xref: /freebsd/sys/kern/kern_prot.c (revision 6af83ee0d2941d18880b6aaa2b4facd1d30c6106)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  * Copyright (c) 2000-2001 Robert N. M. Watson.  All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)kern_prot.c	8.6 (Berkeley) 1/21/94
36  */
37 
38 /*
39  * System calls related to processes and protection
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_compat.h"
46 #include "opt_mac.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/acct.h>
51 #include <sys/kdb.h>
52 #include <sys/kernel.h>
53 #include <sys/lock.h>
54 #include <sys/mac.h>
55 #include <sys/malloc.h>
56 #include <sys/mutex.h>
57 #include <sys/sx.h>
58 #include <sys/proc.h>
59 #include <sys/sysproto.h>
60 #include <sys/jail.h>
61 #include <sys/pioctl.h>
62 #include <sys/resourcevar.h>
63 #include <sys/socket.h>
64 #include <sys/socketvar.h>
65 #include <sys/sysctl.h>
66 
67 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
68 
69 SYSCTL_DECL(_security);
70 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW, 0,
71     "BSD security policy");
72 
73 #ifndef _SYS_SYSPROTO_H_
74 struct getpid_args {
75 	int	dummy;
76 };
77 #endif
78 /*
79  * MPSAFE
80  */
81 /* ARGSUSED */
82 int
83 getpid(struct thread *td, struct getpid_args *uap)
84 {
85 	struct proc *p = td->td_proc;
86 
87 	td->td_retval[0] = p->p_pid;
88 #if defined(COMPAT_43)
89 	PROC_LOCK(p);
90 	td->td_retval[1] = p->p_pptr->p_pid;
91 	PROC_UNLOCK(p);
92 #endif
93 	return (0);
94 }
95 
96 #ifndef _SYS_SYSPROTO_H_
97 struct getppid_args {
98         int     dummy;
99 };
100 #endif
101 /*
102  * MPSAFE
103  */
104 /* ARGSUSED */
105 int
106 getppid(struct thread *td, struct getppid_args *uap)
107 {
108 	struct proc *p = td->td_proc;
109 
110 	PROC_LOCK(p);
111 	td->td_retval[0] = p->p_pptr->p_pid;
112 	PROC_UNLOCK(p);
113 	return (0);
114 }
115 
116 /*
117  * Get process group ID; note that POSIX getpgrp takes no parameter.
118  */
119 #ifndef _SYS_SYSPROTO_H_
120 struct getpgrp_args {
121         int     dummy;
122 };
123 #endif
124 /*
125  * MPSAFE
126  */
127 int
128 getpgrp(struct thread *td, struct getpgrp_args *uap)
129 {
130 	struct proc *p = td->td_proc;
131 
132 	PROC_LOCK(p);
133 	td->td_retval[0] = p->p_pgrp->pg_id;
134 	PROC_UNLOCK(p);
135 	return (0);
136 }
137 
138 /* Get an arbitary pid's process group id */
139 #ifndef _SYS_SYSPROTO_H_
140 struct getpgid_args {
141 	pid_t	pid;
142 };
143 #endif
144 /*
145  * MPSAFE
146  */
147 int
148 getpgid(struct thread *td, struct getpgid_args *uap)
149 {
150 	struct proc *p;
151 	int error;
152 
153 	if (uap->pid == 0) {
154 		p = td->td_proc;
155 		PROC_LOCK(p);
156 	} else {
157 		p = pfind(uap->pid);
158 		if (p == NULL)
159 			return (ESRCH);
160 		error = p_cansee(td, p);
161 		if (error) {
162 			PROC_UNLOCK(p);
163 			return (error);
164 		}
165 	}
166 	td->td_retval[0] = p->p_pgrp->pg_id;
167 	PROC_UNLOCK(p);
168 	return (0);
169 }
170 
171 /*
172  * Get an arbitary pid's session id.
173  */
174 #ifndef _SYS_SYSPROTO_H_
175 struct getsid_args {
176 	pid_t	pid;
177 };
178 #endif
179 /*
180  * MPSAFE
181  */
182 int
183 getsid(struct thread *td, struct getsid_args *uap)
184 {
185 	struct proc *p;
186 	int error;
187 
188 	if (uap->pid == 0) {
189 		p = td->td_proc;
190 		PROC_LOCK(p);
191 	} else {
192 		p = pfind(uap->pid);
193 		if (p == NULL)
194 			return (ESRCH);
195 		error = p_cansee(td, p);
196 		if (error) {
197 			PROC_UNLOCK(p);
198 			return (error);
199 		}
200 	}
201 	td->td_retval[0] = p->p_session->s_sid;
202 	PROC_UNLOCK(p);
203 	return (0);
204 }
205 
206 #ifndef _SYS_SYSPROTO_H_
207 struct getuid_args {
208         int     dummy;
209 };
210 #endif
211 /*
212  * MPSAFE
213  */
214 /* ARGSUSED */
215 int
216 getuid(struct thread *td, struct getuid_args *uap)
217 {
218 
219 	td->td_retval[0] = td->td_ucred->cr_ruid;
220 #if defined(COMPAT_43)
221 	td->td_retval[1] = td->td_ucred->cr_uid;
222 #endif
223 	return (0);
224 }
225 
226 #ifndef _SYS_SYSPROTO_H_
227 struct geteuid_args {
228         int     dummy;
229 };
230 #endif
231 /*
232  * MPSAFE
233  */
234 /* ARGSUSED */
235 int
236 geteuid(struct thread *td, struct geteuid_args *uap)
237 {
238 
239 	td->td_retval[0] = td->td_ucred->cr_uid;
240 	return (0);
241 }
242 
243 #ifndef _SYS_SYSPROTO_H_
244 struct getgid_args {
245         int     dummy;
246 };
247 #endif
248 /*
249  * MPSAFE
250  */
251 /* ARGSUSED */
252 int
253 getgid(struct thread *td, struct getgid_args *uap)
254 {
255 
256 	td->td_retval[0] = td->td_ucred->cr_rgid;
257 #if defined(COMPAT_43)
258 	td->td_retval[1] = td->td_ucred->cr_groups[0];
259 #endif
260 	return (0);
261 }
262 
263 /*
264  * Get effective group ID.  The "egid" is groups[0], and could be obtained
265  * via getgroups.  This syscall exists because it is somewhat painful to do
266  * correctly in a library function.
