xref: /freebsd/sys/kern/kern_prot.c (revision e3514747256465c52c3b2aedc9795f52c0d3efe9)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
3  *	The Regents of the University of California.
4  * (c) UNIX System Laboratories, Inc.
5  * Copyright (c) 2000-2001 Robert N. M. Watson.
6  * All rights reserved.
7  *
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_prot.c	8.6 (Berkeley) 1/21/94
38  */
39 
40 /*
41  * System calls related to processes and protection
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_compat.h"
48 #include "opt_inet.h"
49 #include "opt_inet6.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/acct.h>
54 #include <sys/kdb.h>
55 #include <sys/kernel.h>
56 #include <sys/lock.h>
57 #include <sys/loginclass.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/refcount.h>
61 #include <sys/sx.h>
62 #include <sys/priv.h>
63 #include <sys/proc.h>
64 #include <sys/sysproto.h>
65 #include <sys/jail.h>
66 #include <sys/pioctl.h>
67 #include <sys/racct.h>
68 #include <sys/resourcevar.h>
69 #include <sys/socket.h>
70 #include <sys/socketvar.h>
71 #include <sys/syscallsubr.h>
72 #include <sys/sysctl.h>
73 
74 #ifdef REGRESSION
75 FEATURE(regression,
76     "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
77 #endif
78 
79 #include <security/audit/audit.h>
80 #include <security/mac/mac_framework.h>
81 
82 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
83 
84 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW, 0, "BSD security policy");
85 
86 static void crsetgroups_locked(struct ucred *cr, int ngrp,
87     gid_t *groups);
88 
89 #ifndef _SYS_SYSPROTO_H_
90 struct getpid_args {
91 	int	dummy;
92 };
93 #endif
94 /* ARGSUSED */
95 int
96 sys_getpid(struct thread *td, struct getpid_args *uap)
97 {
98 	struct proc *p = td->td_proc;
99 
100 	td->td_retval[0] = p->p_pid;
101 #if defined(COMPAT_43)
102 	td->td_retval[1] = kern_getppid(td);
103 #endif
104 	return (0);
105 }
106 
107 #ifndef _SYS_SYSPROTO_H_
108 struct getppid_args {
109         int     dummy;
110 };
111 #endif
112 /* ARGSUSED */
113 int
114 sys_getppid(struct thread *td, struct getppid_args *uap)
115 {
116 
117 	td->td_retval[0] = kern_getppid(td);
118 	return (0);
119 }
120 
121 int
122 kern_getppid(struct thread *td)
123 {
124 	struct proc *p = td->td_proc;
125 	struct proc *pp;
126 	int ppid;
127 
128 	PROC_LOCK(p);
129 	if (!(p->p_flag & P_TRACED)) {
130 		ppid = p->p_pptr->p_pid;
131 		PROC_UNLOCK(p);
132 	} else {
133 		PROC_UNLOCK(p);
134 		sx_slock(&proctree_lock);
135 		pp = proc_realparent(p);
136 		ppid = pp->p_pid;
137 		sx_sunlock(&proctree_lock);
138 	}
139 
140 	return (ppid);
141 }
142 
143 /*
144  * Get process group ID; note that POSIX getpgrp takes no parameter.
145  */
146 #ifndef _SYS_SYSPROTO_H_
147 struct getpgrp_args {
148         int     dummy;
149 };
150 #endif
151 int
152 sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
153 {
154 	struct proc *p = td->td_proc;
155 
156 	PROC_LOCK(p);
157 	td->td_retval[0] = p->p_pgrp->pg_id;
158 	PROC_UNLOCK(p);
159 	return (0);
160 }
161 
162 /* Get an arbitrary pid's process group id */
163 #ifndef _SYS_SYSPROTO_H_
164 struct getpgid_args {
165 	pid_t	pid;
166 };
167 #endif
168 int
169 sys_getpgid(struct thread *td, struct getpgid_args *uap)
170 {
171 	struct proc *p;
172 	int error;
173 
174 	if (uap->pid == 0) {
175 		p = td->td_proc;
176 		PROC_LOCK(p);
177 	} else {
178 		p = pfind(uap->pid);
179 		if (p == NULL)
180 			return (ESRCH);
181 		error = p_cansee(td, p);
182 		if (error) {
183 			PROC_UNLOCK(p);
184 			return (error);
185 		}
186 	}
187 	td->td_retval[0] = p->p_pgrp->pg_id;
188 	PROC_UNLOCK(p);
189 	return (0);
190 }
191 
192 /*
193  * Get an arbitrary pid's session id.
194  */
195 #ifndef _SYS_SYSPROTO_H_
196 struct getsid_args {
197 	pid_t	pid;
198 };
199 #endif
200 int
201 sys_getsid(struct thread *td, struct getsid_args *uap)
202 {
203 	struct proc *p;
204 	int error;
205 
206 	if (uap->pid == 0) {
207 		p = td->td_proc;
208 		PROC_LOCK(p);
209 	} else {
210 		p = pfind(uap->pid);
211 		if (p == NULL)
212 			return (ESRCH);
213 		error = p_cansee(td, p);
214 		if (error) {
215 			PROC_UNLOCK(p);
216 			return (error);
217 		}
218 	}
219 	td->td_retval[0] = p->p_session->s_sid;
220 	PROC_UNLOCK(p);
221 	return (0);
222 }
223 
224 #ifndef _SYS_SYSPROTO_H_
225 struct getuid_args {
226         int     dummy;
227 };
228 #endif
229 /* ARGSUSED */
230 int
231 sys_getuid(struct thread *td, struct getuid_args *uap)
232 {
233 
234 	td->td_retval[0] = td->td_ucred->cr_ruid;
235 #if defined(COMPAT_43)
236 	td->td_retval[1] = td->td_ucred->cr_uid;
237 #endif
238 	return (0);
239 }
240 
241 #ifndef _SYS_SYSPROTO_H_
242 struct geteuid_args {
243         int     dummy;
244 };
245 #endif
246 /* ARGSUSED */
247 int
248 sys_geteuid(struct thread *td, struct geteuid_args *uap)
249 {
250 
251 	td->td_retval[0] = td->td_ucred->cr_uid;
252 	return (0);
253 }
254 
255 #ifndef _SYS_SYSPROTO_H_
256 struct getgid_args {
257         int     dummy;
258 };
259 #endif
260 /* ARGSUSED */
261 int
262 sys_getgid(struct thread *td, struct getgid_args *uap)
263 {
264 
265 	td->td_retval[0] = td->td_ucred->cr_rgid;
266 #if defined(COMPAT_43)
267 	td->td_retval[1] = td->td_ucred->cr_groups[0];
268 #endif
269 	return (0);
270 }
271 
272 /*
273  * Get effective group ID.  The "egid" is groups[0], and could be obtained
274  * via getgroups.  This syscall exists because it is somewhat painful to do
275  * correctly in a library function.
