy(cr);
2093 #endif
2094 #ifdef MAC
2095 	mac_cred_destroy(cr);
2096 #endif
2097 	mtx_destroy(&cr->cr_mtx);
2098 	if (cr->cr_groups != cr->cr_smallgroups)
2099 		free(cr->cr_groups, M_CRED);
2100 	free(cr, M_CRED);
2101 }
2102 
2103 /*
2104  * Copy a ucred's contents from a template.  Does not block.
2105  */
2106 void
2107 crcopy(struct ucred *dest, struct ucred *src)
2108 {
2109 
2110 	KASSERT(dest->cr_ref == 1, ("crcopy of shared ucred"));
2111 	bcopy(&src->cr_startcopy, &dest->cr_startcopy,
2112 	    (unsigned)((caddr_t)&src->cr_endcopy -
2113 		(caddr_t)&src->cr_startcopy));
2114 	dest->cr_flags = src->cr_flags;
2115 	crsetgroups(dest, src->cr_ngroups, src->cr_groups);
2116 	uihold(dest->cr_uidinfo);
2117 	uihold(dest->cr_ruidinfo);
2118 	prison_hold(dest->cr_prison);
2119 	loginclass_hold(dest->cr_loginclass);
2120 #ifdef AUDIT
2121 	audit_cred_copy(src, dest);
2122 #endif
2123 #ifdef MAC
2124 	mac_cred_copy(src, dest);
2125 #endif
2126 }
2127 
2128 /*
2129  * Dup cred struct to a new held one.
2130  */
2131 struct ucred *
2132 crdup(struct ucred *cr)
2133 {
2134 	struct ucred *newcr;
2135 
2136 	newcr = crget();
2137 	crcopy(newcr, cr);
2138 	return (newcr);
2139 }
2140 
2141 /*
2142  * Fill in a struct xucred based on a struct ucred.
2143  */
2144 void
2145 cru2x(struct ucred *cr, struct xucred *xcr)
2146 {
2147 	int ngroups;
2148 
2149 	bzero(xcr, sizeof(*xcr));
2150 	xcr->cr_version = XUCRED_VERSION;
2151 	xcr->cr_uid = cr->cr_uid;
2152 
2153 	ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
2154 	xcr->cr_ngroups = ngroups;
2155 	bcopy(cr->cr_groups, xcr->cr_groups,
2156 	    ngroups * sizeof(*cr->cr_groups));
2157 }
2158 
2159 void
2160 cru2xt(struct thread *td, struct xucred *xcr)
2161 {
2162 
2163 	cru2x(td->td_ucred, xcr);
2164 	xcr->cr_pid = td->td_proc->p_pid;
2165 }
2166 
2167 /*
2168  * Set initial process credentials.
2169  * Callers are responsible for providing the reference for provided credentials.
2170  */
2171 void
2172 proc_set_cred_init(struct proc *p, struct ucred *newcred)
2173 {
2174 
2175 	p->p_ucred = crcowget(newcred);
2176 }
2177 
2178 /*
2179  * Change process credentials.
2180  * Callers are responsible for providing the reference for passed credentials
2181  * and for freeing old ones.
2182  *
2183  * Process has to be locked except when it does not have credentials (as it
2184  * should not be visible just yet) or when newcred is NULL (as this can be
2185  * only used when the process is about to be freed, at which point it should
2186  * not be visible anymore).
2187  */
2188 void
2189 proc_set_cred(struct proc *p, struct ucred *newcred)
2190 {
2191 	struct ucred *cr;
2192 
2193 	cr = p->p_ucred;
2194 	MPASS(cr != NULL);
2195 	PROC_LOCK_ASSERT(p, MA_OWNED);
2196 	KASSERT(newcred->cr_users == 0, ("%s: users %d not 0 on cred %p",
2197 	    __func__, newcred->cr_users, newcred));
2198 	mtx_lock(&cr->cr_mtx);
2199 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2200 	    __func__, cr->cr_users, cr));
2201 	cr->cr_users--;
2202 	mtx_unlock(&cr->cr_mtx);
2203 	p->p_ucred = newcred;
2204 	newcred->cr_users = 1;
2205 	PROC_UPDATE_COW(p);
2206 }
2207 
2208 void
2209 proc_unset_cred(struct proc *p)
2210 {
2211 	struct ucred *cr;
2212 
2213 	MPASS(p->p_state == PRS_ZOMBIE || p->p_state == PRS_NEW);
2214 	cr = p->p_ucred;
2215 	p->p_ucred = NULL;
2216 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2217 	    __func__, cr->cr_users, cr));
2218 	mtx_lock(&cr->cr_mtx);
2219 	cr->cr_users--;
2220 	if (cr->cr_users == 0)
2221 		KASSERT(cr->cr_ref > 0, ("%s: ref %ld not > 0 on cred %p",
2222 		    __func__, cr->cr_ref, cr));
2223 	mtx_unlock(&cr->cr_mtx);
2224 	crfree(cr);
2225 }
2226 
2227 struct ucred *
2228 crcopysafe(struct proc *p, struct ucred *cr)
2229 {
2230 	struct ucred *oldcred;
2231 	int groups;
2232 
2233 	PROC_LOCK_ASSERT(p, MA_OWNED);
2234 
2235 	oldcred = p->p_ucred;
2236 	while (cr->cr_agroups < oldcred->cr_agroups) {
2237 		groups = oldcred->cr_agroups;
2238 		PROC_UNLOCK(p);
2239 		crextend(cr, groups);
2240 		PROC_LOCK(p);
2241 		oldcred = p->p_ucred;
2242 	}
2243 	crcopy(cr, oldcred);
2244 
2245 	return (oldcred);
2246 }
2247 
2248 /*
2249  * Extend the passed in credential to hold n items.
