xref: /freebsd/sys/kern/kern_prot.c (revision 6574b8ed19b093f0af09501d2c9676c28993cb97)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
3  *	The Regents of the University of California.
4  * (c) UNIX System Laboratories, Inc.
5  * Copyright (c) 2000-2001 Robert N. M. Watson.
6  * All rights reserved.
7  *
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_prot.c	8.6 (Berkeley) 1/21/94
38  */
39 
40 /*
41  * System calls related to processes and protection
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_compat.h"
48 #include "opt_inet.h"
49 #include "opt_inet6.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/acct.h>
54 #include <sys/kdb.h>
55 #include <sys/kernel.h>
56 #include <sys/lock.h>
57 #include <sys/loginclass.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/refcount.h>
61 #include <sys/sx.h>
62 #include <sys/priv.h>
63 #include <sys/proc.h>
64 #include <sys/sysproto.h>
65 #include <sys/jail.h>
66 #include <sys/pioctl.h>
67 #include <sys/racct.h>
68 #include <sys/resourcevar.h>
69 #include <sys/socket.h>
70 #include <sys/socketvar.h>
71 #include <sys/syscallsubr.h>
72 #include <sys/sysctl.h>
73 
74 #ifdef REGRESSION
75 FEATURE(regression,
76     "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
77 #endif
78 
79 #if defined(INET) || defined(INET6)
80 #include <netinet/in.h>
81 #include <netinet/in_pcb.h>
82 #endif
83 
84 #include <security/audit/audit.h>
85 #include <security/mac/mac_framework.h>
86 
87 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
88 
89 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW, 0, "BSD security policy");
90 
91 static void crextend(struct ucred *cr, int n);
92 static void crsetgroups_locked(struct ucred *cr, int ngrp,
93     gid_t *groups);
94 
95 #ifndef _SYS_SYSPROTO_H_
96 struct getpid_args {
97 	int	dummy;
98 };
99 #endif
100 /* ARGSUSED */
101 int
102 sys_getpid(struct thread *td, struct getpid_args *uap)
103 {
104 	struct proc *p = td->td_proc;
105 
106 	td->td_retval[0] = p->p_pid;
107 #if defined(COMPAT_43)
108 	td->td_retval[1] = kern_getppid(td);
109 #endif
110 	return (0);
111 }
112 
113 #ifndef _SYS_SYSPROTO_H_
114 struct getppid_args {
115         int     dummy;
116 };
117 #endif
118 /* ARGSUSED */
119 int
120 sys_getppid(struct thread *td, struct getppid_args *uap)
121 {
122 
123 	td->td_retval[0] = kern_getppid(td);
124 	return (0);
125 }
126 
127 int
128 kern_getppid(struct thread *td)
129 {
130 	struct proc *p = td->td_proc;
131 	struct proc *pp;
132 	int ppid;
133 
134 	PROC_LOCK(p);
135 	if (!(p->p_flag & P_TRACED)) {
136 		ppid = p->p_pptr->p_pid;
137 		PROC_UNLOCK(p);
138 	} else {
139 		PROC_UNLOCK(p);
140 		sx_slock(&proctree_lock);
141 		pp = proc_realparent(p);
142 		ppid = pp->p_pid;
143 		sx_sunlock(&proctree_lock);
144 	}
145 
146 	return (ppid);
147 }
148 
149 /*
150  * Get process group ID; note that POSIX getpgrp takes no parameter.
151  */
152 #ifndef _SYS_SYSPROTO_H_
153 struct getpgrp_args {
154         int     dummy;
155 };
156 #endif
157 int
158 sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
159 {
160 	struct proc *p = td->td_proc;
161 
162 	PROC_LOCK(p);
163 	td->td_retval[0] = p->p_pgrp->pg_id;
164 	PROC_UNLOCK(p);
165 	return (0);
166 }
167 
168 /* Get an arbitary pid's process group id */
169 #ifndef _SYS_SYSPROTO_H_
170 struct getpgid_args {
171 	pid_t	pid;
172 };
173 #endif
174 int
175 sys_getpgid(struct thread *td, struct getpgid_args *uap)
176 {
177 	struct proc *p;
178 	int error;
179 
180 	if (uap->pid == 0) {
181 		p = td->td_proc;
182 		PROC_LOCK(p);
183 	} else {
184 		p = pfind(uap->pid);
185 		if (p == NULL)
186 			return (ESRCH);
187 		error = p_cansee(td, p);
188 		if (error) {
189 			PROC_UNLOCK(p);
190 			return (error);
191 		}
192 	}
193 	td->td_retval[0] = p->p_pgrp->pg_id;
194 	PROC_UNLOCK(p);
195 	return (0);
196 }
197 
198 /*
199  * Get an arbitary pid's session id.
