xref: /freebsd/sys/kern/kern_prot.c (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
5  *	The Regents of the University of California.
6  * (c) UNIX System Laboratories, Inc.
7  * Copyright (c) 2000-2001 Robert N. M. Watson.
8  * All rights reserved.
9  *
10  * All or some portions of this file are derived from material licensed
11  * to the University of California by American Telephone and Telegraph
12  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
13  * the permission of UNIX System Laboratories, Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  */
39 
40 /*
41  * System calls related to processes and protection
42  */
43 
44 #include <sys/cdefs.h>
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/acct.h>
51 #include <sys/kdb.h>
52 #include <sys/kernel.h>
53 #include <sys/lock.h>
54 #include <sys/loginclass.h>
55 #include <sys/malloc.h>
56 #include <sys/mutex.h>
57 #include <sys/ptrace.h>
58 #include <sys/refcount.h>
59 #include <sys/sx.h>
60 #include <sys/priv.h>
61 #include <sys/proc.h>
62 #ifdef COMPAT_43
63 #include <sys/sysent.h>
64 #endif
65 #include <sys/sysproto.h>
66 #include <sys/jail.h>
67 #include <sys/racct.h>
68 #include <sys/rctl.h>
69 #include <sys/resourcevar.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
72 #include <sys/syscallsubr.h>
73 #include <sys/sysctl.h>
74 
75 #include <vm/uma.h>
76 
77 #ifdef REGRESSION
78 FEATURE(regression,
79     "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
80 #endif
81 
82 #include <security/audit/audit.h>
83 #include <security/mac/mac_framework.h>
84 
85 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
86 
87 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
88     "BSD security policy");
89 
90 static void crfree_final(struct ucred *cr);
91 static void crsetgroups_locked(struct ucred *cr, int ngrp,
92     gid_t *groups);
93 
94 static int cr_canseeotheruids(struct ucred *u1, struct ucred *u2);
95 static int cr_canseeothergids(struct ucred *u1, struct ucred *u2);
96 static int cr_canseejailproc(struct ucred *u1, struct ucred *u2);
97 
98 #ifndef _SYS_SYSPROTO_H_
99 struct getpid_args {
100 	int	dummy;
101 };
102 #endif
103 /* ARGSUSED */
104 int
105 sys_getpid(struct thread *td, struct getpid_args *uap)
106 {
107 	struct proc *p = td->td_proc;
108 
109 	td->td_retval[0] = p->p_pid;
110 #if defined(COMPAT_43)
111 	if (SV_PROC_FLAG(p, SV_AOUT))
112 		td->td_retval[1] = kern_getppid(td);
113 #endif
114 	return (0);
115 }
116 
117 #ifndef _SYS_SYSPROTO_H_
118 struct getppid_args {
119         int     dummy;
120 };
121 #endif
122 /* ARGSUSED */
123 int
124 sys_getppid(struct thread *td, struct getppid_args *uap)
125 {
126 
127 	td->td_retval[0] = kern_getppid(td);
128 	return (0);
129 }
130 
131 int
132 kern_getppid(struct thread *td)
133 {
134 	struct proc *p = td->td_proc;
135 
136 	return (p->p_oppid);
137 }
138 
139 /*
140  * Get process group ID; note that POSIX getpgrp takes no parameter.
141  */
142 #ifndef _SYS_SYSPROTO_H_
143 struct getpgrp_args {
144         int     dummy;
145 };
146 #endif
147 int
148 sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
149 {
150 	struct proc *p = td->td_proc;
151 
152 	PROC_LOCK(p);
153 	td->td_retval[0] = p->p_pgrp->pg_id;
154 	PROC_UNLOCK(p);
155 	return (0);
156 }
157 
158 /* Get an arbitrary pid's process group id */
159 #ifndef _SYS_SYSPROTO_H_
160 struct getpgid_args {
161 	pid_t	pid;
162 };
163 #endif
164 int
165 sys_getpgid(struct thread *td, struct getpgid_args *uap)
166 {
167 	struct proc *p;
168 	int error;
169 
170 	if (uap->pid == 0) {
171 		p = td->td_proc;
172 		PROC_LOCK(p);
173 	} else {
174 		p = pfind(uap->pid);
175 		if (p == NULL)
176 			return (ESRCH);
177 		error = p_cansee(td, p);
178 		if (error) {
179 			PROC_UNLOCK(p);
180 			return (error);
181 		}
182 	}
183 	td->td_retval[0] = p->p_pgrp->pg_id;
184 	PROC_UNLOCK(p);
185 	return (0);
186 }
187 
188 /*
189  * Get an arbitrary pid's session id.
190  */
191 #ifndef _SYS_SYSPROTO_H_
192 struct getsid_args {
193 	pid_t	pid;
194 };
195 #endif
196 int
197 sys_getsid(struct thread *td, struct getsid_args *uap)
198 {
199 
200 	return (kern_getsid(td, uap->pid));
201 }
202 
203 int
204 kern_getsid(struct thread *td, pid_t pid)
205 {
206 	struct proc *p;
207 	int error;
208 
209 	if (pid == 0) {
210 		p = td->td_proc;
211 		PROC_LOCK(p);
212 	} else {
213 		p = pfind(pid);
214 		if (p == NULL)
215 			return (ESRCH);
216 		error = p_cansee(td, p);
217 		if (error) {
218 			PROC_UNLOCK(p);
219 			return (error);
220 		}
221 	}
222 	td->td_retval[0] = p->p_session->s_sid;
223 	PROC_UNLOCK(p);
224 	return (0);
225 }
226 
227 #ifndef _SYS_SYSPROTO_H_
228 struct getuid_args {
229         int     dummy;
230 };
231 #endif
232 /* ARGSUSED */
233 int
234 sys_getuid(struct thread *td, struct getuid_args *uap)
235 {
236 
237 	td->td_retval[0] = td->td_ucred->cr_ruid;
238 #if defined(COMPAT_43)
239 	td->td_retval[1] = td->td_ucred->cr_uid;
240 #endif
241 	return (0);
242 }
243 
244 #ifndef _SYS_SYSPROTO_H_
245 struct geteuid_args {
246         int     dummy;
247 };
248 #endif
249 /* ARGSUSED */
250 int
251 sys_geteuid(struct thread *td, struct geteuid_args *uap)
252 {
253 
254 	td->td_retval[0] = td->td_ucred->cr_uid;
255 	return (0);
256 }
257 
258 #ifndef _SYS_SYSPROTO_H_
259 struct getgid_args {
260         int     dummy;
261 };
262 #endif
263 /* ARGSUSED */
264 int
265 sys_getgid(struct thread *td, struct getgid_args *uap)
266 {
267 
268 	td->td_retval[0] = td->td_ucred->cr_rgid;
269 #if defined(COMPAT_43)
270 	td->td_retval[1] = td->td_ucred->cr_groups[0];
271 #endif
272 	return (0);
273 }
274 
275 /*
276  * Get effective group ID.  The "egid" is groups[0], and could be obtained
277  * via getgroups.  This syscall exists because it is somewhat painful to do
278  * correctly in a library function.
279  */
280 #ifndef _SYS_SYSPROTO_H_
281 struct getegid_args {
282         int     dummy;
283 };
284 #endif
285 /* ARGSUSED */
286 int
287 sys_getegid(struct thread *td, struct getegid_args *uap)
288 {
289 
290 	td->td_retval[0] = td->td_ucred->cr_groups[0];
291 	return (0);
292 }
293 
294 #ifndef _SYS_SYSPROTO_H_
295 struct getgroups_args {
296 	int	gidsetsize;
297 	gid_t	*gidset;
298 };
299 #endif
300 int
301 sys_getgroups(struct thread *td, struct getgroups_args *uap)
302 {
303 	struct ucred *cred;
304 	int ngrp, error;
305 
306 	cred = td->td_ucred;
307 	ngrp = cred->cr_ngroups;
308 
309 	if (uap->gidsetsize == 0) {
310 		error = 0;
311 		goto out;
312 	}
313 	if (uap->gidsetsize < ngrp)
314 		return (EINVAL);
315 
316 	error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
317 out:
318 	td->td_retval[0] = ngrp;
319 	return (error);
320 }
321 
322 #ifndef _SYS_SYSPROTO_H_
323 struct setsid_args {
324         int     dummy;
325 };
326 #endif
327 /* ARGSUSED */
328 int
329 sys_setsid(struct thread *td, struct setsid_args *uap)
330 {
331 	struct pgrp *pgrp;
332 	int error;
333 	struct proc *p = td->td_proc;
334 	struct pgrp *newpgrp;
335 	struct session *newsess;
336 
337 	pgrp = NULL;
338 
339 	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
340 	newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
341 
342 again:
343 	error = 0;
344 	sx_xlock(&proctree_lock);
345 
346 	if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
347 		if (pgrp != NULL)
348 			PGRP_UNLOCK(pgrp);
349 		error = EPERM;
350 	} else {
351 		error = enterpgrp(p, p->p_pid, newpgrp, newsess);
352 		if (error == ERESTART)
353 			goto again;
354 		MPASS(error == 0);
355 		td->td_retval[0] = p->p_pid;
356 		newpgrp = NULL;
357 		newsess = NULL;
358 	}
359 
360 	sx_xunlock(&proctree_lock);
361 
362 	uma_zfree(pgrp_zone, newpgrp);
363 	free(newsess, M_SESSION);
364 
365 	return (error);
366 }
367 
368 /*
369  * set process group (setpgid/old setpgrp)
370  *
371  * caller does setpgid(targpid, targpgid)
372  *
373  * pid must be caller or child of caller (ESRCH)
374  * if a child
375  *	pid must be in same session (EPERM)
376  *	pid can't have done an exec (EACCES)
377  * if pgid != pid
378  * 	there must exist some pid in same session having pgid (EPERM)
379  * pid must not be session leader (EPERM)
380  */
381 #ifndef _SYS_SYSPROTO_H_
382 struct setpgid_args {
383 	int	pid;		/* target process id */
384 	int	pgid;		/* target pgrp id */
385 };
386 #endif
387 /* ARGSUSED */
388 int
389 sys_setpgid(struct thread *td, struct setpgid_args *uap)