276  */
277 #ifndef _SYS_SYSPROTO_H_
278 struct getegid_args {
279         int     dummy;
280 };
281 #endif
282 /* ARGSUSED */
283 int
284 sys_getegid(struct thread *td, struct getegid_args *uap)
285 {
286 
287 	td->td_retval[0] = td->td_ucred->cr_groups[0];
288 	return (0);
289 }
290 
291 #ifndef _SYS_SYSPROTO_H_
292 struct getgroups_args {
293 	u_int	gidsetsize;
294 	gid_t	*gidset;
295 };
296 #endif
297 int
298 sys_getgroups(struct thread *td, register struct getgroups_args *uap)
299 {
300 	struct ucred *cred;
301 	u_int ngrp;
302 	int error;
303 
304 	cred = td->td_ucred;
305 	ngrp = cred->cr_ngroups;
306 
307 	if (uap->gidsetsize == 0) {
308 		error = 0;
309 		goto out;
310 	}
311 	if (uap->gidsetsize < ngrp)
312 		return (EINVAL);
313 
314 	error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
315 out:
316 	td->td_retval[0] = ngrp;
317 	return (error);
318 }
319 
320 #ifndef _SYS_SYSPROTO_H_
321 struct setsid_args {
322         int     dummy;
323 };
324 #endif
325 /* ARGSUSED */
326 int
327 sys_setsid(register struct thread *td, struct setsid_args *uap)
328 {
329 	struct pgrp *pgrp;
330 	int error;
331 	struct proc *p = td->td_proc;
332 	struct pgrp *newpgrp;
333 	struct session *newsess;
334 
335 	error = 0;
336 	pgrp = NULL;
337 
338 	newpgrp = malloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
339 	newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
340 
341 	sx_xlock(&proctree_lock);
342 
343 	if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
344 		if (pgrp != NULL)
345 			PGRP_UNLOCK(pgrp);
346 		error = EPERM;
347 	} else {
348 		(void)enterpgrp(p, p->p_pid, newpgrp, newsess);
349 		td->td_retval[0] = p->p_pid;
350 		newpgrp = NULL;
351 		newsess = NULL;
352 	}
353 
354 	sx_xunlock(&proctree_lock);
355 
356 	if (newpgrp != NULL)
357 		free(newpgrp, M_PGRP);
358 	if (newsess != NULL)
359 		free(newsess, M_SESSION);
360 
361 	return (error);
362 }
363 
364 /*
365  * set process group (setpgid/old setpgrp)
366  *
367  * caller does setpgid(targpid, targpgid)
368  *
369  * pid must be caller or child of caller (ESRCH)
370  * if a child
371  *	pid must be in same session (EPERM)
372  *	pid can't have done an exec (EACCES)
373  * if pgid != pid
374  * 	there must exist some pid in same session having pgid (EPERM)
375  * pid must not be session leader (EPERM)
376  */
377 #ifndef _SYS_SYSPROTO_H_
378 struct setpgid_args {
379 	int	pid;		/* target process id */
380 	int	pgid;		/* target pgrp id */
381 };
382 #endif
383 /* ARGSUSED */
384 int
385 sys_setpgid(struct thread *td, register struct setpgid_args *uap)
386 {
387 	struct proc *curp = td->td_proc;
388 	register struct proc *targp;	/* target process */
389 	register struct pgrp *pgrp;	/* target pgrp */
390 	int error;
391 	struct pgrp *newpgrp;
392 
393 	if (uap->pgid < 0)
394 		return (EINVAL);
395 
396 	error = 0;
397 
398 	newpgrp = malloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
399 
400 	sx_xlock(&proctree_lock);
401 	if (uap->pid != 0 && uap->pid != curp->p_pid) {
402 		if ((targp = pfind(uap->pid)) == NULL) {
403 			error = ESRCH;
404 			goto done;
405 		}
406 		if (!inferior(targp)) {
407 			PROC_UNLOCK(targp);
408 			error = ESRCH;
409 			goto done;
410 		}
411 		if ((error = p_cansee(td, targp))) {
412 			PROC_UNLOCK(targp);
413 			goto done;
414 		}
415 		if (targp->p_pgrp == NULL ||
416 		    targp->p_session != curp->p_session) {
417 			PROC_UNLOCK(targp);
418 			error = EPERM;
419 			goto done;
420 		}
421 		if (targp->p_flag & P_EXEC) {
422 			PROC_UNLOCK(targp);
423 			error = EACCES;
424 			goto done;
425 		}
426 		PROC_UNLOCK(targp);
427 	} else
428 		targp = curp;
429 	if (SESS_LEADER(targp)) {
430 		error = EPERM;
431 		goto done;
432 	}
433 	if (uap->pgid == 0)
434 		uap->pgid = targp->p_pid;
435 	if ((pgrp = pgfind(uap->pgid)) == NULL) {
436 		if (uap->pgid == targp->p_pid) {
437 			error = enterpgrp(targp, uap->pgid, newpgrp,
438 			    NULL);
439 			if (error == 0)
440 				newpgrp = NULL;
441 		} else
442 			error = EPERM;
443 	} else {
444 		if (pgrp == targp->p_pgrp) {
445 			PGRP_UNLOCK(pgrp);
446 			goto done;
447 		}
448 		if (pgrp->pg_id != targp->p_pid &&
449 		    pgrp->pg_session != curp->p_session) {
450 			PGRP_UNLOCK(pgrp);
451 			error = EPERM;
452 			goto done;
453 		}
454 		PGRP_UNLOCK(pgrp);
455 		error = enterthispgrp(targp, pgrp);
456 	}
457 done:
458 	sx_xunlock(&proctree_lock);
459 	KASSERT((error == 0) || (newpgrp != NULL),
460 	    ("setpgid failed and newpgrp is NULL"));
461 	if (newpgrp != NULL)
462 		free(newpgrp, M_PGRP);
463 	return (error);
464 }
465 
466 /*
467  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
468  * compatible.  It says that setting the uid/gid to euid/egid is a special
469  * case of "appropriate privilege".  Once the rules are expanded out, this
470  * basically means that setuid(nnn) sets all three id's, in all permitted
471  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
472  * does not set the saved id - this is dangerous for traditional BSD
473  * programs.  For this reason, we *really* do not want to set
474  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
475  */
476 #define POSIX_APPENDIX_B_4_2_2
477 
478 #ifndef _SYS_SYSPROTO_H_
479 struct setuid_args {
480 	uid_t	uid;
481 };
482 #endif
483 /* ARGSUSED */
484 int
485 sys_setuid(struct thread *td, struct setuid_args *uap)
486 {
487 	struct proc *p = td->td_proc;
488 	struct ucred *newcred, *oldcred;
489 	uid_t uid;
490 	struct uidinfo *uip;
491 	int error;
492 
493 	uid = uap->uid;
494 	AUDIT_ARG_UID(uid);
495 	newcred = crget();
496 	uip = uifind(uid);
497 	PROC_LOCK(p);
498 	/*
499 	 * Copy credentials so other references do not see our changes.
500 	 */
501 	oldcred = crcopysafe(p, newcred);
502 
503 #ifdef MAC
504 	error = mac_cred_check_setuid(oldcred, uid);
505 	if (error)
506 		goto fail;
507 #endif
508 
509 	/*
510 	 * See if we have "permission" by POSIX 1003.1 rules.
511 	 *
512 	 * Note that setuid(geteuid()) is a special case of
513 	 * "appropriate privileges" in appendix B.4.2.2.  We need
514 	 * to use this clause to be compatible with traditional BSD
515 	 * semantics.  Basically, it means that "setuid(xx)" sets all
516 	 * three id's (assuming you have privs).
517 	 *
518 	 * Notes on the logic.  We do things in three steps.
519 	 * 1: We determine if the euid is going to change, and do EPERM
520 	 *    right away.  We unconditionally change the euid later if this
521 	 *    test is satisfied, simplifying that part of the logic.
522 	 * 2: We determine if the real and/or saved uids are going to
523 	 *    change.  Determined by compile options.
524 	 * 3: Change euid last. (after tests in #2 for "appropriate privs")
525 	 */
526 	if (uid != oldcred->cr_ruid &&		/* allow setuid(getuid()) */
527 #ifdef _POSIX_SAVED_IDS
528 	    uid != oldcred->cr_svuid &&		/* allow setuid(saved gid) */
529 #endif
530 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
531 	    uid != oldcred->cr_uid &&		/* allow setuid(geteuid()) */
532 #endif
533 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETUID, 0)) != 0)
534 		goto fail;
535 
536 #ifdef _POSIX_SAVED_IDS
537 	/*
538 	 * Do we have "appropriate privileges" (are we root or uid == euid)
539 	 * If so, we are changing the real uid and/or saved uid.
540 	 */
541 	if (
542 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use the clause from B.4.2.2 */
543 	    uid == oldcred->cr_uid ||
544 #endif
545 	    /* We are using privs. */
546 	    priv_check_cred(oldcred, PRIV_CRED_SETUID, 0) == 0)
547 #endif
548 	{
549 		/*
550 		 * Set the real uid and transfer proc count to new user.
551 		 */
552 		if (uid != oldcred->cr_ruid) {
553 			change_ruid(newcred, uip);
554 			setsugid(p);
555 		}
556 		/*
557 		 * Set saved uid
558 		 *
559 		 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
560 		 * the security of seteuid() depends on it.  B.4.2.2 says it
561 		 * is important that we should do this.
562 		 */
563 		if (uid != oldcred->cr_svuid) {
564 			change_svuid(newcred, uid);
565 			setsugid(p);
566 		}
567 	}
568 
569 	/*
570 	 * In all permitted cases, we are changing the euid.
571 	 */
572 	if (uid != oldcred->cr_uid) {
573 		change_euid(newcred, uip);
574 		setsugid(p);
575 	}
576 	proc_set_cred(p, newcred);
577 	PROC_UNLOCK(p);
578 #ifdef RACCT
579 	racct_proc_ucred_changed(p, oldcred, newcred);
580 #endif
581 	uifree(uip);
582 	crfree(oldcred);
583 	return (0);
584 
585 fail:
586 	PROC_UNLOCK(p);
587 	uifree(uip);
588 	crfree(newcred);
589 	return (error);
590 }
591 
592 #ifndef _SYS_SYSPROTO_H_
593 struct seteuid_args {
594 	uid_t	euid;
595 };
596 #endif
597 /* ARGSUSED */
598 int
599 sys_seteuid(struct thread *td, struct seteuid_args *uap)
600 {
601 	struct proc *p = td->td_proc;
602 	struct ucred *newcred, *oldcred;
603 	uid_t euid;
604 	struct uidinfo *euip;
605 	int error;
606 
607 	euid = uap->euid;
608 	AUDIT_ARG_EUID(euid);
609 	newcred = crget();
610 	euip = uifind(euid);
611 	PROC_LOCK(p);
612 	/*
613 	 * Copy credentials so other references do not see our changes.
