xref: /freebsd/sys/kern/kern_prot.c (revision c4f6a2a9e1b1879b618c436ab4f56ff75c73a0f5)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  * Copyright (c) 2000-2001 Robert N. M. Watson.  All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	@(#)kern_prot.c	8.6 (Berkeley) 1/21/94
40  * $FreeBSD$
41  */
42 
43 /*
44  * System calls related to processes and protection
45  */
46 
47 #include "opt_compat.h"
48 #include "opt_mac.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/acct.h>
53 #include <sys/kernel.h>
54 #include <sys/lock.h>
55 #include <sys/mac.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/sx.h>
59 #include <sys/proc.h>
60 #include <sys/sysproto.h>
61 #include <sys/jail.h>
62 #include <sys/pioctl.h>
63 #include <sys/resourcevar.h>
64 #include <sys/socket.h>
65 #include <sys/socketvar.h>
66 #include <sys/sysctl.h>
67 
68 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
69 
70 SYSCTL_DECL(_security);
71 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW, 0,
72     "BSD security policy");
73 
74 #ifndef _SYS_SYSPROTO_H_
75 struct getpid_args {
76 	int	dummy;
77 };
78 #endif
79 /*
80  * MPSAFE
81  */
82 /* ARGSUSED */
83 int
84 getpid(struct thread *td, struct getpid_args *uap)
85 {
86 	struct proc *p = td->td_proc;
87 	int s;
88 
89 	s = mtx_lock_giant(kern_giant_proc);
90 	td->td_retval[0] = p->p_pid;
91 #if defined(COMPAT_43) || defined(COMPAT_SUNOS)
92 	PROC_LOCK(p);
93 	td->td_retval[1] = p->p_pptr->p_pid;
94 	PROC_UNLOCK(p);
95 #endif
96 	mtx_unlock_giant(s);
97 	return (0);
98 }
99 
100 #ifndef _SYS_SYSPROTO_H_
101 struct getppid_args {
102         int     dummy;
103 };
104 #endif
105 /*
106  * MPSAFE
107  */
108 /* ARGSUSED */
109 int
110 getppid(struct thread *td, struct getppid_args *uap)
111 {
112 	struct proc *p = td->td_proc;
113 	int s;
114 
115 	s = mtx_lock_giant(kern_giant_proc);
116 	PROC_LOCK(p);
117 	td->td_retval[0] = p->p_pptr->p_pid;
118 	PROC_UNLOCK(p);
119 	mtx_unlock_giant(s);
120 	return (0);
121 }
122 
123 /*
124  * Get process group ID; note that POSIX getpgrp takes no parameter.
125  */
126 #ifndef _SYS_SYSPROTO_H_
127 struct getpgrp_args {
128         int     dummy;
129 };
130 #endif
131 /*
132  * MPSAFE
133  */
134 int
135 getpgrp(struct thread *td, struct getpgrp_args *uap)
136 {
137 	struct proc *p = td->td_proc;
138 	int s;
139 
140 	s = mtx_lock_giant(kern_giant_proc);
141 	PROC_LOCK(p);
142 	td->td_retval[0] = p->p_pgrp->pg_id;
143 	PROC_UNLOCK(p);
144 	mtx_unlock_giant(s);
145 	return (0);
146 }
147 
148 /* Get an arbitary pid's process group id */
149 #ifndef _SYS_SYSPROTO_H_
150 struct getpgid_args {
151 	pid_t	pid;
152 };
153 #endif
154 /*
155  * MPSAFE
156  */
157 int
158 getpgid(struct thread *td, struct getpgid_args *uap)
159 {
160 	struct proc *p = td->td_proc;
161 	struct proc *pt;
162 	int error;
163 
164 	mtx_lock(&Giant);
165 	error = 0;
166 	if (uap->pid == 0) {
167 		PROC_LOCK(p);
168 		td->td_retval[0] = p->p_pgrp->pg_id;
169 		PROC_UNLOCK(p);
170 	} else if ((pt = pfind(uap->pid)) == NULL)
171 		error = ESRCH;
172 	else {
173 		error = p_cansee(td, pt);
174 		if (error == 0)
175 			td->td_retval[0] = pt->p_pgrp->pg_id;
176 		PROC_UNLOCK(pt);
177 	}
178 	mtx_unlock(&Giant);
179 	return (error);
180 }
181 
182 /*
183  * Get an arbitary pid's session id.
184  */
185 #ifndef _SYS_SYSPROTO_H_
186 struct getsid_args {
187 	pid_t	pid;
188 };
189 #endif
190 /*
191  * MPSAFE
192  */
193 int
194 getsid(struct thread *td, struct getsid_args *uap)
195 {
196 	struct proc *p = td->td_proc;
197 	struct proc *pt;
198 	int error;
199 
200 	mtx_lock(&Giant);
201 	error = 0;
202 	if (uap->pid == 0) {
203 		PROC_LOCK(p);
204 		td->td_retval[0] = p->p_session->s_sid;
205 		PROC_UNLOCK(p);
206 	} else if ((pt = pfind(uap->pid)) == NULL)
207 		error = ESRCH;
208 	else {
209 		error = p_cansee(td, pt);
210 		if (error == 0)
211 			td->td_retval[0] = pt->p_session->s_sid;
212 		PROC_UNLOCK(pt);
213 	}
214 	mtx_unlock(&Giant);
215 	return (error);
216 }
217 
218 #ifndef _SYS_SYSPROTO_H_
219 struct getuid_args {
220         int     dummy;
221 };
222 #endif
223 /*
224  * MPSAFE
225  */
226 /* ARGSUSED */
227 int
228 getuid(struct thread *td, struct getuid_args *uap)
229 {
230 
231 	td->td_retval[0] = td->td_ucred->cr_ruid;
232 #if defined(COMPAT_43) || defined(COMPAT_SUNOS)
233 	td->td_retval[1] = td->td_ucred->cr_uid;
234 #endif
235 	return (0);
236 }
237 
238 #ifndef _SYS_SYSPROTO_H_
239 struct geteuid_args {
240         int     dummy;
241 };
242 #endif
243 /*
244  * MPSAFE
245  */
246 /* ARGSUSED */
247 int
248 geteuid(struct thread *td, struct geteuid_args *uap)
249 {
250 
251 	td->td_retval[0] = td->td_ucred->cr_uid;
252 	return (0);
253 }
254 
255 #ifndef _SYS_SYSPROTO_H_
256 struct getgid_args {
257         int     dummy;
258 };
259 #endif
260 /*
261  * MPSAFE
262  */
263 /* ARGSUSED */
264 int
265 getgid(struct thread *td, struct getgid_args *uap)
266 {
267 
268 	td->td_retval[0] = td->td_ucred->cr_rgid;
269 #if defined(COMPAT_43) || defined(COMPAT_SUNOS)
270 	td->td_retval[1] = td->td_ucred->cr_groups[0];
271 #endif
272 	return (0);
273 }
274 
275 /*
276  * Get effective group ID.  The "egid" is groups[0], and could be obtained
277  * via getgroups.  This syscall exists because it is somewhat painful to do
278  * correctly in a library function.