267  */
268 #ifndef _SYS_SYSPROTO_H_
269 struct getegid_args {
270         int     dummy;
271 };
272 #endif
273 /*
274  * MPSAFE
275  */
276 /* ARGSUSED */
277 int
278 getegid(struct thread *td, struct getegid_args *uap)
279 {
280 
281 	td->td_retval[0] = td->td_ucred->cr_groups[0];
282 	return (0);
283 }
284 
285 #ifndef _SYS_SYSPROTO_H_
286 struct getgroups_args {
287 	u_int	gidsetsize;
288 	gid_t	*gidset;
289 };
290 #endif
291 /*
292  * MPSAFE
293  */
294 int
295 getgroups(struct thread *td, register struct getgroups_args *uap)
296 {
297 	struct ucred *cred;
298 	u_int ngrp;
299 	int error;
300 
301 	cred = td->td_ucred;
302 	if ((ngrp = uap->gidsetsize) == 0) {
303 		td->td_retval[0] = cred->cr_ngroups;
304 		return (0);
305 	}
306 	if (ngrp < cred->cr_ngroups)
307 		return (EINVAL);
308 	ngrp = cred->cr_ngroups;
309 	error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
310 	if (error == 0)
311 		td->td_retval[0] = ngrp;
312 	return (error);
313 }
314 
315 #ifndef _SYS_SYSPROTO_H_
316 struct setsid_args {
317         int     dummy;
318 };
319 #endif
320 /*
321  * MPSAFE
322  */
323 /* ARGSUSED */
324 int
325 setsid(register struct thread *td, struct setsid_args *uap)
326 {
327 	struct pgrp *pgrp;
328 	int error;
329 	struct proc *p = td->td_proc;
330 	struct pgrp *newpgrp;
331 	struct session *newsess;
332 
333 	error = 0;
334 	pgrp = NULL;
335 
336 	MALLOC(newpgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
337 	MALLOC(newsess, struct session *, sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
338 
339 	sx_xlock(&proctree_lock);
340 
341 	if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
342 		if (pgrp != NULL)
343 			PGRP_UNLOCK(pgrp);
344 		error = EPERM;
345 	} else {
346 		(void)enterpgrp(p, p->p_pid, newpgrp, newsess);
347 		td->td_retval[0] = p->p_pid;
348 		newpgrp = NULL;
349 		newsess = NULL;
350 	}
351 
352 	sx_xunlock(&proctree_lock);
353 
354 	if (newpgrp != NULL)
355 		FREE(newpgrp, M_PGRP);
356 	if (newsess != NULL)
357 		FREE(newsess, M_SESSION);
358 
359 	return (error);
360 }
361 
362 /*
363  * set process group (setpgid/old setpgrp)
364  *
365  * caller does setpgid(targpid, targpgid)
366  *
367  * pid must be caller or child of caller (ESRCH)
368  * if a child
369  *	pid must be in same session (EPERM)
370  *	pid can't have done an exec (EACCES)
371  * if pgid != pid
372  * 	there must exist some pid in same session having pgid (EPERM)
373  * pid must not be session leader (EPERM)
374  */
375 #ifndef _SYS_SYSPROTO_H_
376 struct setpgid_args {
377 	int	pid;		/* target process id */
378 	int	pgid;		/* target pgrp id */
379 };
380 #endif
381 /*
382  * MPSAFE
383  */
384 /* ARGSUSED */
385 int
386 setpgid(struct thread *td, register struct setpgid_args *uap)
387 {
388 	struct proc *curp = td->td_proc;
389 	register struct proc *targp;	/* target process */
390 	register struct pgrp *pgrp;	/* target pgrp */
391 	int error;
392 	struct pgrp *newpgrp;
393 
394 	if (uap->pgid < 0)
395 		return (EINVAL);
396 
397 	error = 0;
398 
399 	MALLOC(newpgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
400 
401 	sx_xlock(&proctree_lock);
402 	if (uap->pid != 0 && uap->pid != curp->p_pid) {
403 		if ((targp = pfind(uap->pid)) == NULL) {
404 			error = ESRCH;
405 			goto done;
406 		}
407 		if (!inferior(targp)) {
408 			PROC_UNLOCK(targp);
409 			error = ESRCH;
410 			goto done;
411 		}
412 		if ((error = p_cansee(td, targp))) {
413 			PROC_UNLOCK(targp);
414 			goto done;
415 		}
416 		if (targp->p_pgrp == NULL ||
417 		    targp->p_session != curp->p_session) {
418 			PROC_UNLOCK(targp);
419 			error = EPERM;
420 			goto done;
421 		}
422 		if (targp->p_flag & P_EXEC) {
423 			PROC_UNLOCK(targp);
424 			error = EACCES;
425 			goto done;
426 		}
427 		PROC_UNLOCK(targp);
428 	} else
429 		targp = curp;
430 	if (SESS_LEADER(targp)) {
431 		error = EPERM;
432 		goto done;
433 	}
434 	if (uap->pgid == 0)
435 		uap->pgid = targp->p_pid;
436 	if ((pgrp = pgfind(uap->pgid)) == NULL) {
437 		if (uap->pgid == targp->p_pid) {
438 			error = enterpgrp(targp, uap->pgid, newpgrp,
439 			    NULL);
440 			if (error == 0)
441 				newpgrp = NULL;
442 		} else
443 			error = EPERM;
444 	} else {
445 		if (pgrp == targp->p_pgrp) {
446 			PGRP_UNLOCK(pgrp);
447 			goto done;
448 		}
449 		if (pgrp->pg_id != targp->p_pid &&
450 		    pgrp->pg_session != curp->p_session) {
451 			PGRP_UNLOCK(pgrp);
452 			error = EPERM;
453 			goto done;
454 		}
455 		PGRP_UNLOCK(pgrp);
456 		error = enterthispgrp(targp, pgrp);
457 	}
458 done:
459 	sx_xunlock(&proctree_lock);
460 	KASSERT((error == 0) || (newpgrp != NULL),
461 	    ("setpgid failed and newpgrp is NULL"));
462 	if (newpgrp != NULL)
463 		FREE(newpgrp, M_PGRP);
464 	return (error);
465 }
466 
467 /*
468  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
469  * compatible.  It says that setting the uid/gid to euid/egid is a special
470  * case of "appropriate privilege".  Once the rules are expanded out, this
471  * basically means that setuid(nnn) sets all three id's, in all permitted
472  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
473  * does not set the saved id - this is dangerous for traditional BSD
474  * programs.  For this reason, we *really* do not want to set
475  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
476  */
477 #define POSIX_APPENDIX_B_4_2_2
478 
479 #ifndef _SYS_SYSPROTO_H_
480 struct setuid_args {
481 	uid_t	uid;
482 };
483 #endif
484 /*
485  * MPSAFE
486  */
487 /* ARGSUSED */
488 int
489 setuid(struct thread *td, struct setuid_args *uap)
490 {
491 	struct proc *p = td->td_proc;
492 	struct ucred *newcred, *oldcred;
493 	uid_t uid;
494 	struct uidinfo *uip;
495 	int error;
496 
497 	uid = uap->uid;
498 	newcred = crget();
499 	uip = uifind(uid);
500 	PROC_LOCK(p);
501 	oldcred = p->p_ucred;
502 
503 	/*
504 	 * See if we have "permission" by POSIX 1003.1 rules.
505 	 *
506 	 * Note that setuid(geteuid()) is a special case of
507 	 * "appropriate privileges" in appendix B.4.2.2.  We need
508 	 * to use this clause to be compatible with traditional BSD
509 	 * semantics.  Basically, it means that "setuid(xx)" sets all
510 	 * three id's (assuming you have privs).
511 	 *
512 	 * Notes on the logic.  We do things in three steps.
513 	 * 1: We determine if the euid is going to change, and do EPERM
514 	 *    right away.  We unconditionally change the euid later if this
515 	 *    test is satisfied, simplifying that part of the logic.
516 	 * 2: We determine if the real and/or saved uids are going to
517 	 *    change.  Determined by compile options.
518 	 * 3: Change euid last. (after tests in #2 for "appropriate privs")
519 	 */
520 	if (uid != oldcred->cr_ruid &&		/* allow setuid(getuid()) */
521 #ifdef _POSIX_SAVED_IDS
522 	    uid != oldcred->cr_svuid &&		/* allow setuid(saved gid) */
523 #endif
524 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
525 	    uid != oldcred->cr_uid &&		/* allow setuid(geteuid()) */
526 #endif
527 	    (error = suser_cred(oldcred, SUSER_ALLOWJAIL)) != 0) {
528 		PROC_UNLOCK(p);
529 		uifree(uip);
530 		crfree(newcred);
531 		return (error);
532 	}
533 
534 	/*
535 	 * Copy credentials so other references do not see our changes.
536 	 */
537 	crcopy(newcred, oldcred);
538 #ifdef _POSIX_SAVED_IDS
539 	/*
540 	 * Do we have "appropriate privileges" (are we root or uid == euid)
541 	 * If so, we are changing the real uid and/or saved uid.
542 	 */
543 	if (
544 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use the clause from B.4.2.2 */
545 	    uid == oldcred->cr_uid ||
546 #endif
547 	    suser_cred(oldcred, SUSER_ALLOWJAIL) == 0) /* we are using privs */
548 #endif
549 	{
550 		/*
551 		 * Set the real uid and transfer proc count to new user.
552 		 */
553 		if (uid != oldcred->cr_ruid) {
554 			change_ruid(newcred, uip);
555 			setsugid(p);
556 		}
557 		/*
558 		 * Set saved uid
559 		 *
560 		 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
561 		 * the security of seteuid() depends on it.  B.4.2.2 says it
562 		 * is important that we should do this.
563 		 */
564 		if (uid != oldcred->cr_svuid) {
565 			change_svuid(newcred, uid);
566 			setsugid(p);
567 		}
568 	}
569 
570 	/*
571 	 * In all permitted cases, we are changing the euid.