200  */
201 #ifndef _SYS_SYSPROTO_H_
202 struct getsid_args {
203 	pid_t	pid;
204 };
205 #endif
206 int
207 sys_getsid(struct thread *td, struct getsid_args *uap)
208 {
209 	struct proc *p;
210 	int error;
211 
212 	if (uap->pid == 0) {
213 		p = td->td_proc;
214 		PROC_LOCK(p);
215 	} else {
216 		p = pfind(uap->pid);
217 		if (p == NULL)
218 			return (ESRCH);
219 		error = p_cansee(td, p);
220 		if (error) {
221 			PROC_UNLOCK(p);
222 			return (error);
223 		}
224 	}
225 	td->td_retval[0] = p->p_session->s_sid;
226 	PROC_UNLOCK(p);
227 	return (0);
228 }
229 
230 #ifndef _SYS_SYSPROTO_H_
231 struct getuid_args {
232         int     dummy;
233 };
234 #endif
235 /* ARGSUSED */
236 int
237 sys_getuid(struct thread *td, struct getuid_args *uap)
238 {
239 
240 	td->td_retval[0] = td->td_ucred->cr_ruid;
241 #if defined(COMPAT_43)
242 	td->td_retval[1] = td->td_ucred->cr_uid;
243 #endif
244 	return (0);
245 }
246 
247 #ifndef _SYS_SYSPROTO_H_
248 struct geteuid_args {
249         int     dummy;
250 };
251 #endif
252 /* ARGSUSED */
253 int
254 sys_geteuid(struct thread *td, struct geteuid_args *uap)
255 {
256 
257 	td->td_retval[0] = td->td_ucred->cr_uid;
258 	return (0);
259 }
260 
261 #ifndef _SYS_SYSPROTO_H_
262 struct getgid_args {
263         int     dummy;
264 };
265 #endif
266 /* ARGSUSED */
267 int
268 sys_getgid(struct thread *td, struct getgid_args *uap)
269 {
270 
271 	td->td_retval[0] = td->td_ucred->cr_rgid;
272 #if defined(COMPAT_43)
273 	td->td_retval[1] = td->td_ucred->cr_groups[0];
274 #endif
275 	return (0);
276 }
277 
278 /*
279  * Get effective group ID.  The "egid" is groups[0], and could be obtained
280  * via getgroups.  This syscall exists because it is somewhat painful to do
281  * correctly in a library function.
282  */
283 #ifndef _SYS_SYSPROTO_H_
284 struct getegid_args {
285         int     dummy;
286 };
287 #endif
288 /* ARGSUSED */
289 int
290 sys_getegid(struct thread *td, struct getegid_args *uap)
291 {
292 
293 	td->td_retval[0] = td->td_ucred->cr_groups[0];
294 	return (0);
295 }
296 
297 #ifndef _SYS_SYSPROTO_H_
298 struct getgroups_args {
299 	u_int	gidsetsize;
300 	gid_t	*gidset;
301 };
302 #endif
303 int
304 sys_getgroups(struct thread *td, register struct getgroups_args *uap)
305 {
306 	gid_t *groups;
307 	u_int ngrp;
308 	int error;
309 
310 	if (uap->gidsetsize < td->td_ucred->cr_ngroups) {
311 		if (uap->gidsetsize == 0)
312 			ngrp = 0;
313 		else
314 			return (EINVAL);
315 	} else
316 		ngrp = td->td_ucred->cr_ngroups;
317 	groups = malloc(ngrp * sizeof(*groups), M_TEMP, M_WAITOK);
318 	error = kern_getgroups(td, &ngrp, groups);
319 	if (error)
320 		goto out;
321 	if (uap->gidsetsize > 0)
322 		error = copyout(groups, uap->gidset, ngrp * sizeof(gid_t));
323 	if (error == 0)
324 		td->td_retval[0] = ngrp;
325 out:
326 	free(groups, M_TEMP);
327 	return (error);
328 }
329 
330 int
331 kern_getgroups(struct thread *td, u_int *ngrp, gid_t *groups)
332 {
333 	struct ucred *cred;
334 
335 	cred = td->td_ucred;
336 	if (*ngrp == 0) {
337 		*ngrp = cred->cr_ngroups;
338 		return (0);
339 	}
340 	if (*ngrp < cred->cr_ngroups)
341 		return (EINVAL);
342 	*ngrp = cred->cr_ngroups;
343 	bcopy(cred->cr_groups, groups, *ngrp * sizeof(gid_t));
344 	return (0);
345 }
346 
347 #ifndef _SYS_SYSPROTO_H_
348 struct setsid_args {
349         int     dummy;
350 };
351 #endif
352 /* ARGSUSED */
353 int
