xref: /freebsd/sys/kern/kern_prot.c (revision 6813d08ff55ae587abd7e2297e051d491c218de0)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
5  *	The Regents of the University of California.
6  * (c) UNIX System Laboratories, Inc.
7  * Copyright (c) 2000-2001 Robert N. M. Watson.
8  * All rights reserved.
9  *
10  * All or some portions of this file are derived from material licensed
11  * to the University of California by American Telephone and Telegraph
12  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
13  * the permission of UNIX System Laboratories, Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	@(#)kern_prot.c	8.6 (Berkeley) 1/21/94
40  */
41 
42 /*
43  * System calls related to processes and protection
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include "opt_inet.h"
50 #include "opt_inet6.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/acct.h>
55 #include <sys/kdb.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/loginclass.h>
59 #include <sys/malloc.h>
60 #include <sys/mutex.h>
61 #include <sys/refcount.h>
62 #include <sys/sx.h>
63 #include <sys/priv.h>
64 #include <sys/proc.h>
65 #include <sys/sysproto.h>
66 #include <sys/jail.h>
67 #include <sys/pioctl.h>
68 #include <sys/racct.h>
69 #include <sys/rctl.h>
70 #include <sys/resourcevar.h>
71 #include <sys/socket.h>
72 #include <sys/socketvar.h>
73 #include <sys/syscallsubr.h>
74 #include <sys/sysctl.h>
75 
76 #ifdef REGRESSION
77 FEATURE(regression,
78     "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
79 #endif
80 
81 #include <security/audit/audit.h>
82 #include <security/mac/mac_framework.h>
83 
84 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
85 
86 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW, 0, "BSD security policy");
87 
88 static void crsetgroups_locked(struct ucred *cr, int ngrp,
89     gid_t *groups);
90 
91 #ifndef _SYS_SYSPROTO_H_
92 struct getpid_args {
93 	int	dummy;
94 };
95 #endif
96 /* ARGSUSED */
97 int
98 sys_getpid(struct thread *td, struct getpid_args *uap)
99 {
100 	struct proc *p = td->td_proc;
101 
102 	td->td_retval[0] = p->p_pid;
103 #if defined(COMPAT_43)
104 	td->td_retval[1] = kern_getppid(td);
105 #endif
106 	return (0);
107 }
108 
109 #ifndef _SYS_SYSPROTO_H_
110 struct getppid_args {
111         int     dummy;
112 };
113 #endif
114 /* ARGSUSED */
115 int
116 sys_getppid(struct thread *td, struct getppid_args *uap)
117 {
118 
119 	td->td_retval[0] = kern_getppid(td);
120 	return (0);
121 }
122 
123 int
124 kern_getppid(struct thread *td)
125 {
126 	struct proc *p = td->td_proc;
127 	struct proc *pp;
128 	int ppid;
129 
130 	PROC_LOCK(p);
131 	if (!(p->p_flag & P_TRACED)) {
132 		ppid = p->p_pptr->p_pid;
133 		PROC_UNLOCK(p);
134 	} else {
135 		PROC_UNLOCK(p);
136 		sx_slock(&proctree_lock);
137 		pp = proc_realparent(p);
138 		ppid = pp->p_pid;
139 		sx_sunlock(&proctree_lock);
140 	}
141 
142 	return (ppid);
143 }
144 
145 /*
146  * Get process group ID; note that POSIX getpgrp takes no parameter.
147  */
148 #ifndef _SYS_SYSPROTO_H_
149 struct getpgrp_args {
150         int     dummy;
151 };
152 #endif
153 int
154 sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
155 {
156 	struct proc *p = td->td_proc;
157 
158 	PROC_LOCK(p);
159 	td->td_retval[0] = p->p_pgrp->pg_id;
160 	PROC_UNLOCK(p);
161 	return (0);
162 }
163 
164 /* Get an arbitrary pid's process group id */
165 #ifndef _SYS_SYSPROTO_H_
166 struct getpgid_args {
167 	pid_t	pid;
168 };
169 #endif
170 int
171 sys_getpgid(struct thread *td, struct getpgid_args *uap)
172 {
173 	struct proc *p;
174 	int error;
175 
176 	if (uap->pid == 0) {
177 		p = td->td_proc;
178 		PROC_LOCK(p);
179 	} else {
180 		p = pfind(uap->pid);
181 		if (p == NULL)
182 			return (ESRCH);
183 		error = p_cansee(td, p);
184 		if (error) {
185 			PROC_UNLOCK(p);
186 			return (error);
187 		}
188 	}
189 	td->td_retval[0] = p->p_pgrp->pg_id;
190 	PROC_UNLOCK(p);
191 	return (0);
192 }
193 
194 /*
195  * Get an arbitrary pid's session id.
196  */
197 #ifndef _SYS_SYSPROTO_H_
198 struct getsid_args {
199 	pid_t	pid;
200 };
201 #endif
202 int
203 sys_getsid(struct thread *td, struct getsid_args *uap)
204 {
205 	struct proc *p;
206 	int error;
207 
208 	if (uap->pid == 0) {
209 		p = td->td_proc;
210 		PROC_LOCK(p);
211 	} else {
212 		p = pfind(uap->pid);
213 		if (p == NULL)
214 			return (ESRCH);
215 		error = p_cansee(td, p);
216 		if (error) {
217 			PROC_UNLOCK(p);
218 			return (error);
219 		}
220 	}
221 	td->td_retval[0] = p->p_session->s_sid;
222 	PROC_UNLOCK(p);
223 	return (0);
224 }
225 
226 #ifndef _SYS_SYSPROTO_H_
227 struct getuid_args {
228         int     dummy;
229 };
230 #endif
231 /* ARGSUSED */
232 int
233 sys_getuid(struct thread *td, struct getuid_args *uap)
234 {
235 
236 	td->td_retval[0] = td->td_ucred->cr_ruid;
237 #if defined(COMPAT_43)
238 	td->td_retval[1] = td->td_ucred->cr_uid;
239 #endif
240 	return (0);
241 }
242 
243 #ifndef _SYS_SYSPROTO_H_
244 struct geteuid_args {
245         int     dummy;
246 };
247 #endif
248 /* ARGSUSED */
249 int
250 sys_geteuid(struct thread *td, struct geteuid_args *uap)
251 {
252 
253 	td->td_retval[0] = td->td_ucred->cr_uid;
254 	return (0);
255 }
256 
257 #ifndef _SYS_SYSPROTO_H_
258 struct getgid_args {
259         int     dummy;
260 };
261 #endif
262 /* ARGSUSED */
263 int
264 sys_getgid(struct thread *td, struct getgid_args *uap)
265 {
266 
267 	td->td_retval[0] = td->td_ucred->cr_rgid;
268 #if defined(COMPAT_43)
269 	td->td_retval[1] = td->td_ucred->cr_groups[0];
270 #endif
271 	return (0);
272 }
273 
274 /*
275  * Get effective group ID.  The "egid" is groups[0], and could be obtained
276  * via getgroups.  This syscall exists because it is somewhat painful to do
277  * correctly in a library function.