614 	 */
615 	oldcred = crcopysafe(p, newcred);
616 
617 #ifdef MAC
618 	error = mac_cred_check_seteuid(oldcred, euid);
619 	if (error)
620 		goto fail;
621 #endif
622 
623 	if (euid != oldcred->cr_ruid &&		/* allow seteuid(getuid()) */
624 	    euid != oldcred->cr_svuid &&	/* allow seteuid(saved uid) */
625 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID, 0)) != 0)
626 		goto fail;
627 
628 	/*
629 	 * Everything's okay, do it.
630 	 */
631 	if (oldcred->cr_uid != euid) {
632 		change_euid(newcred, euip);
633 		setsugid(p);
634 	}
635 	proc_set_cred(p, newcred);
636 	PROC_UNLOCK(p);
637 	uifree(euip);
638 	crfree(oldcred);
639 	return (0);
640 
641 fail:
642 	PROC_UNLOCK(p);
643 	uifree(euip);
644 	crfree(newcred);
645 	return (error);
646 }
647 
648 #ifndef _SYS_SYSPROTO_H_
649 struct setgid_args {
650 	gid_t	gid;
651 };
652 #endif
653 /* ARGSUSED */
654 int
655 sys_setgid(struct thread *td, struct setgid_args *uap)
656 {
657 	struct proc *p = td->td_proc;
658 	struct ucred *newcred, *oldcred;
659 	gid_t gid;
660 	int error;
661 
662 	gid = uap->gid;
663 	AUDIT_ARG_GID(gid);
664 	newcred = crget();
665 	PROC_LOCK(p);
666 	oldcred = crcopysafe(p, newcred);
667 
668 #ifdef MAC
669 	error = mac_cred_check_setgid(oldcred, gid);
670 	if (error)
671 		goto fail;
672 #endif
673 
674 	/*
675 	 * See if we have "permission" by POSIX 1003.1 rules.
676 	 *
677 	 * Note that setgid(getegid()) is a special case of
678 	 * "appropriate privileges" in appendix B.4.2.2.  We need
679 	 * to use this clause to be compatible with traditional BSD
680 	 * semantics.  Basically, it means that "setgid(xx)" sets all
681 	 * three id's (assuming you have privs).
682 	 *
683 	 * For notes on the logic here, see setuid() above.
684 	 */
685 	if (gid != oldcred->cr_rgid &&		/* allow setgid(getgid()) */
686 #ifdef _POSIX_SAVED_IDS
687 	    gid != oldcred->cr_svgid &&		/* allow setgid(saved gid) */
688 #endif
689 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
690 	    gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
691 #endif
692 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETGID, 0)) != 0)
693 		goto fail;
694 
695 #ifdef _POSIX_SAVED_IDS
696 	/*
697 	 * Do we have "appropriate privileges" (are we root or gid == egid)
698 	 * If so, we are changing the real uid and saved gid.
699 	 */
700 	if (
701 #ifdef POSIX_APPENDIX_B_4_2_2	/* use the clause from B.4.2.2 */
702 	    gid == oldcred->cr_groups[0] ||
703 #endif
704 	    /* We are using privs. */
705 	    priv_check_cred(oldcred, PRIV_CRED_SETGID, 0) == 0)
706 #endif
707 	{
708 		/*
709 		 * Set real gid
710 		 */
711 		if (oldcred->cr_rgid != gid) {
712 			change_rgid(newcred, gid);
713 			setsugid(p);
714 		}
715 		/*
716 		 * Set saved gid
717 		 *
718 		 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
719 		 * the security of setegid() depends on it.  B.4.2.2 says it
720 		 * is important that we should do this.
721 		 */
722 		if (oldcred->cr_svgid != gid) {
723 			change_svgid(newcred, gid);
724 			setsugid(p);
725 		}
726 	}
727 	/*
728 	 * In all cases permitted cases, we are changing the egid.
729 	 * Copy credentials so other references do not see our changes.
730 	 */
731 	if (oldcred->cr_groups[0] != gid) {
732 		change_egid(newcred, gid);
733 		setsugid(p);
734 	}
735 	proc_set_cred(p, newcred);
736 	PROC_UNLOCK(p);
737 	crfree(oldcred);
738 	return (0);
739 
740 fail:
741 	PROC_UNLOCK(p);
742 	crfree(newcred);
743 	return (error);
744 }
745 
746 #ifndef _SYS_SYSPROTO_H_
747 struct setegid_args {
748 	gid_t	egid;
749 };
750 #endif
751 /* ARGSUSED */
752 int
753 sys_setegid(struct thread *td, struct setegid_args *uap)
754 {
755 	struct proc *p = td->td_proc;
756 	struct ucred *newcred, *oldcred;
757 	gid_t egid;
758 	int error;
759 
760 	egid = uap->egid;
761 	AUDIT_ARG_EGID(egid);
762 	newcred = crget();
763 	PROC_LOCK(p);
764 	oldcred = crcopysafe(p, newcred);
765 
766 #ifdef MAC
767 	error = mac_cred_check_setegid(oldcred, egid);
768 	if (error)
769 		goto fail;
770 #endif
771 
772 	if (egid != oldcred->cr_rgid &&		/* allow setegid(getgid()) */
773 	    egid != oldcred->cr_svgid &&	/* allow setegid(saved gid) */
774 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID, 0)) != 0)
775 		goto fail;
776 
777 	if (oldcred->cr_groups[0] != egid) {
778 		change_egid(newcred, egid);
779 		setsugid(p);
780 	}
781 	proc_set_cred(p, newcred);
782 	PROC_UNLOCK(p);
783 	crfree(oldcred);
784 	return (0);
785 
786 fail:
787 	PROC_UNLOCK(p);
788 	crfree(newcred);
789 	return (error);
790 }
791 
792 #ifndef _SYS_SYSPROTO_H_
793 struct setgroups_args {
794 	u_int	gidsetsize;
795 	gid_t	*gidset;
796 };
797 #endif
798 /* ARGSUSED */
799 int
800 sys_setgroups(struct thread *td, struct setgroups_args *uap)
801 {
802 	gid_t smallgroups[XU_NGROUPS];
803 	gid_t *groups;
804 	u_int gidsetsize;
805 	int error;
806 
807 	gidsetsize = uap->gidsetsize;
808 	if (gidsetsize > ngroups_max + 1)
809 		return (EINVAL);
810 
811 	if (gidsetsize > XU_NGROUPS)
812 		groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
813 	else
814 		groups = smallgroups;
815 
816 	error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
817 	if (error == 0)
818 		error = kern_setgroups(td, gidsetsize, groups);
819 
820 	if (gidsetsize > XU_NGROUPS)
821 		free(groups, M_TEMP);
822 	return (error);
823 }
824 
825 int
826 kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups)
827 {
828 	struct proc *p = td->td_proc;
829 	struct ucred *newcred, *oldcred;
830 	int error;
831 
832 	MPASS(ngrp <= ngroups_max + 1);
833 	AUDIT_ARG_GROUPSET(groups, ngrp);
834 	newcred = crget();
835 	crextend(newcred, ngrp);
836 	PROC_LOCK(p);
837 	oldcred = crcopysafe(p, newcred);
838 
839 #ifdef MAC
840 	error = mac_cred_check_setgroups(oldcred, ngrp, groups);
841 	if (error)
842 		goto fail;
843 #endif
844 
845 	error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS, 0);
846 	if (error)
847 		goto fail;
848 
849 	if (ngrp == 0) {
850 		/*
851 		 * setgroups(0, NULL) is a legitimate way of clearing the
852 		 * groups vector on non-BSD systems (which generally do not
853 		 * have the egid in the groups[0]).  We risk security holes
854 		 * when running non-BSD software if we do not do the same.