572 	 */
573 	if (uid != oldcred->cr_uid) {
574 		change_euid(newcred, uip);
575 		setsugid(p);
576 	}
577 	p->p_ucred = newcred;
578 	PROC_UNLOCK(p);
579 	uifree(uip);
580 	crfree(oldcred);
581 	return (0);
582 }
583 
584 #ifndef _SYS_SYSPROTO_H_
585 struct seteuid_args {
586 	uid_t	euid;
587 };
588 #endif
589 /*
590  * MPSAFE
591  */
592 /* ARGSUSED */
593 int
594 seteuid(struct thread *td, struct seteuid_args *uap)
595 {
596 	struct proc *p = td->td_proc;
597 	struct ucred *newcred, *oldcred;
598 	uid_t euid;
599 	struct uidinfo *euip;
600 	int error;
601 
602 	euid = uap->euid;
603 	newcred = crget();
604 	euip = uifind(euid);
605 	PROC_LOCK(p);
606 	oldcred = p->p_ucred;
607 	if (euid != oldcred->cr_ruid &&		/* allow seteuid(getuid()) */
608 	    euid != oldcred->cr_svuid &&	/* allow seteuid(saved uid) */
609 	    (error = suser_cred(oldcred, SUSER_ALLOWJAIL)) != 0) {
610 		PROC_UNLOCK(p);
611 		uifree(euip);
612 		crfree(newcred);
613 		return (error);
614 	}
615 	/*
616 	 * Everything's okay, do it.  Copy credentials so other references do
617 	 * not see our changes.
618 	 */
619 	crcopy(newcred, oldcred);
620 	if (oldcred->cr_uid != euid) {
621 		change_euid(newcred, euip);
622 		setsugid(p);
623 	}
624 	p->p_ucred = newcred;
625 	PROC_UNLOCK(p);
626 	uifree(euip);
627 	crfree(oldcred);
628 	return (0);
629 }
630 
631 #ifndef _SYS_SYSPROTO_H_
632 struct setgid_args {
633 	gid_t	gid;
634 };
635 #endif
636 /*
637  * MPSAFE
638  */
639 /* ARGSUSED */
640 int
641 setgid(struct thread *td, struct setgid_args *uap)
642 {
643 	struct proc *p = td->td_proc;
644 	struct ucred *newcred, *oldcred;
645 	gid_t gid;
646 	int error;
647 
648 	gid = uap->gid;
649 	newcred = crget();
650 	PROC_LOCK(p);
651 	oldcred = p->p_ucred;
652 
653 	/*
654 	 * See if we have "permission" by POSIX 1003.1 rules.
655 	 *
656 	 * Note that setgid(getegid()) is a special case of
657 	 * "appropriate privileges" in appendix B.4.2.2.  We need
658 	 * to use this clause to be compatible with traditional BSD
659 	 * semantics.  Basically, it means that "setgid(xx)" sets all
660 	 * three id's (assuming you have privs).
661 	 *
662 	 * For notes on the logic here, see setuid() above.
663 	 */
664 	if (gid != oldcred->cr_rgid &&		/* allow setgid(getgid()) */
665 #ifdef _POSIX_SAVED_IDS
666 	    gid != oldcred->cr_svgid &&		/* allow setgid(saved gid) */
667 #endif
668 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
669 	    gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
670 #endif
671 	    (error = suser_cred(oldcred, SUSER_ALLOWJAIL)) != 0) {
672 		PROC_UNLOCK(p);
673 		crfree(newcred);
674 		return (error);
675 	}
676 
677 	crcopy(newcred, oldcred);
678 #ifdef _POSIX_SAVED_IDS
679 	/*
680 	 * Do we have "appropriate privileges" (are we root or gid == egid)
681 	 * If so, we are changing the real uid and saved gid.
682 	 */
683 	if (
684 #ifdef POSIX_APPENDIX_B_4_2_2	/* use the clause from B.4.2.2 */
685 	    gid == oldcred->cr_groups[0] ||
686 #endif
687 	    suser_cred(oldcred, SUSER_ALLOWJAIL) == 0) /* we are using privs */
688 #endif
689 	{
690 		/*
691 		 * Set real gid
692 		 */
693 		if (oldcred->cr_rgid != gid) {
694 			change_rgid(newcred, gid);
695 			setsugid(p);
696 		}
697 		/*
698 		 * Set saved gid
699 		 *
700 		 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
701 		 * the security of setegid() depends on it.  B.4.2.2 says it
702 		 * is important that we should do this.
703 		 */
704 		if (oldcred->cr_svgid != gid) {
705 			change_svgid(newcred, gid);
706 			setsugid(p);
707 		}
708 	}
709 	/*
710 	 * In all cases permitted cases, we are changing the egid.
711 	 * Copy credentials so other references do not see our changes.
712 	 */
713 	if (oldcred->cr_groups[0] != gid) {
714 		change_egid(newcred, gid);
715 		setsugid(p);
716 	}
717 	p->p_ucred = newcred;
718 	PROC_UNLOCK(p);
719 	crfree(oldcred);
720 	return (0);
721 }
722 
723 #ifndef _SYS_SYSPROTO_H_
724 struct setegid_args {
725 	gid_t	egid;
726 };
727 #endif
728 /*
729  * MPSAFE
730  */
731 /* ARGSUSED */
732 int
733 setegid(struct thread *td, struct setegid_args *uap)
734 {
735 	struct proc *p = td->td_proc;
736 	struct ucred *newcred, *oldcred;
737 	gid_t egid;
738 	int error;
739 
740 	egid = uap->egid;
741 	newcred = crget();
742 	PROC_LOCK(p);
743 	oldcred = p->p_ucred;
744 	if (egid != oldcred->cr_rgid &&		/* allow setegid(getgid()) */
745 	    egid != oldcred->cr_svgid &&	/* allow setegid(saved gid) */
746 	    (error = suser_cred(oldcred, SUSER_ALLOWJAIL)) != 0) {
747 		PROC_UNLOCK(p);
748 		crfree(newcred);
749 		return (error);
750 	}
751 	crcopy(newcred, oldcred);
752 	if (oldcred->cr_groups[0] != egid) {
753 		change_egid(newcred, egid);
754 		setsugid(p);
755 	}
756 	p->p_ucred = newcred;
757 	PROC_UNLOCK(p);
758 	crfree(oldcred);
759 	return (0);
760 }
761 
762 #ifndef _SYS_SYSPROTO_H_
763 struct setgroups_args {
764 	u_int	gidsetsize;
765 	gid_t	*gidset;
766 };
767 #endif
768 /*
769  * MPSAFE
770  */
771 /* ARGSUSED */
772 int
773 setgroups(struct thread *td, struct setgroups_args *uap)
774 {
775 	struct proc *p = td->td_proc;
776 	struct ucred *newcred, *tempcred, *oldcred;
777 	u_int ngrp;
778 	int error;
779 
780 	ngrp = uap->gidsetsize;
781 	if (ngrp > NGROUPS)
782 		return (EINVAL);
783 	tempcred = crget();
784 	error = copyin(uap->gidset, tempcred->cr_groups, ngrp * sizeof(gid_t));
785 	if (error != 0) {
786 		crfree(tempcred);
787 		return (error);
788 	}
789 	newcred = crget();
790 	PROC_LOCK(p);
791 	oldcred = p->p_ucred;
792 	error = suser_cred(oldcred, SUSER_ALLOWJAIL);
793 	if (error) {
794 		PROC_UNLOCK(p);
795 		crfree(newcred);
796 		crfree(tempcred);
797 		return (error);
798 	}
799 
800 	/*
801 	 * XXX A little bit lazy here.  We could test if anything has
802 	 * changed before crcopy() and setting P_SUGID.
803 	 */
804 	crcopy(newcred, oldcred);
805 	if (ngrp < 1) {
806 		/*
807 		 * setgroups(0, NULL) is a legitimate way of clearing the
808 		 * groups vector on non-BSD systems (which generally do not
809 		 * have the egid in the groups[0]).  We risk security holes
810 		 * when running non-BSD software if we do not do the same.