390 {
391 	struct proc *curp = td->td_proc;
392 	struct proc *targp;	/* target process */
393 	struct pgrp *pgrp;	/* target pgrp */
394 	int error;
395 	struct pgrp *newpgrp;
396 
397 	if (uap->pgid < 0)
398 		return (EINVAL);
399 
400 	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
401 
402 again:
403 	error = 0;
404 
405 	sx_xlock(&proctree_lock);
406 	if (uap->pid != 0 && uap->pid != curp->p_pid) {
407 		if ((targp = pfind(uap->pid)) == NULL) {
408 			error = ESRCH;
409 			goto done;
410 		}
411 		if (!inferior(targp)) {
412 			PROC_UNLOCK(targp);
413 			error = ESRCH;
414 			goto done;
415 		}
416 		if ((error = p_cansee(td, targp))) {
417 			PROC_UNLOCK(targp);
418 			goto done;
419 		}
420 		if (targp->p_pgrp == NULL ||
421 		    targp->p_session != curp->p_session) {
422 			PROC_UNLOCK(targp);
423 			error = EPERM;
424 			goto done;
425 		}
426 		if (targp->p_flag & P_EXEC) {
427 			PROC_UNLOCK(targp);
428 			error = EACCES;
429 			goto done;
430 		}
431 		PROC_UNLOCK(targp);
432 	} else
433 		targp = curp;
434 	if (SESS_LEADER(targp)) {
435 		error = EPERM;
436 		goto done;
437 	}
438 	if (uap->pgid == 0)
439 		uap->pgid = targp->p_pid;
440 	if ((pgrp = pgfind(uap->pgid)) == NULL) {
441 		if (uap->pgid == targp->p_pid) {
442 			error = enterpgrp(targp, uap->pgid, newpgrp,
443 			    NULL);
444 			if (error == 0)
445 				newpgrp = NULL;
446 		} else
447 			error = EPERM;
448 	} else {
449 		if (pgrp == targp->p_pgrp) {
450 			PGRP_UNLOCK(pgrp);
451 			goto done;
452 		}
453 		if (pgrp->pg_id != targp->p_pid &&
454 		    pgrp->pg_session != curp->p_session) {
455 			PGRP_UNLOCK(pgrp);
456 			error = EPERM;
457 			goto done;
458 		}
459 		PGRP_UNLOCK(pgrp);
460 		error = enterthispgrp(targp, pgrp);
461 	}
462 done:
463 	KASSERT(error == 0 || newpgrp != NULL,
464 	    ("setpgid failed and newpgrp is NULL"));
465 	if (error == ERESTART)
466 		goto again;
467 	sx_xunlock(&proctree_lock);
468 	uma_zfree(pgrp_zone, newpgrp);
469 	return (error);
470 }
471 
472 /*
473  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
474  * compatible.  It says that setting the uid/gid to euid/egid is a special
475  * case of "appropriate privilege".  Once the rules are expanded out, this
476  * basically means that setuid(nnn) sets all three id's, in all permitted
477  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
478  * does not set the saved id - this is dangerous for traditional BSD
479  * programs.  For this reason, we *really* do not want to set
480  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
481  */
482 #define POSIX_APPENDIX_B_4_2_2
483 
484 #ifndef _SYS_SYSPROTO_H_
485 struct setuid_args {
486 	uid_t	uid;
487 };
488 #endif
489 /* ARGSUSED */
490 int
491 sys_setuid(struct thread *td, struct setuid_args *uap)
492 {
493 	struct proc *p = td->td_proc;
494 	struct ucred *newcred, *oldcred;
495 	uid_t uid;
496 	struct uidinfo *uip;
497 	int error;
498 
499 	uid = uap->uid;
500 	AUDIT_ARG_UID(uid);
501 	newcred = crget();
502 	uip = uifind(uid);
503 	PROC_LOCK(p);
504 	/*
505 	 * Copy credentials so other references do not see our changes.
506 	 */
507 	oldcred = crcopysafe(p, newcred);
508 
509 #ifdef MAC
510 	error = mac_cred_check_setuid(oldcred, uid);
511 	if (error)
512 		goto fail;
513 #endif
514 
515 	/*
516 	 * See if we have "permission" by POSIX 1003.1 rules.
517 	 *
518 	 * Note that setuid(geteuid()) is a special case of
519 	 * "appropriate privileges" in appendix B.4.2.2.  We need
520 	 * to use this clause to be compatible with traditional BSD
521 	 * semantics.  Basically, it means that "setuid(xx)" sets all
522 	 * three id's (assuming you have privs).
523 	 *
524 	 * Notes on the logic.  We do things in three steps.
525 	 * 1: We determine if the euid is going to change, and do EPERM
526 	 *    right away.  We unconditionally change the euid later if this
527 	 *    test is satisfied, simplifying that part of the logic.
528 	 * 2: We determine if the real and/or saved uids are going to
529 	 *    change.  Determined by compile options.
530 	 * 3: Change euid last. (after tests in #2 for "appropriate privs")
531 	 */
532 	if (uid != oldcred->cr_ruid &&		/* allow setuid(getuid()) */
533 #ifdef _POSIX_SAVED_IDS
534 	    uid != oldcred->cr_svuid &&		/* allow setuid(saved gid) */
535 #endif
536 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
537 	    uid != oldcred->cr_uid &&		/* allow setuid(geteuid()) */
538 #endif
539 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETUID)) != 0)
540 		goto fail;
541 
542 #ifdef _POSIX_SAVED_IDS
543 	/*
544 	 * Do we have "appropriate privileges" (are we root or uid == euid)
545 	 * If so, we are changing the real uid and/or saved uid.
546 	 */
547 	if (
548 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use the clause from B.4.2.2 */
549 	    uid == oldcred->cr_uid ||
550 #endif
551 	    /* We are using privs. */
552 	    priv_check_cred(oldcred, PRIV_CRED_SETUID) == 0)
553 #endif
554 	{
555 		/*
556 		 * Set the real uid and transfer proc count to new user.
557 		 */
558 		if (uid != oldcred->cr_ruid) {
559 			change_ruid(newcred, uip);
560 			setsugid(p);
561 		}
562 		/*
563 		 * Set saved uid
564 		 *
565 		 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
566 		 * the security of seteuid() depends on it.  B.4.2.2 says it
567 		 * is important that we should do this.
568 		 */
569 		if (uid != oldcred->cr_svuid) {
570 			change_svuid(newcred, uid);
571 			setsugid(p);
572 		}
573 	}
574 
575 	/*
576 	 * In all permitted cases, we are changing the euid.
577 	 */
578 	if (uid != oldcred->cr_uid) {
579 		change_euid(newcred, uip);
580 		setsugid(p);
581 	}
582 	proc_set_cred(p, newcred);
583 #ifdef RACCT
584 	racct_proc_ucred_changed(p, oldcred, newcred);
585 	crhold(newcred);
586 #endif
587 	PROC_UNLOCK(p);
588 #ifdef RCTL
589 	rctl_proc_ucred_changed(p, newcred);
590 	crfree(newcred);
591 #endif
592 	uifree(uip);
593 	crfree(oldcred);
594 	return (0);
595 
596 fail:
597 	PROC_UNLOCK(p);
598 	uifree(uip);
599 	crfree(newcred);
600 	return (error);
601 }
602 
603 #ifndef _SYS_SYSPROTO_H_
604 struct seteuid_args {
605 	uid_t	euid;
606 };
607 #endif
608 /* ARGSUSED */
609 int
610 sys_seteuid(struct thread *td, struct seteuid_args *uap)
611 {
612 	struct proc *p = td->td_proc;
613 	struct ucred *newcred, *oldcred;
614 	uid_t euid;
615 	struct uidinfo *euip;
616 	int error;
617 
618 	euid = uap->euid;
619 	AUDIT_ARG_EUID(euid);
620 	newcred = crget();
621 	euip = uifind(euid);
622 	PROC_LOCK(p);
623 	/*
624 	 * Copy credentials so other references do not see our changes.
625 	 */
626 	oldcred = crcopysafe(p, newcred);
627 
628 #ifdef MAC
629 	error = mac_cred_check_seteuid(oldcred, euid);
630 	if (error)
631 		goto fail;
632 #endif
633 
634 	if (euid != oldcred->cr_ruid &&		/* allow seteuid(getuid()) */
635 	    euid != oldcred->cr_svuid &&	/* allow seteuid(saved uid) */
636 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID)) != 0)
637 		goto fail;
638 
639 	/*
640 	 * Everything's okay, do it.
641 	 */
642 	if (oldcred->cr_uid != euid) {
643 		change_euid(newcred, euip);
644 		setsugid(p);
645 	}
646 	proc_set_cred(p, newcred);
647 	PROC_UNLOCK(p);
648 	uifree(euip);
649 	crfree(oldcred);
650 	return (0);
651 
652 fail:
653 	PROC_UNLOCK(p);
654 	uifree(euip);
655 	crfree(newcred);
656 	return (error);
657 }
658 
659 #ifndef _SYS_SYSPROTO_H_
660 struct setgid_args {
661 	gid_t	gid;
662 };
663 #endif
664 /* ARGSUSED */
665 int
666 sys_setgid(struct thread *td, struct setgid_args *uap)
667 {
668 	struct proc *p = td->td_proc;
669 	struct ucred *newcred, *oldcred;
670 	gid_t gid;
671 	int error;
672 
673 	gid = uap->gid;
674 	AUDIT_ARG_GID(gid);
675 	newcred = crget();
676 	PROC_LOCK(p);
677 	oldcred = crcopysafe(p, newcred);
678 
679 #ifdef MAC
680 	error = mac_cred_check_setgid(oldcred, gid);
681 	if (error)
682 		goto fail;
683 #endif
684 
685 	/*
686 	 * See if we have "permission" by POSIX 1003.1 rules.
687 	 *
688 	 * Note that setgid(getegid()) is a special case of
689 	 * "appropriate privileges" in appendix B.4.2.2.  We need
690 	 * to use this clause to be compatible with traditional BSD
691 	 * semantics.  Basically, it means that "setgid(xx)" sets all
692 	 * three id's (assuming you have privs).
693 	 *
694 	 * For notes on the logic here, see setuid() above.