855 		 */
856 		newcred->cr_ngroups = 1;
857 	} else {
858 		crsetgroups_locked(newcred, ngrp, groups);
859 	}
860 	setsugid(p);
861 	proc_set_cred(p, newcred);
862 	PROC_UNLOCK(p);
863 	crfree(oldcred);
864 	return (0);
865 
866 fail:
867 	PROC_UNLOCK(p);
868 	crfree(newcred);
869 	return (error);
870 }
871 
872 #ifndef _SYS_SYSPROTO_H_
873 struct setreuid_args {
874 	uid_t	ruid;
875 	uid_t	euid;
876 };
877 #endif
878 /* ARGSUSED */
879 int
880 sys_setreuid(register struct thread *td, struct setreuid_args *uap)
881 {
882 	struct proc *p = td->td_proc;
883 	struct ucred *newcred, *oldcred;
884 	uid_t euid, ruid;
885 	struct uidinfo *euip, *ruip;
886 	int error;
887 
888 	euid = uap->euid;
889 	ruid = uap->ruid;
890 	AUDIT_ARG_EUID(euid);
891 	AUDIT_ARG_RUID(ruid);
892 	newcred = crget();
893 	euip = uifind(euid);
894 	ruip = uifind(ruid);
895 	PROC_LOCK(p);
896 	oldcred = crcopysafe(p, newcred);
897 
898 #ifdef MAC
899 	error = mac_cred_check_setreuid(oldcred, ruid, euid);
900 	if (error)
901 		goto fail;
902 #endif
903 
904 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
905 	      ruid != oldcred->cr_svuid) ||
906 	     (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
907 	      euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
908 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID, 0)) != 0)
909 		goto fail;
910 
911 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
912 		change_euid(newcred, euip);
913 		setsugid(p);
914 	}
915 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
916 		change_ruid(newcred, ruip);
917 		setsugid(p);
918 	}
919 	if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
920 	    newcred->cr_svuid != newcred->cr_uid) {
921 		change_svuid(newcred, newcred->cr_uid);
922 		setsugid(p);
923 	}
924 	proc_set_cred(p, newcred);
925 	PROC_UNLOCK(p);
926 #ifdef RACCT
927 	racct_proc_ucred_changed(p, oldcred, newcred);
928 #endif
929 	uifree(ruip);
930 	uifree(euip);
931 	crfree(oldcred);
932 	return (0);
933 
934 fail:
935 	PROC_UNLOCK(p);
936 	uifree(ruip);
937 	uifree(euip);
938 	crfree(newcred);
939 	return (error);
940 }
941 
942 #ifndef _SYS_SYSPROTO_H_
943 struct setregid_args {
944 	gid_t	rgid;
945 	gid_t	egid;
946 };
947 #endif
948 /* ARGSUSED */
949 int
950 sys_setregid(register struct thread *td, struct setregid_args *uap)
951 {
952 	struct proc *p = td->td_proc;
953 	struct ucred *newcred, *oldcred;
954 	gid_t egid, rgid;
955 	int error;
956 
957 	egid = uap->egid;
958 	rgid = uap->rgid;
959 	AUDIT_ARG_EGID(egid);
960 	AUDIT_ARG_RGID(rgid);
961 	newcred = crget();
962 	PROC_LOCK(p);
963 	oldcred = crcopysafe(p, newcred);
964 
965 #ifdef MAC
966 	error = mac_cred_check_setregid(oldcred, rgid, egid);
967 	if (error)
968 		goto fail;
969 #endif
970 
971 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
972 	    rgid != oldcred->cr_svgid) ||
973 	     (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
974 	     egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
975 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID, 0)) != 0)
976 		goto fail;
977 
978 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
979 		change_egid(newcred, egid);
980 		setsugid(p);
981 	}
982 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
983 		change_rgid(newcred, rgid);
984 		setsugid(p);
985 	}
986 	if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
987 	    newcred->cr_svgid != newcred->cr_groups[0]) {
988 		change_svgid(newcred, newcred->cr_groups[0]);
989 		setsugid(p);
990 	}
991 	proc_set_cred(p, newcred);
992 	PROC_UNLOCK(p);
993 	crfree(oldcred);
994 	return (0);
995 
996 fail:
997 	PROC_UNLOCK(p);
998 	crfree(newcred);
999 	return (error);
1000 }
1001 
1002 /*
1003  * setresuid(ruid, euid, suid) is like setreuid except control over the saved
1004  * uid is explicit.
1005  */
1006 #ifndef _SYS_SYSPROTO_H_
1007 struct setresuid_args {
1008 	uid_t	ruid;
1009 	uid_t	euid;
1010 	uid_t	suid;
1011 };
1012 #endif
1013 /* ARGSUSED */
1014 int
1015 sys_setresuid(register struct thread *td, struct setresuid_args *uap)
1016 {
1017 	struct proc *p = td->td_proc;
1018 	struct ucred *newcred, *oldcred;
1019 	uid_t euid, ruid, suid;
1020 	struct uidinfo *euip, *ruip;
1021 	int error;
1022 
1023 	euid = uap->euid;
1024 	ruid = uap->ruid;
1025 	suid = uap->suid;
1026 	AUDIT_ARG_EUID(euid);
1027 	AUDIT_ARG_RUID(ruid);
1028 	AUDIT_ARG_SUID(suid);
1029 	newcred = crget();
1030 	euip = uifind(euid);
1031 	ruip = uifind(ruid);
1032 	PROC_LOCK(p);
1033 	oldcred = crcopysafe(p, newcred);
1034 
1035 #ifdef MAC
1036 	error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
1037 	if (error)
1038 		goto fail;
1039 #endif
1040 
1041 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1042 	     ruid != oldcred->cr_svuid &&
1043 	      ruid != oldcred->cr_uid) ||
1044 	     (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
1045 	    euid != oldcred->cr_svuid &&
1046 	      euid != oldcred->cr_uid) ||
1047 	     (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
1048 	    suid != oldcred->cr_svuid &&
1049 	      suid != oldcred->cr_uid)) &&
1050 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID, 0)) != 0)
1051 		goto fail;
1052 
1053 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1054 		change_euid(newcred, euip);
1055 		setsugid(p);
1056 	}
1057 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1058 		change_ruid(newcred, ruip);
1059 		setsugid(p);
1060 	}
1061 	if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
1062 		change_svuid(newcred, suid);
1063 		setsugid(p);
1064 	}
1065 	proc_set_cred(p, newcred);
1066 	PROC_UNLOCK(p);
1067 #ifdef RACCT
1068 	racct_proc_ucred_changed(p, oldcred, newcred);
1069 #endif
1070 	uifree(ruip);
1071 	uifree(euip);
1072 	crfree(oldcred);
1073 	return (0);
1074 
1075 fail:
1076 	PROC_UNLOCK(p);
1077 	uifree(ruip);
1078 	uifree(euip);
1079 	crfree(newcred);
1080 	return (error);
1081 
1082 }
1083 
1084 /*
1085  * setresgid(rgid, egid, sgid) is like setregid except control over the saved
1086  * gid is explicit.
1087  */
1088 #ifndef _SYS_SYSPROTO_H_
1089 struct setresgid_args {
1090 	gid_t	rgid;
1091 	gid_t	egid;
1092 	gid_t	sgid;
1093 };
1094 #endif
1095 /* ARGSUSED */
1096 int
1097 sys_setresgid(register struct thread *td, struct setresgid_args *uap)
1098 {
1099 	struct proc *p = td->td_proc;
1100 	struct ucred *newcred, *oldcred;
1101 	gid_t egid, rgid, sgid;
1102 	int error;
1103 
1104 	egid = uap->egid;
1105 	rgid = uap->rgid;
1106 	sgid = uap->sgid;
1107 	AUDIT_ARG_EGID(egid);
1108 	AUDIT_ARG_RGID(rgid);
1109 	AUDIT_ARG_SGID(sgid);
1110 	newcred = crget();
1111 	PROC_LOCK(p);
1112 	oldcred = crcopysafe(p, newcred);
1113 
1114 #ifdef MAC
1115 	error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
1116 	if (error)
1117 		goto fail;
1118 #endif
1119 
1120 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1121 	      rgid != oldcred->cr_svgid &&
1122 	      rgid != oldcred->cr_groups[0]) ||
1123 	     (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
1124 	      egid != oldcred->cr_svgid &&
1125 	      egid != oldcred->cr_groups[0]) ||
1126 	     (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
1127 	      sgid != oldcred->cr_svgid &&
1128 	      sgid != oldcred->cr_groups[0])) &&
1129 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID, 0)) != 0)
1130 		goto fail;
1131 
1132 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
1133 		change_egid(newcred, egid);
1134 		setsugid(p);
1135 	}
1136 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1137 		change_rgid(newcred, rgid);
1138 		setsugid(p);
1139 	}
1140 	if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
1141 		change_svgid(newcred, sgid);
1142 		setsugid(p);
1143 	}
1144 	proc_set_cred(p, newcred);
1145 	PROC_UNLOCK(p);
1146 	crfree(oldcred);
1147 	return (0);
1148 
1149 fail:
1150 	PROC_UNLOCK(p);
1151 	crfree(newcred);
1152 	return (error);
1153 }
1154 
1155 #ifndef _SYS_SYSPROTO_H_
1156 struct getresuid_args {
1157 	uid_t	*ruid;
1158 	uid_t	*euid;
1159 	uid_t	*suid;
1160 };
1161 #endif
1162 /* ARGSUSED */
1163 int
1164 sys_getresuid(register struct thread *td, struct getresuid_args *uap)
1165 {
1166 	struct ucred *cred;
1167 	int error1 = 0, error2 = 0, error3 = 0;
1168 
1169 	cred = td->td_ucred;
1170 	if (uap->ruid)
1171 		error1 = copyout(&cred->cr_ruid,
1172 		    uap->ruid, sizeof(cred->cr_ruid));
1173 	if (uap->euid)
1174 		error2 = copyout(&cred->cr_uid,
1175 		    uap->euid, sizeof(cred->cr_uid));
1176 	if (uap->suid)
1177 		error3 = copyout(&cred->cr_svuid,
1178 		    uap->suid, sizeof(cred->cr_svuid));
1179 	return (error1 ? error1 : error2 ? error2 : error3);
1180 }
1181 
1182 #ifndef _SYS_SYSPROTO_H_
1183 struct getresgid_args {
1184 	gid_t	*rgid;
1185 	gid_t	*egid;
1186 	gid_t	*sgid;
1187 };
1188 #endif
1189 /* ARGSUSED */
1190 int
1191 sys_getresgid(register struct thread *td, struct getresgid_args *uap)
1192 {
1193 	struct ucred *cred;
1194 	int error1 = 0, error2 = 0, error3 = 0;
1195 
1196 	cred = td->td_ucred;
1197 	if (uap->rgid)
1198 		error1 = copyout(&cred->cr_rgid,
1199 		    uap->rgid, sizeof(cred->cr_rgid));
1200 	if (uap->egid)
1201 		error2 = copyout(&cred->cr_groups[0],
1202 		    uap->egid, sizeof(cred->cr_groups[0]));
1203 	if (uap->sgid)
1204 		error3 = copyout(&cred->cr_svgid,
1205 		    uap->sgid, sizeof(cred->cr_svgid));
1206 	return (error1 ? error1 : error2 ? error2 : error3);
1207 }
1208 
1209 #ifndef _SYS_SYSPROTO_H_
1210 struct issetugid_args {
1211 	int dummy;
1212 };
1213 #endif
1214 /* ARGSUSED */
1215 int
1216 sys_issetugid(register struct thread *td, struct issetugid_args *uap)
1217 {
1218 	struct proc *p = td->td_proc;
1219 
1220 	/*
1221 	 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
1222 	 * we use P_SUGID because we consider changing the owners as
1223 	 * "tainting" as well.