811 		 */
812 		newcred->cr_ngroups = 1;
813 	} else {
814 		bcopy(tempcred->cr_groups, newcred->cr_groups,
815 		    ngrp * sizeof(gid_t));
816 		newcred->cr_ngroups = ngrp;
817 	}
818 	setsugid(p);
819 	p->p_ucred = newcred;
820 	PROC_UNLOCK(p);
821 	crfree(tempcred);
822 	crfree(oldcred);
823 	return (0);
824 }
825 
826 #ifndef _SYS_SYSPROTO_H_
827 struct setreuid_args {
828 	uid_t	ruid;
829 	uid_t	euid;
830 };
831 #endif
832 /*
833  * MPSAFE
834  */
835 /* ARGSUSED */
836 int
837 setreuid(register struct thread *td, struct setreuid_args *uap)
838 {
839 	struct proc *p = td->td_proc;
840 	struct ucred *newcred, *oldcred;
841 	uid_t euid, ruid;
842 	struct uidinfo *euip, *ruip;
843 	int error;
844 
845 	euid = uap->euid;
846 	ruid = uap->ruid;
847 	newcred = crget();
848 	euip = uifind(euid);
849 	ruip = uifind(ruid);
850 	PROC_LOCK(p);
851 	oldcred = p->p_ucred;
852 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
853 	      ruid != oldcred->cr_svuid) ||
854 	     (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
855 	      euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
856 	    (error = suser_cred(oldcred, SUSER_ALLOWJAIL)) != 0) {
857 		PROC_UNLOCK(p);
858 		uifree(ruip);
859 		uifree(euip);
860 		crfree(newcred);
861 		return (error);
862 	}
863 	crcopy(newcred, oldcred);
864 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
865 		change_euid(newcred, euip);
866 		setsugid(p);
867 	}
868 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
869 		change_ruid(newcred, ruip);
870 		setsugid(p);
871 	}
872 	if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
873 	    newcred->cr_svuid != newcred->cr_uid) {
874 		change_svuid(newcred, newcred->cr_uid);
875 		setsugid(p);
876 	}
877 	p->p_ucred = newcred;
878 	PROC_UNLOCK(p);
879 	uifree(ruip);
880 	uifree(euip);
881 	crfree(oldcred);
882 	return (0);
883 }
884 
885 #ifndef _SYS_SYSPROTO_H_
886 struct setregid_args {
887 	gid_t	rgid;
888 	gid_t	egid;
889 };
890 #endif
891 /*
892  * MPSAFE
893  */
894 /* ARGSUSED */
895 int
896 setregid(register struct thread *td, struct setregid_args *uap)
897 {
898 	struct proc *p = td->td_proc;
899 	struct ucred *newcred, *oldcred;
900 	gid_t egid, rgid;
901 	int error;
902 
903 	egid = uap->egid;
904 	rgid = uap->rgid;
905 	newcred = crget();
906 	PROC_LOCK(p);
907 	oldcred = p->p_ucred;
908 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
909 	    rgid != oldcred->cr_svgid) ||
910 	     (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
911 	     egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
912 	    (error = suser_cred(oldcred, SUSER_ALLOWJAIL)) != 0) {
913 		PROC_UNLOCK(p);
914 		crfree(newcred);
915 		return (error);
916 	}
917 
918 	crcopy(newcred, oldcred);
919 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
920 		change_egid(newcred, egid);
921 		setsugid(p);
922 	}
923 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
924 		change_rgid(newcred, rgid);
925 		setsugid(p);
926 	}
927 	if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
928 	    newcred->cr_svgid != newcred->cr_groups[0]) {
929 		change_svgid(newcred, newcred->cr_groups[0]);
930 		setsugid(p);
931 	}
932 	p->p_ucred = newcred;
933 	PROC_UNLOCK(p);
934 	crfree(oldcred);
935 	return (0);
936 }
937 
938 /*
939  * setresuid(ruid, euid, suid) is like setreuid except control over the
940  * saved uid is explicit.
941  */
942 
943 #ifndef _SYS_SYSPROTO_H_
944 struct setresuid_args {
945 	uid_t	ruid;
946 	uid_t	euid;
947 	uid_t	suid;
948 };
949 #endif
950 /*
951  * MPSAFE
952  */
953 /* ARGSUSED */
954 int
955 setresuid(register struct thread *td, struct setresuid_args *uap)
956 {
957 	struct proc *p = td->td_proc;
958 	struct ucred *newcred, *oldcred;
959 	uid_t euid, ruid, suid;
960 	struct uidinfo *euip, *ruip;
961 	int error;
962 
963 	euid = uap->euid;
964 	ruid = uap->ruid;
965 	suid = uap->suid;
966 	newcred = crget();
967 	euip = uifind(euid);
968 	ruip = uifind(ruid);
969 	PROC_LOCK(p);
970 	oldcred = p->p_ucred;
971 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
972 	     ruid != oldcred->cr_svuid &&
973 	      ruid != oldcred->cr_uid) ||
974 	     (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
975 	    euid != oldcred->cr_svuid &&
976 	      euid != oldcred->cr_uid) ||
977 	     (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
978 	    suid != oldcred->cr_svuid &&
979 	      suid != oldcred->cr_uid)) &&
980 	    (error = suser_cred(oldcred, SUSER_ALLOWJAIL)) != 0) {
981 		PROC_UNLOCK(p);
982 		uifree(ruip);
983 		uifree(euip);
984 		crfree(newcred);
985 		return (error);
986 	}
987 
988 	crcopy(newcred, oldcred);
989 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
990 		change_euid(newcred, euip);
991 		setsugid(p);
992 	}
993 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
994 		change_ruid(newcred, ruip);
995 		setsugid(p);
996 	}
997 	if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
998 		change_svuid(newcred, suid);
999 		setsugid(p);
1000 	}
1001 	p->p_ucred = newcred;
1002 	PROC_UNLOCK(p);
1003 	uifree(ruip);
1004 	uifree(euip);
1005 	crfree(oldcred);
1006 	return (0);
1007 }
1008 
1009 /*
1010  * setresgid(rgid, egid, sgid) is like setregid except control over the
1011  * saved gid is explicit.