279  */
280 #ifndef _SYS_SYSPROTO_H_
281 struct getegid_args {
282         int     dummy;
283 };
284 #endif
285 /*
286  * MPSAFE
287  */
288 /* ARGSUSED */
289 int
290 getegid(struct thread *td, struct getegid_args *uap)
291 {
292 
293 	td->td_retval[0] = td->td_ucred->cr_groups[0];
294 	return (0);
295 }
296 
297 #ifndef _SYS_SYSPROTO_H_
298 struct getgroups_args {
299 	u_int	gidsetsize;
300 	gid_t	*gidset;
301 };
302 #endif
303 /*
304  * MPSAFE
305  */
306 int
307 getgroups(struct thread *td, register struct getgroups_args *uap)
308 {
309 	struct ucred *cred;
310 	u_int ngrp;
311 	int error;
312 
313 	cred = td->td_ucred;
314 	if ((ngrp = uap->gidsetsize) == 0) {
315 		td->td_retval[0] = cred->cr_ngroups;
316 		return (0);
317 	}
318 	if (ngrp < cred->cr_ngroups)
319 		return (EINVAL);
320 	ngrp = cred->cr_ngroups;
321 	error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
322 	if (error == 0)
323 		td->td_retval[0] = ngrp;
324 	return (error);
325 }
326 
327 #ifndef _SYS_SYSPROTO_H_
328 struct setsid_args {
329         int     dummy;
330 };
331 #endif
332 /*
333  * MPSAFE
334  */
335 /* ARGSUSED */
336 int
337 setsid(register struct thread *td, struct setsid_args *uap)
338 {
339 	struct pgrp *pgrp;
340 	int error;
341 	struct proc *p = td->td_proc;
342 	struct pgrp *newpgrp;
343 	struct session *newsess;
344 
345 	error = 0;
346 	pgrp = NULL;
347 
348 	MALLOC(newpgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
349 	MALLOC(newsess, struct session *, sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
350 
351 	sx_xlock(&proctree_lock);
352 
353 	if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
354 		if (pgrp != NULL)
355 			PGRP_UNLOCK(pgrp);
356 		error = EPERM;
357 	} else {
358 		(void)enterpgrp(p, p->p_pid, newpgrp, newsess);
359 		td->td_retval[0] = p->p_pid;
360 		newpgrp = NULL;
361 		newsess = NULL;
362 	}
363 
364 	sx_xunlock(&proctree_lock);
365 
366 	if (newpgrp != NULL)
367 		FREE(newpgrp, M_PGRP);
368 	if (newsess != NULL)
369 		FREE(newsess, M_SESSION);
370 
371 	return (error);
372 }
373 
374 /*
375  * set process group (setpgid/old setpgrp)
376  *
377  * caller does setpgid(targpid, targpgid)
378  *
379  * pid must be caller or child of caller (ESRCH)
380  * if a child
381  *	pid must be in same session (EPERM)
382  *	pid can't have done an exec (EACCES)
383  * if pgid != pid
384  * 	there must exist some pid in same session having pgid (EPERM)
385  * pid must not be session leader (EPERM)
386  */
387 #ifndef _SYS_SYSPROTO_H_
388 struct setpgid_args {
389 	int	pid;		/* target process id */
390 	int	pgid;		/* target pgrp id */
391 };
392 #endif
393 /*
394  * MPSAFE
395  */
396 /* ARGSUSED */
397 int
398 setpgid(struct thread *td, register struct setpgid_args *uap)
399 {
400 	struct proc *curp = td->td_proc;
401 	register struct proc *targp;	/* target process */
402 	register struct pgrp *pgrp;	/* target pgrp */
403 	int error;
404 	struct pgrp *newpgrp;
405 
406 	if (uap->pgid < 0)
407 		return (EINVAL);
408 
409 	error = 0;
410 
411 	MALLOC(newpgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
412 
413 	sx_xlock(&proctree_lock);
414 	if (uap->pid != 0 && uap->pid != curp->p_pid) {
415 		if ((targp = pfind(uap->pid)) == NULL) {
416 			if (targp)
417 				PROC_UNLOCK(targp);
418 			error = ESRCH;
419 			goto done;
420 		}
421 		if (!inferior(targp)) {
422 			PROC_UNLOCK(targp);
423 			error = ESRCH;
424 			goto done;
425 		}
426 		if ((error = p_cansee(curthread, targp))) {
427 			PROC_UNLOCK(targp);
428 			goto done;
429 		}
430 		if (targp->p_pgrp == NULL ||
431 		    targp->p_session != curp->p_session) {
432 			PROC_UNLOCK(targp);
433 			error = EPERM;
434 			goto done;
435 		}
436 		if (targp->p_flag & P_EXEC) {
437 			PROC_UNLOCK(targp);
438 			error = EACCES;
439 			goto done;
440 		}
441 		PROC_UNLOCK(targp);
442 	} else
443 		targp = curp;
444 	if (SESS_LEADER(targp)) {
445 		error = EPERM;
446 		goto done;
447 	}
448 	if (uap->pgid == 0)
449 		uap->pgid = targp->p_pid;
450 	if (uap->pgid == targp->p_pid) {
451 		if (targp->p_pgid == uap->pgid)
452 			goto done;
453 		error = enterpgrp(targp, uap->pgid, newpgrp, NULL);
454 		if (error == 0)
455 			newpgrp = NULL;
456 	} else {
457 		if ((pgrp = pgfind(uap->pgid)) == NULL ||
458 		    pgrp->pg_session != curp->p_session) {
459 			if (pgrp != NULL)
460 				PGRP_UNLOCK(pgrp);
461 			error = EPERM;
462 			goto done;
463 		}
464 		if (pgrp == targp->p_pgrp) {
465 			PGRP_UNLOCK(pgrp);
466 			goto done;
467 		}
468 		PGRP_UNLOCK(pgrp);
469 		error = enterthispgrp(targp, pgrp);
470 	}
471 done:
472 	sx_xunlock(&proctree_lock);
473 	KASSERT((error == 0) || (newpgrp != NULL),
474 	    ("setpgid failed and newpgrp is NULL"));
475 	if (newpgrp != NULL)
476 		FREE(newpgrp, M_PGRP);
477 	return (error);
478 }
479 
480 /*
481  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
482  * compatible.  It says that setting the uid/gid to euid/egid is a special
483  * case of "appropriate privilege".  Once the rules are expanded out, this
484  * basically means that setuid(nnn) sets all three id's, in all permitted
485  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
486  * does not set the saved id - this is dangerous for traditional BSD
487  * programs.  For this reason, we *really* do not want to set
488  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
489  */
490 #define POSIX_APPENDIX_B_4_2_2
491 
492 #ifndef _SYS_SYSPROTO_H_
493 struct setuid_args {
494 	uid_t	uid;
495 };
496 #endif
497 /*
498  * MPSAFE
499  */
500 /* ARGSUSED */
501 int
502 setuid(struct thread *td, struct setuid_args *uap)
503 {
504 	struct proc *p = td->td_proc;
505 	struct ucred *newcred, *oldcred;
506 	uid_t uid;
507 	struct uidinfo *uip;
508 	int error;
509 
510 	mtx_lock(&Giant);
511 	uid = uap->uid;
512 	newcred = crget();
513 	uip = uifind(uid);
514 	PROC_LOCK(p);
515 	oldcred = p->p_ucred;
516 
517 	/*
518 	 * See if we have "permission" by POSIX 1003.1 rules.
519 	 *
520 	 * Note that setuid(geteuid()) is a special case of
521 	 * "appropriate privileges" in appendix B.4.2.2.  We need
522 	 * to use this clause to be compatible with traditional BSD
523 	 * semantics.  Basically, it means that "setuid(xx)" sets all
524 	 * three id's (assuming you have privs).
525 	 *
526 	 * Notes on the logic.  We do things in three steps.
527 	 * 1: We determine if the euid is going to change, and do EPERM
528 	 *    right away.  We unconditionally change the euid later if this
529 	 *    test is satisfied, simplifying that part of the logic.
530 	 * 2: We determine if the real and/or saved uids are going to
531 	 *    change.  Determined by compile options.
532 	 * 3: Change euid last. (after tests in #2 for "appropriate privs")
533 	 */
534 	if (uid != oldcred->cr_ruid &&		/* allow setuid(getuid()) */
535 #ifdef _POSIX_SAVED_IDS
536 	    uid != oldcred->cr_svuid &&		/* allow setuid(saved gid) */
537 #endif
538 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
539 	    uid != oldcred->cr_uid &&		/* allow setuid(geteuid()) */
540 #endif
541 	    (error = suser_cred(oldcred, PRISON_ROOT)) != 0) {
542 		PROC_UNLOCK(p);
543 		uifree(uip);
544 		crfree(newcred);
545 		mtx_unlock(&Giant);
546 		return (error);
547 	}
548 
549 	/*
550 	 * Copy credentials so other references do not see our changes.
551 	 */
552 	crcopy(newcred, oldcred);
553 #ifdef _POSIX_SAVED_IDS
554 	/*
555 	 * Do we have "appropriate privileges" (are we root or uid == euid)
556 	 * If so, we are changing the real uid and/or saved uid.