695 	 */
696 	if (gid != oldcred->cr_rgid &&		/* allow setgid(getgid()) */
697 #ifdef _POSIX_SAVED_IDS
698 	    gid != oldcred->cr_svgid &&		/* allow setgid(saved gid) */
699 #endif
700 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
701 	    gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
702 #endif
703 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETGID)) != 0)
704 		goto fail;
705 
706 #ifdef _POSIX_SAVED_IDS
707 	/*
708 	 * Do we have "appropriate privileges" (are we root or gid == egid)
709 	 * If so, we are changing the real uid and saved gid.
710 	 */
711 	if (
712 #ifdef POSIX_APPENDIX_B_4_2_2	/* use the clause from B.4.2.2 */
713 	    gid == oldcred->cr_groups[0] ||
714 #endif
715 	    /* We are using privs. */
716 	    priv_check_cred(oldcred, PRIV_CRED_SETGID) == 0)
717 #endif
718 	{
719 		/*
720 		 * Set real gid
721 		 */
722 		if (oldcred->cr_rgid != gid) {
723 			change_rgid(newcred, gid);
724 			setsugid(p);
725 		}
726 		/*
727 		 * Set saved gid
728 		 *
729 		 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
730 		 * the security of setegid() depends on it.  B.4.2.2 says it
731 		 * is important that we should do this.
732 		 */
733 		if (oldcred->cr_svgid != gid) {
734 			change_svgid(newcred, gid);
735 			setsugid(p);
736 		}
737 	}
738 	/*
739 	 * In all cases permitted cases, we are changing the egid.
740 	 * Copy credentials so other references do not see our changes.
741 	 */
742 	if (oldcred->cr_groups[0] != gid) {
743 		change_egid(newcred, gid);
744 		setsugid(p);
745 	}
746 	proc_set_cred(p, newcred);
747 	PROC_UNLOCK(p);
748 	crfree(oldcred);
749 	return (0);
750 
751 fail:
752 	PROC_UNLOCK(p);
753 	crfree(newcred);
754 	return (error);
755 }
756 
757 #ifndef _SYS_SYSPROTO_H_
758 struct setegid_args {
759 	gid_t	egid;
760 };
761 #endif
762 /* ARGSUSED */
763 int
764 sys_setegid(struct thread *td, struct setegid_args *uap)
765 {
766 	struct proc *p = td->td_proc;
767 	struct ucred *newcred, *oldcred;
768 	gid_t egid;
769 	int error;
770 
771 	egid = uap->egid;
772 	AUDIT_ARG_EGID(egid);
773 	newcred = crget();
774 	PROC_LOCK(p);
775 	oldcred = crcopysafe(p, newcred);
776 
777 #ifdef MAC
778 	error = mac_cred_check_setegid(oldcred, egid);
779 	if (error)
780 		goto fail;
781 #endif
782 
783 	if (egid != oldcred->cr_rgid &&		/* allow setegid(getgid()) */
784 	    egid != oldcred->cr_svgid &&	/* allow setegid(saved gid) */
785 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID)) != 0)
786 		goto fail;
787 
788 	if (oldcred->cr_groups[0] != egid) {
789 		change_egid(newcred, egid);
790 		setsugid(p);
791 	}
792 	proc_set_cred(p, newcred);
793 	PROC_UNLOCK(p);
794 	crfree(oldcred);
795 	return (0);
796 
797 fail:
798 	PROC_UNLOCK(p);
799 	crfree(newcred);
800 	return (error);
801 }
802 
803 #ifndef _SYS_SYSPROTO_H_
804 struct setgroups_args {
805 	int	gidsetsize;
806 	gid_t	*gidset;
807 };
808 #endif
809 /* ARGSUSED */
810 int
811 sys_setgroups(struct thread *td, struct setgroups_args *uap)
812 {
813 	gid_t smallgroups[XU_NGROUPS];
814 	gid_t *groups;
815 	int gidsetsize, error;
816 
817 	gidsetsize = uap->gidsetsize;
818 	if (gidsetsize > ngroups_max + 1 || gidsetsize < 0)
819 		return (EINVAL);
820 
821 	if (gidsetsize > XU_NGROUPS)
822 		groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
823 	else
824 		groups = smallgroups;
825 
826 	error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
827 	if (error == 0)
828 		error = kern_setgroups(td, gidsetsize, groups);
829 
830 	if (gidsetsize > XU_NGROUPS)
831 		free(groups, M_TEMP);
832 	return (error);
833 }
834 
835 int
836 kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups)
837 {
838 	struct proc *p = td->td_proc;
839 	struct ucred *newcred, *oldcred;
840 	int error;
841 
842 	MPASS(ngrp <= ngroups_max + 1);
843 	AUDIT_ARG_GROUPSET(groups, ngrp);
844 	newcred = crget();
845 	crextend(newcred, ngrp);
846 	PROC_LOCK(p);
847 	oldcred = crcopysafe(p, newcred);
848 
849 #ifdef MAC
850 	error = mac_cred_check_setgroups(oldcred, ngrp, groups);
851 	if (error)
852 		goto fail;
853 #endif
854 
855 	error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS);
856 	if (error)
857 		goto fail;
858 
859 	if (ngrp == 0) {
860 		/*
861 		 * setgroups(0, NULL) is a legitimate way of clearing the
862 		 * groups vector on non-BSD systems (which generally do not
863 		 * have the egid in the groups[0]).  We risk security holes
864 		 * when running non-BSD software if we do not do the same.
865 		 */
866 		newcred->cr_ngroups = 1;
867 	} else {
868 		crsetgroups_locked(newcred, ngrp, groups);
869 	}
870 	setsugid(p);
871 	proc_set_cred(p, newcred);
872 	PROC_UNLOCK(p);
873 	crfree(oldcred);
874 	return (0);
875 
876 fail:
877 	PROC_UNLOCK(p);
878 	crfree(newcred);
879 	return (error);
880 }
881 
882 #ifndef _SYS_SYSPROTO_H_
883 struct setreuid_args {
884 	uid_t	ruid;
885 	uid_t	euid;
886 };
887 #endif
888 /* ARGSUSED */
889 int
890 sys_setreuid(struct thread *td, struct setreuid_args *uap)
891 {
892 	struct proc *p = td->td_proc;
893 	struct ucred *newcred, *oldcred;
894 	uid_t euid, ruid;
895 	struct uidinfo *euip, *ruip;
896 	int error;
897 
898 	euid = uap->euid;
899 	ruid = uap->ruid;
900 	AUDIT_ARG_EUID(euid);
901 	AUDIT_ARG_RUID(ruid);
902 	newcred = crget();
903 	euip = uifind(euid);
904 	ruip = uifind(ruid);
905 	PROC_LOCK(p);
906 	oldcred = crcopysafe(p, newcred);
907 
908 #ifdef MAC
909 	error = mac_cred_check_setreuid(oldcred, ruid, euid);
910 	if (error)
911 		goto fail;
912 #endif
913 
914 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
915 	      ruid != oldcred->cr_svuid) ||
916 	     (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
917 	      euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
918 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID)) != 0)
919 		goto fail;
920 
921 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
922 		change_euid(newcred, euip);
923 		setsugid(p);
924 	}
925 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
926 		change_ruid(newcred, ruip);
927 		setsugid(p);
928 	}
929 	if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
930 	    newcred->cr_svuid != newcred->cr_uid) {
931 		change_svuid(newcred, newcred->cr_uid);
932 		setsugid(p);
933 	}
934 	proc_set_cred(p, newcred);
935 #ifdef RACCT
936 	racct_proc_ucred_changed(p, oldcred, newcred);
937 	crhold(newcred);
938 #endif
939 	PROC_UNLOCK(p);
940 #ifdef RCTL
941 	rctl_proc_ucred_changed(p, newcred);
942 	crfree(newcred);
943 #endif
944 	uifree(ruip);
945 	uifree(euip);
946 	crfree(oldcred);
947 	return (0);
948 
949 fail:
950 	PROC_UNLOCK(p);
951 	uifree(ruip);
952 	uifree(euip);
953 	crfree(newcred);
954 	return (error);
955 }
956 
957 #ifndef _SYS_SYSPROTO_H_
958 struct setregid_args {
959 	gid_t	rgid;
960 	gid_t	egid;
961 };
962 #endif
963 /* ARGSUSED */
964 int
965 sys_setregid(struct thread *td, struct setregid_args *uap)
966 {
967 	struct proc *p = td->td_proc;
968 	struct ucred *newcred, *oldcred;
969 	gid_t egid, rgid;
970 	int error;
971 
972 	egid = uap->egid;
973 	rgid = uap->rgid;
974 	AUDIT_ARG_EGID(egid);
975 	AUDIT_ARG_RGID(rgid);
976 	newcred = crget();
977 	PROC_LOCK(p);
978 	oldcred = crcopysafe(p, newcred);
979 
980 #ifdef MAC
981 	error = mac_cred_check_setregid(oldcred, rgid, egid);
982 	if (error)
983 		goto fail;
984 #endif
985 
986 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
987 	    rgid != oldcred->cr_svgid) ||
988 	     (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
989 	     egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
990 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID)) != 0)
991 		goto fail;
992 
993 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
994 		change_egid(newcred, egid);
995 		setsugid(p);
996 	}
997 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
998 		change_rgid(newcred, rgid);
999 		setsugid(p);
1000 	}
1001 	if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
1002 	    newcred->cr_svgid != newcred->cr_groups[0]) {
1003 		change_svgid(newcred, newcred->cr_groups[0]);
1004 		setsugid(p);
1005 	}
1006 	proc_set_cred(p, newcred);
1007 	PROC_UNLOCK(p);
1008 	crfree(oldcred);
1009 	return (0);
1010 
1011 fail:
1012 	PROC_UNLOCK(p);
1013 	crfree(newcred);
1014 	return (error);
1015 }
1016 
1017 /*
1018  * setresuid(ruid, euid, suid) is like setreuid except control over the saved
1019  * uid is explicit.