1012  */
1013 
1014 #ifndef _SYS_SYSPROTO_H_
1015 struct setresgid_args {
1016 	gid_t	rgid;
1017 	gid_t	egid;
1018 	gid_t	sgid;
1019 };
1020 #endif
1021 /*
1022  * MPSAFE
1023  */
1024 /* ARGSUSED */
1025 int
1026 setresgid(register struct thread *td, struct setresgid_args *uap)
1027 {
1028 	struct proc *p = td->td_proc;
1029 	struct ucred *newcred, *oldcred;
1030 	gid_t egid, rgid, sgid;
1031 	int error;
1032 
1033 	egid = uap->egid;
1034 	rgid = uap->rgid;
1035 	sgid = uap->sgid;
1036 	newcred = crget();
1037 	PROC_LOCK(p);
1038 	oldcred = p->p_ucred;
1039 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1040 	      rgid != oldcred->cr_svgid &&
1041 	      rgid != oldcred->cr_groups[0]) ||
1042 	     (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
1043 	      egid != oldcred->cr_svgid &&
1044 	      egid != oldcred->cr_groups[0]) ||
1045 	     (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
1046 	      sgid != oldcred->cr_svgid &&
1047 	      sgid != oldcred->cr_groups[0])) &&
1048 	    (error = suser_cred(oldcred, SUSER_ALLOWJAIL)) != 0) {
1049 		PROC_UNLOCK(p);
1050 		crfree(newcred);
1051 		return (error);
1052 	}
1053 
1054 	crcopy(newcred, oldcred);
1055 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
1056 		change_egid(newcred, egid);
1057 		setsugid(p);
1058 	}
1059 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1060 		change_rgid(newcred, rgid);
1061 		setsugid(p);
1062 	}
1063 	if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
1064 		change_svgid(newcred, sgid);
1065 		setsugid(p);
1066 	}
1067 	p->p_ucred = newcred;
1068 	PROC_UNLOCK(p);
1069 	crfree(oldcred);
1070 	return (0);
1071 }
1072 
1073 #ifndef _SYS_SYSPROTO_H_
1074 struct getresuid_args {
1075 	uid_t	*ruid;
1076 	uid_t	*euid;
1077 	uid_t	*suid;
1078 };
1079 #endif
1080 /*
1081  * MPSAFE
1082  */
1083 /* ARGSUSED */
1084 int
1085 getresuid(register struct thread *td, struct getresuid_args *uap)
1086 {
1087 	struct ucred *cred;
1088 	int error1 = 0, error2 = 0, error3 = 0;
1089 
1090 	cred = td->td_ucred;
1091 	if (uap->ruid)
1092 		error1 = copyout(&cred->cr_ruid,
1093 		    uap->ruid, sizeof(cred->cr_ruid));
1094 	if (uap->euid)
1095 		error2 = copyout(&cred->cr_uid,
1096 		    uap->euid, sizeof(cred->cr_uid));
1097 	if (uap->suid)
1098 		error3 = copyout(&cred->cr_svuid,
1099 		    uap->suid, sizeof(cred->cr_svuid));
1100 	return (error1 ? error1 : error2 ? error2 : error3);
1101 }
1102 
1103 #ifndef _SYS_SYSPROTO_H_
1104 struct getresgid_args {
1105 	gid_t	*rgid;
1106 	gid_t	*egid;
1107 	gid_t	*sgid;
1108 };
1109 #endif
1110 /*
1111  * MPSAFE
1112  */
1113 /* ARGSUSED */
1114 int
1115 getresgid(register struct thread *td, struct getresgid_args *uap)
1116 {
1117 	struct ucred *cred;
1118 	int error1 = 0, error2 = 0, error3 = 0;
1119 
1120 	cred = td->td_ucred;
1121 	if (uap->rgid)
1122 		error1 = copyout(&cred->cr_rgid,
1123 		    uap->rgid, sizeof(cred->cr_rgid));
1124 	if (uap->egid)
1125 		error2 = copyout(&cred->cr_groups[0],
1126 		    uap->egid, sizeof(cred->cr_groups[0]));
1127 	if (uap->sgid)
1128 		error3 = copyout(&cred->cr_svgid,
1129 		    uap->sgid, sizeof(cred->cr_svgid));
1130 	return (error1 ? error1 : error2 ? error2 : error3);
1131 }
1132 
1133 #ifndef _SYS_SYSPROTO_H_
1134 struct issetugid_args {
1135 	int dummy;
1136 };
1137 #endif
1138 /*
1139  * MPSAFE
1140  */
1141 /* ARGSUSED */
1142 int
1143 issetugid(register struct thread *td, struct issetugid_args *uap)
1144 {
1145 	struct proc *p = td->td_proc;
1146 
1147 	/*
1148 	 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
1149 	 * we use P_SUGID because we consider changing the owners as
1150 	 * "tainting" as well.
1151 	 * This is significant for procs that start as root and "become"
1152 	 * a user without an exec - programs cannot know *everything*
1153 	 * that libc *might* have put in their data segment.
1154 	 */
1155 	PROC_LOCK(p);
1156 	td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
1157 	PROC_UNLOCK(p);
1158 	return (0);
1159 }
1160 
1161 /*
1162  * MPSAFE
1163  */
1164 int
1165 __setugid(struct thread *td, struct __setugid_args *uap)
1166 {
1167 #ifdef REGRESSION
1168 	struct proc *p;
1169 
1170 	p = td->td_proc;
1171 	switch (uap->flag) {
1172 	case 0:
1173 		PROC_LOCK(p);
1174 		p->p_flag &= ~P_SUGID;
1175 		PROC_UNLOCK(p);
1176 		return (0);
1177 	case 1:
1178 		PROC_LOCK(p);
1179 		p->p_flag |= P_SUGID;
1180 		PROC_UNLOCK(p);
1181 		return (0);
1182 	default:
1183 		return (EINVAL);
1184 	}
1185 #else /* !REGRESSION */
1186 
1187 	return (ENOSYS);
1188 #endif /* REGRESSION */
1189 }
1190 
1191 /*
1192  * Check if gid is a member of the group set.
1193  *
1194  * MPSAFE (cred must be held)
1195  */
1196 int
1197 groupmember(gid_t gid, struct ucred *cred)
1198 {
1199 	register gid_t *gp;
1200 	gid_t *egp;
1201 
1202 	egp = &(cred->cr_groups[cred->cr_ngroups]);
1203 	for (gp = cred->cr_groups; gp < egp; gp++)
1204 		if (*gp == gid)
1205 			return (1);
1206 	return (0);
1207 }
1208 
1209 /*
1210  * `suser_enabled' (which can be set by the security.suser_enabled
1211  * sysctl) determines whether the system 'super-user' policy is in effect.
1212  * If it is nonzero, an effective uid of 0 connotes special privilege,
1213  * overriding many mandatory and discretionary protections.  If it is zero,
1214  * uid 0 is offered no special privilege in the kernel security policy.
1215  * Setting it to zero may seriously impact the functionality of many
1216  * existing userland programs, and should not be done without careful
1217  * consideration of the consequences.
1218  */
1219 int	suser_enabled = 1;
1220 SYSCTL_INT(_security_bsd, OID_AUTO, suser_enabled, CTLFLAG_RW,
1221     &suser_enabled, 0, "processes with uid 0 have privilege");
1222 TUNABLE_INT("security.bsd.suser_enabled", &suser_enabled);
1223 
1224 /*
1225  * Test whether the specified credentials imply "super-user" privilege.
1226  * Return 0 or EPERM.
1227  */
1228 int
1229 suser_cred(struct ucred *cred, int flag)
1230 {
1231 
1232 	if (!suser_enabled)
1233 		return (EPERM);
1234 	if (((flag & SUSER_RUID) ? cred->cr_ruid : cred->cr_uid) != 0)
1235 		return (EPERM);
1236 	if (jailed(cred) && !(flag & SUSER_ALLOWJAIL))
1237 		return (EPERM);
1238 	return (0);
1239 }
1240 
1241 /*
1242  * Shortcut to hide contents of struct td and struct proc from the
1243  * caller, promoting binary compatibility.
1244  */
1245 int
1246 suser(struct thread *td)
1247 {
1248 
1249 #ifdef INVARIANTS
1250 	if (td != curthread) {
1251 		printf("suser: thread %p (%d %s) != curthread %p (%d %s)\n",
1252 		    td, td->td_proc->p_pid, td->td_proc->p_comm,
1253 		    curthread, curthread->td_proc->p_pid,
1254 		    curthread->td_proc->p_comm);
1255 #ifdef KDB
1256 		kdb_backtrace();
1257 #endif
1258 	}
1259 #endif
1260 	return (suser_cred(td->td_ucred, 0));
1261 }
1262 
1263 /*
1264  * Test the active securelevel against a given level.  securelevel_gt()
1265  * implements (securelevel > level).  securelevel_ge() implements
1266  * (securelevel >= level).  Note that the logic is inverted -- these
1267  * functions return EPERM on "success" and 0 on "failure".
1268  *
1269  * MPSAFE
1270  */
1271 int
1272 securelevel_gt(struct ucred *cr, int level)
1273 {
1274 	int active_securelevel;
1275 
1276 	active_securelevel = securelevel;
1277 	KASSERT(cr != NULL, ("securelevel_gt: null cr"));
1278 	if (cr->cr_prison != NULL)
1279 		active_securelevel = imax(cr->cr_prison->pr_securelevel,
1280 		    active_securelevel);
1281 	return (active_securelevel > level ? EPERM : 0);
1282 }
1283 
1284 int
1285 securelevel_ge(struct ucred *cr, int level)
1286 {
1287 	int active_securelevel;
1288 
1289 	active_securelevel = securelevel;
1290 	KASSERT(cr != NULL, ("securelevel_ge: null cr"));
1291 	if (cr->cr_prison != NULL)
1292 		active_securelevel = imax(cr->cr_prison->pr_securelevel,
1293 		    active_securelevel);
1294 	return (active_securelevel >= level ? EPERM : 0);
1295 }
1296 
1297 /*
1298  * 'see_other_uids' determines whether or not visibility of processes
1299  * and sockets with credentials holding different real uids is possible
1300  * using a variety of system MIBs.
1301  * XXX: data declarations should be together near the beginning of the file.