557 	 */
558 	if (
559 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use the clause from B.4.2.2 */
560 	    uid == oldcred->cr_uid ||
561 #endif
562 	    suser_cred(oldcred, PRISON_ROOT) == 0) /* we are using privs */
563 #endif
564 	{
565 		/*
566 		 * Set the real uid and transfer proc count to new user.
567 		 */
568 		if (uid != oldcred->cr_ruid) {
569 			change_ruid(newcred, uip);
570 			setsugid(p);
571 		}
572 		/*
573 		 * Set saved uid
574 		 *
575 		 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
576 		 * the security of seteuid() depends on it.  B.4.2.2 says it
577 		 * is important that we should do this.
578 		 */
579 		if (uid != oldcred->cr_svuid) {
580 			change_svuid(newcred, uid);
581 			setsugid(p);
582 		}
583 	}
584 
585 	/*
586 	 * In all permitted cases, we are changing the euid.
587 	 */
588 	if (uid != oldcred->cr_uid) {
589 		change_euid(newcred, uip);
590 		setsugid(p);
591 	}
592 	p->p_ucred = newcred;
593 	PROC_UNLOCK(p);
594 	uifree(uip);
595 	crfree(oldcred);
596 	mtx_unlock(&Giant);
597 	return (0);
598 }
599 
600 #ifndef _SYS_SYSPROTO_H_
601 struct seteuid_args {
602 	uid_t	euid;
603 };
604 #endif
605 /*
606  * MPSAFE
607  */
608 /* ARGSUSED */
609 int
610 seteuid(struct thread *td, struct seteuid_args *uap)
611 {
612 	struct proc *p = td->td_proc;
613 	struct ucred *newcred, *oldcred;
614 	uid_t euid;
615 	struct uidinfo *euip;
616 	int error;
617 
618 	euid = uap->euid;
619 	mtx_lock(&Giant);
620 	newcred = crget();
621 	euip = uifind(euid);
622 	PROC_LOCK(p);
623 	oldcred = p->p_ucred;
624 	if (euid != oldcred->cr_ruid &&		/* allow seteuid(getuid()) */
625 	    euid != oldcred->cr_svuid &&	/* allow seteuid(saved uid) */
626 	    (error = suser_cred(oldcred, PRISON_ROOT)) != 0) {
627 		PROC_UNLOCK(p);
628 		uifree(euip);
629 		crfree(newcred);
630 		mtx_unlock(&Giant);
631 		return (error);
632 	}
633 	/*
634 	 * Everything's okay, do it.  Copy credentials so other references do
635 	 * not see our changes.
636 	 */
637 	crcopy(newcred, oldcred);
638 	if (oldcred->cr_uid != euid) {
639 		change_euid(newcred, euip);
640 		setsugid(p);
641 	}
642 	p->p_ucred = newcred;
643 	PROC_UNLOCK(p);
644 	uifree(euip);
645 	crfree(oldcred);
646 	mtx_unlock(&Giant);
647 	return (0);
648 }
649 
650 #ifndef _SYS_SYSPROTO_H_
651 struct setgid_args {
652 	gid_t	gid;
653 };
654 #endif
655 /*
656  * MPSAFE
657  */
658 /* ARGSUSED */
659 int
660 setgid(struct thread *td, struct setgid_args *uap)
661 {
662 	struct proc *p = td->td_proc;
663 	struct ucred *newcred, *oldcred;
664 	gid_t gid;
665 	int error;
666 
667 	gid = uap->gid;
668 	mtx_lock(&Giant);
669 	newcred = crget();
670 	PROC_LOCK(p);
671 	oldcred = p->p_ucred;
672 
673 	/*
674 	 * See if we have "permission" by POSIX 1003.1 rules.
675 	 *
676 	 * Note that setgid(getegid()) is a special case of
677 	 * "appropriate privileges" in appendix B.4.2.2.  We need
678 	 * to use this clause to be compatible with traditional BSD
679 	 * semantics.  Basically, it means that "setgid(xx)" sets all
680 	 * three id's (assuming you have privs).
681 	 *
682 	 * For notes on the logic here, see setuid() above.
683 	 */
684 	if (gid != oldcred->cr_rgid &&		/* allow setgid(getgid()) */
685 #ifdef _POSIX_SAVED_IDS
686 	    gid != oldcred->cr_svgid &&		/* allow setgid(saved gid) */
687 #endif
688 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
689 	    gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
690 #endif
691 	    (error = suser_cred(oldcred, PRISON_ROOT)) != 0) {
692 		PROC_UNLOCK(p);
693 		crfree(newcred);
694 		mtx_unlock(&Giant);
695 		return (error);
696 	}
697 
698 	crcopy(newcred, oldcred);
699 #ifdef _POSIX_SAVED_IDS
700 	/*
701 	 * Do we have "appropriate privileges" (are we root or gid == egid)
702 	 * If so, we are changing the real uid and saved gid.
703 	 */
704 	if (
705 #ifdef POSIX_APPENDIX_B_4_2_2	/* use the clause from B.4.2.2 */
706 	    gid == oldcred->cr_groups[0] ||
707 #endif
708 	    suser_cred(oldcred, PRISON_ROOT) == 0) /* we are using privs */
709 #endif
710 	{
711 		/*
712 		 * Set real gid
713 		 */
714 		if (oldcred->cr_rgid != gid) {
715 			change_rgid(newcred, gid);
716 			setsugid(p);
717 		}
718 		/*
719 		 * Set saved gid
720 		 *
721 		 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
722 		 * the security of setegid() depends on it.  B.4.2.2 says it
723 		 * is important that we should do this.
724 		 */
725 		if (oldcred->cr_svgid != gid) {
726 			change_svgid(newcred, gid);
727 			setsugid(p);
728 		}
729 	}
730 	/*
731 	 * In all cases permitted cases, we are changing the egid.
732 	 * Copy credentials so other references do not see our changes.
733 	 */
734 	if (oldcred->cr_groups[0] != gid) {
735 		change_egid(newcred, gid);
736 		setsugid(p);
737 	}
738 	p->p_ucred = newcred;
739 	PROC_UNLOCK(p);
740 	crfree(oldcred);
741 	mtx_unlock(&Giant);
742 	return (0);
743 }
744 
745 #ifndef _SYS_SYSPROTO_H_
746 struct setegid_args {
747 	gid_t	egid;
748 };
749 #endif
750 /*
751  * MPSAFE
752  */
753 /* ARGSUSED */
754 int
755 setegid(struct thread *td, struct setegid_args *uap)
756 {
757 	struct proc *p = td->td_proc;
758 	struct ucred *newcred, *oldcred;
759 	gid_t egid;
760 	int error;
761 
762 	egid = uap->egid;
763 	mtx_lock(&Giant);
764 	newcred = crget();
765 	PROC_LOCK(p);
766 	oldcred = p->p_ucred;
767 	if (egid != oldcred->cr_rgid &&		/* allow setegid(getgid()) */
768 	    egid != oldcred->cr_svgid &&	/* allow setegid(saved gid) */
769 	    (error = suser_cred(oldcred, PRISON_ROOT)) != 0) {
770 		PROC_UNLOCK(p);
771 		crfree(newcred);
772 		mtx_unlock(&Giant);
773 		return (error);
774 	}
775 	crcopy(newcred, oldcred);
776 	if (oldcred->cr_groups[0] != egid) {
777 		change_egid(newcred, egid);
778 		setsugid(p);
779 	}
780 	p->p_ucred = newcred;
781 	PROC_UNLOCK(p);
782 	crfree(oldcred);
783 	mtx_unlock(&Giant);
784 	return (0);
785 }
786 
787 #ifndef _SYS_SYSPROTO_H_
788 struct setgroups_args {
789 	u_int	gidsetsize;
790 	gid_t	*gidset;
791 };
792 #endif
793 /*
794  * MPSAFE
795  */
796 /* ARGSUSED */
797 int
798 setgroups(struct thread *td, struct setgroups_args *uap)
799 {
800 	struct proc *p = td->td_proc;
801 	struct ucred *newcred, *tempcred, *oldcred;
802 	u_int ngrp;
803 	int error;
804 
805 	ngrp = uap->gidsetsize;
806 	if (ngrp > NGROUPS)
807 		return (EINVAL);
808 	mtx_lock(&Giant);
809 	tempcred = crget();
810 	error = copyin(uap->gidset, tempcred->cr_groups, ngrp * sizeof(gid_t));
811 	if (error != 0) {
812 		crfree(tempcred);
813 		mtx_unlock(&Giant);
814 		return (error);
815 	}
816 	newcred = crget();
817 	PROC_LOCK(p);
818 	oldcred = p->p_ucred;
819 	error = suser_cred(oldcred, PRISON_ROOT);
820 	if (error) {
821 		PROC_UNLOCK(p);
822 		crfree(newcred);
823 		crfree(tempcred);
824 		mtx_unlock(&Giant);
825 		return (error);
826 	}
827 
828 	/*
829 	 * XXX A little bit lazy here.  We could test if anything has
830 	 * changed before crcopy() and setting P_SUGID.