1224 	 * This is significant for procs that start as root and "become"
1225 	 * a user without an exec - programs cannot know *everything*
1226 	 * that libc *might* have put in their data segment.
1227 	 */
1228 	td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
1229 	return (0);
1230 }
1231 
1232 int
1233 sys___setugid(struct thread *td, struct __setugid_args *uap)
1234 {
1235 #ifdef REGRESSION
1236 	struct proc *p;
1237 
1238 	p = td->td_proc;
1239 	switch (uap->flag) {
1240 	case 0:
1241 		PROC_LOCK(p);
1242 		p->p_flag &= ~P_SUGID;
1243 		PROC_UNLOCK(p);
1244 		return (0);
1245 	case 1:
1246 		PROC_LOCK(p);
1247 		p->p_flag |= P_SUGID;
1248 		PROC_UNLOCK(p);
1249 		return (0);
1250 	default:
1251 		return (EINVAL);
1252 	}
1253 #else /* !REGRESSION */
1254 
1255 	return (ENOSYS);
1256 #endif /* REGRESSION */
1257 }
1258 
1259 /*
1260  * Check if gid is a member of the group set.
1261  */
1262 int
1263 groupmember(gid_t gid, struct ucred *cred)
1264 {
1265 	int l;
1266 	int h;
1267 	int m;
1268 
1269 	if (cred->cr_groups[0] == gid)
1270 		return(1);
1271 
1272 	/*
1273 	 * If gid was not our primary group, perform a binary search
1274 	 * of the supplemental groups.  This is possible because we
1275 	 * sort the groups in crsetgroups().
1276 	 */
1277 	l = 1;
1278 	h = cred->cr_ngroups;
1279 	while (l < h) {
1280 		m = l + ((h - l) / 2);
1281 		if (cred->cr_groups[m] < gid)
1282 			l = m + 1;
1283 		else
1284 			h = m;
1285 	}
1286 	if ((l < cred->cr_ngroups) && (cred->cr_groups[l] == gid))
1287 		return (1);
1288 
1289 	return (0);
1290 }
1291 
1292 /*
1293  * Test the active securelevel against a given level.  securelevel_gt()
1294  * implements (securelevel > level).  securelevel_ge() implements
1295  * (securelevel >= level).  Note that the logic is inverted -- these
1296  * functions return EPERM on "success" and 0 on "failure".
1297  *
1298  * Due to care taken when setting the securelevel, we know that no jail will
1299  * be less secure that its parent (or the physical system), so it is sufficient
1300  * to test the current jail only.
1301  *
1302  * XXXRW: Possibly since this has to do with privilege, it should move to
1303  * kern_priv.c.
1304  */
1305 int
1306 securelevel_gt(struct ucred *cr, int level)
1307 {
1308 
1309 	return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
1310 }
1311 
1312 int
1313 securelevel_ge(struct ucred *cr, int level)
1314 {
1315 
1316 	return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
1317 }
1318 
1319 /*
1320  * 'see_other_uids' determines whether or not visibility of processes
1321  * and sockets with credentials holding different real uids is possible
1322  * using a variety of system MIBs.
1323  * XXX: data declarations should be together near the beginning of the file.
1324  */
1325 static int	see_other_uids = 1;
1326 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
1327     &see_other_uids, 0,
1328     "Unprivileged processes may see subjects/objects with different real uid");
1329 
1330 /*-
1331  * Determine if u1 "can see" the subject specified by u2, according to the
1332  * 'see_other_uids' policy.
1333  * Returns: 0 for permitted, ESRCH otherwise
1334  * Locks: none
1335  * References: *u1 and *u2 must not change during the call
1336  *             u1 may equal u2, in which case only one reference is required
1337  */
1338 int
1339 cr_canseeotheruids(struct ucred *u1, struct ucred *u2)
1340 {
1341 
1342 	if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
1343 		if (priv_check_cred(u1, PRIV_SEEOTHERUIDS, 0) != 0)
1344 			return (ESRCH);
1345 	}
1346 	return (0);
1347 }
1348 
1349 /*
1350  * 'see_other_gids' determines whether or not visibility of processes
1351  * and sockets with credentials holding different real gids is possible
1352  * using a variety of system MIBs.
1353  * XXX: data declarations should be together near the beginning of the file.
1354  */
1355 static int	see_other_gids = 1;
1356 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
1357     &see_other_gids, 0,
1358     "Unprivileged processes may see subjects/objects with different real gid");
1359 
1360 /*
1361  * Determine if u1 can "see" the subject specified by u2, according to the
1362  * 'see_other_gids' policy.
1363  * Returns: 0 for permitted, ESRCH otherwise
1364  * Locks: none
1365  * References: *u1 and *u2 must not change during the call
1366  *             u1 may equal u2, in which case only one reference is required
1367  */
1368 int
1369 cr_canseeothergids(struct ucred *u1, struct ucred *u2)
1370 {
1371 	int i, match;
1372 
1373 	if (!see_other_gids) {
1374 		match = 0;
1375 		for (i = 0; i < u1->cr_ngroups; i++) {
1376 			if (groupmember(u1->cr_groups[i], u2))
1377 				match = 1;
1378 			if (match)
1379 				break;
1380 		}
1381 		if (!match) {
1382 			if (priv_check_cred(u1, PRIV_SEEOTHERGIDS, 0) != 0)
1383 				return (ESRCH);
1384 		}
1385 	}
1386 	return (0);
1387 }
1388 
1389 /*-
1390  * Determine if u1 "can see" the subject specified by u2.
1391  * Returns: 0 for permitted, an errno value otherwise
1392  * Locks: none
1393  * References: *u1 and *u2 must not change during the call
1394  *             u1 may equal u2, in which case only one reference is required
1395  */
1396 int
1397 cr_cansee(struct ucred *u1, struct ucred *u2)
1398 {
1399 	int error;
1400 
1401 	if ((error = prison_check(u1, u2)))
1402 		return (error);
1403 #ifdef MAC
1404 	if ((error = mac_cred_check_visible(u1, u2)))
1405 		return (error);
1406 #endif
1407 	if ((error = cr_canseeotheruids(u1, u2)))
1408 		return (error);
1409 	if ((error = cr_canseeothergids(u1, u2)))
1410 		return (error);
1411 	return (0);
1412 }
1413 
1414 /*-
1415  * Determine if td "can see" the subject specified by p.
1416  * Returns: 0 for permitted, an errno value otherwise
1417  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
1418  *        should be curthread.