1020  */
1021 #ifndef _SYS_SYSPROTO_H_
1022 struct setresuid_args {
1023 	uid_t	ruid;
1024 	uid_t	euid;
1025 	uid_t	suid;
1026 };
1027 #endif
1028 /* ARGSUSED */
1029 int
1030 sys_setresuid(struct thread *td, struct setresuid_args *uap)
1031 {
1032 	struct proc *p = td->td_proc;
1033 	struct ucred *newcred, *oldcred;
1034 	uid_t euid, ruid, suid;
1035 	struct uidinfo *euip, *ruip;
1036 	int error;
1037 
1038 	euid = uap->euid;
1039 	ruid = uap->ruid;
1040 	suid = uap->suid;
1041 	AUDIT_ARG_EUID(euid);
1042 	AUDIT_ARG_RUID(ruid);
1043 	AUDIT_ARG_SUID(suid);
1044 	newcred = crget();
1045 	euip = uifind(euid);
1046 	ruip = uifind(ruid);
1047 	PROC_LOCK(p);
1048 	oldcred = crcopysafe(p, newcred);
1049 
1050 #ifdef MAC
1051 	error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
1052 	if (error)
1053 		goto fail;
1054 #endif
1055 
1056 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1057 	     ruid != oldcred->cr_svuid &&
1058 	      ruid != oldcred->cr_uid) ||
1059 	     (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
1060 	    euid != oldcred->cr_svuid &&
1061 	      euid != oldcred->cr_uid) ||
1062 	     (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
1063 	    suid != oldcred->cr_svuid &&
1064 	      suid != oldcred->cr_uid)) &&
1065 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID)) != 0)
1066 		goto fail;
1067 
1068 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1069 		change_euid(newcred, euip);
1070 		setsugid(p);
1071 	}
1072 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1073 		change_ruid(newcred, ruip);
1074 		setsugid(p);
1075 	}
1076 	if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
1077 		change_svuid(newcred, suid);
1078 		setsugid(p);
1079 	}
1080 	proc_set_cred(p, newcred);
1081 #ifdef RACCT
1082 	racct_proc_ucred_changed(p, oldcred, newcred);
1083 	crhold(newcred);
1084 #endif
1085 	PROC_UNLOCK(p);
1086 #ifdef RCTL
1087 	rctl_proc_ucred_changed(p, newcred);
1088 	crfree(newcred);
1089 #endif
1090 	uifree(ruip);
1091 	uifree(euip);
1092 	crfree(oldcred);
1093 	return (0);
1094 
1095 fail:
1096 	PROC_UNLOCK(p);
1097 	uifree(ruip);
1098 	uifree(euip);
1099 	crfree(newcred);
1100 	return (error);
1101 
1102 }
1103 
1104 /*
1105  * setresgid(rgid, egid, sgid) is like setregid except control over the saved
1106  * gid is explicit.
1107  */
1108 #ifndef _SYS_SYSPROTO_H_
1109 struct setresgid_args {
1110 	gid_t	rgid;
1111 	gid_t	egid;
1112 	gid_t	sgid;
1113 };
1114 #endif
1115 /* ARGSUSED */
1116 int
1117 sys_setresgid(struct thread *td, struct setresgid_args *uap)
1118 {
1119 	struct proc *p = td->td_proc;
1120 	struct ucred *newcred, *oldcred;
1121 	gid_t egid, rgid, sgid;
1122 	int error;
1123 
1124 	egid = uap->egid;
1125 	rgid = uap->rgid;
1126 	sgid = uap->sgid;
1127 	AUDIT_ARG_EGID(egid);
1128 	AUDIT_ARG_RGID(rgid);
1129 	AUDIT_ARG_SGID(sgid);
1130 	newcred = crget();
1131 	PROC_LOCK(p);
1132 	oldcred = crcopysafe(p, newcred);
1133 
1134 #ifdef MAC
1135 	error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
1136 	if (error)
1137 		goto fail;
1138 #endif
1139 
1140 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1141 	      rgid != oldcred->cr_svgid &&
1142 	      rgid != oldcred->cr_groups[0]) ||
1143 	     (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
1144 	      egid != oldcred->cr_svgid &&
1145 	      egid != oldcred->cr_groups[0]) ||
1146 	     (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
1147 	      sgid != oldcred->cr_svgid &&
1148 	      sgid != oldcred->cr_groups[0])) &&
1149 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID)) != 0)
1150 		goto fail;
1151 
1152 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
1153 		change_egid(newcred, egid);
1154 		setsugid(p);
1155 	}
1156 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1157 		change_rgid(newcred, rgid);
1158 		setsugid(p);
1159 	}
1160 	if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
1161 		change_svgid(newcred, sgid);
1162 		setsugid(p);
1163 	}
1164 	proc_set_cred(p, newcred);
1165 	PROC_UNLOCK(p);
1166 	crfree(oldcred);
1167 	return (0);
1168 
1169 fail:
1170 	PROC_UNLOCK(p);
1171 	crfree(newcred);
1172 	return (error);
1173 }
1174 
1175 #ifndef _SYS_SYSPROTO_H_
1176 struct getresuid_args {
1177 	uid_t	*ruid;
1178 	uid_t	*euid;
1179 	uid_t	*suid;
1180 };
1181 #endif
1182 /* ARGSUSED */
1183 int
1184 sys_getresuid(struct thread *td, struct getresuid_args *uap)
1185 {
1186 	struct ucred *cred;
1187 	int error1 = 0, error2 = 0, error3 = 0;
1188 
1189 	cred = td->td_ucred;
1190 	if (uap->ruid)
1191 		error1 = copyout(&cred->cr_ruid,
1192 		    uap->ruid, sizeof(cred->cr_ruid));
1193 	if (uap->euid)
1194 		error2 = copyout(&cred->cr_uid,
1195 		    uap->euid, sizeof(cred->cr_uid));
1196 	if (uap->suid)
1197 		error3 = copyout(&cred->cr_svuid,
1198 		    uap->suid, sizeof(cred->cr_svuid));
1199 	return (error1 ? error1 : error2 ? error2 : error3);
1200 }
1201 
1202 #ifndef _SYS_SYSPROTO_H_
1203 struct getresgid_args {
1204 	gid_t	*rgid;
1205 	gid_t	*egid;
1206 	gid_t	*sgid;
1207 };
1208 #endif
1209 /* ARGSUSED */
1210 int
1211 sys_getresgid(struct thread *td, struct getresgid_args *uap)
1212 {
1213 	struct ucred *cred;
1214 	int error1 = 0, error2 = 0, error3 = 0;
1215 
1216 	cred = td->td_ucred;
1217 	if (uap->rgid)
1218 		error1 = copyout(&cred->cr_rgid,
1219 		    uap->rgid, sizeof(cred->cr_rgid));
1220 	if (uap->egid)
1221 		error2 = copyout(&cred->cr_groups[0],
1222 		    uap->egid, sizeof(cred->cr_groups[0]));
1223 	if (uap->sgid)
1224 		error3 = copyout(&cred->cr_svgid,
1225 		    uap->sgid, sizeof(cred->cr_svgid));
1226 	return (error1 ? error1 : error2 ? error2 : error3);
1227 }
1228 
1229 #ifndef _SYS_SYSPROTO_H_
1230 struct issetugid_args {
1231 	int dummy;
1232 };
1233 #endif
1234 /* ARGSUSED */
1235 int
1236 sys_issetugid(struct thread *td, struct issetugid_args *uap)
1237 {
1238 	struct proc *p = td->td_proc;
1239 
1240 	/*
1241 	 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
1242 	 * we use P_SUGID because we consider changing the owners as
1243 	 * "tainting" as well.
1244 	 * This is significant for procs that start as root and "become"
1245 	 * a user without an exec - programs cannot know *everything*
1246 	 * that libc *might* have put in their data segment.
1247 	 */
1248 	td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
1249 	return (0);
1250 }
1251 
1252 int
1253 sys___setugid(struct thread *td, struct __setugid_args *uap)
1254 {
1255 #ifdef REGRESSION
1256 	struct proc *p;
1257 
1258 	p = td->td_proc;
1259 	switch (uap->flag) {
1260 	case 0:
1261 		PROC_LOCK(p);
1262 		p->p_flag &= ~P_SUGID;
1263 		PROC_UNLOCK(p);
1264 		return (0);
1265 	case 1:
1266 		PROC_LOCK(p);
1267 		p->p_flag |= P_SUGID;
1268 		PROC_UNLOCK(p);
1269 		return (0);
1270 	default:
1271 		return (EINVAL);
1272 	}
1273 #else /* !REGRESSION */
1274 
1275 	return (ENOSYS);
1276 #endif /* REGRESSION */
1277 }
1278 
1279 /*
1280  * Returns whether gid designates a supplementary group in cred.
1281  */
1282 static bool
1283 supplementary_group_member(gid_t gid, struct ucred *cred)
1284 {
1285 	int l, h, m;
1286 
1287 	/*
1288 	 * Perform a binary search of the supplemental groups.  This is possible
1289 	 * because we sort the groups in crsetgroups().
1290 	 */
1291 	l = 1;
1292 	h = cred->cr_ngroups;
1293 
1294 	while (l < h) {
1295 		m = l + (h - l) / 2;
1296 		if (cred->cr_groups[m] < gid)
1297 			l = m + 1;
1298 		else
1299 			h = m;
1300 	}
1301 
1302 	return (l < cred->cr_ngroups && cred->cr_groups[l] == gid);
1303 }
1304 
1305 /*
1306  * Check if gid is a member of the (effective) group set (i.e., effective and
1307  * supplementary groups).
1308  */
1309 bool
1310 groupmember(gid_t gid, struct ucred *cred)
1311 {
1312 
1313 	if (gid == cred->cr_groups[0])
1314 		return (true);
1315 
1316 	return (supplementary_group_member(gid, cred));
1317 }
1318 
1319 /*
1320  * Check if gid is a member of the real group set (i.e., real and supplementary
1321  * groups).
1322  */
1323 bool
1324 realgroupmember(gid_t gid, struct ucred *cred)
1325 {
1326 	if (gid == cred->cr_rgid)
1327 		return (true);
1328 
1329 	return (supplementary_group_member(gid, cred));
1330 }
1331 
1332 /*
1333  * Test the active securelevel against a given level.  securelevel_gt()
1334  * implements (securelevel > level).  securelevel_ge() implements
1335  * (securelevel >= level).  Note that the logic is inverted -- these
1336  * functions return EPERM on "success" and 0 on "failure".
1337  *
1338  * Due to care taken when setting the securelevel, we know that no jail will
1339  * be less secure that its parent (or the physical system), so it is sufficient
1340  * to test the current jail only.