2250  */
2251 void
2252 crextend(struct ucred *cr, int n)
2253 {
2254 	int cnt;
2255 
2256 	/* Truncate? */
2257 	if (n <= cr->cr_agroups)
2258 		return;
2259 
2260 	/*
2261 	 * We extend by 2 each time since we're using a power of two
2262 	 * allocator until we need enough groups to fill a page.
2263 	 * Once we're allocating multiple pages, only allocate as many
2264 	 * as we actually need.  The case of processes needing a
2265 	 * non-power of two number of pages seems more likely than
2266 	 * a real world process that adds thousands of groups one at a
2267 	 * time.
2268 	 */
2269 	if ( n < PAGE_SIZE / sizeof(gid_t) ) {
2270 		if (cr->cr_agroups == 0)
2271 			cnt = MAX(1, MINALLOCSIZE / sizeof(gid_t));
2272 		else
2273 			cnt = cr->cr_agroups * 2;
2274 
2275 		while (cnt < n)
2276 			cnt *= 2;
2277 	} else
2278 		cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t));
2279 
2280 	/* Free the old array. */
2281 	if (cr->cr_groups != cr->cr_smallgroups)
2282 		free(cr->cr_groups, M_CRED);
2283 
2284 	cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO);
2285 	cr->cr_agroups = cnt;
2286 }
2287 
2288 /*
2289  * Copy groups in to a credential, preserving any necessary invariants.
2290  * Currently this includes the sorting of all supplemental gids.
2291  * crextend() must have been called before hand to ensure sufficient
2292  * space is available.
2293  */
2294 static void
2295 crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups)
2296 {
2297 	int i;
2298 	int j;
2299 	gid_t g;
2300 
2301 	KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small"));
2302 
2303 	bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
2304 	cr->cr_ngroups = ngrp;
2305 
2306 	/*
2307 	 * Sort all groups except cr_groups[0] to allow groupmember to
2308 	 * perform a binary search.
2309 	 *
2310 	 * XXX: If large numbers of groups become common this should
2311 	 * be replaced with shell sort like linux uses or possibly
2312 	 * heap sort.
2313 	 */
2314 	for (i = 2; i < ngrp; i++) {
2315 		g = cr->cr_groups[i];
2316 		for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--)
2317 			cr->cr_groups[j + 1] = cr->cr_groups[j];
2318 		cr->cr_groups[j + 1] = g;
2319 	}
2320 }
2321 
2322 /*
2323  * Copy groups in to a credential after expanding it if required.
2324  * Truncate the list to (ngroups_max + 1) if it is too large.
2325  */
2326 void
2327 crsetgroups(struct ucred *cr, int ngrp, gid_t *groups)
2328 {
2329 
2330 	if (ngrp > ngroups_max + 1)
2331 		ngrp = ngroups_max + 1;
2332 
2333 	crextend(cr, ngrp);
2334 	crsetgroups_locked(cr, ngrp, groups);
2335 }
2336 
2337 /*
2338  * Get login name, if available.
2339  */
2340 #ifndef _SYS_SYSPROTO_H_
2341 struct getlogin_args {
2342 	char	*namebuf;
2343 	u_int	namelen;
2344 };
2345 #endif
2346 /* ARGSUSED */
2347 int
2348 sys_getlogin(struct thread *td, struct getlogin_args *uap)
2349 {
2350 	char login[MAXLOGNAME];
2351 	struct proc *p = td->td_proc;
2352 	size_t len;
2353 
2354 	if (uap->namelen > MAXLOGNAME)
2355 		uap->namelen = MAXLOGNAME;
2356 	PROC_LOCK(p);
2357 	SESS_LOCK(p->p_session);
2358 	len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1;
2359 	SESS_UNLOCK(p->p_session);
2360 	PROC_UNLOCK(p);
2361 	if (len > uap->namelen)
2362 		return (ERANGE);
2363 	return (copyout(login, uap->namebuf, len));
2364 }
2365 
2366 /*
2367  * Set login name.