278  */
279 #ifndef _SYS_SYSPROTO_H_
280 struct getegid_args {
281         int     dummy;
282 };
283 #endif
284 /* ARGSUSED */
285 int
286 sys_getegid(struct thread *td, struct getegid_args *uap)
287 {
288 
289 	td->td_retval[0] = td->td_ucred->cr_groups[0];
290 	return (0);
291 }
292 
293 #ifndef _SYS_SYSPROTO_H_
294 struct getgroups_args {
295 	u_int	gidsetsize;
296 	gid_t	*gidset;
297 };
298 #endif
299 int
300 sys_getgroups(struct thread *td, struct getgroups_args *uap)
301 {
302 	struct ucred *cred;
303 	u_int ngrp;
304 	int error;
305 
306 	cred = td->td_ucred;
307 	ngrp = cred->cr_ngroups;
308 
309 	if (uap->gidsetsize == 0) {
310 		error = 0;
311 		goto out;
312 	}
313 	if (uap->gidsetsize < ngrp)
314 		return (EINVAL);
315 
316 	error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
317 out:
318 	td->td_retval[0] = ngrp;
319 	return (error);
320 }
321 
322 #ifndef _SYS_SYSPROTO_H_
323 struct setsid_args {
324         int     dummy;
325 };
326 #endif
327 /* ARGSUSED */
328 int
329 sys_setsid(struct thread *td, struct setsid_args *uap)
330 {
331 	struct pgrp *pgrp;
332 	int error;
333 	struct proc *p = td->td_proc;
334 	struct pgrp *newpgrp;
335 	struct session *newsess;
336 
337 	error = 0;
338 	pgrp = NULL;
339 
340 	newpgrp = malloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
341 	newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
342 
343 	sx_xlock(&proctree_lock);
344 
345 	if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
346 		if (pgrp != NULL)
347 			PGRP_UNLOCK(pgrp);
348 		error = EPERM;
349 	} else {
350 		(void)enterpgrp(p, p->p_pid, newpgrp, newsess);
351 		td->td_retval[0] = p->p_pid;
352 		newpgrp = NULL;
353 		newsess = NULL;
354 	}
355 
356 	sx_xunlock(&proctree_lock);
357 
358 	if (newpgrp != NULL)
359 		free(newpgrp, M_PGRP);
360 	if (newsess != NULL)
361 		free(newsess, M_SESSION);
362 
363 	return (error);
364 }
365 
366 /*
367  * set process group (setpgid/old setpgrp)
368  *
369  * caller does setpgid(targpid, targpgid)
370  *
371  * pid must be caller or child of caller (ESRCH)
372  * if a child
373  *	pid must be in same session (EPERM)
374  *	pid can't have done an exec (EACCES)
375  * if pgid != pid
376  * 	there must exist some pid in same session having pgid (EPERM)
377  * pid must not be session leader (EPERM)
378  */
379 #ifndef _SYS_SYSPROTO_H_
380 struct setpgid_args {
381 	int	pid;		/* target process id */
382 	int	pgid;		/* target pgrp id */
383 };
384 #endif
385 /* ARGSUSED */
386 int
387 sys_setpgid(struct thread *td, struct setpgid_args *uap)
388 {
389 	struct proc *curp = td->td_proc;
390 	struct proc *targp;	/* target process */
391 	struct pgrp *pgrp;	/* target pgrp */
392 	int error;
393 	struct pgrp *newpgrp;
394 
395 	if (uap->pgid < 0)
396 		return (EINVAL);
397 
398 	error = 0;
399 
400 	newpgrp = malloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
401 
402 	sx_xlock(&proctree_lock);
403 	if (uap->pid != 0 && uap->pid != curp->p_pid) {
404 		if ((targp = pfind(uap->pid)) == NULL) {
405 			error = ESRCH;
406 			goto done;
407 		}
408 		if (!inferior(targp)) {
409 			PROC_UNLOCK(targp);
410 			error = ESRCH;
411 			goto done;
412 		}
413 		if ((error = p_cansee(td, targp))) {
414 			PROC_UNLOCK(targp);
415 			goto done;
416 		}
417 		if (targp->p_pgrp == NULL ||
418 		    targp->p_session != curp->p_session) {
419 			PROC_UNLOCK(targp);
420 			error = EPERM;
421 			goto done;
422 		}
423 		if (targp->p_flag & P_EXEC) {
424 			PROC_UNLOCK(targp);
425 			error = EACCES;
426 			goto done;
427 		}
428 		PROC_UNLOCK(targp);
429 	} else
430 		targp = curp;
431 	if (SESS_LEADER(targp)) {
432 		error = EPERM;
433 		goto done;
434 	}
435 	if (uap->pgid == 0)
436 		uap->pgid = targp->p_pid;
437 	if ((pgrp = pgfind(uap->pgid)) == NULL) {
438 		if (uap->pgid == targp->p_pid) {
439 			error = enterpgrp(targp, uap->pgid, newpgrp,
440 			    NULL);
441 			if (error == 0)
442 				newpgrp = NULL;
443 		} else
444 			error = EPERM;
445 	} else {
446 		if (pgrp == targp->p_pgrp) {
447 			PGRP_UNLOCK(pgrp);
448 			goto done;
449 		}
450 		if (pgrp->pg_id != targp->p_pid &&
451 		    pgrp->pg_session != curp->p_session) {
452 			PGRP_UNLOCK(pgrp);
453 			error = EPERM;
454 			goto done;
455 		}
456 		PGRP_UNLOCK(pgrp);
457 		error = enterthispgrp(targp, pgrp);
458 	}
459 done:
460 	sx_xunlock(&proctree_lock);
461 	KASSERT((error == 0) || (newpgrp != NULL),
462 	    ("setpgid failed and newpgrp is NULL"));
463 	if (newpgrp != NULL)
464 		free(newpgrp, M_PGRP);
465 	return (error);
466 }
467 
468 /*
469  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
470  * compatible.  It says that setting the uid/gid to euid/egid is a special
471  * case of "appropriate privilege".  Once the rules are expanded out, this
472  * basically means that setuid(nnn) sets all three id's, in all permitted
473  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
474  * does not set the saved id - this is dangerous for traditional BSD
475  * programs.  For this reason, we *really* do not want to set
476  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
477  */
478 #define POSIX_APPENDIX_B_4_2_2
479 
480 #ifndef _SYS_SYSPROTO_H_
481 struct setuid_args {
482 	uid_t	uid;
483 };
484 #endif
485 /* ARGSUSED */
486 int
487 sys_setuid(struct thread *td, struct setuid_args *uap)
488 {
489 	struct proc *p = td->td_proc;
490 	struct ucred *newcred, *oldcred;
491 	uid_t uid;
492 	struct uidinfo *uip;
493 	int error;
494 
495 	uid = uap->uid;
496 	AUDIT_ARG_UID(uid);
497 	newcred = crget();
498 	uip = uifind(uid);
499 	PROC_LOCK(p);
500 	/*
501 	 * Copy credentials so other references do not see our changes.
502 	 */
503 	oldcred = crcopysafe(p, newcred);
504 
505 #ifdef MAC
506 	error = mac_cred_check_setuid(oldcred, uid);
507 	if (error)
508 		goto fail;
509 #endif
510 
511 	/*
512 	 * See if we have "permission" by POSIX 1003.1 rules.
513 	 *
514 	 * Note that setuid(geteuid()) is a special case of
515 	 * "appropriate privileges" in appendix B.4.2.2.  We need
516 	 * to use this clause to be compatible with traditional BSD
517 	 * semantics.  Basically, it means that "setuid(xx)" sets all
518 	 * three id's (assuming you have privs).
519 	 *
520 	 * Notes on the logic.  We do things in three steps.
521 	 * 1: We determine if the euid is going to change, and do EPERM
522 	 *    right away.  We unconditionally change the euid later if this
523 	 *    test is satisfied, simplifying that part of the logic.
524 	 * 2: We determine if the real and/or saved uids are going to
525 	 *    change.  Determined by compile options.
526 	 * 3: Change euid last. (after tests in #2 for "appropriate privs")
527 	 */
528 	if (uid != oldcred->cr_ruid &&		/* allow setuid(getuid()) */
529 #ifdef _POSIX_SAVED_IDS
530 	    uid != oldcred->cr_svuid &&		/* allow setuid(saved gid) */
531 #endif
532 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
533 	    uid != oldcred->cr_uid &&		/* allow setuid(geteuid()) */
534 #endif
535 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETUID, 0)) != 0)
536 		goto fail;
537 
538 #ifdef _POSIX_SAVED_IDS
539 	/*
540 	 * Do we have "appropriate privileges" (are we root or uid == euid)
541 	 * If so, we are changing the real uid and/or saved uid.
542 	 */
543 	if (
544 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use the clause from B.4.2.2 */
545 	    uid == oldcred->cr_uid ||
546 #endif
547 	    /* We are using privs. */
548 	    priv_check_cred(oldcred, PRIV_CRED_SETUID, 0) == 0)
549 #endif
550 	{
551 		/*
552 		 * Set the real uid and transfer proc count to new user.
553 		 */
554 		if (uid != oldcred->cr_ruid) {
555 			change_ruid(newcred, uip);
556 			setsugid(p);
557 		}
558 		/*
559 		 * Set saved uid
560 		 *
561 		 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
562 		 * the security of seteuid() depends on it.  B.4.2.2 says it
563 		 * is important that we should do this.
564 		 */
565 		if (uid != oldcred->cr_svuid) {
566 			change_svuid(newcred, uid);
567 			setsugid(p);
568 		}
569 	}
570 
571 	/*
572 	 * In all permitted cases, we are changing the euid.
573 	 */
574 	if (uid != oldcred->cr_uid) {
575 		change_euid(newcred, uip);
576 		setsugid(p);
577 	}
578 	proc_set_cred(p, newcred);
579 #ifdef RACCT
580 	racct_proc_ucred_changed(p, oldcred, newcred);
581 	crhold(newcred);
582 #endif
583 	PROC_UNLOCK(p);
584 #ifdef RCTL
585 	rctl_proc_ucred_changed(p, newcred);
586 	crfree(newcred);
587 #endif
588 	uifree(uip);
589 	crfree(oldcred);
590 	return (0);
591 
592 fail:
593 	PROC_UNLOCK(p);
594 	uifree(uip);
595 	crfree(newcred);
596 	return (error);
597 }
598 
599 #ifndef _SYS_SYSPROTO_H_
600 struct seteuid_args {
601 	uid_t	euid;
602 };
603 #endif
604 /* ARGSUSED */
605 int
606 sys_seteuid(struct thread *td, struct seteuid_args *uap)
607 {
608 	struct proc *p = td->td_proc;
609 	struct ucred *newcred, *oldcred;
610 	uid_t euid;
611 	struct uidinfo *euip;
612 	int error;
613 
614 	euid = uap->euid;
615 	AUDIT_ARG_EUID(euid);
616 	newcred = crget();
617 	euip = uifind(euid);
618 	PROC_LOCK(p);
619 	/*
620 	 * Copy credentials so other references do not see our changes.