1341  *
1342  * XXXRW: Possibly since this has to do with privilege, it should move to
1343  * kern_priv.c.
1344  */
1345 int
1346 securelevel_gt(struct ucred *cr, int level)
1347 {
1348 
1349 	return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
1350 }
1351 
1352 int
1353 securelevel_ge(struct ucred *cr, int level)
1354 {
1355 
1356 	return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
1357 }
1358 
1359 /*
1360  * 'see_other_uids' determines whether or not visibility of processes
1361  * and sockets with credentials holding different real uids is possible
1362  * using a variety of system MIBs.
1363  * XXX: data declarations should be together near the beginning of the file.
1364  */
1365 static int	see_other_uids = 1;
1366 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
1367     &see_other_uids, 0,
1368     "Unprivileged processes may see subjects/objects with different real uid");
1369 
1370 /*-
1371  * Determine if u1 "can see" the subject specified by u2, according to the
1372  * 'see_other_uids' policy.
1373  * Returns: 0 for permitted, ESRCH otherwise
1374  * Locks: none
1375  * References: *u1 and *u2 must not change during the call
1376  *             u1 may equal u2, in which case only one reference is required
1377  */
1378 static int
1379 cr_canseeotheruids(struct ucred *u1, struct ucred *u2)
1380 {
1381 
1382 	if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
1383 		if (priv_check_cred(u1, PRIV_SEEOTHERUIDS) != 0)
1384 			return (ESRCH);
1385 	}
1386 	return (0);
1387 }
1388 
1389 /*
1390  * 'see_other_gids' determines whether or not visibility of processes
1391  * and sockets with credentials holding different real gids is possible
1392  * using a variety of system MIBs.
1393  * XXX: data declarations should be together near the beginning of the file.
1394  */
1395 static int	see_other_gids = 1;
1396 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
1397     &see_other_gids, 0,
1398     "Unprivileged processes may see subjects/objects with different real gid");
1399 
1400 /*
1401  * Determine if u1 can "see" the subject specified by u2, according to the
1402  * 'see_other_gids' policy.
1403  * Returns: 0 for permitted, ESRCH otherwise
1404  * Locks: none
1405  * References: *u1 and *u2 must not change during the call
1406  *             u1 may equal u2, in which case only one reference is required
1407  */
1408 static int
1409 cr_canseeothergids(struct ucred *u1, struct ucred *u2)
1410 {
1411 	if (!see_other_gids) {
1412 		if (realgroupmember(u1->cr_rgid, u2))
1413 			return (0);
1414 
1415 		for (int i = 1; i < u1->cr_ngroups; i++)
1416 			if (realgroupmember(u1->cr_groups[i], u2))
1417 				return (0);
1418 
1419 		if (priv_check_cred(u1, PRIV_SEEOTHERGIDS) != 0)
1420 			return (ESRCH);
1421 	}
1422 
1423 	return (0);
1424 }
1425 
1426 /*
1427  * 'see_jail_proc' determines whether or not visibility of processes and
1428  * sockets with credentials holding different jail ids is possible using a
1429  * variety of system MIBs.
1430  *
1431  * XXX: data declarations should be together near the beginning of the file.
1432  */
1433 
1434 static int	see_jail_proc = 1;
1435 SYSCTL_INT(_security_bsd, OID_AUTO, see_jail_proc, CTLFLAG_RW,
1436     &see_jail_proc, 0,
1437     "Unprivileged processes may see subjects/objects with different jail ids");
1438 
1439 /*-
1440  * Determine if u1 "can see" the subject specified by u2, according to the
1441  * 'see_jail_proc' policy.
1442  * Returns: 0 for permitted, ESRCH otherwise
1443  * Locks: none
1444  * References: *u1 and *u2 must not change during the call
1445  *             u1 may equal u2, in which case only one reference is required
1446  */
1447 static int
1448 cr_canseejailproc(struct ucred *u1, struct ucred *u2)
1449 {
1450 	if (see_jail_proc || /* Policy deactivated. */
1451 	    u1->cr_prison == u2->cr_prison || /* Same jail. */
1452 	    priv_check_cred(u1, PRIV_SEEJAILPROC) == 0) /* Privileged. */
1453 		return (0);
1454 
1455 	return (ESRCH);
1456 }
1457 
1458 /*
1459  * Helper for cr_cansee*() functions to abide by system-wide security.bsd.see_*
1460  * policies.  Determines if u1 "can see" u2 according to these policies.
1461  * Returns: 0 for permitted, ESRCH otherwise
1462  */
1463 int
1464 cr_bsd_visible(struct ucred *u1, struct ucred *u2)
1465 {
1466 	int error;
1467 
1468 	error = cr_canseeotheruids(u1, u2);
1469 	if (error != 0)
1470 		return (error);
1471 	error = cr_canseeothergids(u1, u2);
1472 	if (error != 0)
1473 		return (error);
1474 	error = cr_canseejailproc(u1, u2);
1475 	if (error != 0)
1476 		return (error);
1477 	return (0);
1478 }
1479 
1480 /*-
1481  * Determine if u1 "can see" the subject specified by u2.
1482  * Returns: 0 for permitted, an errno value otherwise
1483  * Locks: none
1484  * References: *u1 and *u2 must not change during the call
1485  *             u1 may equal u2, in which case only one reference is required
1486  */
1487 int
1488 cr_cansee(struct ucred *u1, struct ucred *u2)
1489 {
1490 	int error;
1491 
1492 	if ((error = prison_check(u1, u2)))
1493 		return (error);
1494 #ifdef MAC
1495 	if ((error = mac_cred_check_visible(u1, u2)))
1496 		return (error);
1497 #endif
1498 	if ((error = cr_bsd_visible(u1, u2)))
1499 		return (error);
1500 	return (0);
1501 }
1502 
1503 /*-
1504  * Determine if td "can see" the subject specified by p.
1505  * Returns: 0 for permitted, an errno value otherwise
1506  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
1507  *        should be curthread.
1508  * References: td and p must be valid for the lifetime of the call
1509  */
1510 int
1511 p_cansee(struct thread *td, struct proc *p)
1512 {
1513 	/* Wrap cr_cansee() for all functionality. */
1514 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1515 	PROC_LOCK_ASSERT(p, MA_OWNED);
1516 
1517 	if (td->td_proc == p)
1518 		return (0);
1519 	return (cr_cansee(td->td_ucred, p->p_ucred));
1520 }
1521 
1522 /*
1523  * 'conservative_signals' prevents the delivery of a broad class of
1524  * signals by unprivileged processes to processes that have changed their
1525  * credentials since the last invocation of execve().  This can prevent
1526  * the leakage of cached information or retained privileges as a result
1527  * of a common class of signal-related vulnerabilities.  However, this
1528  * may interfere with some applications that expect to be able to
1529  * deliver these signals to peer processes after having given up
1530  * privilege.
1531  */
1532 static int	conservative_signals = 1;
1533 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
1534     &conservative_signals, 0, "Unprivileged processes prevented from "
1535     "sending certain signals to processes whose credentials have changed");
1536 /*-
1537  * Determine whether cred may deliver the specified signal to proc.
1538  * Returns: 0 for permitted, an errno value otherwise.
1539  * Locks: A lock must be held for proc.
1540  * References: cred and proc must be valid for the lifetime of the call.
1541  */
1542 int
1543 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
1544 {
1545 	int error;
1546 
1547 	PROC_LOCK_ASSERT(proc, MA_OWNED);
1548 	/*
1549 	 * Jail semantics limit the scope of signalling to proc in the
1550 	 * same jail as cred, if cred is in jail.
1551 	 */
1552 	error = prison_check(cred, proc->p_ucred);
1553 	if (error)
1554 		return (error);
1555 #ifdef MAC
1556 	if ((error = mac_proc_check_signal(cred, proc, signum)))
1557 		return (error);
1558 #endif
1559 	if ((error = cr_bsd_visible(cred, proc->p_ucred)))
1560 		return (error);
1561 
1562 	/*
1563 	 * UNIX signal semantics depend on the status of the P_SUGID
1564 	 * bit on the target process.  If the bit is set, then additional
1565 	 * restrictions are placed on the set of available signals.
1566 	 */
1567 	if (conservative_signals && (proc->p_flag & P_SUGID)) {
1568 		switch (signum) {
1569 		case 0:
1570 		case SIGKILL:
1571 		case SIGINT:
1572 		case SIGTERM:
1573 		case SIGALRM:
1574 		case SIGSTOP:
1575 		case SIGTTIN:
1576 		case SIGTTOU:
1577 		case SIGTSTP:
1578 		case SIGHUP:
1579 		case SIGUSR1:
1580 		case SIGUSR2:
1581 			/*
1582 			 * Generally, permit job and terminal control
1583 			 * signals.
1584 			 */
1585 			break;
1586 		default:
1587 			/* Not permitted without privilege. */
1588 			error = priv_check_cred(cred, PRIV_SIGNAL_SUGID);
1589 			if (error)
1590 				return (error);
1591 		}
1592 	}
1593 
1594 	/*
1595 	 * Generally, the target credential's ruid or svuid must match the
1596 	 * subject credential's ruid or euid.
1597 	 */
1598 	if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
1599 	    cred->cr_ruid != proc->p_ucred->cr_svuid &&
1600 	    cred->cr_uid != proc->p_ucred->cr_ruid &&
1601 	    cred->cr_uid != proc->p_ucred->cr_svuid) {
1602 		error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED);
1603 		if (error)
1604 			return (error);
1605 	}
1606 
1607 	return (0);
1608 }
1609 
1610 /*-
1611  * Determine whether td may deliver the specified signal to p.
1612  * Returns: 0 for permitted, an errno value otherwise
1613  * Locks: Sufficient locks to protect various components of td and p
1614  *        must be held.  td must be curthread, and a lock must be
1615  *        held for p.
1616  * References: td and p must be valid for the lifetime of the call
1617  */
1618 int
1619 p_cansignal(struct thread *td, struct proc *p, int signum)
1620 {
1621 
1622 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1623 	PROC_LOCK_ASSERT(p, MA_OWNED);
1624 	if (td->td_proc == p)
1625 		return (0);
1626 
1627 	/*
1628 	 * UNIX signalling semantics require that processes in the same
1629 	 * session always be able to deliver SIGCONT to one another,
1630 	 * overriding the remaining protections.