831 	 */
832 	crcopy(newcred, oldcred);
833 	if (ngrp < 1) {
834 		/*
835 		 * setgroups(0, NULL) is a legitimate way of clearing the
836 		 * groups vector on non-BSD systems (which generally do not
837 		 * have the egid in the groups[0]).  We risk security holes
838 		 * when running non-BSD software if we do not do the same.
839 		 */
840 		newcred->cr_ngroups = 1;
841 	} else {
842 		bcopy(tempcred->cr_groups, newcred->cr_groups,
843 		    ngrp * sizeof(gid_t));
844 		newcred->cr_ngroups = ngrp;
845 	}
846 	setsugid(p);
847 	p->p_ucred = newcred;
848 	PROC_UNLOCK(p);
849 	crfree(tempcred);
850 	crfree(oldcred);
851 	mtx_unlock(&Giant);
852 	return (0);
853 }
854 
855 #ifndef _SYS_SYSPROTO_H_
856 struct setreuid_args {
857 	uid_t	ruid;
858 	uid_t	euid;
859 };
860 #endif
861 /*
862  * MPSAFE
863  */
864 /* ARGSUSED */
865 int
866 setreuid(register struct thread *td, struct setreuid_args *uap)
867 {
868 	struct proc *p = td->td_proc;
869 	struct ucred *newcred, *oldcred;
870 	uid_t euid, ruid;
871 	struct uidinfo *euip, *ruip;
872 	int error;
873 
874 	euid = uap->euid;
875 	ruid = uap->ruid;
876 	mtx_lock(&Giant);
877 	newcred = crget();
878 	euip = uifind(euid);
879 	ruip = uifind(ruid);
880 	PROC_LOCK(p);
881 	oldcred = p->p_ucred;
882 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
883 	      ruid != oldcred->cr_svuid) ||
884 	     (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
885 	      euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
886 	    (error = suser_cred(oldcred, PRISON_ROOT)) != 0) {
887 		PROC_UNLOCK(p);
888 		uifree(ruip);
889 		uifree(euip);
890 		crfree(newcred);
891 		mtx_unlock(&Giant);
892 		return (error);
893 	}
894 	crcopy(newcred, oldcred);
895 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
896 		change_euid(newcred, euip);
897 		setsugid(p);
898 	}
899 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
900 		change_ruid(newcred, ruip);
901 		setsugid(p);
902 	}
903 	if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
904 	    newcred->cr_svuid != newcred->cr_uid) {
905 		change_svuid(newcred, newcred->cr_uid);
906 		setsugid(p);
907 	}
908 	p->p_ucred = newcred;
909 	PROC_UNLOCK(p);
910 	uifree(ruip);
911 	uifree(euip);
912 	crfree(oldcred);
913 	mtx_unlock(&Giant);
914 	return (0);
915 }
916 
917 #ifndef _SYS_SYSPROTO_H_
918 struct setregid_args {
919 	gid_t	rgid;
920 	gid_t	egid;
921 };
922 #endif
923 /*
924  * MPSAFE
925  */
926 /* ARGSUSED */
927 int
928 setregid(register struct thread *td, struct setregid_args *uap)
929 {
930 	struct proc *p = td->td_proc;
931 	struct ucred *newcred, *oldcred;
932 	gid_t egid, rgid;
933 	int error;
934 
935 	egid = uap->egid;
936 	rgid = uap->rgid;
937 	mtx_lock(&Giant);
938 	newcred = crget();
939 	PROC_LOCK(p);
940 	oldcred = p->p_ucred;
941 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
942 	    rgid != oldcred->cr_svgid) ||
943 	     (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
944 	     egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
945 	    (error = suser_cred(oldcred, PRISON_ROOT)) != 0) {
946 		PROC_UNLOCK(p);
947 		crfree(newcred);
948 		mtx_unlock(&Giant);
949 		return (error);
950 	}
951 
952 	crcopy(newcred, oldcred);
953 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
954 		change_egid(newcred, egid);
955 		setsugid(p);
956 	}
957 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
958 		change_rgid(newcred, rgid);
959 		setsugid(p);
960 	}
961 	if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
962 	    newcred->cr_svgid != newcred->cr_groups[0]) {
963 		change_svgid(newcred, newcred->cr_groups[0]);
964 		setsugid(p);
965 	}
966 	p->p_ucred = newcred;
967 	PROC_UNLOCK(p);
968 	crfree(oldcred);
969 	mtx_unlock(&Giant);
970 	return (0);
971 }
972 
973 /*
974  * setresuid(ruid, euid, suid) is like setreuid except control over the
975  * saved uid is explicit.
976  */
977 
978 #ifndef _SYS_SYSPROTO_H_
979 struct setresuid_args {
980 	uid_t	ruid;
981 	uid_t	euid;
982 	uid_t	suid;
983 };
984 #endif
985 /*
986  * MPSAFE
987  */
988 /* ARGSUSED */
989 int
990 setresuid(register struct thread *td, struct setresuid_args *uap)
991 {
992 	struct proc *p = td->td_proc;
993 	struct ucred *newcred, *oldcred;
994 	uid_t euid, ruid, suid;
995 	struct uidinfo *euip, *ruip;
996 	int error;
997 
998 	euid = uap->euid;
999 	ruid = uap->ruid;
1000 	suid = uap->suid;
1001 	mtx_lock(&Giant);
1002 	newcred = crget();
1003 	euip = uifind(euid);
1004 	ruip = uifind(ruid);
1005 	PROC_LOCK(p);
1006 	oldcred = p->p_ucred;
1007 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1008 	     ruid != oldcred->cr_svuid &&
1009 	      ruid != oldcred->cr_uid) ||
1010 	     (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
1011 	    euid != oldcred->cr_svuid &&
1012 	      euid != oldcred->cr_uid) ||
1013 	     (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
1014 	    suid != oldcred->cr_svuid &&
1015 	      suid != oldcred->cr_uid)) &&
1016 	    (error = suser_cred(oldcred, PRISON_ROOT)) != 0) {
1017 		PROC_UNLOCK(p);
1018 		uifree(ruip);
1019 		uifree(euip);
1020 		crfree(newcred);
1021 		mtx_unlock(&Giant);
1022 		return (error);
1023 	}
1024 
1025 	crcopy(newcred, oldcred);
1026 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1027 		change_euid(newcred, euip);
1028 		setsugid(p);
1029 	}
1030 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1031 		change_ruid(newcred, ruip);
1032 		setsugid(p);
1033 	}
1034 	if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
1035 		change_svuid(newcred, suid);
1036 		setsugid(p);
1037 	}
1038 	p->p_ucred = newcred;
1039 	PROC_UNLOCK(p);
1040 	uifree(ruip);
1041 	uifree(euip);
1042 	crfree(oldcred);
1043 	mtx_unlock(&Giant);
1044 	return (0);
1045 }
1046 
1047 /*
1048  * setresgid(rgid, egid, sgid) is like setregid except control over the
1049  * saved gid is explicit.