621 	 */
622 	oldcred = crcopysafe(p, newcred);
623 
624 #ifdef MAC
625 	error = mac_cred_check_seteuid(oldcred, euid);
626 	if (error)
627 		goto fail;
628 #endif
629 
630 	if (euid != oldcred->cr_ruid &&		/* allow seteuid(getuid()) */
631 	    euid != oldcred->cr_svuid &&	/* allow seteuid(saved uid) */
632 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID, 0)) != 0)
633 		goto fail;
634 
635 	/*
636 	 * Everything's okay, do it.
637 	 */
638 	if (oldcred->cr_uid != euid) {
639 		change_euid(newcred, euip);
640 		setsugid(p);
641 	}
642 	proc_set_cred(p, newcred);
643 	PROC_UNLOCK(p);
644 	uifree(euip);
645 	crfree(oldcred);
646 	return (0);
647 
648 fail:
649 	PROC_UNLOCK(p);
650 	uifree(euip);
651 	crfree(newcred);
652 	return (error);
653 }
654 
655 #ifndef _SYS_SYSPROTO_H_
656 struct setgid_args {
657 	gid_t	gid;
658 };
659 #endif
660 /* ARGSUSED */
661 int
662 sys_setgid(struct thread *td, struct setgid_args *uap)
663 {
664 	struct proc *p = td->td_proc;
665 	struct ucred *newcred, *oldcred;
666 	gid_t gid;
667 	int error;
668 
669 	gid = uap->gid;
670 	AUDIT_ARG_GID(gid);
671 	newcred = crget();
672 	PROC_LOCK(p);
673 	oldcred = crcopysafe(p, newcred);
674 
675 #ifdef MAC
676 	error = mac_cred_check_setgid(oldcred, gid);
677 	if (error)
678 		goto fail;
679 #endif
680 
681 	/*
682 	 * See if we have "permission" by POSIX 1003.1 rules.
683 	 *
684 	 * Note that setgid(getegid()) is a special case of
685 	 * "appropriate privileges" in appendix B.4.2.2.  We need
686 	 * to use this clause to be compatible with traditional BSD
687 	 * semantics.  Basically, it means that "setgid(xx)" sets all
688 	 * three id's (assuming you have privs).
689 	 *
690 	 * For notes on the logic here, see setuid() above.
691 	 */
692 	if (gid != oldcred->cr_rgid &&		/* allow setgid(getgid()) */
693 #ifdef _POSIX_SAVED_IDS
694 	    gid != oldcred->cr_svgid &&		/* allow setgid(saved gid) */
695 #endif
696 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
697 	    gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
698 #endif
699 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETGID, 0)) != 0)
700 		goto fail;
701 
702 #ifdef _POSIX_SAVED_IDS
703 	/*
704 	 * Do we have "appropriate privileges" (are we root or gid == egid)
705 	 * If so, we are changing the real uid and saved gid.
706 	 */
707 	if (
708 #ifdef POSIX_APPENDIX_B_4_2_2	/* use the clause from B.4.2.2 */
709 	    gid == oldcred->cr_groups[0] ||
710 #endif
711 	    /* We are using privs. */
712 	    priv_check_cred(oldcred, PRIV_CRED_SETGID, 0) == 0)
713 #endif
714 	{
715 		/*
716 		 * Set real gid
717 		 */
718 		if (oldcred->cr_rgid != gid) {
719 			change_rgid(newcred, gid);
720 			setsugid(p);
721 		}
722 		/*
723 		 * Set saved gid
724 		 *
725 		 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
726 		 * the security of setegid() depends on it.  B.4.2.2 says it
727 		 * is important that we should do this.
728 		 */
729 		if (oldcred->cr_svgid != gid) {
730 			change_svgid(newcred, gid);
731 			setsugid(p);
732 		}
733 	}
734 	/*
735 	 * In all cases permitted cases, we are changing the egid.
736 	 * Copy credentials so other references do not see our changes.
737 	 */
738 	if (oldcred->cr_groups[0] != gid) {
739 		change_egid(newcred, gid);
740 		setsugid(p);
741 	}
742 	proc_set_cred(p, newcred);
743 	PROC_UNLOCK(p);
744 	crfree(oldcred);
745 	return (0);
746 
747 fail:
748 	PROC_UNLOCK(p);
749 	crfree(newcred);
750 	return (error);
751 }
752 
753 #ifndef _SYS_SYSPROTO_H_
754 struct setegid_args {
755 	gid_t	egid;
756 };
757 #endif
758 /* ARGSUSED */
759 int
760 sys_setegid(struct thread *td, struct setegid_args *uap)
761 {
762 	struct proc *p = td->td_proc;
763 	struct ucred *newcred, *oldcred;
764 	gid_t egid;
765 	int error;
766 
767 	egid = uap->egid;
768 	AUDIT_ARG_EGID(egid);
769 	newcred = crget();
770 	PROC_LOCK(p);
771 	oldcred = crcopysafe(p, newcred);
772 
773 #ifdef MAC
774 	error = mac_cred_check_setegid(oldcred, egid);
775 	if (error)
776 		goto fail;
777 #endif
778 
779 	if (egid != oldcred->cr_rgid &&		/* allow setegid(getgid()) */
780 	    egid != oldcred->cr_svgid &&	/* allow setegid(saved gid) */
781 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID, 0)) != 0)
782 		goto fail;
783 
784 	if (oldcred->cr_groups[0] != egid) {
785 		change_egid(newcred, egid);
786 		setsugid(p);
787 	}
788 	proc_set_cred(p, newcred);
789 	PROC_UNLOCK(p);
790 	crfree(oldcred);
791 	return (0);
792 
793 fail:
794 	PROC_UNLOCK(p);
795 	crfree(newcred);
796 	return (error);
797 }
798 
799 #ifndef _SYS_SYSPROTO_H_
800 struct setgroups_args {
801 	u_int	gidsetsize;
802 	gid_t	*gidset;
803 };
804 #endif
805 /* ARGSUSED */
806 int
807 sys_setgroups(struct thread *td, struct setgroups_args *uap)
808 {
809 	gid_t smallgroups[XU_NGROUPS];
810 	gid_t *groups;
811 	u_int gidsetsize;
812 	int error;
813 
814 	gidsetsize = uap->gidsetsize;
815 	if (gidsetsize > ngroups_max + 1)
816 		return (EINVAL);
817 
818 	if (gidsetsize > XU_NGROUPS)
819 		groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
820 	else
821 		groups = smallgroups;
822 
823 	error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
824 	if (error == 0)
825 		error = kern_setgroups(td, gidsetsize, groups);
826 
827 	if (gidsetsize > XU_NGROUPS)
828 		free(groups, M_TEMP);
829 	return (error);
830 }
831 
832 int
833 kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups)
834 {
835 	struct proc *p = td->td_proc;
836 	struct ucred *newcred, *oldcred;
837 	int error;
838 
839 	MPASS(ngrp <= ngroups_max + 1);
840 	AUDIT_ARG_GROUPSET(groups, ngrp);
841 	newcred = crget();
842 	crextend(newcred, ngrp);
843 	PROC_LOCK(p);
844 	oldcred = crcopysafe(p, newcred);
845 
846 #ifdef MAC
847 	error = mac_cred_check_setgroups(oldcred, ngrp, groups);
848 	if (error)
849 		goto fail;
850 #endif
851 
852 	error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS, 0);
853 	if (error)
854 		goto fail;
855 
856 	if (ngrp == 0) {
857 		/*
858 		 * setgroups(0, NULL) is a legitimate way of clearing the
859 		 * groups vector on non-BSD systems (which generally do not
860 		 * have the egid in the groups[0]).  We risk security holes
861 		 * when running non-BSD software if we do not do the same.