1419  * References: td and p must be valid for the lifetime of the call
1420  */
1421 int
1422 p_cansee(struct thread *td, struct proc *p)
1423 {
1424 
1425 	/* Wrap cr_cansee() for all functionality. */
1426 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1427 	PROC_LOCK_ASSERT(p, MA_OWNED);
1428 	return (cr_cansee(td->td_ucred, p->p_ucred));
1429 }
1430 
1431 /*
1432  * 'conservative_signals' prevents the delivery of a broad class of
1433  * signals by unprivileged processes to processes that have changed their
1434  * credentials since the last invocation of execve().  This can prevent
1435  * the leakage of cached information or retained privileges as a result
1436  * of a common class of signal-related vulnerabilities.  However, this
1437  * may interfere with some applications that expect to be able to
1438  * deliver these signals to peer processes after having given up
1439  * privilege.
1440  */
1441 static int	conservative_signals = 1;
1442 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
1443     &conservative_signals, 0, "Unprivileged processes prevented from "
1444     "sending certain signals to processes whose credentials have changed");
1445 /*-
1446  * Determine whether cred may deliver the specified signal to proc.
1447  * Returns: 0 for permitted, an errno value otherwise.
1448  * Locks: A lock must be held for proc.
1449  * References: cred and proc must be valid for the lifetime of the call.
1450  */
1451 int
1452 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
1453 {
1454 	int error;
1455 
1456 	PROC_LOCK_ASSERT(proc, MA_OWNED);
1457 	/*
1458 	 * Jail semantics limit the scope of signalling to proc in the
1459 	 * same jail as cred, if cred is in jail.
1460 	 */
1461 	error = prison_check(cred, proc->p_ucred);
1462 	if (error)
1463 		return (error);
1464 #ifdef MAC
1465 	if ((error = mac_proc_check_signal(cred, proc, signum)))
1466 		return (error);
1467 #endif
1468 	if ((error = cr_canseeotheruids(cred, proc->p_ucred)))
1469 		return (error);
1470 	if ((error = cr_canseeothergids(cred, proc->p_ucred)))
1471 		return (error);
1472 
1473 	/*
1474 	 * UNIX signal semantics depend on the status of the P_SUGID
1475 	 * bit on the target process.  If the bit is set, then additional
1476 	 * restrictions are placed on the set of available signals.
1477 	 */
1478 	if (conservative_signals && (proc->p_flag & P_SUGID)) {
1479 		switch (signum) {
1480 		case 0:
1481 		case SIGKILL:
1482 		case SIGINT:
1483 		case SIGTERM:
1484 		case SIGALRM:
1485 		case SIGSTOP:
1486 		case SIGTTIN:
1487 		case SIGTTOU:
1488 		case SIGTSTP:
1489 		case SIGHUP:
1490 		case SIGUSR1:
1491 		case SIGUSR2:
1492 			/*
1493 			 * Generally, permit job and terminal control
1494 			 * signals.
1495 			 */
1496 			break;
1497 		default:
1498 			/* Not permitted without privilege. */
1499 			error = priv_check_cred(cred, PRIV_SIGNAL_SUGID, 0);
1500 			if (error)
1501 				return (error);
1502 		}
1503 	}
1504 
1505 	/*
1506 	 * Generally, the target credential's ruid or svuid must match the
1507 	 * subject credential's ruid or euid.
1508 	 */
1509 	if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
1510 	    cred->cr_ruid != proc->p_ucred->cr_svuid &&
1511 	    cred->cr_uid != proc->p_ucred->cr_ruid &&
1512 	    cred->cr_uid != proc->p_ucred->cr_svuid) {
1513 		error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED, 0);
1514 		if (error)
1515 			return (error);
1516 	}
1517 
1518 	return (0);
1519 }
1520 
1521 /*-
1522  * Determine whether td may deliver the specified signal to p.
1523  * Returns: 0 for permitted, an errno value otherwise
1524  * Locks: Sufficient locks to protect various components of td and p
1525  *        must be held.  td must be curthread, and a lock must be
1526  *        held for p.
1527  * References: td and p must be valid for the lifetime of the call
1528  */
1529 int
1530 p_cansignal(struct thread *td, struct proc *p, int signum)
1531 {
1532 
1533 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1534 	PROC_LOCK_ASSERT(p, MA_OWNED);
1535 	if (td->td_proc == p)
1536 		return (0);
1537 
1538 	/*
1539 	 * UNIX signalling semantics require that processes in the same
1540 	 * session always be able to deliver SIGCONT to one another,
1541 	 * overriding the remaining protections.
1542 	 */
1543 	/* XXX: This will require an additional lock of some sort. */
1544 	if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
1545 		return (0);
1546 	/*
1547 	 * Some compat layers use SIGTHR and higher signals for
1548 	 * communication between different kernel threads of the same
1549 	 * process, so that they expect that it's always possible to
1550 	 * deliver them, even for suid applications where cr_cansignal() can
1551 	 * deny such ability for security consideration.  It should be
1552 	 * pretty safe to do since the only way to create two processes
1553 	 * with the same p_leader is via rfork(2).
1554 	 */
1555 	if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
1556 	    signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
1557 		return (0);
1558 
1559 	return (cr_cansignal(td->td_ucred, p, signum));
1560 }
1561 
1562 /*-
1563  * Determine whether td may reschedule p.
1564  * Returns: 0 for permitted, an errno value otherwise
1565  * Locks: Sufficient locks to protect various components of td and p
1566  *        must be held.  td must be curthread, and a lock must
1567  *        be held for p.
1568  * References: td and p must be valid for the lifetime of the call
1569  */
1570 int
1571 p_cansched(struct thread *td, struct proc *p)
1572 {
1573 	int error;
1574 
1575 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1576 	PROC_LOCK_ASSERT(p, MA_OWNED);
1577 	if (td->td_proc == p)
1578 		return (0);
1579 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1580 		return (error);
1581 #ifdef MAC
1582 	if ((error = mac_proc_check_sched(td->td_ucred, p)))
1583 		return (error);
1584 #endif
1585 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1586 		return (error);
1587 	if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
1588 		return (error);
1589 	if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
1590 	    td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
1591 		error = priv_check(td, PRIV_SCHED_DIFFCRED);
1592 		if (error)
1593 			return (error);
1594 	}
1595 	return (0);
1596 }
1597 
1598 /*
1599  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
1600  * unprivileged inter-process debugging services, including some procfs
1601  * functionality, ptrace(), and ktrace().  In the past, inter-process
1602  * debugging has been involved in a variety of security problems, and sites
1603  * not requiring the service might choose to disable it when hardening
1604  * systems.
1605  *
1606  * XXX: Should modifying and reading this variable require locking?
1607  * XXX: data declarations should be together near the beginning of the file.
1608  */
1609 static int	unprivileged_proc_debug = 1;
1610 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_proc_debug, CTLFLAG_RW,
1611     &unprivileged_proc_debug, 0,
1612     "Unprivileged processes may use process debugging facilities");
1613 
1614 /*-
1615  * Determine whether td may debug p.
1616  * Returns: 0 for permitted, an errno value otherwise
1617  * Locks: Sufficient locks to protect various components of td and p
1618  *        must be held.  td must be curthread, and a lock must
1619  *        be held for p.
1620  * References: td and p must be valid for the lifetime of the call
1621  */
1622 int
1623 p_candebug(struct thread *td, struct proc *p)
1624 {
1625 	int credentialchanged, error, grpsubset, i, uidsubset;
1626 
1627 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1628 	PROC_LOCK_ASSERT(p, MA_OWNED);
1629 	if (!unprivileged_proc_debug) {
1630 		error = priv_check(td, PRIV_DEBUG_UNPRIV);
1631 		if (error)
1632 			return (error);
1633 	}
1634 	if (td->td_proc == p)
1635 		return (0);
1636 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1637 		return (error);
1638 #ifdef MAC
1639 	if ((error = mac_proc_check_debug(td->td_ucred, p)))
1640 		return (error);
1641 #endif
1642 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1643 		return (error);
1644 	if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
1645 		return (error);
1646 
1647 	/*
1648 	 * Is p's group set a subset of td's effective group set?  This
1649 	 * includes p's egid, group access list, rgid, and svgid.
1650 	 */
1651 	grpsubset = 1;
1652 	for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
1653 		if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
1654 			grpsubset = 0;
1655 			break;
1656 		}
1657 	}
1658 	grpsubset = grpsubset &&
1659 	    groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
1660 	    groupmember(p->p_ucred->cr_svgid, td->td_ucred);
1661 
1662 	/*
1663 	 * Are the uids present in p's credential equal to td's
1664 	 * effective uid?  This includes p's euid, svuid, and ruid.
1665 	 */
1666 	uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
1667 	    td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
1668 	    td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
1669 
1670 	/*
1671 	 * Has the credential of the process changed since the last exec()?
1672 	 */
1673 	credentialchanged = (p->p_flag & P_SUGID);
1674 
1675 	/*
1676 	 * If p's gids aren't a subset, or the uids aren't a subset,
1677 	 * or the credential has changed, require appropriate privilege
1678 	 * for td to debug p.