1631 	 */
1632 	/* XXX: This will require an additional lock of some sort. */
1633 	if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
1634 		return (0);
1635 	/*
1636 	 * Some compat layers use SIGTHR and higher signals for
1637 	 * communication between different kernel threads of the same
1638 	 * process, so that they expect that it's always possible to
1639 	 * deliver them, even for suid applications where cr_cansignal() can
1640 	 * deny such ability for security consideration.  It should be
1641 	 * pretty safe to do since the only way to create two processes
1642 	 * with the same p_leader is via rfork(2).
1643 	 */
1644 	if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
1645 	    signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
1646 		return (0);
1647 
1648 	return (cr_cansignal(td->td_ucred, p, signum));
1649 }
1650 
1651 /*-
1652  * Determine whether td may reschedule p.
1653  * Returns: 0 for permitted, an errno value otherwise
1654  * Locks: Sufficient locks to protect various components of td and p
1655  *        must be held.  td must be curthread, and a lock must
1656  *        be held for p.
1657  * References: td and p must be valid for the lifetime of the call
1658  */
1659 int
1660 p_cansched(struct thread *td, struct proc *p)
1661 {
1662 	int error;
1663 
1664 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1665 	PROC_LOCK_ASSERT(p, MA_OWNED);
1666 	if (td->td_proc == p)
1667 		return (0);
1668 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1669 		return (error);
1670 #ifdef MAC
1671 	if ((error = mac_proc_check_sched(td->td_ucred, p)))
1672 		return (error);
1673 #endif
1674 	if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
1675 		return (error);
1676 
1677 	if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
1678 	    td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
1679 		error = priv_check(td, PRIV_SCHED_DIFFCRED);
1680 		if (error)
1681 			return (error);
1682 	}
1683 	return (0);
1684 }
1685 
1686 /*
1687  * Handle getting or setting the prison's unprivileged_proc_debug
1688  * value.
1689  */
1690 static int
1691 sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS)
1692 {
1693 	int error, val;
1694 
1695 	val = prison_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG);
1696 	error = sysctl_handle_int(oidp, &val, 0, req);
1697 	if (error != 0 || req->newptr == NULL)
1698 		return (error);
1699 	if (val != 0 && val != 1)
1700 		return (EINVAL);
1701 	prison_set_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG, val);
1702 	return (0);
1703 }
1704 
1705 /*
1706  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
1707  * unprivileged inter-process debugging services, including some procfs
1708  * functionality, ptrace(), and ktrace().  In the past, inter-process
1709  * debugging has been involved in a variety of security problems, and sites
1710  * not requiring the service might choose to disable it when hardening
1711  * systems.
1712  */
1713 SYSCTL_PROC(_security_bsd, OID_AUTO, unprivileged_proc_debug,
1714     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_SECURE |
1715     CTLFLAG_MPSAFE, 0, 0, sysctl_unprivileged_proc_debug, "I",
1716     "Unprivileged processes may use process debugging facilities");
1717 
1718 /*-
1719  * Determine whether td may debug p.
1720  * Returns: 0 for permitted, an errno value otherwise
1721  * Locks: Sufficient locks to protect various components of td and p
1722  *        must be held.  td must be curthread, and a lock must
1723  *        be held for p.
1724  * References: td and p must be valid for the lifetime of the call
1725  */
1726 int
1727 p_candebug(struct thread *td, struct proc *p)
1728 {
1729 	int error, grpsubset, i, uidsubset;
1730 
1731 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1732 	PROC_LOCK_ASSERT(p, MA_OWNED);
1733 	if (td->td_proc == p)
1734 		return (0);
1735 	if ((error = priv_check(td, PRIV_DEBUG_UNPRIV)))
1736 		return (error);
1737 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1738 		return (error);
1739 #ifdef MAC
1740 	if ((error = mac_proc_check_debug(td->td_ucred, p)))
1741 		return (error);
1742 #endif
1743 	if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
1744 		return (error);
1745 
1746 	/*
1747 	 * Is p's group set a subset of td's effective group set?  This
1748 	 * includes p's egid, group access list, rgid, and svgid.
1749 	 */
1750 	grpsubset = 1;
1751 	for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
1752 		if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
1753 			grpsubset = 0;
1754 			break;
1755 		}
1756 	}
1757 	grpsubset = grpsubset &&
1758 	    groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
1759 	    groupmember(p->p_ucred->cr_svgid, td->td_ucred);
1760 
1761 	/*
1762 	 * Are the uids present in p's credential equal to td's
1763 	 * effective uid?  This includes p's euid, svuid, and ruid.
1764 	 */
1765 	uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
1766 	    td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
1767 	    td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
1768 
1769 	/*
1770 	 * If p's gids aren't a subset, or the uids aren't a subset,
1771 	 * or the credential has changed, require appropriate privilege
1772 	 * for td to debug p.
1773 	 */
1774 	if (!grpsubset || !uidsubset) {
1775 		error = priv_check(td, PRIV_DEBUG_DIFFCRED);
1776 		if (error)
1777 			return (error);
1778 	}
1779 
1780 	/*
1781 	 * Has the credential of the process changed since the last exec()?
1782 	 */
1783 	if ((p->p_flag & P_SUGID) != 0) {
1784 		error = priv_check(td, PRIV_DEBUG_SUGID);
1785 		if (error)
1786 			return (error);
1787 	}
1788 
1789 	/* Can't trace init when securelevel > 0. */
1790 	if (p == initproc) {
1791 		error = securelevel_gt(td->td_ucred, 0);
1792 		if (error)
1793 			return (error);
1794 	}
1795 
1796 	/*
1797 	 * Can't trace a process that's currently exec'ing.
1798 	 *
1799 	 * XXX: Note, this is not a security policy decision, it's a
1800 	 * basic correctness/functionality decision.  Therefore, this check
1801 	 * should be moved to the caller's of p_candebug().
1802 	 */
1803 	if ((p->p_flag & P_INEXEC) != 0)
1804 		return (EBUSY);
1805 
1806 	/* Denied explicitly */
1807 	if ((p->p_flag2 & P2_NOTRACE) != 0) {
1808 		error = priv_check(td, PRIV_DEBUG_DENIED);
1809 		if (error != 0)
1810 			return (error);
1811 	}
1812 
1813 	return (0);
1814 }
1815 
1816 /*-
1817  * Determine whether the subject represented by cred can "see" a socket.
1818  * Returns: 0 for permitted, ENOENT otherwise.
1819  */
1820 int
1821 cr_canseesocket(struct ucred *cred, struct socket *so)
1822 {
1823 	int error;
1824 
1825 	error = prison_check(cred, so->so_cred);
1826 	if (error)
1827 		return (ENOENT);
1828 #ifdef MAC
1829 	error = mac_socket_check_visible(cred, so);
1830 	if (error)
1831 		return (error);
1832 #endif
1833 	if (cr_bsd_visible(cred, so->so_cred))
1834 		return (ENOENT);
1835 
1836 	return (0);
1837 }
1838 
1839 /*-
1840  * Determine whether td can wait for the exit of p.
1841  * Returns: 0 for permitted, an errno value otherwise
1842  * Locks: Sufficient locks to protect various components of td and p
1843  *        must be held.  td must be curthread, and a lock must
1844  *        be held for p.
1845  * References: td and p must be valid for the lifetime of the call
1846 
1847  */
1848 int
1849 p_canwait(struct thread *td, struct proc *p)
1850 {
1851 	int error;
1852 
1853 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1854 	PROC_LOCK_ASSERT(p, MA_OWNED);
1855 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1856 		return (error);
1857 #ifdef MAC
1858 	if ((error = mac_proc_check_wait(td->td_ucred, p)))
1859 		return (error);
1860 #endif
1861 #if 0
1862 	/* XXXMAC: This could have odd effects on some shells. */
1863 	if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
1864 		return (error);
1865 #endif
1866 
1867 	return (0);
1868 }
1869 
1870 /*
1871  * Credential management.
1872  *
1873  * struct ucred objects are rarely allocated but gain and lose references all
1874  * the time (e.g., on struct file alloc/dealloc) turning refcount updates into
1875  * a significant source of cache-line ping ponging. Common cases are worked
1876  * around by modifying thread-local counter instead if the cred to operate on
1877  * matches td_realucred.
1878  *
1879  * The counter is split into 2 parts:
1880  * - cr_users -- total count of all struct proc and struct thread objects
1881  *   which have given cred in p_ucred and td_ucred respectively
1882  * - cr_ref -- the actual ref count, only valid if cr_users == 0
1883  *
1884  * If users == 0 then cr_ref behaves similarly to refcount(9), in particular if
1885  * the count reaches 0 the object is freeable.
1886  * If users > 0 and curthread->td_realucred == cred, then updates are performed
1887  * against td_ucredref.
1888  * In other cases updates are performed against cr_ref.
1889  *
1890  * Changing td_realucred into something else decrements cr_users and transfers
1891  * accumulated updates.