862 		 */
863 		newcred->cr_ngroups = 1;
864 	} else {
865 		crsetgroups_locked(newcred, ngrp, groups);
866 	}
867 	setsugid(p);
868 	proc_set_cred(p, newcred);
869 	PROC_UNLOCK(p);
870 	crfree(oldcred);
871 	return (0);
872 
873 fail:
874 	PROC_UNLOCK(p);
875 	crfree(newcred);
876 	return (error);
877 }
878 
879 #ifndef _SYS_SYSPROTO_H_
880 struct setreuid_args {
881 	uid_t	ruid;
882 	uid_t	euid;
883 };
884 #endif
885 /* ARGSUSED */
886 int
887 sys_setreuid(struct thread *td, struct setreuid_args *uap)
888 {
889 	struct proc *p = td->td_proc;
890 	struct ucred *newcred, *oldcred;
891 	uid_t euid, ruid;
892 	struct uidinfo *euip, *ruip;
893 	int error;
894 
895 	euid = uap->euid;
896 	ruid = uap->ruid;
897 	AUDIT_ARG_EUID(euid);
898 	AUDIT_ARG_RUID(ruid);
899 	newcred = crget();
900 	euip = uifind(euid);
901 	ruip = uifind(ruid);
902 	PROC_LOCK(p);
903 	oldcred = crcopysafe(p, newcred);
904 
905 #ifdef MAC
906 	error = mac_cred_check_setreuid(oldcred, ruid, euid);
907 	if (error)
908 		goto fail;
909 #endif
910 
911 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
912 	      ruid != oldcred->cr_svuid) ||
913 	     (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
914 	      euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
915 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID, 0)) != 0)
916 		goto fail;
917 
918 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
919 		change_euid(newcred, euip);
920 		setsugid(p);
921 	}
922 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
923 		change_ruid(newcred, ruip);
924 		setsugid(p);
925 	}
926 	if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
927 	    newcred->cr_svuid != newcred->cr_uid) {
928 		change_svuid(newcred, newcred->cr_uid);
929 		setsugid(p);
930 	}
931 	proc_set_cred(p, newcred);
932 #ifdef RACCT
933 	racct_proc_ucred_changed(p, oldcred, newcred);
934 	crhold(newcred);
935 #endif
936 	PROC_UNLOCK(p);
937 #ifdef RCTL
938 	rctl_proc_ucred_changed(p, newcred);
939 	crfree(newcred);
940 #endif
941 	uifree(ruip);
942 	uifree(euip);
943 	crfree(oldcred);
944 	return (0);
945 
946 fail:
947 	PROC_UNLOCK(p);
948 	uifree(ruip);
949 	uifree(euip);
950 	crfree(newcred);
951 	return (error);
952 }
953 
954 #ifndef _SYS_SYSPROTO_H_
955 struct setregid_args {
956 	gid_t	rgid;
957 	gid_t	egid;
958 };
959 #endif
960 /* ARGSUSED */
961 int
962 sys_setregid(struct thread *td, struct setregid_args *uap)
963 {
964 	struct proc *p = td->td_proc;
965 	struct ucred *newcred, *oldcred;
966 	gid_t egid, rgid;
967 	int error;
968 
969 	egid = uap->egid;
970 	rgid = uap->rgid;
971 	AUDIT_ARG_EGID(egid);
972 	AUDIT_ARG_RGID(rgid);
973 	newcred = crget();
974 	PROC_LOCK(p);
975 	oldcred = crcopysafe(p, newcred);
976 
977 #ifdef MAC
978 	error = mac_cred_check_setregid(oldcred, rgid, egid);
979 	if (error)
980 		goto fail;
981 #endif
982 
983 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
984 	    rgid != oldcred->cr_svgid) ||
985 	     (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
986 	     egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
987 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID, 0)) != 0)
988 		goto fail;
989 
990 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
991 		change_egid(newcred, egid);
992 		setsugid(p);
993 	}
994 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
995 		change_rgid(newcred, rgid);
996 		setsugid(p);
997 	}
998 	if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
999 	    newcred->cr_svgid != newcred->cr_groups[0]) {
1000 		change_svgid(newcred, newcred->cr_groups[0]);
1001 		setsugid(p);
1002 	}
1003 	proc_set_cred(p, newcred);
1004 	PROC_UNLOCK(p);
1005 	crfree(oldcred);
1006 	return (0);
1007 
1008 fail:
1009 	PROC_UNLOCK(p);
1010 	crfree(newcred);
1011 	return (error);
1012 }
1013 
1014 /*
1015  * setresuid(ruid, euid, suid) is like setreuid except control over the saved
1016  * uid is explicit.
1017  */
1018 #ifndef _SYS_SYSPROTO_H_
1019 struct setresuid_args {
1020 	uid_t	ruid;
1021 	uid_t	euid;
1022 	uid_t	suid;
1023 };
1024 #endif
1025 /* ARGSUSED */
1026 int
1027 sys_setresuid(struct thread *td, struct setresuid_args *uap)
1028 {
1029 	struct proc *p = td->td_proc;
1030 	struct ucred *newcred, *oldcred;
1031 	uid_t euid, ruid, suid;
1032 	struct uidinfo *euip, *ruip;
1033 	int error;
1034 
1035 	euid = uap->euid;
1036 	ruid = uap->ruid;
1037 	suid = uap->suid;
1038 	AUDIT_ARG_EUID(euid);
1039 	AUDIT_ARG_RUID(ruid);
1040 	AUDIT_ARG_SUID(suid);
1041 	newcred = crget();
1042 	euip = uifind(euid);
1043 	ruip = uifind(ruid);
1044 	PROC_LOCK(p);
1045 	oldcred = crcopysafe(p, newcred);
1046 
1047 #ifdef MAC
1048 	error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
1049 	if (error)
1050 		goto fail;
1051 #endif
1052 
1053 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1054 	     ruid != oldcred->cr_svuid &&
1055 	      ruid != oldcred->cr_uid) ||
1056 	     (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
1057 	    euid != oldcred->cr_svuid &&
1058 	      euid != oldcred->cr_uid) ||
1059 	     (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
1060 	    suid != oldcred->cr_svuid &&
1061 	      suid != oldcred->cr_uid)) &&
1062 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID, 0)) != 0)
1063 		goto fail;
1064 
1065 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1066 		change_euid(newcred, euip);
1067 		setsugid(p);
1068 	}
1069 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1070 		change_ruid(newcred, ruip);
1071 		setsugid(p);
1072 	}
1073 	if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
1074 		change_svuid(newcred, suid);
1075 		setsugid(p);
1076 	}
1077 	proc_set_cred(p, newcred);
1078 #ifdef RACCT
1079 	racct_proc_ucred_changed(p, oldcred, newcred);
1080 	crhold(newcred);
1081 #endif
1082 	PROC_UNLOCK(p);
1083 #ifdef RCTL
1084 	rctl_proc_ucred_changed(p, newcred);
1085 	crfree(newcred);
1086 #endif
1087 	uifree(ruip);
1088 	uifree(euip);
1089 	crfree(oldcred);
1090 	return (0);
1091 
1092 fail:
1093 	PROC_UNLOCK(p);
1094 	uifree(ruip);
1095 	uifree(euip);
1096 	crfree(newcred);
1097 	return (error);
1098 
1099 }
1100 
1101 /*
1102  * setresgid(rgid, egid, sgid) is like setregid except control over the saved
1103  * gid is explicit.
1104  */
1105 #ifndef _SYS_SYSPROTO_H_
1106 struct setresgid_args {
1107 	gid_t	rgid;
1108 	gid_t	egid;
1109 	gid_t	sgid;
1110 };
1111 #endif
1112 /* ARGSUSED */
1113 int
1114 sys_setresgid(struct thread *td, struct setresgid_args *uap)
1115 {
1116 	struct proc *p = td->td_proc;
1117 	struct ucred *newcred, *oldcred;
1118 	gid_t egid, rgid, sgid;
1119 	int error;
1120 
1121 	egid = uap->egid;
1122 	rgid = uap->rgid;
1123 	sgid = uap->sgid;
1124 	AUDIT_ARG_EGID(egid);
1125 	AUDIT_ARG_RGID(rgid);
1126 	AUDIT_ARG_SGID(sgid);
1127 	newcred = crget();
1128 	PROC_LOCK(p);
1129 	oldcred = crcopysafe(p, newcred);
1130 
1131 #ifdef MAC
1132 	error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
1133 	if (error)
1134 		goto fail;
1135 #endif
1136 
1137 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1138 	      rgid != oldcred->cr_svgid &&
1139 	      rgid != oldcred->cr_groups[0]) ||
1140 	     (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
1141 	      egid != oldcred->cr_svgid &&
1142 	      egid != oldcred->cr_groups[0]) ||
1143 	     (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
1144 	      sgid != oldcred->cr_svgid &&
1145 	      sgid != oldcred->cr_groups[0])) &&
1146 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID, 0)) != 0)
1147 		goto fail;
1148 
1149 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
1150 		change_egid(newcred, egid);
1151 		setsugid(p);
1152 	}
1153 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1154 		change_rgid(newcred, rgid);
1155 		setsugid(p);
1156 	}
1157 	if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
1158 		change_svgid(newcred, sgid);
1159 		setsugid(p);
1160 	}
1161 	proc_set_cred(p, newcred);
1162 	PROC_UNLOCK(p);
1163 	crfree(oldcred);
1164 	return (0);
1165 
1166 fail:
1167 	PROC_UNLOCK(p);
1168 	crfree(newcred);
1169 	return (error);
1170 }
1171 
1172 #ifndef _SYS_SYSPROTO_H_
1173 struct getresuid_args {
1174 	uid_t	*ruid;
1175 	uid_t	*euid;
1176 	uid_t	*suid;
1177 };
1178 #endif
1179 /* ARGSUSED */
1180 int
1181 sys_getresuid(struct thread *td, struct getresuid_args *uap)
1182 {
1183 	struct ucred *cred;
1184 	int error1 = 0, error2 = 0, error3 = 0;
1185 
1186 	cred = td->td_ucred;
1187 	if (uap->ruid)
1188 		error1 = copyout(&cred->cr_ruid,
1189 		    uap->ruid, sizeof(cred->cr_ruid));
1190 	if (uap->euid)
1191 		error2 = copyout(&cred->cr_uid,
1192 		    uap->euid, sizeof(cred->cr_uid));
1193 	if (uap->suid)
1194 		error3 = copyout(&cred->cr_svuid,
1195 		    uap->suid, sizeof(cred->cr_svuid));
1196 	return (error1 ? error1 : error2 ? error2 : error3);
1197 }
1198 
1199 #ifndef _SYS_SYSPROTO_H_
1200 struct getresgid_args {
1201 	gid_t	*rgid;
1202 	gid_t	*egid;
1203 	gid_t	*sgid;
1204 };
1205 #endif
1206 /* ARGSUSED */
1207 int
1208 sys_getresgid(struct thread *td, struct getresgid_args *uap)
1209 {
1210 	struct ucred *cred;
1211 	int error1 = 0, error2 = 0, error3 = 0;
1212 
1213 	cred = td->td_ucred;
1214 	if (uap->rgid)
1215 		error1 = copyout(&cred->cr_rgid,
1216 		    uap->rgid, sizeof(cred->cr_rgid));
1217 	if (uap->egid)
1218 		error2 = copyout(&cred->cr_groups[0],
1219 		    uap->egid, sizeof(cred->cr_groups[0]));
1220 	if (uap->sgid)
1221 		error3 = copyout(&cred->cr_svgid,
1222 		    uap->sgid, sizeof(cred->cr_svgid));
1223 	return (error1 ? error1 : error2 ? error2 : error3);
1224 }
1225 
1226 #ifndef _SYS_SYSPROTO_H_
1227 struct issetugid_args {
1228 	int dummy;
1229 };
1230 #endif
1231 /* ARGSUSED */
1232 int
1233 sys_issetugid(struct thread *td, struct issetugid_args *uap)
1234 {
1235 	struct proc *p = td->td_proc;
1236 
1237 	/*
1238 	 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
1239 	 * we use P_SUGID because we consider changing the owners as
1240 	 * "tainting" as well.