1302  */
1303 static int	see_other_uids = 1;
1304 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
1305     &see_other_uids, 0,
1306     "Unprivileged processes may see subjects/objects with different real uid");
1307 
1308 /*-
1309  * Determine if u1 "can see" the subject specified by u2, according to the
1310  * 'see_other_uids' policy.
1311  * Returns: 0 for permitted, ESRCH otherwise
1312  * Locks: none
1313  * References: *u1 and *u2 must not change during the call
1314  *             u1 may equal u2, in which case only one reference is required
1315  */
1316 static int
1317 cr_seeotheruids(struct ucred *u1, struct ucred *u2)
1318 {
1319 
1320 	if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
1321 		if (suser_cred(u1, SUSER_ALLOWJAIL) != 0)
1322 			return (ESRCH);
1323 	}
1324 	return (0);
1325 }
1326 
1327 /*
1328  * 'see_other_gids' determines whether or not visibility of processes
1329  * and sockets with credentials holding different real gids is possible
1330  * using a variety of system MIBs.
1331  * XXX: data declarations should be together near the beginning of the file.
1332  */
1333 static int	see_other_gids = 1;
1334 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
1335     &see_other_gids, 0,
1336     "Unprivileged processes may see subjects/objects with different real gid");
1337 
1338 /*
1339  * Determine if u1 can "see" the subject specified by u2, according to the
1340  * 'see_other_gids' policy.
1341  * Returns: 0 for permitted, ESRCH otherwise
1342  * Locks: none
1343  * References: *u1 and *u2 must not change during the call
1344  *             u1 may equal u2, in which case only one reference is required
1345  */
1346 static int
1347 cr_seeothergids(struct ucred *u1, struct ucred *u2)
1348 {
1349 	int i, match;
1350 
1351 	if (!see_other_gids) {
1352 		match = 0;
1353 		for (i = 0; i < u1->cr_ngroups; i++) {
1354 			if (groupmember(u1->cr_groups[i], u2))
1355 				match = 1;
1356 			if (match)
1357 				break;
1358 		}
1359 		if (!match) {
1360 			if (suser_cred(u1, SUSER_ALLOWJAIL) != 0)
1361 				return (ESRCH);
1362 		}
1363 	}
1364 	return (0);
1365 }
1366 
1367 /*-
1368  * Determine if u1 "can see" the subject specified by u2.
1369  * Returns: 0 for permitted, an errno value otherwise
1370  * Locks: none
1371  * References: *u1 and *u2 must not change during the call
1372  *             u1 may equal u2, in which case only one reference is required
1373  */
1374 int
1375 cr_cansee(struct ucred *u1, struct ucred *u2)
1376 {
1377 	int error;
1378 
1379 	if ((error = prison_check(u1, u2)))
1380 		return (error);
1381 #ifdef MAC
1382 	if ((error = mac_check_cred_visible(u1, u2)))
1383 		return (error);
1384 #endif
1385 	if ((error = cr_seeotheruids(u1, u2)))
1386 		return (error);
1387 	if ((error = cr_seeothergids(u1, u2)))
1388 		return (error);
1389 	return (0);
1390 }
1391 
1392 /*-
1393  * Determine if td "can see" the subject specified by p.
1394  * Returns: 0 for permitted, an errno value otherwise
1395  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
1396  *        should be curthread.
1397  * References: td and p must be valid for the lifetime of the call
1398  */
1399 int
1400 p_cansee(struct thread *td, struct proc *p)
1401 {
1402 
1403 	/* Wrap cr_cansee() for all functionality. */
1404 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1405 	PROC_LOCK_ASSERT(p, MA_OWNED);
1406 	return (cr_cansee(td->td_ucred, p->p_ucred));
1407 }
1408 
1409 /*
1410  * 'conservative_signals' prevents the delivery of a broad class of
1411  * signals by unprivileged processes to processes that have changed their
1412  * credentials since the last invocation of execve().  This can prevent
1413  * the leakage of cached information or retained privileges as a result
1414  * of a common class of signal-related vulnerabilities.  However, this
1415  * may interfere with some applications that expect to be able to
1416  * deliver these signals to peer processes after having given up
1417  * privilege.
1418  */
1419 static int	conservative_signals = 1;
1420 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
1421     &conservative_signals, 0, "Unprivileged processes prevented from "
1422     "sending certain signals to processes whose credentials have changed");
1423 /*-
1424  * Determine whether cred may deliver the specified signal to proc.
1425  * Returns: 0 for permitted, an errno value otherwise.
1426  * Locks: A lock must be held for proc.
1427  * References: cred and proc must be valid for the lifetime of the call.
1428  */
1429 int
1430 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
1431 {
1432 	int error;
1433 
1434 	PROC_LOCK_ASSERT(proc, MA_OWNED);
1435 	/*
1436 	 * Jail semantics limit the scope of signalling to proc in the
1437 	 * same jail as cred, if cred is in jail.
1438 	 */
1439 	error = prison_check(cred, proc->p_ucred);
1440 	if (error)
1441 		return (error);
1442 #ifdef MAC
1443 	if ((error = mac_check_proc_signal(cred, proc, signum)))
1444 		return (error);
1445 #endif
1446 	if ((error = cr_seeotheruids(cred, proc->p_ucred)))
1447 		return (error);
1448 	if ((error = cr_seeothergids(cred, proc->p_ucred)))
1449 		return (error);
1450 
1451 	/*
1452 	 * UNIX signal semantics depend on the status of the P_SUGID
1453 	 * bit on the target process.  If the bit is set, then additional
1454 	 * restrictions are placed on the set of available signals.
1455 	 */
1456 	if (conservative_signals && (proc->p_flag & P_SUGID)) {
1457 		switch (signum) {
1458 		case 0:
1459 		case SIGKILL:
1460 		case SIGINT:
1461 		case SIGTERM:
1462 		case SIGALRM:
1463 		case SIGSTOP:
1464 		case SIGTTIN:
1465 		case SIGTTOU:
1466 		case SIGTSTP:
1467 		case SIGHUP:
1468 		case SIGUSR1:
1469 		case SIGUSR2:
1470 			/*
1471 			 * Generally, permit job and terminal control
1472 			 * signals.
1473 			 */
1474 			break;
1475 		default:
1476 			/* Not permitted without privilege. */
1477 			error = suser_cred(cred, SUSER_ALLOWJAIL);
1478 			if (error)
1479 				return (error);
1480 		}
1481 	}
1482 
1483 	/*
1484 	 * Generally, the target credential's ruid or svuid must match the
1485 	 * subject credential's ruid or euid.
1486 	 */
1487 	if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
1488 	    cred->cr_ruid != proc->p_ucred->cr_svuid &&
1489 	    cred->cr_uid != proc->p_ucred->cr_ruid &&
1490 	    cred->cr_uid != proc->p_ucred->cr_svuid) {
1491 		/* Not permitted without privilege. */
1492 		error = suser_cred(cred, SUSER_ALLOWJAIL);
1493 		if (error)
1494 			return (error);
1495 	}
1496 
1497 	return (0);
1498 }
1499 
1500 
1501 /*-
1502  * Determine whether td may deliver the specified signal to p.
1503  * Returns: 0 for permitted, an errno value otherwise
1504  * Locks: Sufficient locks to protect various components of td and p
1505  *        must be held.  td must be curthread, and a lock must be
1506  *        held for p.
1507  * References: td and p must be valid for the lifetime of the call
1508  */
1509 int
1510 p_cansignal(struct thread *td, struct proc *p, int signum)
1511 {
1512 
1513 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1514 	PROC_LOCK_ASSERT(p, MA_OWNED);
1515 	if (td->td_proc == p)
1516 		return (0);
1517 
1518 	/*
1519 	 * UNIX signalling semantics require that processes in the same
1520 	 * session always be able to deliver SIGCONT to one another,
1521 	 * overriding the remaining protections.
1522 	 */
1523 	/* XXX: This will require an additional lock of some sort. */
1524 	if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
1525 		return (0);
1526 
1527 	return (cr_cansignal(td->td_ucred, p, signum));
1528 }
1529 
1530 /*-
1531  * Determine whether td may reschedule p.