1050  */
1051 
1052 #ifndef _SYS_SYSPROTO_H_
1053 struct setresgid_args {
1054 	gid_t	rgid;
1055 	gid_t	egid;
1056 	gid_t	sgid;
1057 };
1058 #endif
1059 /*
1060  * MPSAFE
1061  */
1062 /* ARGSUSED */
1063 int
1064 setresgid(register struct thread *td, struct setresgid_args *uap)
1065 {
1066 	struct proc *p = td->td_proc;
1067 	struct ucred *newcred, *oldcred;
1068 	gid_t egid, rgid, sgid;
1069 	int error;
1070 
1071 	egid = uap->egid;
1072 	rgid = uap->rgid;
1073 	sgid = uap->sgid;
1074 	mtx_lock(&Giant);
1075 	newcred = crget();
1076 	PROC_LOCK(p);
1077 	oldcred = p->p_ucred;
1078 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1079 	      rgid != oldcred->cr_svgid &&
1080 	      rgid != oldcred->cr_groups[0]) ||
1081 	     (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
1082 	      egid != oldcred->cr_svgid &&
1083 	      egid != oldcred->cr_groups[0]) ||
1084 	     (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
1085 	      sgid != oldcred->cr_svgid &&
1086 	      sgid != oldcred->cr_groups[0])) &&
1087 	    (error = suser_cred(oldcred, PRISON_ROOT)) != 0) {
1088 		PROC_UNLOCK(p);
1089 		crfree(newcred);
1090 		mtx_unlock(&Giant);
1091 		return (error);
1092 	}
1093 
1094 	crcopy(newcred, oldcred);
1095 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
1096 		change_egid(newcred, egid);
1097 		setsugid(p);
1098 	}
1099 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1100 		change_rgid(newcred, rgid);
1101 		setsugid(p);
1102 	}
1103 	if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
1104 		change_svgid(newcred, sgid);
1105 		setsugid(p);
1106 	}
1107 	p->p_ucred = newcred;
1108 	PROC_UNLOCK(p);
1109 	crfree(oldcred);
1110 	mtx_unlock(&Giant);
1111 	return (0);
1112 }
1113 
1114 #ifndef _SYS_SYSPROTO_H_
1115 struct getresuid_args {
1116 	uid_t	*ruid;
1117 	uid_t	*euid;
1118 	uid_t	*suid;
1119 };
1120 #endif
1121 /*
1122  * MPSAFE
1123  */
1124 /* ARGSUSED */
1125 int
1126 getresuid(register struct thread *td, struct getresuid_args *uap)
1127 {
1128 	struct ucred *cred;
1129 	int error1 = 0, error2 = 0, error3 = 0;
1130 
1131 	cred = td->td_ucred;
1132 	if (uap->ruid)
1133 		error1 = copyout(&cred->cr_ruid,
1134 		    uap->ruid, sizeof(cred->cr_ruid));
1135 	if (uap->euid)
1136 		error2 = copyout(&cred->cr_uid,
1137 		    uap->euid, sizeof(cred->cr_uid));
1138 	if (uap->suid)
1139 		error3 = copyout(&cred->cr_svuid,
1140 		    uap->suid, sizeof(cred->cr_svuid));
1141 	return (error1 ? error1 : error2 ? error2 : error3);
1142 }
1143 
1144 #ifndef _SYS_SYSPROTO_H_
1145 struct getresgid_args {
1146 	gid_t	*rgid;
1147 	gid_t	*egid;
1148 	gid_t	*sgid;
1149 };
1150 #endif
1151 /*
1152  * MPSAFE
1153  */
1154 /* ARGSUSED */
1155 int
1156 getresgid(register struct thread *td, struct getresgid_args *uap)
1157 {
1158 	struct ucred *cred;
1159 	int error1 = 0, error2 = 0, error3 = 0;
1160 
1161 	cred = td->td_ucred;
1162 	if (uap->rgid)
1163 		error1 = copyout(&cred->cr_rgid,
1164 		    uap->rgid, sizeof(cred->cr_rgid));
1165 	if (uap->egid)
1166 		error2 = copyout(&cred->cr_groups[0],
1167 		    uap->egid, sizeof(cred->cr_groups[0]));
1168 	if (uap->sgid)
1169 		error3 = copyout(&cred->cr_svgid,
1170 		    uap->sgid, sizeof(cred->cr_svgid));
1171 	return (error1 ? error1 : error2 ? error2 : error3);
1172 }
1173 
1174 #ifndef _SYS_SYSPROTO_H_
1175 struct issetugid_args {
1176 	int dummy;
1177 };
1178 #endif
1179 /*
1180  * NOT MPSAFE?
1181  */
1182 /* ARGSUSED */
1183 int
1184 issetugid(register struct thread *td, struct issetugid_args *uap)
1185 {
1186 	struct proc *p = td->td_proc;
1187 
1188 	/*
1189 	 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
1190 	 * we use P_SUGID because we consider changing the owners as
1191 	 * "tainting" as well.
1192 	 * This is significant for procs that start as root and "become"
1193 	 * a user without an exec - programs cannot know *everything*
1194 	 * that libc *might* have put in their data segment.
1195 	 */
1196 	PROC_LOCK(p);
1197 	td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
1198 	PROC_UNLOCK(p);
1199 	return (0);
1200 }
1201 
1202 /*
1203  * MPSAFE
1204  */
1205 int
1206 __setugid(struct thread *td, struct __setugid_args *uap)
1207 {
1208 #ifdef REGRESSION
1209 	struct proc *p;
1210 
1211 	p = td->td_proc;
1212 	switch (uap->flag) {
1213 	case 0:
1214 		mtx_lock(&Giant);
1215 		PROC_LOCK(p);
1216 		p->p_flag &= ~P_SUGID;
1217 		PROC_UNLOCK(p);
1218 		mtx_unlock(&Giant);
1219 		return (0);
1220 	case 1:
1221 		mtx_lock(&Giant);
1222 		PROC_LOCK(p);
1223 		p->p_flag |= P_SUGID;
1224 		PROC_UNLOCK(p);
1225 		mtx_unlock(&Giant);
1226 		return (0);
1227 	default:
1228 		return (EINVAL);
1229 	}
1230 #else /* !REGRESSION */
1231 
1232 	return (ENOSYS);
1233 #endif /* REGRESSION */
1234 }
1235 
1236 /*
1237  * Check if gid is a member of the group set.
1238  *
1239  * MPSAFE (cred must be held)
1240  */
1241 int
1242 groupmember(gid_t gid, struct ucred *cred)
1243 {
1244 	register gid_t *gp;
1245 	gid_t *egp;
1246 
1247 	egp = &(cred->cr_groups[cred->cr_ngroups]);
1248 	for (gp = cred->cr_groups; gp < egp; gp++)
1249 		if (*gp == gid)
1250 			return (1);
1251 	return (0);
1252 }
1253 
1254 /*
1255  * `suser_enabled' (which can be set by the security.suser_enabled
1256  * sysctl) determines whether the system 'super-user' policy is in effect.
1257  * If it is nonzero, an effective uid of 0 connotes special privilege,
1258  * overriding many mandatory and discretionary protections.  If it is zero,
1259  * uid 0 is offered no special privilege in the kernel security policy.
1260  * Setting it to zero may seriously impact the functionality of many
1261  * existing userland programs, and should not be done without careful
1262  * consideration of the consequences.
1263  */
1264 int	suser_enabled = 1;
1265 SYSCTL_INT(_security_bsd, OID_AUTO, suser_enabled, CTLFLAG_RW,
1266     &suser_enabled, 0, "processes with uid 0 have privilege");
1267 TUNABLE_INT("security.bsd.suser_enabled", &suser_enabled);
1268 
1269 /*
1270  * Test whether the specified credentials imply "super-user" privilege.
1271  * Return 0 or EPERM.  The flag argument is currently used only to
1272  * specify jail interaction.
1273  */
1274 int
1275 suser_cred(struct ucred *cred, int flag)
1276 {
1277 
1278 	if (!suser_enabled)
1279 		return (EPERM);
1280 	if (cred->cr_uid != 0)
1281 		return (EPERM);
1282 	if (jailed(cred) && !(flag & PRISON_ROOT))
1283 		return (EPERM);
1284 	return (0);
1285 }
1286 
1287 /*
1288  * Shortcut to hide contents of struct td and struct proc from the
1289  * caller, promoting binary compatibility.