1241 	 * This is significant for procs that start as root and "become"
1242 	 * a user without an exec - programs cannot know *everything*
1243 	 * that libc *might* have put in their data segment.
1244 	 */
1245 	td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
1246 	return (0);
1247 }
1248 
1249 int
1250 sys___setugid(struct thread *td, struct __setugid_args *uap)
1251 {
1252 #ifdef REGRESSION
1253 	struct proc *p;
1254 
1255 	p = td->td_proc;
1256 	switch (uap->flag) {
1257 	case 0:
1258 		PROC_LOCK(p);
1259 		p->p_flag &= ~P_SUGID;
1260 		PROC_UNLOCK(p);
1261 		return (0);
1262 	case 1:
1263 		PROC_LOCK(p);
1264 		p->p_flag |= P_SUGID;
1265 		PROC_UNLOCK(p);
1266 		return (0);
1267 	default:
1268 		return (EINVAL);
1269 	}
1270 #else /* !REGRESSION */
1271 
1272 	return (ENOSYS);
1273 #endif /* REGRESSION */
1274 }
1275 
1276 /*
1277  * Check if gid is a member of the group set.
1278  */
1279 int
1280 groupmember(gid_t gid, struct ucred *cred)
1281 {
1282 	int l;
1283 	int h;
1284 	int m;
1285 
1286 	if (cred->cr_groups[0] == gid)
1287 		return(1);
1288 
1289 	/*
1290 	 * If gid was not our primary group, perform a binary search
1291 	 * of the supplemental groups.  This is possible because we
1292 	 * sort the groups in crsetgroups().
1293 	 */
1294 	l = 1;
1295 	h = cred->cr_ngroups;
1296 	while (l < h) {
1297 		m = l + ((h - l) / 2);
1298 		if (cred->cr_groups[m] < gid)
1299 			l = m + 1;
1300 		else
1301 			h = m;
1302 	}
1303 	if ((l < cred->cr_ngroups) && (cred->cr_groups[l] == gid))
1304 		return (1);
1305 
1306 	return (0);
1307 }
1308 
1309 /*
1310  * Test the active securelevel against a given level.  securelevel_gt()
1311  * implements (securelevel > level).  securelevel_ge() implements
1312  * (securelevel >= level).  Note that the logic is inverted -- these
1313  * functions return EPERM on "success" and 0 on "failure".
1314  *
1315  * Due to care taken when setting the securelevel, we know that no jail will
1316  * be less secure that its parent (or the physical system), so it is sufficient
1317  * to test the current jail only.
1318  *
1319  * XXXRW: Possibly since this has to do with privilege, it should move to
1320  * kern_priv.c.
1321  */
1322 int
1323 securelevel_gt(struct ucred *cr, int level)
1324 {
1325 
1326 	return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
1327 }
1328 
1329 int
1330 securelevel_ge(struct ucred *cr, int level)
1331 {
1332 
1333 	return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
1334 }
1335 
1336 /*
1337  * 'see_other_uids' determines whether or not visibility of processes
1338  * and sockets with credentials holding different real uids is possible
1339  * using a variety of system MIBs.
1340  * XXX: data declarations should be together near the beginning of the file.
1341  */
1342 static int	see_other_uids = 1;
1343 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
1344     &see_other_uids, 0,
1345     "Unprivileged processes may see subjects/objects with different real uid");
1346 
1347 /*-
1348  * Determine if u1 "can see" the subject specified by u2, according to the
1349  * 'see_other_uids' policy.
1350  * Returns: 0 for permitted, ESRCH otherwise
1351  * Locks: none
1352  * References: *u1 and *u2 must not change during the call
1353  *             u1 may equal u2, in which case only one reference is required
1354  */
1355 int
1356 cr_canseeotheruids(struct ucred *u1, struct ucred *u2)
1357 {
1358 
1359 	if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
1360 		if (priv_check_cred(u1, PRIV_SEEOTHERUIDS, 0) != 0)
1361 			return (ESRCH);
1362 	}
1363 	return (0);
1364 }
1365 
1366 /*
1367  * 'see_other_gids' determines whether or not visibility of processes
1368  * and sockets with credentials holding different real gids is possible
1369  * using a variety of system MIBs.
1370  * XXX: data declarations should be together near the beginning of the file.
1371  */
1372 static int	see_other_gids = 1;
1373 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
1374     &see_other_gids, 0,
1375     "Unprivileged processes may see subjects/objects with different real gid");
1376 
1377 /*
1378  * Determine if u1 can "see" the subject specified by u2, according to the
1379  * 'see_other_gids' policy.
1380  * Returns: 0 for permitted, ESRCH otherwise
1381  * Locks: none
1382  * References: *u1 and *u2 must not change during the call
1383  *             u1 may equal u2, in which case only one reference is required
1384  */
1385 int
1386 cr_canseeothergids(struct ucred *u1, struct ucred *u2)
1387 {
1388 	int i, match;
1389 
1390 	if (!see_other_gids) {
1391 		match = 0;
1392 		for (i = 0; i < u1->cr_ngroups; i++) {
1393 			if (groupmember(u1->cr_groups[i], u2))
1394 				match = 1;
1395 			if (match)
1396 				break;
1397 		}
1398 		if (!match) {
1399 			if (priv_check_cred(u1, PRIV_SEEOTHERGIDS, 0) != 0)
1400 				return (ESRCH);
1401 		}
1402 	}
1403 	return (0);
1404 }
1405 
1406 /*
1407  * 'see_jail_proc' determines whether or not visibility of processes and
1408  * sockets with credentials holding different jail ids is possible using a
1409  * variety of system MIBs.
1410  *
1411  * XXX: data declarations should be together near the beginning of the file.
1412  */
1413 
1414 static int	see_jail_proc = 1;
1415 SYSCTL_INT(_security_bsd, OID_AUTO, see_jail_proc, CTLFLAG_RW,
1416     &see_jail_proc, 0,
1417     "Unprivileged processes may see subjects/objects with different jail ids");
1418 
1419 /*-
1420  * Determine if u1 "can see" the subject specified by u2, according to the
1421  * 'see_jail_proc' policy.
1422  * Returns: 0 for permitted, ESRCH otherwise
1423  * Locks: none
1424  * References: *u1 and *u2 must not change during the call
1425  *             u1 may equal u2, in which case only one reference is required
1426  */
1427 int
1428 cr_canseejailproc(struct ucred *u1, struct ucred *u2)
1429 {
1430 	if (u1->cr_uid == 0)
1431 		return (0);
1432 	return (!see_jail_proc && u1->cr_prison != u2->cr_prison ? ESRCH : 0);
1433 }
1434 
1435 /*-
1436  * Determine if u1 "can see" the subject specified by u2.
1437  * Returns: 0 for permitted, an errno value otherwise
1438  * Locks: none
1439  * References: *u1 and *u2 must not change during the call
1440  *             u1 may equal u2, in which case only one reference is required
1441  */
1442 int
1443 cr_cansee(struct ucred *u1, struct ucred *u2)
1444 {
1445 	int error;
1446 
1447 	if ((error = prison_check(u1, u2)))
1448 		return (error);
1449 #ifdef MAC
1450 	if ((error = mac_cred_check_visible(u1, u2)))
1451 		return (error);
1452 #endif
1453 	if ((error = cr_canseeotheruids(u1, u2)))
1454 		return (error);
1455 	if ((error = cr_canseeothergids(u1, u2)))
1456 		return (error);
1457 	if ((error = cr_canseejailproc(u1, u2)))
1458 		return (error);
1459 	return (0);
1460 }
1461 
1462 /*-
1463  * Determine if td "can see" the subject specified by p.