1679 	 */
1680 	if (!grpsubset || !uidsubset) {
1681 		error = priv_check(td, PRIV_DEBUG_DIFFCRED);
1682 		if (error)
1683 			return (error);
1684 	}
1685 
1686 	if (credentialchanged) {
1687 		error = priv_check(td, PRIV_DEBUG_SUGID);
1688 		if (error)
1689 			return (error);
1690 	}
1691 
1692 	/* Can't trace init when securelevel > 0. */
1693 	if (p == initproc) {
1694 		error = securelevel_gt(td->td_ucred, 0);
1695 		if (error)
1696 			return (error);
1697 	}
1698 
1699 	/*
1700 	 * Can't trace a process that's currently exec'ing.
1701 	 *
1702 	 * XXX: Note, this is not a security policy decision, it's a
1703 	 * basic correctness/functionality decision.  Therefore, this check
1704 	 * should be moved to the caller's of p_candebug().
1705 	 */
1706 	if ((p->p_flag & P_INEXEC) != 0)
1707 		return (EBUSY);
1708 
1709 	/* Denied explicitely */
1710 	if ((p->p_flag2 & P2_NOTRACE) != 0) {
1711 		error = priv_check(td, PRIV_DEBUG_DENIED);
1712 		if (error != 0)
1713 			return (error);
1714 	}
1715 
1716 	return (0);
1717 }
1718 
1719 /*-
1720  * Determine whether the subject represented by cred can "see" a socket.
1721  * Returns: 0 for permitted, ENOENT otherwise.
1722  */
1723 int
1724 cr_canseesocket(struct ucred *cred, struct socket *so)
1725 {
1726 	int error;
1727 
1728 	error = prison_check(cred, so->so_cred);
1729 	if (error)
1730 		return (ENOENT);
1731 #ifdef MAC
1732 	error = mac_socket_check_visible(cred, so);
1733 	if (error)
1734 		return (error);
1735 #endif
1736 	if (cr_canseeotheruids(cred, so->so_cred))
1737 		return (ENOENT);
1738 	if (cr_canseeothergids(cred, so->so_cred))
1739 		return (ENOENT);
1740 
1741 	return (0);
1742 }
1743 
1744 /*-
1745  * Determine whether td can wait for the exit of p.
1746  * Returns: 0 for permitted, an errno value otherwise
1747  * Locks: Sufficient locks to protect various components of td and p
1748  *        must be held.  td must be curthread, and a lock must
1749  *        be held for p.
1750  * References: td and p must be valid for the lifetime of the call
1751 
1752  */
1753 int
1754 p_canwait(struct thread *td, struct proc *p)
1755 {
1756 	int error;
1757 
1758 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1759 	PROC_LOCK_ASSERT(p, MA_OWNED);
1760 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1761 		return (error);
1762 #ifdef MAC
1763 	if ((error = mac_proc_check_wait(td->td_ucred, p)))
1764 		return (error);
1765 #endif
1766 #if 0
1767 	/* XXXMAC: This could have odd effects on some shells. */
1768 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1769 		return (error);
1770 #endif
1771 
1772 	return (0);
1773 }
1774 
1775 /*
1776  * Allocate a zeroed cred structure.
1777  */
1778 struct ucred *
1779 crget(void)
1780 {
1781 	register struct ucred *cr;
1782 
1783 	cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
1784 	refcount_init(&cr->cr_ref, 1);
1785 #ifdef AUDIT
1786 	audit_cred_init(cr);
1787 #endif
1788 #ifdef MAC
1789 	mac_cred_init(cr);
1790 #endif
1791 	cr->cr_groups = cr->cr_smallgroups;
1792 	cr->cr_agroups =
1793 	    sizeof(cr->cr_smallgroups) / sizeof(cr->cr_smallgroups[0]);
1794 	return (cr);
1795 }
1796 
1797 /*
1798  * Claim another reference to a ucred structure.
1799  */
1800 struct ucred *
1801 crhold(struct ucred *cr)
1802 {
1803 
1804 	refcount_acquire(&cr->cr_ref);
1805 	return (cr);
1806 }
1807 
1808 /*
1809  * Free a cred structure.  Throws away space when ref count gets to 0.
1810  */
1811 void
1812 crfree(struct ucred *cr)
1813 {
1814 
1815 	KASSERT(cr->cr_ref > 0, ("bad ucred refcount: %d", cr->cr_ref));
1816 	KASSERT(cr->cr_ref != 0xdeadc0de, ("dangling reference to ucred"));
1817 	if (refcount_release(&cr->cr_ref)) {
1818 		/*
1819 		 * Some callers of crget(), such as nfs_statfs(),
1820 		 * allocate a temporary credential, but don't
1821 		 * allocate a uidinfo structure.
1822 		 */
1823 		if (cr->cr_uidinfo != NULL)
1824 			uifree(cr->cr_uidinfo);
1825 		if (cr->cr_ruidinfo != NULL)
1826 			uifree(cr->cr_ruidinfo);
1827 		/*
1828 		 * Free a prison, if any.
1829 		 */
1830 		if (cr->cr_prison != NULL)
1831 			prison_free(cr->cr_prison);
1832 		if (cr->cr_loginclass != NULL)
1833 			loginclass_free(cr->cr_loginclass);
1834 #ifdef AUDIT
1835 		audit_cred_destroy(cr);
1836 #endif
1837 #ifdef MAC
1838 		mac_cred_destroy(cr);
1839 #endif
1840 		if (cr->cr_groups != cr->cr_smallgroups)
1841 			free(cr->cr_groups, M_CRED);
1842 		free(cr, M_CRED);
1843 	}
1844 }
1845 
1846 /*
1847  * Copy a ucred's contents from a template.  Does not block.
1848  */
1849 void
1850 crcopy(struct ucred *dest, struct ucred *src)
1851 {
1852 
1853 	KASSERT(dest->cr_ref == 1, ("crcopy of shared ucred"));
1854 	bcopy(&src->cr_startcopy, &dest->cr_startcopy,
1855 	    (unsigned)((caddr_t)&src->cr_endcopy -
1856 		(caddr_t)&src->cr_startcopy));
1857 	crsetgroups(dest, src->cr_ngroups, src->cr_groups);
1858 	uihold(dest->cr_uidinfo);
1859 	uihold(dest->cr_ruidinfo);
1860 	prison_hold(dest->cr_prison);
1861 	loginclass_hold(dest->cr_loginclass);
1862 #ifdef AUDIT
1863 	audit_cred_copy(src, dest);
1864 #endif
1865 #ifdef MAC
1866 	mac_cred_copy(src, dest);
1867 #endif
1868 }
1869 
1870 /*
1871  * Dup cred struct to a new held one.
1872  */
1873 struct ucred *
1874 crdup(struct ucred *cr)
1875 {
1876 	struct ucred *newcr;
1877 
1878 	newcr = crget();
1879 	crcopy(newcr, cr);
1880 	return (newcr);
1881 }
1882 
1883 /*
1884  * Fill in a struct xucred based on a struct ucred.
1885  */
1886 void
1887 cru2x(struct ucred *cr, struct xucred *xcr)
1888 {
1889 	int ngroups;
1890 
1891 	bzero(xcr, sizeof(*xcr));
1892 	xcr->cr_version = XUCRED_VERSION;
1893 	xcr->cr_uid = cr->cr_uid;
1894 
1895 	ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
1896 	xcr->cr_ngroups = ngroups;
1897 	bcopy(cr->cr_groups, xcr->cr_groups,
1898 	    ngroups * sizeof(*cr->cr_groups));
1899 }
1900 
1901 /*
1902  * Set initial process credentials.
1903  * Callers are responsible for providing the reference for provided credentials.
1904  */
1905 void
1906 proc_set_cred_init(struct proc *p, struct ucred *newcred)
1907 {
1908 
1909 	p->p_ucred = newcred;
1910 }
1911 
1912 /*
1913  * Change process credentials.
1914  * Callers are responsible for providing the reference for passed credentials
1915  * and for freeing old ones.
1916  *
1917  * Process has to be locked except when it does not have credentials (as it
1918  * should not be visible just yet) or when newcred is NULL (as this can be
1919  * only used when the process is about to be freed, at which point it should
1920  * not be visible anymore).