1532  * Returns: 0 for permitted, an errno value otherwise
1533  * Locks: Sufficient locks to protect various components of td and p
1534  *        must be held.  td must be curthread, and a lock must
1535  *        be held for p.
1536  * References: td and p must be valid for the lifetime of the call
1537  */
1538 int
1539 p_cansched(struct thread *td, struct proc *p)
1540 {
1541 	int error;
1542 
1543 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1544 	PROC_LOCK_ASSERT(p, MA_OWNED);
1545 	if (td->td_proc == p)
1546 		return (0);
1547 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1548 		return (error);
1549 #ifdef MAC
1550 	if ((error = mac_check_proc_sched(td->td_ucred, p)))
1551 		return (error);
1552 #endif
1553 	if ((error = cr_seeotheruids(td->td_ucred, p->p_ucred)))
1554 		return (error);
1555 	if ((error = cr_seeothergids(td->td_ucred, p->p_ucred)))
1556 		return (error);
1557 	if (td->td_ucred->cr_ruid == p->p_ucred->cr_ruid)
1558 		return (0);
1559 	if (td->td_ucred->cr_uid == p->p_ucred->cr_ruid)
1560 		return (0);
1561 	if (suser_cred(td->td_ucred, SUSER_ALLOWJAIL) == 0)
1562 		return (0);
1563 
1564 #ifdef CAPABILITIES
1565 	if (!cap_check(NULL, td, CAP_SYS_NICE, SUSER_ALLOWJAIL))
1566 		return (0);
1567 #endif
1568 
1569 	return (EPERM);
1570 }
1571 
1572 /*
1573  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
1574  * unprivileged inter-process debugging services, including some procfs
1575  * functionality, ptrace(), and ktrace().  In the past, inter-process
1576  * debugging has been involved in a variety of security problems, and sites
1577  * not requiring the service might choose to disable it when hardening
1578  * systems.
1579  *
1580  * XXX: Should modifying and reading this variable require locking?
1581  * XXX: data declarations should be together near the beginning of the file.
1582  */
1583 static int	unprivileged_proc_debug = 1;
1584 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_proc_debug, CTLFLAG_RW,
1585     &unprivileged_proc_debug, 0,
1586     "Unprivileged processes may use process debugging facilities");
1587 
1588 /*-
1589  * Determine whether td may debug p.
1590  * Returns: 0 for permitted, an errno value otherwise
1591  * Locks: Sufficient locks to protect various components of td and p
1592  *        must be held.  td must be curthread, and a lock must
1593  *        be held for p.
1594  * References: td and p must be valid for the lifetime of the call
1595  */
1596 int
1597 p_candebug(struct thread *td, struct proc *p)
1598 {
1599 	int credentialchanged, error, grpsubset, i, uidsubset;
1600 
1601 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1602 	PROC_LOCK_ASSERT(p, MA_OWNED);
1603 	if (!unprivileged_proc_debug) {
1604 		error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL);
1605 		if (error)
1606 			return (error);
1607 	}
1608 	if (td->td_proc == p)
1609 		return (0);
1610 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1611 		return (error);
1612 #ifdef MAC
1613 	if ((error = mac_check_proc_debug(td->td_ucred, p)))
1614 		return (error);
1615 #endif
1616 	if ((error = cr_seeotheruids(td->td_ucred, p->p_ucred)))
1617 		return (error);
1618 	if ((error = cr_seeothergids(td->td_ucred, p->p_ucred)))
1619 		return (error);
1620 
1621 	/*
1622 	 * Is p's group set a subset of td's effective group set?  This
1623 	 * includes p's egid, group access list, rgid, and svgid.
1624 	 */
1625 	grpsubset = 1;
1626 	for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
1627 		if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
1628 			grpsubset = 0;
1629 			break;
1630 		}
1631 	}
1632 	grpsubset = grpsubset &&
1633 	    groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
1634 	    groupmember(p->p_ucred->cr_svgid, td->td_ucred);
1635 
1636 	/*
1637 	 * Are the uids present in p's credential equal to td's
1638 	 * effective uid?  This includes p's euid, svuid, and ruid.
1639 	 */
1640 	uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
1641 	    td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
1642 	    td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
1643 
1644 	/*
1645 	 * Has the credential of the process changed since the last exec()?
1646 	 */
1647 	credentialchanged = (p->p_flag & P_SUGID);
1648 
1649 	/*
1650 	 * If p's gids aren't a subset, or the uids aren't a subset,
1651 	 * or the credential has changed, require appropriate privilege
1652 	 * for td to debug p.  For POSIX.1e capabilities, this will
1653 	 * require CAP_SYS_PTRACE.
1654 	 */
1655 	if (!grpsubset || !uidsubset || credentialchanged) {
1656 		error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL);
1657 		if (error)
1658 			return (error);
1659 	}
1660 
1661 	/* Can't trace init when securelevel > 0. */
1662 	if (p == initproc) {
1663 		error = securelevel_gt(td->td_ucred, 0);
1664 		if (error)
1665 			return (error);
1666 	}
1667 
1668 	/*
1669 	 * Can't trace a process that's currently exec'ing.
1670 	 * XXX: Note, this is not a security policy decision, it's a
1671 	 * basic correctness/functionality decision.  Therefore, this check
1672 	 * should be moved to the caller's of p_candebug().
1673 	 */
1674 	if ((p->p_flag & P_INEXEC) != 0)
1675 		return (EAGAIN);
1676 
1677 	return (0);
1678 }
1679 
1680 /*-
1681  * Determine whether the subject represented by cred can "see" a socket.
1682  * Returns: 0 for permitted, ENOENT otherwise.
1683  */
1684 int
1685 cr_canseesocket(struct ucred *cred, struct socket *so)
1686 {
1687 	int error;
1688 
1689 	error = prison_check(cred, so->so_cred);
1690 	if (error)
1691 		return (ENOENT);
1692 #ifdef MAC
1693 	SOCK_LOCK(so);
1694 	error = mac_check_socket_visible(cred, so);
1695 	SOCK_UNLOCK(so);
1696 	if (error)
1697 		return (error);
1698 #endif
1699 	if (cr_seeotheruids(cred, so->so_cred))
1700 		return (ENOENT);
1701 	if (cr_seeothergids(cred, so->so_cred))
1702 		return (ENOENT);
1703 
1704 	return (0);
1705 }
1706 
1707 /*
1708  * Allocate a zeroed cred structure.
1709  * MPSAFE
1710  */
1711 struct ucred *
1712 crget(void)
1713 {
1714 	register struct ucred *cr;
1715 
1716 	MALLOC(cr, struct ucred *, sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
1717 	cr->cr_ref = 1;
1718 	cr->cr_mtxp = mtx_pool_find(mtxpool_sleep, cr);
1719 #ifdef MAC
1720 	mac_init_cred(cr);
1721 #endif
1722 	return (cr);
1723 }
1724 
1725 /*
1726  * Claim another reference to a ucred structure.
1727  * MPSAFE
1728  */
1729 struct ucred *
1730 crhold(struct ucred *cr)
1731 {
1732 
1733 	mtx_lock(cr->cr_mtxp);
1734 	cr->cr_ref++;
1735 	mtx_unlock(cr->cr_mtxp);
1736 	return (cr);
1737 }
1738 
1739 /*
1740  * Free a cred structure.
1741  * Throws away space when ref count gets to 0.
1742  * MPSAFE
1743  */
1744 void
1745 crfree(struct ucred *cr)
1746 {
1747 	struct mtx *mtxp = cr->cr_mtxp;
1748 
1749 	mtx_lock(mtxp);
1750 	KASSERT(cr->cr_ref > 0, ("bad ucred refcount: %d", cr->cr_ref));
1751 	if (--cr->cr_ref == 0) {
1752 		mtx_unlock(mtxp);
1753 		/*
1754 		 * Some callers of crget(), such as nfs_statfs(),
1755 		 * allocate a temporary credential, but don't
1756 		 * allocate a uidinfo structure.
1757 		 */
1758 		if (cr->cr_uidinfo != NULL)
1759 			uifree(cr->cr_uidinfo);
1760 		if (cr->cr_ruidinfo != NULL)
1761 			uifree(cr->cr_ruidinfo);
1762 		/*
1763 		 * Free a prison, if any.