1464  * Returns: 0 for permitted, an errno value otherwise
1465  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
1466  *        should be curthread.
1467  * References: td and p must be valid for the lifetime of the call
1468  */
1469 int
1470 p_cansee(struct thread *td, struct proc *p)
1471 {
1472 
1473 	/* Wrap cr_cansee() for all functionality. */
1474 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1475 	PROC_LOCK_ASSERT(p, MA_OWNED);
1476 	return (cr_cansee(td->td_ucred, p->p_ucred));
1477 }
1478 
1479 /*
1480  * 'conservative_signals' prevents the delivery of a broad class of
1481  * signals by unprivileged processes to processes that have changed their
1482  * credentials since the last invocation of execve().  This can prevent
1483  * the leakage of cached information or retained privileges as a result
1484  * of a common class of signal-related vulnerabilities.  However, this
1485  * may interfere with some applications that expect to be able to
1486  * deliver these signals to peer processes after having given up
1487  * privilege.
1488  */
1489 static int	conservative_signals = 1;
1490 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
1491     &conservative_signals, 0, "Unprivileged processes prevented from "
1492     "sending certain signals to processes whose credentials have changed");
1493 /*-
1494  * Determine whether cred may deliver the specified signal to proc.
1495  * Returns: 0 for permitted, an errno value otherwise.
1496  * Locks: A lock must be held for proc.
1497  * References: cred and proc must be valid for the lifetime of the call.
1498  */
1499 int
1500 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
1501 {
1502 	int error;
1503 
1504 	PROC_LOCK_ASSERT(proc, MA_OWNED);
1505 	/*
1506 	 * Jail semantics limit the scope of signalling to proc in the
1507 	 * same jail as cred, if cred is in jail.
1508 	 */
1509 	error = prison_check(cred, proc->p_ucred);
1510 	if (error)
1511 		return (error);
1512 #ifdef MAC
1513 	if ((error = mac_proc_check_signal(cred, proc, signum)))
1514 		return (error);
1515 #endif
1516 	if ((error = cr_canseeotheruids(cred, proc->p_ucred)))
1517 		return (error);
1518 	if ((error = cr_canseeothergids(cred, proc->p_ucred)))
1519 		return (error);
1520 
1521 	/*
1522 	 * UNIX signal semantics depend on the status of the P_SUGID
1523 	 * bit on the target process.  If the bit is set, then additional
1524 	 * restrictions are placed on the set of available signals.
1525 	 */
1526 	if (conservative_signals && (proc->p_flag & P_SUGID)) {
1527 		switch (signum) {
1528 		case 0:
1529 		case SIGKILL:
1530 		case SIGINT:
1531 		case SIGTERM:
1532 		case SIGALRM:
1533 		case SIGSTOP:
1534 		case SIGTTIN:
1535 		case SIGTTOU:
1536 		case SIGTSTP:
1537 		case SIGHUP:
1538 		case SIGUSR1:
1539 		case SIGUSR2:
1540 			/*
1541 			 * Generally, permit job and terminal control
1542 			 * signals.
1543 			 */
1544 			break;
1545 		default:
1546 			/* Not permitted without privilege. */
1547 			error = priv_check_cred(cred, PRIV_SIGNAL_SUGID, 0);
1548 			if (error)
1549 				return (error);
1550 		}
1551 	}
1552 
1553 	/*
1554 	 * Generally, the target credential's ruid or svuid must match the
1555 	 * subject credential's ruid or euid.
1556 	 */
1557 	if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
1558 	    cred->cr_ruid != proc->p_ucred->cr_svuid &&
1559 	    cred->cr_uid != proc->p_ucred->cr_ruid &&
1560 	    cred->cr_uid != proc->p_ucred->cr_svuid) {
1561 		error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED, 0);
1562 		if (error)
1563 			return (error);
1564 	}
1565 
1566 	return (0);
1567 }
1568 
1569 /*-
1570  * Determine whether td may deliver the specified signal to p.
1571  * Returns: 0 for permitted, an errno value otherwise
1572  * Locks: Sufficient locks to protect various components of td and p
1573  *        must be held.  td must be curthread, and a lock must be
1574  *        held for p.
1575  * References: td and p must be valid for the lifetime of the call
1576  */
1577 int
1578 p_cansignal(struct thread *td, struct proc *p, int signum)
1579 {
1580 
1581 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1582 	PROC_LOCK_ASSERT(p, MA_OWNED);
1583 	if (td->td_proc == p)
1584 		return (0);
1585 
1586 	/*
1587 	 * UNIX signalling semantics require that processes in the same
1588 	 * session always be able to deliver SIGCONT to one another,
1589 	 * overriding the remaining protections.
1590 	 */
1591 	/* XXX: This will require an additional lock of some sort. */
1592 	if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
1593 		return (0);
1594 	/*
1595 	 * Some compat layers use SIGTHR and higher signals for
1596 	 * communication between different kernel threads of the same
1597 	 * process, so that they expect that it's always possible to
1598 	 * deliver them, even for suid applications where cr_cansignal() can
1599 	 * deny such ability for security consideration.  It should be
1600 	 * pretty safe to do since the only way to create two processes
1601 	 * with the same p_leader is via rfork(2).
1602 	 */
1603 	if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
1604 	    signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
1605 		return (0);
1606 
1607 	return (cr_cansignal(td->td_ucred, p, signum));
1608 }
1609 
1610 /*-
1611  * Determine whether td may reschedule p.
1612  * Returns: 0 for permitted, an errno value otherwise
1613  * Locks: Sufficient locks to protect various components of td and p
1614  *        must be held.  td must be curthread, and a lock must
1615  *        be held for p.
1616  * References: td and p must be valid for the lifetime of the call
1617  */
1618 int
1619 p_cansched(struct thread *td, struct proc *p)
1620 {
1621 	int error;
1622 
1623 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1624 	PROC_LOCK_ASSERT(p, MA_OWNED);
1625 	if (td->td_proc == p)
1626 		return (0);
1627 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1628 		return (error);
1629 #ifdef MAC
1630 	if ((error = mac_proc_check_sched(td->td_ucred, p)))
1631 		return (error);
1632 #endif
1633 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1634 		return (error);
1635 	if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
1636 		return (error);
1637 	if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
1638 	    td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
1639 		error = priv_check(td, PRIV_SCHED_DIFFCRED);
1640 		if (error)
1641 			return (error);
1642 	}
1643 	return (0);
1644 }
1645 
1646 /*
1647  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
1648  * unprivileged inter-process debugging services, including some procfs
1649  * functionality, ptrace(), and ktrace().  In the past, inter-process
1650  * debugging has been involved in a variety of security problems, and sites
1651  * not requiring the service might choose to disable it when hardening
1652  * systems.
1653  *
1654  * XXX: Should modifying and reading this variable require locking?
1655  * XXX: data declarations should be together near the beginning of the file.
1656  */
1657 static int	unprivileged_proc_debug = 1;
1658 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_proc_debug, CTLFLAG_RW,
1659     &unprivileged_proc_debug, 0,
1660     "Unprivileged processes may use process debugging facilities");
1661 
1662 /*-
1663  * Determine whether td may debug p.
1664  * Returns: 0 for permitted, an errno value otherwise
1665  * Locks: Sufficient locks to protect various components of td and p
1666  *        must be held.  td must be curthread, and a lock must
1667  *        be held for p.
1668  * References: td and p must be valid for the lifetime of the call
1669  */
1670 int
1671 p_candebug(struct thread *td, struct proc *p)
1672 {
1673 	int credentialchanged, error, grpsubset, i, uidsubset;
1674 
1675 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1676 	PROC_LOCK_ASSERT(p, MA_OWNED);
1677 	if (!unprivileged_proc_debug) {
1678 		error = priv_check(td, PRIV_DEBUG_UNPRIV);
1679 		if (error)
1680 			return (error);
1681 	}
1682 	if (td->td_proc == p)
1683 		return (0);
1684 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1685 		return (error);
1686 #ifdef MAC
1687 	if ((error = mac_proc_check_debug(td->td_ucred, p)))
1688 		return (error);
1689 #endif
1690 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1691 		return (error);
1692 	if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
1693 		return (error);
1694 
1695 	/*
1696 	 * Is p's group set a subset of td's effective group set?  This
1697 	 * includes p's egid, group access list, rgid, and svgid.
1698 	 */
1699 	grpsubset = 1;
1700 	for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
1701 		if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
1702 			grpsubset = 0;
1703 			break;
1704 		}
1705 	}
1706 	grpsubset = grpsubset &&
1707 	    groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
1708 	    groupmember(p->p_ucred->cr_svgid, td->td_ucred);
1709 
1710 	/*
1711 	 * Are the uids present in p's credential equal to td's
1712 	 * effective uid?  This includes p's euid, svuid, and ruid.