1921  */
1922 struct ucred *
1923 proc_set_cred(struct proc *p, struct ucred *newcred)
1924 {
1925 	struct ucred *oldcred;
1926 
1927 	MPASS(p->p_ucred != NULL);
1928 	if (newcred == NULL)
1929 		MPASS(p->p_state == PRS_ZOMBIE);
1930 	else
1931 		PROC_LOCK_ASSERT(p, MA_OWNED);
1932 
1933 	oldcred = p->p_ucred;
1934 	p->p_ucred = newcred;
1935 	if (newcred != NULL)
1936 		PROC_UPDATE_COW(p);
1937 	return (oldcred);
1938 }
1939 
1940 struct ucred *
1941 crcopysafe(struct proc *p, struct ucred *cr)
1942 {
1943 	struct ucred *oldcred;
1944 	int groups;
1945 
1946 	PROC_LOCK_ASSERT(p, MA_OWNED);
1947 
1948 	oldcred = p->p_ucred;
1949 	while (cr->cr_agroups < oldcred->cr_agroups) {
1950 		groups = oldcred->cr_agroups;
1951 		PROC_UNLOCK(p);
1952 		crextend(cr, groups);
1953 		PROC_LOCK(p);
1954 		oldcred = p->p_ucred;
1955 	}
1956 	crcopy(cr, oldcred);
1957 
1958 	return (oldcred);
1959 }
1960 
1961 /*
1962  * Extend the passed in credential to hold n items.
1963  */
1964 void
1965 crextend(struct ucred *cr, int n)
1966 {
1967 	int cnt;
1968 
1969 	/* Truncate? */
1970 	if (n <= cr->cr_agroups)
1971 		return;
1972 
1973 	/*
1974 	 * We extend by 2 each time since we're using a power of two
1975 	 * allocator until we need enough groups to fill a page.
1976 	 * Once we're allocating multiple pages, only allocate as many
1977 	 * as we actually need.  The case of processes needing a
1978 	 * non-power of two number of pages seems more likely than
1979 	 * a real world process that adds thousands of groups one at a
1980 	 * time.
1981 	 */
1982 	if ( n < PAGE_SIZE / sizeof(gid_t) ) {
1983 		if (cr->cr_agroups == 0)
1984 			cnt = MINALLOCSIZE / sizeof(gid_t);
1985 		else
1986 			cnt = cr->cr_agroups * 2;
1987 
1988 		while (cnt < n)
1989 			cnt *= 2;
1990 	} else
1991 		cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t));
1992 
1993 	/* Free the old array. */
1994 	if (cr->cr_groups != cr->cr_smallgroups)
1995 		free(cr->cr_groups, M_CRED);
1996 
1997 	cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO);
1998 	cr->cr_agroups = cnt;
1999 }
2000 
2001 /*
2002  * Copy groups in to a credential, preserving any necessary invariants.
2003  * Currently this includes the sorting of all supplemental gids.
2004  * crextend() must have been called before hand to ensure sufficient
2005  * space is available.
2006  */
2007 static void
2008 crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups)
2009 {
2010 	int i;
2011 	int j;
2012 	gid_t g;
2013 
2014 	KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small"));
2015 
2016 	bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
2017 	cr->cr_ngroups = ngrp;
2018 
2019 	/*
2020 	 * Sort all groups except cr_groups[0] to allow groupmember to
2021 	 * perform a binary search.
2022 	 *
2023 	 * XXX: If large numbers of groups become common this should
2024 	 * be replaced with shell sort like linux uses or possibly
2025 	 * heap sort.
2026 	 */
2027 	for (i = 2; i < ngrp; i++) {
2028 		g = cr->cr_groups[i];
2029 		for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--)
2030 			cr->cr_groups[j + 1] = cr->cr_groups[j];
2031 		cr->cr_groups[j + 1] = g;
2032 	}
2033 }
2034 
2035 /*
2036  * Copy groups in to a credential after expanding it if required.
2037  * Truncate the list to (ngroups_max + 1) if it is too large.
2038  */
2039 void
2040 crsetgroups(struct ucred *cr, int ngrp, gid_t *groups)
2041 {
2042 
2043 	if (ngrp > ngroups_max + 1)
2044 		ngrp = ngroups_max + 1;
2045 
2046 	crextend(cr, ngrp);
2047 	crsetgroups_locked(cr, ngrp, groups);
2048 }
2049 
2050 /*
2051  * Get login name, if available.
2052  */
2053 #ifndef _SYS_SYSPROTO_H_
2054 struct getlogin_args {
2055 	char	*namebuf;
2056 	u_int	namelen;
2057 };
2058 #endif
2059 /* ARGSUSED */
2060 int
2061 sys_getlogin(struct thread *td, struct getlogin_args *uap)
2062 {
2063 	char login[MAXLOGNAME];
2064 	struct proc *p = td->td_proc;
2065 	size_t len;
2066 
2067 	if (uap->namelen > MAXLOGNAME)
2068 		uap->namelen = MAXLOGNAME;
2069 	PROC_LOCK(p);
2070 	SESS_LOCK(p->p_session);
2071 	len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1;
2072 	SESS_UNLOCK(p->p_session);
2073 	PROC_UNLOCK(p);
2074 	if (len > uap->namelen)
2075 		return (ERANGE);
2076 	return (copyout(login, uap->namebuf, len));
2077 }
2078 
2079 /*
2080  * Set login name.
2081  */
2082 #ifndef _SYS_SYSPROTO_H_
2083 struct setlogin_args {
2084 	char	*namebuf;
2085 };
2086 #endif
2087 /* ARGSUSED */
2088 int
2089 sys_setlogin(struct thread *td, struct setlogin_args *uap)
2090 {
2091 	struct proc *p = td->td_proc;
2092 	int error;
2093 	char logintmp[MAXLOGNAME];
2094 
2095 	CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp));
2096 
2097 	error = priv_check(td, PRIV_PROC_SETLOGIN);
2098 	if (error)
2099 		return (error);
2100 	error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
2101 	if (error != 0) {
2102 		if (error == ENAMETOOLONG)
2103 			error = EINVAL;
2104 		return (error);
2105 	}
2106 	AUDIT_ARG_LOGIN(logintmp);
2107 	PROC_LOCK(p);
2108 	SESS_LOCK(p->p_session);
2109 	strcpy(p->p_session->s_login, logintmp);
2110 	SESS_UNLOCK(p->p_session);
2111 	PROC_UNLOCK(p);
2112 	return (0);
2113 }
2114 
2115 void
2116 setsugid(struct proc *p)
2117 {
2118 
2119 	PROC_LOCK_ASSERT(p, MA_OWNED);
2120 	p->p_flag |= P_SUGID;
2121 	if (!(p->p_pfsflags & PF_ISUGID))
2122 		p->p_stops = 0;
2123 }
2124 
2125 /*-
2126  * Change a process's effective uid.
2127  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
2128  * References: newcred must be an exclusive credential reference for the
2129  *             duration of the call.
2130  */
2131 void
2132 change_euid(struct ucred *newcred, struct uidinfo *euip)
2133 {
2134 
2135 	newcred->cr_uid = euip->ui_uid;
2136 	uihold(euip);
2137 	uifree(newcred->cr_uidinfo);
2138 	newcred->cr_uidinfo = euip;
2139 }
2140 
2141 /*-
2142  * Change a process's effective gid.
2143  * Side effects: newcred->cr_gid will be modified.
2144  * References: newcred must be an exclusive credential reference for the
2145  *             duration of the call.
2146  */
2147 void
2148 change_egid(struct ucred *newcred, gid_t egid)
2149 {
2150 
2151 	newcred->cr_groups[0] = egid;
2152 }
2153 
2154 /*-
2155  * Change a process's real uid.
2156  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
2157  *               will be updated, and the old and new cr_ruidinfo proc
2158  *               counts will be updated.
2159  * References: newcred must be an exclusive credential reference for the
2160  *             duration of the call.
2161  */
2162 void
2163 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
2164 {
2165 
2166 	(void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
2167 	newcred->cr_ruid = ruip->ui_uid;
2168 	uihold(ruip);
2169 	uifree(newcred->cr_ruidinfo);
2170 	newcred->cr_ruidinfo = ruip;
2171 	(void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
2172 }
2173 
2174 /*-
2175  * Change a process's real gid.
2176  * Side effects: newcred->cr_rgid will be updated.
2177  * References: newcred must be an exclusive credential reference for the
2178  *             duration of the call.
2179  */
2180 void
2181 change_rgid(struct ucred *newcred, gid_t rgid)
2182 {
2183 
2184 	newcred->cr_rgid = rgid;
2185 }
2186 
2187 /*-
2188  * Change a process's saved uid.
2189  * Side effects: newcred->cr_svuid will be updated.
2190  * References: newcred must be an exclusive credential reference for the
2191  *             duration of the call.
2192  */
2193 void
2194 change_svuid(struct ucred *newcred, uid_t svuid)
2195 {
2196 
2197 	newcred->cr_svuid = svuid;
2198 }
2199 
2200 /*-
2201  * Change a process's saved gid.
2202  * Side effects: newcred->cr_svgid will be updated.
2203  * References: newcred must be an exclusive credential reference for the
2204  *             duration of the call.
2205  */
2206 void
2207 change_svgid(struct ucred *newcred, gid_t svgid)
2208 {
2209 
2210 	newcred->cr_svgid = svgid;
2211 }
2212