1892  */
1893 struct ucred *
1894 crcowget(struct ucred *cr)
1895 {
1896 
1897 	mtx_lock(&cr->cr_mtx);
1898 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1899 	    __func__, cr->cr_users, cr));
1900 	cr->cr_users++;
1901 	cr->cr_ref++;
1902 	mtx_unlock(&cr->cr_mtx);
1903 	return (cr);
1904 }
1905 
1906 static struct ucred *
1907 crunuse(struct thread *td)
1908 {
1909 	struct ucred *cr, *crold;
1910 
1911 	MPASS(td->td_realucred == td->td_ucred);
1912 	cr = td->td_realucred;
1913 	mtx_lock(&cr->cr_mtx);
1914 	cr->cr_ref += td->td_ucredref;
1915 	td->td_ucredref = 0;
1916 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1917 	    __func__, cr->cr_users, cr));
1918 	cr->cr_users--;
1919 	if (cr->cr_users == 0) {
1920 		KASSERT(cr->cr_ref > 0, ("%s: ref %ld not > 0 on cred %p",
1921 		    __func__, cr->cr_ref, cr));
1922 		crold = cr;
1923 	} else {
1924 		cr->cr_ref--;
1925 		crold = NULL;
1926 	}
1927 	mtx_unlock(&cr->cr_mtx);
1928 	td->td_realucred = NULL;
1929 	return (crold);
1930 }
1931 
1932 static void
1933 crunusebatch(struct ucred *cr, int users, int ref)
1934 {
1935 
1936 	KASSERT(users > 0, ("%s: passed users %d not > 0 ; cred %p",
1937 	    __func__, users, cr));
1938 	mtx_lock(&cr->cr_mtx);
1939 	KASSERT(cr->cr_users >= users, ("%s: users %d not > %d on cred %p",
1940 	    __func__, cr->cr_users, users, cr));
1941 	cr->cr_users -= users;
1942 	cr->cr_ref += ref;
1943 	cr->cr_ref -= users;
1944 	if (cr->cr_users > 0) {
1945 		mtx_unlock(&cr->cr_mtx);
1946 		return;
1947 	}
1948 	KASSERT(cr->cr_ref >= 0, ("%s: ref %ld not >= 0 on cred %p",
1949 	    __func__, cr->cr_ref, cr));
1950 	if (cr->cr_ref > 0) {
1951 		mtx_unlock(&cr->cr_mtx);
1952 		return;
1953 	}
1954 	crfree_final(cr);
1955 }
1956 
1957 void
1958 crcowfree(struct thread *td)
1959 {
1960 	struct ucred *cr;
1961 
1962 	cr = crunuse(td);
1963 	if (cr != NULL)
1964 		crfree(cr);
1965 }
1966 
1967 struct ucred *
1968 crcowsync(void)
1969 {
1970 	struct thread *td;
1971 	struct proc *p;
1972 	struct ucred *crnew, *crold;
1973 
1974 	td = curthread;
1975 	p = td->td_proc;
1976 	PROC_LOCK_ASSERT(p, MA_OWNED);
1977 
1978 	MPASS(td->td_realucred == td->td_ucred);
1979 	if (td->td_realucred == p->p_ucred)
1980 		return (NULL);
1981 
1982 	crnew = crcowget(p->p_ucred);
1983 	crold = crunuse(td);
1984 	td->td_realucred = crnew;
1985 	td->td_ucred = td->td_realucred;
1986 	return (crold);
1987 }
1988 
1989 /*
1990  * Batching.
1991  */
1992 void
1993 credbatch_add(struct credbatch *crb, struct thread *td)
1994 {
1995 	struct ucred *cr;
1996 
1997 	MPASS(td->td_realucred != NULL);
1998 	MPASS(td->td_realucred == td->td_ucred);
1999 	MPASS(TD_GET_STATE(td) == TDS_INACTIVE);
2000 	cr = td->td_realucred;
2001 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2002 	    __func__, cr->cr_users, cr));
2003 	if (crb->cred != cr) {
2004 		if (crb->users > 0) {
2005 			MPASS(crb->cred != NULL);
2006 			crunusebatch(crb->cred, crb->users, crb->ref);
2007 			crb->users = 0;
2008 			crb->ref = 0;
2009 		}
2010 	}
2011 	crb->cred = cr;
2012 	crb->users++;
2013 	crb->ref += td->td_ucredref;
2014 	td->td_ucredref = 0;
2015 	td->td_realucred = NULL;
2016 }
2017 
2018 void
2019 credbatch_final(struct credbatch *crb)
2020 {
2021 
2022 	MPASS(crb->cred != NULL);
2023 	MPASS(crb->users > 0);
2024 	crunusebatch(crb->cred, crb->users, crb->ref);
2025 }
2026 
2027 /*
2028  * Allocate a zeroed cred structure.
2029  */
2030 struct ucred *
2031 crget(void)
2032 {
2033 	struct ucred *cr;
2034 
2035 	cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
2036 	mtx_init(&cr->cr_mtx, "cred", NULL, MTX_DEF);
2037 	cr->cr_ref = 1;
2038 #ifdef AUDIT
2039 	audit_cred_init(cr);
2040 #endif
2041 #ifdef MAC
2042 	mac_cred_init(cr);
2043 #endif
2044 	cr->cr_groups = cr->cr_smallgroups;
2045 	cr->cr_agroups =
2046 	    sizeof(cr->cr_smallgroups) / sizeof(cr->cr_smallgroups[0]);
2047 	return (cr);
2048 }
2049 
2050 /*
2051  * Claim another reference to a ucred structure.
2052  */
2053 struct ucred *
2054 crhold(struct ucred *cr)
2055 {
2056 	struct thread *td;
2057 
2058 	td = curthread;
2059 	if (__predict_true(td->td_realucred == cr)) {
2060 		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2061 		    __func__, cr->cr_users, cr));
2062 		td->td_ucredref++;
2063 		return (cr);
2064 	}
2065 	mtx_lock(&cr->cr_mtx);
2066 	cr->cr_ref++;
2067 	mtx_unlock(&cr->cr_mtx);
2068 	return (cr);
2069 }
2070 
2071 /*
2072  * Free a cred structure.  Throws away space when ref count gets to 0.
2073  */
2074 void
2075 crfree(struct ucred *cr)
2076 {
2077 	struct thread *td;
2078 
2079 	td = curthread;
2080 	if (__predict_true(td->td_realucred == cr)) {
2081 		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2082 		    __func__, cr->cr_users, cr));
2083 		td->td_ucredref--;
2084 		return;
2085 	}
2086 	mtx_lock(&cr->cr_mtx);
2087 	KASSERT(cr->cr_users >= 0, ("%s: users %d not >= 0 on cred %p",
2088 	    __func__, cr->cr_users, cr));
2089 	cr->cr_ref--;
2090 	if (cr->cr_users > 0) {
2091 		mtx_unlock(&cr->cr_mtx);
2092 		return;
2093 	}
2094 	KASSERT(cr->cr_ref >= 0, ("%s: ref %ld not >= 0 on cred %p",
2095 	    __func__, cr->cr_ref, cr));
2096 	if (cr->cr_ref > 0) {
2097 		mtx_unlock(&cr->cr_mtx);
2098 		return;
2099 	}
2100 	crfree_final(cr);
2101 }
2102 
2103 static void
2104 crfree_final(struct ucred *cr)
2105 {
2106 
2107 	KASSERT(cr->cr_users == 0, ("%s: users %d not == 0 on cred %p",
2108 	    __func__, cr->cr_users, cr));
2109 	KASSERT(cr->cr_ref == 0, ("%s: ref %ld not == 0 on cred %p",
2110 	    __func__, cr->cr_ref, cr));
2111 
2112 	/*
2113 	 * Some callers of crget(), such as nfs_statfs(), allocate a temporary
2114 	 * credential, but don't allocate a uidinfo structure.
2115 	 */
2116 	if (cr->cr_uidinfo != NULL)
2117 		uifree(cr->cr_uidinfo);
2118 	if (cr->cr_ruidinfo != NULL)
2119 		uifree(cr->cr_ruidinfo);
2120 	if (cr->cr_prison != NULL)
2121 		prison_free(cr->cr_prison);
2122 	if (cr->cr_loginclass != NULL)
2123 		loginclass_free(cr->cr_loginclass);
2124 #ifdef AUDIT
2125 	audit_cred_destroy(cr);
2126 #endif
2127 #ifdef MAC
2128 	mac_cred_destroy(cr);
2129 #endif
2130 	mtx_destroy(&cr->cr_mtx);
2131 	if (cr->cr_groups != cr->cr_smallgroups)
2132 		free(cr->cr_groups, M_CRED);
2133 	free(cr, M_CRED);
2134 }
2135 
2136 /*
2137  * Copy a ucred's contents from a template.  Does not block.
2138  */
2139 void
2140 crcopy(struct ucred *dest, struct ucred *src)
2141 {
2142 
2143 	KASSERT(dest->cr_ref == 1, ("crcopy of shared ucred"));
2144 	bcopy(&src->cr_startcopy, &dest->cr_startcopy,
2145 	    (unsigned)((caddr_t)&src->cr_endcopy -
2146 		(caddr_t)&src->cr_startcopy));
2147 	dest->cr_flags = src->cr_flags;
2148 	crsetgroups(dest, src->cr_ngroups, src->cr_groups);
2149 	uihold(dest->cr_uidinfo);
2150 	uihold(dest->cr_ruidinfo);
2151 	prison_hold(dest->cr_prison);
2152 	loginclass_hold(dest->cr_loginclass);
2153 #ifdef AUDIT
2154 	audit_cred_copy(src, dest);
2155 #endif
2156 #ifdef MAC
2157 	mac_cred_copy(src, dest);
2158 #endif
2159 }
2160 
2161 /*
2162  * Dup cred struct to a new held one.
2163  */
2164 struct ucred *
2165 crdup(struct ucred *cr)
2166 {
2167 	struct ucred *newcr;
2168 
2169 	newcr = crget();
2170 	crcopy(newcr, cr);
2171 	return (newcr);
2172 }
2173 
2174 /*
2175  * Fill in a struct xucred based on a struct ucred.
2176  */
2177 void
2178 cru2x(struct ucred *cr, struct xucred *xcr)
2179 {
2180 	int ngroups;
2181 
2182 	bzero(xcr, sizeof(*xcr));
2183 	xcr->cr_version = XUCRED_VERSION;
2184 	xcr->cr_uid = cr->cr_uid;
2185 
2186 	ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
2187 	xcr->cr_ngroups = ngroups;
2188 	bcopy(cr->cr_groups, xcr->cr_groups,
2189 	    ngroups * sizeof(*cr->cr_groups));
2190 }
2191 
2192 void
2193 cru2xt(struct thread *td, struct xucred *xcr)
2194 {
2195 
2196 	cru2x(td->td_ucred, xcr);
2197 	xcr->cr_pid = td->td_proc->p_pid;
2198 }
2199 
2200 /*
2201  * Change process credentials.
2202  * Callers are responsible for providing the reference for passed credentials
2203  * and for freeing old ones.
2204  *
2205  * Process has to be locked except when it does not have credentials (as it
2206  * should not be visible just yet) or when newcred is NULL (as this can be
2207  * only used when the process is about to be freed, at which point it should
2208  * not be visible anymore).