1713 	 */
1714 	uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
1715 	    td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
1716 	    td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
1717 
1718 	/*
1719 	 * Has the credential of the process changed since the last exec()?
1720 	 */
1721 	credentialchanged = (p->p_flag & P_SUGID);
1722 
1723 	/*
1724 	 * If p's gids aren't a subset, or the uids aren't a subset,
1725 	 * or the credential has changed, require appropriate privilege
1726 	 * for td to debug p.
1727 	 */
1728 	if (!grpsubset || !uidsubset) {
1729 		error = priv_check(td, PRIV_DEBUG_DIFFCRED);
1730 		if (error)
1731 			return (error);
1732 	}
1733 
1734 	if (credentialchanged) {
1735 		error = priv_check(td, PRIV_DEBUG_SUGID);
1736 		if (error)
1737 			return (error);
1738 	}
1739 
1740 	/* Can't trace init when securelevel > 0. */
1741 	if (p == initproc) {
1742 		error = securelevel_gt(td->td_ucred, 0);
1743 		if (error)
1744 			return (error);
1745 	}
1746 
1747 	/*
1748 	 * Can't trace a process that's currently exec'ing.
1749 	 *
1750 	 * XXX: Note, this is not a security policy decision, it's a
1751 	 * basic correctness/functionality decision.  Therefore, this check
1752 	 * should be moved to the caller's of p_candebug().
1753 	 */
1754 	if ((p->p_flag & P_INEXEC) != 0)
1755 		return (EBUSY);
1756 
1757 	/* Denied explicitely */
1758 	if ((p->p_flag2 & P2_NOTRACE) != 0) {
1759 		error = priv_check(td, PRIV_DEBUG_DENIED);
1760 		if (error != 0)
1761 			return (error);
1762 	}
1763 
1764 	return (0);
1765 }
1766 
1767 /*-
1768  * Determine whether the subject represented by cred can "see" a socket.
1769  * Returns: 0 for permitted, ENOENT otherwise.
1770  */
1771 int
1772 cr_canseesocket(struct ucred *cred, struct socket *so)
1773 {
1774 	int error;
1775 
1776 	error = prison_check(cred, so->so_cred);
1777 	if (error)
1778 		return (ENOENT);
1779 #ifdef MAC
1780 	error = mac_socket_check_visible(cred, so);
1781 	if (error)
1782 		return (error);
1783 #endif
1784 	if (cr_canseeotheruids(cred, so->so_cred))
1785 		return (ENOENT);
1786 	if (cr_canseeothergids(cred, so->so_cred))
1787 		return (ENOENT);
1788 
1789 	return (0);
1790 }
1791 
1792 /*-
1793  * Determine whether td can wait for the exit of p.
1794  * Returns: 0 for permitted, an errno value otherwise
1795  * Locks: Sufficient locks to protect various components of td and p
1796  *        must be held.  td must be curthread, and a lock must
1797  *        be held for p.
1798  * References: td and p must be valid for the lifetime of the call
1799 
1800  */
1801 int
1802 p_canwait(struct thread *td, struct proc *p)
1803 {
1804 	int error;
1805 
1806 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1807 	PROC_LOCK_ASSERT(p, MA_OWNED);
1808 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1809 		return (error);
1810 #ifdef MAC
1811 	if ((error = mac_proc_check_wait(td->td_ucred, p)))
1812 		return (error);
1813 #endif
1814 #if 0
1815 	/* XXXMAC: This could have odd effects on some shells. */
1816 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1817 		return (error);
1818 #endif
1819 
1820 	return (0);
1821 }
1822 
1823 /*
1824  * Allocate a zeroed cred structure.
1825  */
1826 struct ucred *
1827 crget(void)
1828 {
1829 	struct ucred *cr;
1830 
1831 	cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
1832 	refcount_init(&cr->cr_ref, 1);
1833 #ifdef AUDIT
1834 	audit_cred_init(cr);
1835 #endif
1836 #ifdef MAC
1837 	mac_cred_init(cr);
1838 #endif
1839 	cr->cr_groups = cr->cr_smallgroups;
1840 	cr->cr_agroups =
1841 	    sizeof(cr->cr_smallgroups) / sizeof(cr->cr_smallgroups[0]);
1842 	return (cr);
1843 }
1844 
1845 /*
1846  * Claim another reference to a ucred structure.
1847  */
1848 struct ucred *
1849 crhold(struct ucred *cr)
1850 {
1851 
1852 	refcount_acquire(&cr->cr_ref);
1853 	return (cr);
1854 }
1855 
1856 /*
1857  * Free a cred structure.  Throws away space when ref count gets to 0.
1858  */
1859 void
1860 crfree(struct ucred *cr)
1861 {
1862 
1863 	KASSERT(cr->cr_ref > 0, ("bad ucred refcount: %d", cr->cr_ref));
1864 	KASSERT(cr->cr_ref != 0xdeadc0de, ("dangling reference to ucred"));
1865 	if (refcount_release(&cr->cr_ref)) {
1866 		/*
1867 		 * Some callers of crget(), such as nfs_statfs(),
1868 		 * allocate a temporary credential, but don't
1869 		 * allocate a uidinfo structure.
1870 		 */
1871 		if (cr->cr_uidinfo != NULL)
1872 			uifree(cr->cr_uidinfo);
1873 		if (cr->cr_ruidinfo != NULL)
1874 			uifree(cr->cr_ruidinfo);
1875 		/*
1876 		 * Free a prison, if any.
1877 		 */
1878 		if (cr->cr_prison != NULL)
1879 			prison_free(cr->cr_prison);
1880 		if (cr->cr_loginclass != NULL)
1881 			loginclass_free(cr->cr_loginclass);
1882 #ifdef AUDIT
1883 		audit_cred_destroy(cr);
1884 #endif
1885 #ifdef MAC
1886 		mac_cred_destroy(cr);
1887 #endif
1888 		if (cr->cr_groups != cr->cr_smallgroups)
1889 			free(cr->cr_groups, M_CRED);
1890 		free(cr, M_CRED);
1891 	}
1892 }
1893 
1894 /*
1895  * Copy a ucred's contents from a template.  Does not block.
1896  */
1897 void
1898 crcopy(struct ucred *dest, struct ucred *src)
1899 {
1900 
1901 	KASSERT(dest->cr_ref == 1, ("crcopy of shared ucred"));
1902 	bcopy(&src->cr_startcopy, &dest->cr_startcopy,
1903 	    (unsigned)((caddr_t)&src->cr_endcopy -
1904 		(caddr_t)&src->cr_startcopy));
1905 	crsetgroups(dest, src->cr_ngroups, src->cr_groups);
1906 	uihold(dest->cr_uidinfo);
1907 	uihold(dest->cr_ruidinfo);
1908 	prison_hold(dest->cr_prison);
1909 	loginclass_hold(dest->cr_loginclass);
1910 #ifdef AUDIT
1911 	audit_cred_copy(src, dest);
1912 #endif
1913 #ifdef MAC
1914 	mac_cred_copy(src, dest);
1915 #endif
1916 }
1917 
1918 /*
1919  * Dup cred struct to a new held one.
1920  */
1921 struct ucred *
1922 crdup(struct ucred *cr)
1923 {
1924 	struct ucred *newcr;
1925 
1926 	newcr = crget();
1927 	crcopy(newcr, cr);
1928 	return (newcr);
1929 }
1930 
1931 /*
1932  * Fill in a struct xucred based on a struct ucred.
1933  */
1934 void
1935 cru2x(struct ucred *cr, struct xucred *xcr)
1936 {
1937 	int ngroups;
1938 
1939 	bzero(xcr, sizeof(*xcr));
1940 	xcr->cr_version = XUCRED_VERSION;
1941 	xcr->cr_uid = cr->cr_uid;
1942 
1943 	ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
1944 	xcr->cr_ngroups = ngroups;
1945 	bcopy(cr->cr_groups, xcr->cr_groups,
1946 	    ngroups * sizeof(*cr->cr_groups));
1947 }
1948 
1949 /*
1950  * Set initial process credentials.
1951  * Callers are responsible for providing the reference for provided credentials.
1952  */
1953 void
1954 proc_set_cred_init(struct proc *p, struct ucred *newcred)
1955 {
1956 
1957 	p->p_ucred = newcred;
1958 }
1959 
1960 /*
1961  * Change process credentials.
1962  * Callers are responsible for providing the reference for passed credentials
1963  * and for freeing old ones.
1964  *
1965  * Process has to be locked except when it does not have credentials (as it
1966  * should not be visible just yet) or when newcred is NULL (as this can be
1967  * only used when the process is about to be freed, at which point it should
1968  * not be visible anymore).