2368  */
2369 #ifndef _SYS_SYSPROTO_H_
2370 struct setlogin_args {
2371 	char	*namebuf;
2372 };
2373 #endif
2374 /* ARGSUSED */
2375 int
2376 sys_setlogin(struct thread *td, struct setlogin_args *uap)
2377 {
2378 	struct proc *p = td->td_proc;
2379 	int error;
2380 	char logintmp[MAXLOGNAME];
2381 
2382 	CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp));
2383 
2384 	error = priv_check(td, PRIV_PROC_SETLOGIN);
2385 	if (error)
2386 		return (error);
2387 	error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
2388 	if (error != 0) {
2389 		if (error == ENAMETOOLONG)
2390 			error = EINVAL;
2391 		return (error);
2392 	}
2393 	AUDIT_ARG_LOGIN(logintmp);
2394 	PROC_LOCK(p);
2395 	SESS_LOCK(p->p_session);
2396 	strcpy(p->p_session->s_login, logintmp);
2397 	SESS_UNLOCK(p->p_session);
2398 	PROC_UNLOCK(p);
2399 	return (0);
2400 }
2401 
2402 void
2403 setsugid(struct proc *p)
2404 {
2405 
2406 	PROC_LOCK_ASSERT(p, MA_OWNED);
2407 	p->p_flag |= P_SUGID;
2408 }
2409 
2410 /*-
2411  * Change a process's effective uid.
2412  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
2413  * References: newcred must be an exclusive credential reference for the
2414  *             duration of the call.
2415  */
2416 void
2417 change_euid(struct ucred *newcred, struct uidinfo *euip)
2418 {
2419 
2420 	newcred->cr_uid = euip->ui_uid;
2421 	uihold(euip);
2422 	uifree(newcred->cr_uidinfo);
2423 	newcred->cr_uidinfo = euip;
2424 }
2425 
2426 /*-
2427  * Change a process's effective gid.
2428  * Side effects: newcred->cr_gid will be modified.
2429  * References: newcred must be an exclusive credential reference for the
2430  *             duration of the call.
2431  */
2432 void
2433 change_egid(struct ucred *newcred, gid_t egid)
2434 {
2435 
2436 	newcred->cr_groups[0] = egid;
2437 }
2438 
2439 /*-
2440  * Change a process's real uid.
2441  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
2442  *               will be updated, and the old and new cr_ruidinfo proc
2443  *               counts will be updated.
2444  * References: newcred must be an exclusive credential reference for the
2445  *             duration of the call.
2446  */
2447 void
2448 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
2449 {
2450 
2451 	(void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
2452 	newcred->cr_ruid = ruip->ui_uid;
2453 	uihold(ruip);
2454 	uifree(newcred->cr_ruidinfo);
2455 	newcred->cr_ruidinfo = ruip;
2456 	(void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
2457 }
2458 
2459 /*-
2460  * Change a process's real gid.
2461  * Side effects: newcred->cr_rgid will be updated.
2462  * References: newcred must be an exclusive credential reference for the
2463  *             duration of the call.
2464  */
2465 void
2466 change_rgid(struct ucred *newcred, gid_t rgid)
2467 {
2468 
2469 	newcred->cr_rgid = rgid;
2470 }
2471 
2472 /*-
2473  * Change a process's saved uid.
2474  * Side effects: newcred->cr_svuid will be updated.
2475  * References: newcred must be an exclusive credential reference for the
2476  *             duration of the call.
2477  */
2478 void
2479 change_svuid(struct ucred *newcred, uid_t svuid)
2480 {
2481 
2482 	newcred->cr_svuid = svuid;
2483 }
2484 
2485 /*-
2486  * Change a process's saved gid.
2487  * Side effects: newcred->cr_svgid will be updated.
2488  * References: newcred must be an exclusive credential reference for the
2489  *             duration of the call.
2490  */
2491 void
2492 change_svgid(struct ucred *newcred, gid_t svgid)
2493 {
2494 
2495 	newcred->cr_svgid = svgid;
2496 }
2497 
2498 bool allow_ptrace = true;
2499 SYSCTL_BOOL(_security_bsd, OID_AUTO, allow_ptrace, CTLFLAG_RWTUN,
2500     &allow_ptrace, 0,
2501     "Deny ptrace(2) use by returning ENOSYS");
2502