1290  */
1291 int
1292 suser(struct thread *td)
1293 {
1294 
1295 	return (suser_cred(td->td_ucred, 0));
1296 }
1297 
1298 /*
1299  * Test the active securelevel against a given level.  securelevel_gt()
1300  * implements (securelevel > level).  securelevel_ge() implements
1301  * (securelevel >= level).  Note that the logic is inverted -- these
1302  * functions return EPERM on "success" and 0 on "failure".
1303  *
1304  * MPSAFE
1305  */
1306 int
1307 securelevel_gt(struct ucred *cr, int level)
1308 {
1309 	int active_securelevel;
1310 
1311 	active_securelevel = securelevel;
1312 	KASSERT(cr != NULL, ("securelevel_gt: null cr"));
1313 	if (cr->cr_prison != NULL) {
1314 		mtx_lock(&cr->cr_prison->pr_mtx);
1315 		active_securelevel = imax(cr->cr_prison->pr_securelevel,
1316 		    active_securelevel);
1317 		mtx_unlock(&cr->cr_prison->pr_mtx);
1318 	}
1319 	return (active_securelevel > level ? EPERM : 0);
1320 }
1321 
1322 int
1323 securelevel_ge(struct ucred *cr, int level)
1324 {
1325 	int active_securelevel;
1326 
1327 	active_securelevel = securelevel;
1328 	KASSERT(cr != NULL, ("securelevel_ge: null cr"));
1329 	if (cr->cr_prison != NULL) {
1330 		mtx_lock(&cr->cr_prison->pr_mtx);
1331 		active_securelevel = imax(cr->cr_prison->pr_securelevel,
1332 		    active_securelevel);
1333 		mtx_unlock(&cr->cr_prison->pr_mtx);
1334 	}
1335 	return (active_securelevel >= level ? EPERM : 0);
1336 }
1337 
1338 /*
1339  * 'see_other_uids' determines whether or not visibility of processes
1340  * and sockets with credentials holding different real uids is possible
1341  * using a variety of system MIBs.
1342  * XXX: data declarations should be together near the beginning of the file.
1343  */
1344 static int	see_other_uids = 1;
1345 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
1346     &see_other_uids, 0,
1347     "Unprivileged processes may see subjects/objects with different real uid");
1348 
1349 /*-
1350  * Determine if u1 "can see" the subject specified by u2, according to the
1351  * 'see_other_uids' policy.
1352  * Returns: 0 for permitted, ESRCH otherwise
1353  * Locks: none
1354  * References: *u1 and *u2 must not change during the call
1355  *             u1 may equal u2, in which case only one reference is required
1356  */
1357 static int
1358 cr_seeotheruids(struct ucred *u1, struct ucred *u2)
1359 {
1360 
1361 	if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
1362 		if (suser_cred(u1, PRISON_ROOT) != 0)
1363 			return (ESRCH);
1364 	}
1365 	return (0);
1366 }
1367 
1368 /*-
1369  * Determine if u1 "can see" the subject specified by u2.
1370  * Returns: 0 for permitted, an errno value otherwise
1371  * Locks: none
1372  * References: *u1 and *u2 must not change during the call
1373  *             u1 may equal u2, in which case only one reference is required
1374  */
1375 int
1376 cr_cansee(struct ucred *u1, struct ucred *u2)
1377 {
1378 	int error;
1379 
1380 	if ((error = prison_check(u1, u2)))
1381 		return (error);
1382 #ifdef MAC
1383 	if ((error = mac_check_cred_visible(u1, u2)))
1384 		return (error);
1385 #endif
1386 	if ((error = cr_seeotheruids(u1, u2)))
1387 		return (error);
1388 	return (0);
1389 }
1390 
1391 /*-
1392  * Determine if td "can see" the subject specified by p.
1393  * Returns: 0 for permitted, an errno value otherwise
1394  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
1395  *        should be curthread.
1396  * References: td and p must be valid for the lifetime of the call
1397  */
1398 int
1399 p_cansee(struct thread *td, struct proc *p)
1400 {
1401 
1402 	/* Wrap cr_cansee() for all functionality. */
1403 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1404 	PROC_LOCK_ASSERT(p, MA_OWNED);
1405 	return (cr_cansee(td->td_ucred, p->p_ucred));
1406 }
1407 
1408 /*-
1409  * Determine whether cred may deliver the specified signal to proc.
1410  * Returns: 0 for permitted, an errno value otherwise.
1411  * Locks: A lock must be held for proc.
1412  * References: cred and proc must be valid for the lifetime of the call.
1413  */
1414 int
1415 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
1416 {
1417 	int error;
1418 
1419 	PROC_LOCK_ASSERT(proc, MA_OWNED);
1420 	/*
1421 	 * Jail semantics limit the scope of signalling to proc in the
1422 	 * same jail as cred, if cred is in jail.
1423 	 */
1424 	error = prison_check(cred, proc->p_ucred);
1425 	if (error)
1426 		return (error);
1427 #ifdef MAC
1428 	if ((error = mac_check_proc_signal(cred, proc, signum)))
1429 		return (error);
1430 #endif
1431 	error = cr_seeotheruids(cred, proc->p_ucred);
1432 	if (error)
1433 		return (error);
1434 
1435 	/*
1436 	 * UNIX signal semantics depend on the status of the P_SUGID
1437 	 * bit on the target process.  If the bit is set, then additional
1438 	 * restrictions are placed on the set of available signals.
1439 	 */
1440 	if (proc->p_flag & P_SUGID) {
1441 		switch (signum) {
1442 		case 0:
1443 		case SIGKILL:
1444 		case SIGINT:
1445 		case SIGTERM:
1446 		case SIGSTOP:
1447 		case SIGTTIN:
1448 		case SIGTTOU:
1449 		case SIGTSTP:
1450 		case SIGHUP:
1451 		case SIGUSR1:
1452 		case SIGUSR2:
1453 			/*
1454 			 * Generally, permit job and terminal control
1455 			 * signals.
1456 			 */
1457 			break;
1458 		default:
1459 			/* Not permitted without privilege. */
1460 			error = suser_cred(cred, PRISON_ROOT);
1461 			if (error)
1462 				return (error);
1463 		}
1464 	}
1465 
1466 	/*
1467 	 * Generally, the target credential's ruid or svuid must match the
1468 	 * subject credential's ruid or euid.
1469 	 */
1470 	if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
1471 	    cred->cr_ruid != proc->p_ucred->cr_svuid &&
1472 	    cred->cr_uid != proc->p_ucred->cr_ruid &&
1473 	    cred->cr_uid != proc->p_ucred->cr_svuid) {
1474 		/* Not permitted without privilege. */
1475 		error = suser_cred(cred, PRISON_ROOT);
1476 		if (error)
1477 			return (error);
1478 	}
1479 
1480 	return (0);
1481 }
1482 
1483 
1484 /*-
1485  * Determine whether td may deliver the specified signal to p.
1486  * Returns: 0 for permitted, an errno value otherwise
1487  * Locks: Sufficient locks to protect various components of td and p
1488  *        must be held.  td must be curthread, and a lock must be
1489  *        held for p.
1490  * References: td and p must be valid for the lifetime of the call
1491  */
1492 int
1493 p_cansignal(struct thread *td, struct proc *p, int signum)
1494 {
1495 
1496 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1497 	PROC_LOCK_ASSERT(p, MA_OWNED);
1498 	if (td->td_proc == p)
1499 		return (0);
1500 
1501 	/*
1502 	 * UNIX signalling semantics require that processes in the same
1503 	 * session always be able to deliver SIGCONT to one another,
1504 	 * overriding the remaining protections.
1505 	 */
1506 	/* XXX: This will require an additional lock of some sort. */
1507 	if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
1508 		return (0);
1509 
1510 	return (cr_cansignal(td->td_ucred, p, signum));
1511 }
1512 
1513 /*-
1514  * Determine whether td may reschedule p.
1515  * Returns: 0 for permitted, an errno value otherwise
1516  * Locks: Sufficient locks to protect various components of td and p
1517  *        must be held.  td must be curthread, and a lock must
1518  *        be held for p.