1969  */
1970 struct ucred *
1971 proc_set_cred(struct proc *p, struct ucred *newcred)
1972 {
1973 	struct ucred *oldcred;
1974 
1975 	MPASS(p->p_ucred != NULL);
1976 	if (newcred == NULL)
1977 		MPASS(p->p_state == PRS_ZOMBIE);
1978 	else
1979 		PROC_LOCK_ASSERT(p, MA_OWNED);
1980 
1981 	oldcred = p->p_ucred;
1982 	p->p_ucred = newcred;
1983 	if (newcred != NULL)
1984 		PROC_UPDATE_COW(p);
1985 	return (oldcred);
1986 }
1987 
1988 struct ucred *
1989 crcopysafe(struct proc *p, struct ucred *cr)
1990 {
1991 	struct ucred *oldcred;
1992 	int groups;
1993 
1994 	PROC_LOCK_ASSERT(p, MA_OWNED);
1995 
1996 	oldcred = p->p_ucred;
1997 	while (cr->cr_agroups < oldcred->cr_agroups) {
1998 		groups = oldcred->cr_agroups;
1999 		PROC_UNLOCK(p);
2000 		crextend(cr, groups);
2001 		PROC_LOCK(p);
2002 		oldcred = p->p_ucred;
2003 	}
2004 	crcopy(cr, oldcred);
2005 
2006 	return (oldcred);
2007 }
2008 
2009 /*
2010  * Extend the passed in credential to hold n items.
2011  */
2012 void
2013 crextend(struct ucred *cr, int n)
2014 {
2015 	int cnt;
2016 
2017 	/* Truncate? */
2018 	if (n <= cr->cr_agroups)
2019 		return;
2020 
2021 	/*
2022 	 * We extend by 2 each time since we're using a power of two
2023 	 * allocator until we need enough groups to fill a page.
2024 	 * Once we're allocating multiple pages, only allocate as many
2025 	 * as we actually need.  The case of processes needing a
2026 	 * non-power of two number of pages seems more likely than
2027 	 * a real world process that adds thousands of groups one at a
2028 	 * time.
2029 	 */
2030 	if ( n < PAGE_SIZE / sizeof(gid_t) ) {
2031 		if (cr->cr_agroups == 0)
2032 			cnt = MINALLOCSIZE / sizeof(gid_t);
2033 		else
2034 			cnt = cr->cr_agroups * 2;
2035 
2036 		while (cnt < n)
2037 			cnt *= 2;
2038 	} else
2039 		cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t));
2040 
2041 	/* Free the old array. */
2042 	if (cr->cr_groups != cr->cr_smallgroups)
2043 		free(cr->cr_groups, M_CRED);
2044 
2045 	cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO);
2046 	cr->cr_agroups = cnt;
2047 }
2048 
2049 /*
2050  * Copy groups in to a credential, preserving any necessary invariants.
2051  * Currently this includes the sorting of all supplemental gids.
2052  * crextend() must have been called before hand to ensure sufficient
2053  * space is available.
2054  */
2055 static void
2056 crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups)
2057 {
2058 	int i;
2059 	int j;
2060 	gid_t g;
2061 
2062 	KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small"));
2063 
2064 	bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
2065 	cr->cr_ngroups = ngrp;
2066 
2067 	/*
2068 	 * Sort all groups except cr_groups[0] to allow groupmember to
2069 	 * perform a binary search.
2070 	 *
2071 	 * XXX: If large numbers of groups become common this should
2072 	 * be replaced with shell sort like linux uses or possibly
2073 	 * heap sort.
2074 	 */
2075 	for (i = 2; i < ngrp; i++) {
2076 		g = cr->cr_groups[i];
2077 		for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--)
2078 			cr->cr_groups[j + 1] = cr->cr_groups[j];
2079 		cr->cr_groups[j + 1] = g;
2080 	}
2081 }
2082 
2083 /*
2084  * Copy groups in to a credential after expanding it if required.
2085  * Truncate the list to (ngroups_max + 1) if it is too large.
2086  */
2087 void
2088 crsetgroups(struct ucred *cr, int ngrp, gid_t *groups)
2089 {
2090 
2091 	if (ngrp > ngroups_max + 1)
2092 		ngrp = ngroups_max + 1;
2093 
2094 	crextend(cr, ngrp);
2095 	crsetgroups_locked(cr, ngrp, groups);
2096 }
2097 
2098 /*
2099  * Get login name, if available.
2100  */
2101 #ifndef _SYS_SYSPROTO_H_
2102 struct getlogin_args {
2103 	char	*namebuf;
2104 	u_int	namelen;
2105 };
2106 #endif
2107 /* ARGSUSED */
2108 int
2109 sys_getlogin(struct thread *td, struct getlogin_args *uap)
2110 {
2111 	char login[MAXLOGNAME];
2112 	struct proc *p = td->td_proc;
2113 	size_t len;
2114 
2115 	if (uap->namelen > MAXLOGNAME)
2116 		uap->namelen = MAXLOGNAME;
2117 	PROC_LOCK(p);
2118 	SESS_LOCK(p->p_session);
2119 	len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1;
2120 	SESS_UNLOCK(p->p_session);
2121 	PROC_UNLOCK(p);
2122 	if (len > uap->namelen)
2123 		return (ERANGE);
2124 	return (copyout(login, uap->namebuf, len));
2125 }
2126 
2127 /*
2128  * Set login name.
2129  */
2130 #ifndef _SYS_SYSPROTO_H_
2131 struct setlogin_args {
2132 	char	*namebuf;
2133 };
2134 #endif
2135 /* ARGSUSED */
2136 int
2137 sys_setlogin(struct thread *td, struct setlogin_args *uap)
2138 {
2139 	struct proc *p = td->td_proc;
2140 	int error;
2141 	char logintmp[MAXLOGNAME];
2142 
2143 	CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp));
2144 
2145 	error = priv_check(td, PRIV_PROC_SETLOGIN);
2146 	if (error)
2147 		return (error);
2148 	error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
2149 	if (error != 0) {
2150 		if (error == ENAMETOOLONG)
2151 			error = EINVAL;
2152 		return (error);
2153 	}
2154 	AUDIT_ARG_LOGIN(logintmp);
2155 	PROC_LOCK(p);
2156 	SESS_LOCK(p->p_session);
2157 	strcpy(p->p_session->s_login, logintmp);
2158 	SESS_UNLOCK(p->p_session);
2159 	PROC_UNLOCK(p);
2160 	return (0);
2161 }
2162 
2163 void
2164 setsugid(struct proc *p)
2165 {
2166 
2167 	PROC_LOCK_ASSERT(p, MA_OWNED);
2168 	p->p_flag |= P_SUGID;
2169 	if (!(p->p_pfsflags & PF_ISUGID))
2170 		p->p_stops = 0;
2171 }
2172 
2173 /*-
2174  * Change a process's effective uid.
2175  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
2176  * References: newcred must be an exclusive credential reference for the
2177  *             duration of the call.
2178  */
2179 void
2180 change_euid(struct ucred *newcred, struct uidinfo *euip)
2181 {
2182 
2183 	newcred->cr_uid = euip->ui_uid;
2184 	uihold(euip);
2185 	uifree(newcred->cr_uidinfo);
2186 	newcred->cr_uidinfo = euip;
2187 }
2188 
2189 /*-
2190  * Change a process's effective gid.
2191  * Side effects: newcred->cr_gid will be modified.
2192  * References: newcred must be an exclusive credential reference for the
2193  *             duration of the call.
2194  */
2195 void
2196 change_egid(struct ucred *newcred, gid_t egid)
2197 {
2198 
2199 	newcred->cr_groups[0] = egid;
2200 }
2201 
2202 /*-
2203  * Change a process's real uid.
2204  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
2205  *               will be updated, and the old and new cr_ruidinfo proc
2206  *               counts will be updated.
2207  * References: newcred must be an exclusive credential reference for the
2208  *             duration of the call.
2209  */
2210 void
2211 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
2212 {
2213 
2214 	(void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
2215 	newcred->cr_ruid = ruip->ui_uid;
2216 	uihold(ruip);
2217 	uifree(newcred->cr_ruidinfo);
2218 	newcred->cr_ruidinfo = ruip;
2219 	(void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
2220 }
2221 
2222 /*-
2223  * Change a process's real gid.
2224  * Side effects: newcred->cr_rgid will be updated.
2225  * References: newcred must be an exclusive credential reference for the
2226  *             duration of the call.
2227  */
2228 void
2229 change_rgid(struct ucred *newcred, gid_t rgid)
2230 {
2231 
2232 	newcred->cr_rgid = rgid;
2233 }
2234 
2235 /*-
2236  * Change a process's saved uid.
2237  * Side effects: newcred->cr_svuid will be updated.
2238  * References: newcred must be an exclusive credential reference for the
2239  *             duration of the call.
2240  */
2241 void
2242 change_svuid(struct ucred *newcred, uid_t svuid)
2243 {
2244 
2245 	newcred->cr_svuid = svuid;
2246 }
2247 
2248 /*-
2249  * Change a process's saved gid.
2250  * Side effects: newcred->cr_svgid will be updated.
2251  * References: newcred must be an exclusive credential reference for the
2252  *             duration of the call.
2253  */
2254 void
2255 change_svgid(struct ucred *newcred, gid_t svgid)
2256 {
2257 
2258 	newcred->cr_svgid = svgid;
2259 }
2260