1764 		 */
1765 		if (jailed(cr))
1766 			prison_free(cr->cr_prison);
1767 #ifdef MAC
1768 		mac_destroy_cred(cr);
1769 #endif
1770 		FREE(cr, M_CRED);
1771 	} else {
1772 		mtx_unlock(mtxp);
1773 	}
1774 }
1775 
1776 /*
1777  * Check to see if this ucred is shared.
1778  * MPSAFE
1779  */
1780 int
1781 crshared(struct ucred *cr)
1782 {
1783 	int shared;
1784 
1785 	mtx_lock(cr->cr_mtxp);
1786 	shared = (cr->cr_ref > 1);
1787 	mtx_unlock(cr->cr_mtxp);
1788 	return (shared);
1789 }
1790 
1791 /*
1792  * Copy a ucred's contents from a template.  Does not block.
1793  * MPSAFE
1794  */
1795 void
1796 crcopy(struct ucred *dest, struct ucred *src)
1797 {
1798 
1799 	KASSERT(crshared(dest) == 0, ("crcopy of shared ucred"));
1800 	bcopy(&src->cr_startcopy, &dest->cr_startcopy,
1801 	    (unsigned)((caddr_t)&src->cr_endcopy -
1802 		(caddr_t)&src->cr_startcopy));
1803 	uihold(dest->cr_uidinfo);
1804 	uihold(dest->cr_ruidinfo);
1805 	if (jailed(dest))
1806 		prison_hold(dest->cr_prison);
1807 #ifdef MAC
1808 	mac_copy_cred(src, dest);
1809 #endif
1810 }
1811 
1812 /*
1813  * Dup cred struct to a new held one.
1814  * MPSAFE
1815  */
1816 struct ucred *
1817 crdup(struct ucred *cr)
1818 {
1819 	struct ucred *newcr;
1820 
1821 	newcr = crget();
1822 	crcopy(newcr, cr);
1823 	return (newcr);
1824 }
1825 
1826 /*
1827  * Fill in a struct xucred based on a struct ucred.
1828  * MPSAFE
1829  */
1830 void
1831 cru2x(struct ucred *cr, struct xucred *xcr)
1832 {
1833 
1834 	bzero(xcr, sizeof(*xcr));
1835 	xcr->cr_version = XUCRED_VERSION;
1836 	xcr->cr_uid = cr->cr_uid;
1837 	xcr->cr_ngroups = cr->cr_ngroups;
1838 	bcopy(cr->cr_groups, xcr->cr_groups, sizeof(cr->cr_groups));
1839 }
1840 
1841 /*
1842  * small routine to swap a thread's current ucred for the correct one
1843  * taken from the process.
1844  * MPSAFE
1845  */
1846 void
1847 cred_update_thread(struct thread *td)
1848 {
1849 	struct proc *p;
1850 	struct ucred *cred;
1851 
1852 	p = td->td_proc;
1853 	cred = td->td_ucred;
1854 	PROC_LOCK(p);
1855 	td->td_ucred = crhold(p->p_ucred);
1856 	PROC_UNLOCK(p);
1857 	if (cred != NULL)
1858 		crfree(cred);
1859 }
1860 
1861 /*
1862  * Get login name, if available.
1863  */
1864 #ifndef _SYS_SYSPROTO_H_
1865 struct getlogin_args {
1866 	char	*namebuf;
1867 	u_int	namelen;
1868 };
1869 #endif
1870 /*
1871  * MPSAFE
1872  */
1873 /* ARGSUSED */
1874 int
1875 getlogin(struct thread *td, struct getlogin_args *uap)
1876 {
1877 	int error;
1878 	char login[MAXLOGNAME];
1879 	struct proc *p = td->td_proc;
1880 
1881 	if (uap->namelen > MAXLOGNAME)
1882 		uap->namelen = MAXLOGNAME;
1883 	PROC_LOCK(p);
1884 	SESS_LOCK(p->p_session);
1885 	bcopy(p->p_session->s_login, login, uap->namelen);
1886 	SESS_UNLOCK(p->p_session);
1887 	PROC_UNLOCK(p);
1888 	error = copyout(login, uap->namebuf, uap->namelen);
1889 	return(error);
1890 }
1891 
1892 /*
1893  * Set login name.
1894  */
1895 #ifndef _SYS_SYSPROTO_H_
1896 struct setlogin_args {
1897 	char	*namebuf;
1898 };
1899 #endif
1900 /*
1901  * MPSAFE
1902  */
1903 /* ARGSUSED */
1904 int
1905 setlogin(struct thread *td, struct setlogin_args *uap)
1906 {
1907 	struct proc *p = td->td_proc;
1908 	int error;
1909 	char logintmp[MAXLOGNAME];
1910 
1911 	error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL);
1912 	if (error)
1913 		return (error);
1914 	error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
1915 	if (error == ENAMETOOLONG)
1916 		error = EINVAL;
1917 	else if (!error) {
1918 		PROC_LOCK(p);
1919 		SESS_LOCK(p->p_session);
1920 		(void) memcpy(p->p_session->s_login, logintmp,
1921 		    sizeof(logintmp));
1922 		SESS_UNLOCK(p->p_session);
1923 		PROC_UNLOCK(p);
1924 	}
1925 	return (error);
1926 }
1927 
1928 void
1929 setsugid(struct proc *p)
1930 {
1931 
1932 	PROC_LOCK_ASSERT(p, MA_OWNED);
1933 	p->p_flag |= P_SUGID;
1934 	if (!(p->p_pfsflags & PF_ISUGID))
1935 		p->p_stops = 0;
1936 }
1937 
1938 /*-
1939  * Change a process's effective uid.
1940  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
1941  * References: newcred must be an exclusive credential reference for the
1942  *             duration of the call.
1943  */
1944 void
1945 change_euid(struct ucred *newcred, struct uidinfo *euip)
1946 {
1947 
1948 	newcred->cr_uid = euip->ui_uid;
1949 	uihold(euip);
1950 	uifree(newcred->cr_uidinfo);
1951 	newcred->cr_uidinfo = euip;
1952 }
1953 
1954 /*-
1955  * Change a process's effective gid.
1956  * Side effects: newcred->cr_gid will be modified.
1957  * References: newcred must be an exclusive credential reference for the
1958  *             duration of the call.
1959  */
1960 void
1961 change_egid(struct ucred *newcred, gid_t egid)
1962 {
1963 
1964 	newcred->cr_groups[0] = egid;
1965 }
1966 
1967 /*-
1968  * Change a process's real uid.
1969  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
1970  *               will be updated, and the old and new cr_ruidinfo proc
1971  *               counts will be updated.
1972  * References: newcred must be an exclusive credential reference for the
1973  *             duration of the call.
1974  */
1975 void
1976 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
1977 {
1978 
1979 	(void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
1980 	newcred->cr_ruid = ruip->ui_uid;
1981 	uihold(ruip);
1982 	uifree(newcred->cr_ruidinfo);
1983 	newcred->cr_ruidinfo = ruip;
1984 	(void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
1985 }
1986 
1987 /*-
1988  * Change a process's real gid.
1989  * Side effects: newcred->cr_rgid will be updated.
1990  * References: newcred must be an exclusive credential reference for the
1991  *             duration of the call.
1992  */
1993 void
1994 change_rgid(struct ucred *newcred, gid_t rgid)
1995 {
1996 
1997 	newcred->cr_rgid = rgid;
1998 }
1999 
2000 /*-
2001  * Change a process's saved uid.
2002  * Side effects: newcred->cr_svuid will be updated.
2003  * References: newcred must be an exclusive credential reference for the
2004  *             duration of the call.
2005  */
2006 void
2007 change_svuid(struct ucred *newcred, uid_t svuid)
2008 {
2009 
2010 	newcred->cr_svuid = svuid;
2011 }
2012 
2013 /*-
2014  * Change a process's saved gid.
2015  * Side effects: newcred->cr_svgid will be updated.
2016  * References: newcred must be an exclusive credential reference for the
2017  *             duration of the call.
2018  */
2019 void
2020 change_svgid(struct ucred *newcred, gid_t svgid)
2021 {
2022 
2023 	newcred->cr_svgid = svgid;
2024 }
2025