1519  * References: td and p must be valid for the lifetime of the call
1520  */
1521 int
1522 p_cansched(struct thread *td, struct proc *p)
1523 {
1524 	int error;
1525 
1526 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1527 	PROC_LOCK_ASSERT(p, MA_OWNED);
1528 	if (td->td_proc == p)
1529 		return (0);
1530 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1531 		return (error);
1532 #ifdef MAC
1533 	if ((error = mac_check_proc_sched(td->td_ucred, p)))
1534 		return (error);
1535 #endif
1536 	if ((error = cr_seeotheruids(td->td_ucred, p->p_ucred)))
1537 		return (error);
1538 	if (td->td_ucred->cr_ruid == p->p_ucred->cr_ruid)
1539 		return (0);
1540 	if (td->td_ucred->cr_uid == p->p_ucred->cr_ruid)
1541 		return (0);
1542 	if (suser_cred(td->td_ucred, PRISON_ROOT) == 0)
1543 		return (0);
1544 
1545 #ifdef CAPABILITIES
1546 	if (!cap_check(NULL, td, CAP_SYS_NICE, PRISON_ROOT))
1547 		return (0);
1548 #endif
1549 
1550 	return (EPERM);
1551 }
1552 
1553 /*
1554  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
1555  * unprivileged inter-process debugging services, including some procfs
1556  * functionality, ptrace(), and ktrace().  In the past, inter-process
1557  * debugging has been involved in a variety of security problems, and sites
1558  * not requiring the service might choose to disable it when hardening
1559  * systems.
1560  *
1561  * XXX: Should modifying and reading this variable require locking?
1562  * XXX: data declarations should be together near the beginning of the file.
1563  */
1564 static int	unprivileged_proc_debug = 1;
1565 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_proc_debug, CTLFLAG_RW,
1566     &unprivileged_proc_debug, 0,
1567     "Unprivileged processes may use process debugging facilities");
1568 
1569 /*-
1570  * Determine whether td may debug p.
1571  * Returns: 0 for permitted, an errno value otherwise
1572  * Locks: Sufficient locks to protect various components of td and p
1573  *        must be held.  td must be curthread, and a lock must
1574  *        be held for p.
1575  * References: td and p must be valid for the lifetime of the call
1576  */
1577 int
1578 p_candebug(struct thread *td, struct proc *p)
1579 {
1580 	int credentialchanged, error, grpsubset, i, uidsubset;
1581 
1582 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1583 	PROC_LOCK_ASSERT(p, MA_OWNED);
1584 	if (!unprivileged_proc_debug) {
1585 		error = suser_cred(td->td_ucred, PRISON_ROOT);
1586 		if (error)
1587 			return (error);
1588 	}
1589 	if (td->td_proc == p)
1590 		return (0);
1591 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1592 		return (error);
1593 #ifdef MAC
1594 	if ((error = mac_check_proc_debug(td->td_ucred, p)))
1595 		return (error);
1596 #endif
1597 	if ((error = cr_seeotheruids(td->td_ucred, p->p_ucred)))
1598 		return (error);
1599 
1600 	/*
1601 	 * Is p's group set a subset of td's effective group set?  This
1602 	 * includes p's egid, group access list, rgid, and svgid.
1603 	 */
1604 	grpsubset = 1;
1605 	for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
1606 		if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
1607 			grpsubset = 0;
1608 			break;
1609 		}
1610 	}
1611 	grpsubset = grpsubset &&
1612 	    groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
1613 	    groupmember(p->p_ucred->cr_svgid, td->td_ucred);
1614 
1615 	/*
1616 	 * Are the uids present in p's credential equal to td's
1617 	 * effective uid?  This includes p's euid, svuid, and ruid.
1618 	 */
1619 	uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
1620 	    td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
1621 	    td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
1622 
1623 	/*
1624 	 * Has the credential of the process changed since the last exec()?
1625 	 */
1626 	credentialchanged = (p->p_flag & P_SUGID);
1627 
1628 	/*
1629 	 * If p's gids aren't a subset, or the uids aren't a subset,
1630 	 * or the credential has changed, require appropriate privilege
1631 	 * for td to debug p.  For POSIX.1e capabilities, this will
1632 	 * require CAP_SYS_PTRACE.
1633 	 */
1634 	if (!grpsubset || !uidsubset || credentialchanged) {
1635 		error = suser_cred(td->td_ucred, PRISON_ROOT);
1636 		if (error)
1637 			return (error);
1638 	}
1639 
1640 	/* Can't trace init when securelevel > 0. */
1641 	if (p == initproc) {
1642 		error = securelevel_gt(td->td_ucred, 0);
1643 		if (error)
1644 			return (error);
1645 	}
1646 
1647 	/*
1648 	 * Can't trace a process that's currently exec'ing.
1649 	 * XXX: Note, this is not a security policy decision, it's a
1650 	 * basic correctness/functionality decision.  Therefore, this check
1651 	 * should be moved to the caller's of p_candebug().
1652 	 */
1653 	if ((p->p_flag & P_INEXEC) != 0)
1654 		return (EAGAIN);
1655 
1656 	return (0);
1657 }
1658 
1659 /*-
1660  * Determine whether the subject represented by cred can "see" a socket.
1661  * Returns: 0 for permitted, ENOENT otherwise.
1662  */
1663 int
1664 cr_canseesocket(struct ucred *cred, struct socket *so)
1665 {
1666 	int error;
1667 
1668 	error = prison_check(cred, so->so_cred);
1669 	if (error)
1670 		return (ENOENT);
1671 #ifdef MAC
1672 	error = mac_check_socket_visible(cred, so);
1673 	if (error)
1674 		return (error);
1675 #endif
1676 	if (cr_seeotheruids(cred, so->so_cred))
1677 		return (ENOENT);
1678 
1679 	return (0);
1680 }
1681 
1682 /*
1683  * Allocate a zeroed cred structure.
1684  */
1685 struct ucred *
1686 crget(void)
1687 {
1688 	register struct ucred *cr;
1689 
1690 	MALLOC(cr, struct ucred *, sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
1691 	cr->cr_ref = 1;
1692 	cr->cr_mtxp = mtx_pool_find(cr);
1693 #ifdef MAC
1694 	mac_init_cred(cr);
1695 #endif
1696 	return (cr);
1697 }
1698 
1699 /*
1700  * Claim another reference to a ucred structure.
1701  */
1702 struct ucred *
1703 crhold(struct ucred *cr)
1704 {
1705 
1706 	mtx_lock(cr->cr_mtxp);
1707 	cr->cr_ref++;
1708 	mtx_unlock(cr->cr_mtxp);
1709 	return (cr);
1710 }
1711 
1712 /*
1713  * Free a cred structure.
1714  * Throws away space when ref count gets to 0.
1715  */
1716 void
1717 crfree(struct ucred *cr)
1718 {
1719 	struct mtx *mtxp = cr->cr_mtxp;
1720 
1721 	mtx_lock(mtxp);
1722 	KASSERT(cr->cr_ref > 0, ("bad ucred refcount: %d", cr->cr_ref));
1723 	if (--cr->cr_ref == 0) {
1724 		/*
1725 		 * Some callers of crget(), such as nfs_statfs(),
1726 		 * allocate a temporary credential, but don't
1727 		 * allocate a uidinfo structure.
1728 		 */
1729 		mtx_unlock(mtxp);
1730 		mtx_lock(&Giant);
1731 		if (cr->cr_uidinfo != NULL)
1732 			uifree(cr->cr_uidinfo);
1733 		if (cr->cr_ruidinfo != NULL)
1734 			uifree(cr->cr_ruidinfo);
1735 		/*
1736 		 * Free a prison, if any.
1737 		 */
1738 		if (jailed(cr))
1739 			prison_free(cr->cr_prison);
1740 #ifdef MAC
1741 		mac_destroy_cred(cr);
1742 #endif
1743 		FREE(cr, M_CRED);
1744 		mtx_unlock(&Giant);
1745 	} else {
1746 		mtx_unlock(mtxp);
1747 	}
1748 }
1749 
1750 /*
1751  * Check to see if this ucred is shared.