2209  */
2210 void
2211 proc_set_cred(struct proc *p, struct ucred *newcred)
2212 {
2213 	struct ucred *cr;
2214 
2215 	cr = p->p_ucred;
2216 	MPASS(cr != NULL);
2217 	PROC_LOCK_ASSERT(p, MA_OWNED);
2218 	KASSERT(newcred->cr_users == 0, ("%s: users %d not 0 on cred %p",
2219 	    __func__, newcred->cr_users, newcred));
2220 	mtx_lock(&cr->cr_mtx);
2221 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2222 	    __func__, cr->cr_users, cr));
2223 	cr->cr_users--;
2224 	mtx_unlock(&cr->cr_mtx);
2225 	p->p_ucred = newcred;
2226 	newcred->cr_users = 1;
2227 	PROC_UPDATE_COW(p);
2228 }
2229 
2230 void
2231 proc_unset_cred(struct proc *p)
2232 {
2233 	struct ucred *cr;
2234 
2235 	MPASS(p->p_state == PRS_ZOMBIE || p->p_state == PRS_NEW);
2236 	cr = p->p_ucred;
2237 	p->p_ucred = NULL;
2238 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2239 	    __func__, cr->cr_users, cr));
2240 	mtx_lock(&cr->cr_mtx);
2241 	cr->cr_users--;
2242 	if (cr->cr_users == 0)
2243 		KASSERT(cr->cr_ref > 0, ("%s: ref %ld not > 0 on cred %p",
2244 		    __func__, cr->cr_ref, cr));
2245 	mtx_unlock(&cr->cr_mtx);
2246 	crfree(cr);
2247 }
2248 
2249 struct ucred *
2250 crcopysafe(struct proc *p, struct ucred *cr)
2251 {
2252 	struct ucred *oldcred;
2253 	int groups;
2254 
2255 	PROC_LOCK_ASSERT(p, MA_OWNED);
2256 
2257 	oldcred = p->p_ucred;
2258 	while (cr->cr_agroups < oldcred->cr_agroups) {
2259 		groups = oldcred->cr_agroups;
2260 		PROC_UNLOCK(p);
2261 		crextend(cr, groups);
2262 		PROC_LOCK(p);
2263 		oldcred = p->p_ucred;
2264 	}
2265 	crcopy(cr, oldcred);
2266 
2267 	return (oldcred);
2268 }
2269 
2270 /*
2271  * Extend the passed in credential to hold n items.
2272  */
2273 void
2274 crextend(struct ucred *cr, int n)
2275 {
2276 	int cnt;
2277 
2278 	/* Truncate? */
2279 	if (n <= cr->cr_agroups)
2280 		return;
2281 
2282 	/*
2283 	 * We extend by 2 each time since we're using a power of two
2284 	 * allocator until we need enough groups to fill a page.
2285 	 * Once we're allocating multiple pages, only allocate as many
2286 	 * as we actually need.  The case of processes needing a
2287 	 * non-power of two number of pages seems more likely than
2288 	 * a real world process that adds thousands of groups one at a
2289 	 * time.
2290 	 */
2291 	if ( n < PAGE_SIZE / sizeof(gid_t) ) {
2292 		if (cr->cr_agroups == 0)
2293 			cnt = MAX(1, MINALLOCSIZE / sizeof(gid_t));
2294 		else
2295 			cnt = cr->cr_agroups * 2;
2296 
2297 		while (cnt < n)
2298 			cnt *= 2;
2299 	} else
2300 		cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t));
2301 
2302 	/* Free the old array. */
2303 	if (cr->cr_groups != cr->cr_smallgroups)
2304 		free(cr->cr_groups, M_CRED);
2305 
2306 	cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO);
2307 	cr->cr_agroups = cnt;
2308 }
2309 
2310 /*
2311  * Copy groups in to a credential, preserving any necessary invariants.
2312  * Currently this includes the sorting of all supplemental gids.
2313  * crextend() must have been called before hand to ensure sufficient
2314  * space is available.
2315  */
2316 static void
2317 crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups)
2318 {
2319 	int i;
2320 	int j;
2321 	gid_t g;
2322 
2323 	KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small"));
2324 
2325 	bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
2326 	cr->cr_ngroups = ngrp;
2327 
2328 	/*
2329 	 * Sort all groups except cr_groups[0] to allow groupmember to
2330 	 * perform a binary search.
2331 	 *
2332 	 * XXX: If large numbers of groups become common this should
2333 	 * be replaced with shell sort like linux uses or possibly
2334 	 * heap sort.
2335 	 */
2336 	for (i = 2; i < ngrp; i++) {
2337 		g = cr->cr_groups[i];
2338 		for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--)
2339 			cr->cr_groups[j + 1] = cr->cr_groups[j];
2340 		cr->cr_groups[j + 1] = g;
2341 	}
2342 }
2343 
2344 /*
2345  * Copy groups in to a credential after expanding it if required.
2346  * Truncate the list to (ngroups_max + 1) if it is too large.
2347  */
2348 void
2349 crsetgroups(struct ucred *cr, int ngrp, gid_t *groups)
2350 {
2351 
2352 	if (ngrp > ngroups_max + 1)
2353 		ngrp = ngroups_max + 1;
2354 
2355 	crextend(cr, ngrp);
2356 	crsetgroups_locked(cr, ngrp, groups);
2357 }
2358 
2359 /*
2360  * Get login name, if available.
2361  */
2362 #ifndef _SYS_SYSPROTO_H_
2363 struct getlogin_args {
2364 	char	*namebuf;
2365 	u_int	namelen;
2366 };
2367 #endif
2368 /* ARGSUSED */
2369 int
2370 sys_getlogin(struct thread *td, struct getlogin_args *uap)
2371 {
2372 	char login[MAXLOGNAME];
2373 	struct proc *p = td->td_proc;
2374 	size_t len;
2375 
2376 	if (uap->namelen > MAXLOGNAME)
2377 		uap->namelen = MAXLOGNAME;
2378 	PROC_LOCK(p);
2379 	SESS_LOCK(p->p_session);
2380 	len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1;
2381 	SESS_UNLOCK(p->p_session);
2382 	PROC_UNLOCK(p);
2383 	if (len > uap->namelen)
2384 		return (ERANGE);
2385 	return (copyout(login, uap->namebuf, len));
2386 }
2387 
2388 /*
2389  * Set login name.
2390  */
2391 #ifndef _SYS_SYSPROTO_H_
2392 struct setlogin_args {
2393 	char	*namebuf;
2394 };
2395 #endif
2396 /* ARGSUSED */
2397 int
2398 sys_setlogin(struct thread *td, struct setlogin_args *uap)
2399 {
2400 	struct proc *p = td->td_proc;
2401 	int error;
2402 	char logintmp[MAXLOGNAME];
2403 
2404 	CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp));
2405 
2406 	error = priv_check(td, PRIV_PROC_SETLOGIN);
2407 	if (error)
2408 		return (error);
2409 	error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
2410 	if (error != 0) {
2411 		if (error == ENAMETOOLONG)
2412 			error = EINVAL;
2413 		return (error);
2414 	}
2415 	AUDIT_ARG_LOGIN(logintmp);
2416 	PROC_LOCK(p);
2417 	SESS_LOCK(p->p_session);
2418 	strcpy(p->p_session->s_login, logintmp);
2419 	SESS_UNLOCK(p->p_session);
2420 	PROC_UNLOCK(p);
2421 	return (0);
2422 }
2423 
2424 void
2425 setsugid(struct proc *p)
2426 {
2427 
2428 	PROC_LOCK_ASSERT(p, MA_OWNED);
2429 	p->p_flag |= P_SUGID;
2430 }
2431 
2432 /*-
2433  * Change a process's effective uid.
2434  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
2435  * References: newcred must be an exclusive credential reference for the
2436  *             duration of the call.
2437  */
2438 void
2439 change_euid(struct ucred *newcred, struct uidinfo *euip)
2440 {
2441 
2442 	newcred->cr_uid = euip->ui_uid;
2443 	uihold(euip);
2444 	uifree(newcred->cr_uidinfo);
2445 	newcred->cr_uidinfo = euip;
2446 }
2447 
2448 /*-
2449  * Change a process's effective gid.
2450  * Side effects: newcred->cr_gid will be modified.
2451  * References: newcred must be an exclusive credential reference for the
2452  *             duration of the call.
2453  */
2454 void
2455 change_egid(struct ucred *newcred, gid_t egid)
2456 {
2457 
2458 	newcred->cr_groups[0] = egid;
2459 }
2460 
2461 /*-
2462  * Change a process's real uid.
2463  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
2464  *               will be updated, and the old and new cr_ruidinfo proc
2465  *               counts will be updated.
2466  * References: newcred must be an exclusive credential reference for the
2467  *             duration of the call.
2468  */
2469 void
2470 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
2471 {
2472 
2473 	(void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
2474 	newcred->cr_ruid = ruip->ui_uid;
2475 	uihold(ruip);
2476 	uifree(newcred->cr_ruidinfo);
2477 	newcred->cr_ruidinfo = ruip;
2478 	(void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
2479 }
2480 
2481 /*-
2482  * Change a process's real gid.
2483  * Side effects: newcred->cr_rgid will be updated.
2484  * References: newcred must be an exclusive credential reference for the
2485  *             duration of the call.
2486  */
2487 void
2488 change_rgid(struct ucred *newcred, gid_t rgid)
2489 {
2490 
2491 	newcred->cr_rgid = rgid;
2492 }
2493 
2494 /*-
2495  * Change a process's saved uid.
2496  * Side effects: newcred->cr_svuid will be updated.
2497  * References: newcred must be an exclusive credential reference for the
2498  *             duration of the call.
2499  */
2500 void
2501 change_svuid(struct ucred *newcred, uid_t svuid)
2502 {
2503 
2504 	newcred->cr_svuid = svuid;
2505 }
2506 
2507 /*-
2508  * Change a process's saved gid.
2509  * Side effects: newcred->cr_svgid will be updated.
2510  * References: newcred must be an exclusive credential reference for the
2511  *             duration of the call.
2512  */
2513 void
2514 change_svgid(struct ucred *newcred, gid_t svgid)
2515 {
2516 
2517 	newcred->cr_svgid = svgid;
2518 }
2519 
2520 bool allow_ptrace = true;
2521 SYSCTL_BOOL(_security_bsd, OID_AUTO, allow_ptrace, CTLFLAG_RWTUN,
2522     &allow_ptrace, 0,
2523     "Deny ptrace(2) use by returning ENOSYS");
2524