1752  */
1753 int
1754 crshared(struct ucred *cr)
1755 {
1756 	int shared;
1757 
1758 	mtx_lock(cr->cr_mtxp);
1759 	shared = (cr->cr_ref > 1);
1760 	mtx_unlock(cr->cr_mtxp);
1761 	return (shared);
1762 }
1763 
1764 /*
1765  * Copy a ucred's contents from a template.  Does not block.
1766  */
1767 void
1768 crcopy(struct ucred *dest, struct ucred *src)
1769 {
1770 
1771 	KASSERT(crshared(dest) == 0, ("crcopy of shared ucred"));
1772 	bcopy(&src->cr_startcopy, &dest->cr_startcopy,
1773 	    (unsigned)((caddr_t)&src->cr_endcopy -
1774 		(caddr_t)&src->cr_startcopy));
1775 	uihold(dest->cr_uidinfo);
1776 	uihold(dest->cr_ruidinfo);
1777 	if (jailed(dest))
1778 		prison_hold(dest->cr_prison);
1779 #ifdef MAC
1780 	mac_create_cred(src, dest);
1781 #endif
1782 }
1783 
1784 /*
1785  * Dup cred struct to a new held one.
1786  */
1787 struct ucred *
1788 crdup(struct ucred *cr)
1789 {
1790 	struct ucred *newcr;
1791 
1792 	newcr = crget();
1793 	crcopy(newcr, cr);
1794 	return (newcr);
1795 }
1796 
1797 #ifdef DIAGNOSTIC
1798 void
1799 cred_free_thread(struct thread *td)
1800 {
1801 	struct ucred *cred;
1802 
1803 	cred = td->td_ucred;
1804 	td->td_ucred = NULL;
1805 	if (cred != NULL)
1806 		crfree(cred);
1807 }
1808 #endif
1809 
1810 /*
1811  * Fill in a struct xucred based on a struct ucred.
1812  */
1813 void
1814 cru2x(struct ucred *cr, struct xucred *xcr)
1815 {
1816 
1817 	bzero(xcr, sizeof(*xcr));
1818 	xcr->cr_version = XUCRED_VERSION;
1819 	xcr->cr_uid = cr->cr_uid;
1820 	xcr->cr_ngroups = cr->cr_ngroups;
1821 	bcopy(cr->cr_groups, xcr->cr_groups, sizeof(cr->cr_groups));
1822 }
1823 
1824 /*
1825  * small routine to swap a thread's current ucred for the correct one
1826  * taken from the process.
1827  */
1828 void
1829 cred_update_thread(struct thread *td)
1830 {
1831 	struct proc *p;
1832 	struct ucred *cred;
1833 
1834 	p = td->td_proc;
1835 	cred = td->td_ucred;
1836 	mtx_lock(&Giant);
1837 	PROC_LOCK(p);
1838 	td->td_ucred = crhold(p->p_ucred);
1839 	PROC_UNLOCK(p);
1840 	if (cred != NULL)
1841 		crfree(cred);
1842 	mtx_unlock(&Giant);
1843 }
1844 
1845 /*
1846  * Get login name, if available.
1847  */
1848 #ifndef _SYS_SYSPROTO_H_
1849 struct getlogin_args {
1850 	char	*namebuf;
1851 	u_int	namelen;
1852 };
1853 #endif
1854 /*
1855  * MPSAFE
1856  */
1857 /* ARGSUSED */
1858 int
1859 getlogin(struct thread *td, struct getlogin_args *uap)
1860 {
1861 	int error;
1862 	char login[MAXLOGNAME];
1863 	struct proc *p = td->td_proc;
1864 
1865 	if (uap->namelen > MAXLOGNAME)
1866 		uap->namelen = MAXLOGNAME;
1867 	PROC_LOCK(p);
1868 	SESS_LOCK(p->p_session);
1869 	bcopy(p->p_session->s_login, login, uap->namelen);
1870 	SESS_UNLOCK(p->p_session);
1871 	PROC_UNLOCK(p);
1872 	error = copyout(login, uap->namebuf, uap->namelen);
1873 	return(error);
1874 }
1875 
1876 /*
1877  * Set login name.
1878  */
1879 #ifndef _SYS_SYSPROTO_H_
1880 struct setlogin_args {
1881 	char	*namebuf;
1882 };
1883 #endif
1884 /*
1885  * MPSAFE
1886  */
1887 /* ARGSUSED */
1888 int
1889 setlogin(struct thread *td, struct setlogin_args *uap)
1890 {
1891 	struct proc *p = td->td_proc;
1892 	int error;
1893 	char logintmp[MAXLOGNAME];
1894 
1895 	error = suser_cred(td->td_ucred, PRISON_ROOT);
1896 	if (error)
1897 		return (error);
1898 	error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
1899 	if (error == ENAMETOOLONG)
1900 		error = EINVAL;
1901 	else if (!error) {
1902 		PROC_LOCK(p);
1903 		SESS_LOCK(p->p_session);
1904 		(void) memcpy(p->p_session->s_login, logintmp,
1905 		    sizeof(logintmp));
1906 		SESS_UNLOCK(p->p_session);
1907 		PROC_UNLOCK(p);
1908 	}
1909 	return (error);
1910 }
1911 
1912 void
1913 setsugid(struct proc *p)
1914 {
1915 
1916 	PROC_LOCK_ASSERT(p, MA_OWNED);
1917 	p->p_flag |= P_SUGID;
1918 	if (!(p->p_pfsflags & PF_ISUGID))
1919 		p->p_stops = 0;
1920 }
1921 
1922 /*-
1923  * Change a process's effective uid.
1924  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
1925  * References: newcred must be an exclusive credential reference for the
1926  *             duration of the call.
1927  */
1928 void
1929 change_euid(struct ucred *newcred, struct uidinfo *euip)
1930 {
1931 
1932 	newcred->cr_uid = euip->ui_uid;
1933 	uihold(euip);
1934 	uifree(newcred->cr_uidinfo);
1935 	newcred->cr_uidinfo = euip;
1936 }
1937 
1938 /*-
1939  * Change a process's effective gid.
1940  * Side effects: newcred->cr_gid will be modified.
1941  * References: newcred must be an exclusive credential reference for the
1942  *             duration of the call.
1943  */
1944 void
1945 change_egid(struct ucred *newcred, gid_t egid)
1946 {
1947 
1948 	newcred->cr_groups[0] = egid;
1949 }
1950 
1951 /*-
1952  * Change a process's real uid.
1953  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
1954  *               will be updated, and the old and new cr_ruidinfo proc
1955  *               counts will be updated.
1956  * References: newcred must be an exclusive credential reference for the
1957  *             duration of the call.
1958  */
1959 void
1960 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
1961 {
1962 
1963 	(void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
1964 	newcred->cr_ruid = ruip->ui_uid;
1965 	uihold(ruip);
1966 	uifree(newcred->cr_ruidinfo);
1967 	newcred->cr_ruidinfo = ruip;
1968 	(void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
1969 }
1970 
1971 /*-
1972  * Change a process's real gid.
1973  * Side effects: newcred->cr_rgid will be updated.
1974  * References: newcred must be an exclusive credential reference for the
1975  *             duration of the call.
1976  */
1977 void
1978 change_rgid(struct ucred *newcred, gid_t rgid)
1979 {
1980 
1981 	newcred->cr_rgid = rgid;
1982 }
1983 
1984 /*-
1985  * Change a process's saved uid.
1986  * Side effects: newcred->cr_svuid will be updated.
1987  * References: newcred must be an exclusive credential reference for the
1988  *             duration of the call.
1989  */
1990 void
1991 change_svuid(struct ucred *newcred, uid_t svuid)
1992 {
1993 
1994 	newcred->cr_svuid = svuid;
1995 }
1996 
1997 /*-
1998  * Change a process's saved gid.
1999  * Side effects: newcred->cr_svgid will be updated.
2000  * References: newcred must be an exclusive credential reference for the
2001  *             duration of the call.
2002  */
2003 void
2004 change_svgid(struct ucred *newcred, gid_t svgid)
2005 {
2006 
2007 	newcred->cr_svgid = svgid;
2008 }
2009