354 sys_setsid(register struct thread *td, struct setsid_args *uap)
355 {
356 	struct pgrp *pgrp;
357 	int error;
358 	struct proc *p = td->td_proc;
359 	struct pgrp *newpgrp;
360 	struct session *newsess;
361 
362 	error = 0;
363 	pgrp = NULL;
364 
365 	newpgrp = malloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
366 	newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
367 
368 	sx_xlock(&proctree_lock);
369 
370 	if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
371 		if (pgrp != NULL)
372 			PGRP_UNLOCK(pgrp);
373 		error = EPERM;
374 	} else {
375 		(void)enterpgrp(p, p->p_pid, newpgrp, newsess);
376 		td->td_retval[0] = p->p_pid;
377 		newpgrp = NULL;
378 		newsess = NULL;
379 	}
380 
381 	sx_xunlock(&proctree_lock);
382 
383 	if (newpgrp != NULL)
384 		free(newpgrp, M_PGRP);
385 	if (newsess != NULL)
386 		free(newsess, M_SESSION);
387 
388 	return (error);
389 }
390 
391 /*
392  * set process group (setpgid/old setpgrp)
393  *
394  * caller does setpgid(targpid, targpgid)
395  *
396  * pid must be caller or child of caller (ESRCH)
397  * if a child
398  *	pid must be in same session (EPERM)
399  *	pid can't have done an exec (EACCES)
400  * if pgid != pid
401  * 	there must exist some pid in same session having pgid (EPERM)
402  * pid must not be session leader (EPERM)
403  */
404 #ifndef _SYS_SYSPROTO_H_
405 struct setpgid_args {
406 	int	pid;		/* target process id */
407 	int	pgid;		/* target pgrp id */
408 };
409 #endif
410 /* ARGSUSED */
411 int
412 sys_setpgid(struct thread *td, register struct setpgid_args *uap)
413 {
414 	struct proc *curp = td->td_proc;
415 	register struct proc *targp;	/* target process */
416 	register struct pgrp *pgrp;	/* target pgrp */
417 	int error;
418 	struct pgrp *newpgrp;
419 
420 	if (uap->pgid < 0)
421 		return (EINVAL);
422 
423 	error = 0;
424 
425 	newpgrp = malloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
426 
427 	sx_xlock(&proctree_lock);
428 	if (uap->pid != 0 && uap->pid != curp->p_pid) {
429 		if ((targp = pfind(uap->pid)) == NULL) {
430 			error = ESRCH;
431 			goto done;
432 		}
433 		if (!inferior(targp)) {
434 			PROC_UNLOCK(targp);
435 			error = ESRCH;
436 			goto done;
437 		}
438 		if ((error = p_cansee(td, targp))) {
439 			PROC_UNLOCK(targp);
440 			goto done;
441 		}
442 		if (targp->p_pgrp == NULL ||
443 		    targp->p_session != curp->p_session) {
444 			PROC_UNLOCK(targp);
445 			error = EPERM;
446 			goto done;
447 		}
448 		if (targp->p_flag & P_EXEC) {
449 			PROC_UNLOCK(targp);
450 			error = EACCES;
451 			goto done;
452 		}
453 		PROC_UNLOCK(targp);
454 	} else
455 		targp = curp;
456 	if (SESS_LEADER(targp)) {
457 		error = EPERM;
458 		goto done;
459 	}
460 	if (uap->pgid == 0)
461 		uap->pgid = targp->p_pid;
462 	if ((pgrp = pgfind(uap->pgid)) == NULL) {
463 		if (uap->pgid == targp->p_pid) {
464 			error = enterpgrp(targp, uap->pgid, newpgrp,
465 			    NULL);
466 			if (error == 0)
467 				newpgrp = NULL;
468 		} else
469 			error = EPERM;
470 	} else {
471 		if (pgrp == targp->p_pgrp) {
472 			PGRP_UNLOCK(pgrp);
473 			goto done;
474 		}
475 		if (pgrp->pg_id != targp->p_pid &&
476 		    pgrp->pg_session != curp->p_session) {
477 			PGRP_UNLOCK(pgrp);
478 			error = EPERM;
479 			goto done;
480 		}
481 		PGRP_UNLOCK(pgrp);
482 		error = enterthispgrp(targp, pgrp);
483 	}
484 done:
485 	sx_xunlock(&proctree_lock);
486 	KASSERT((error == 0) || (newpgrp != NULL),
487 	    ("setpgid failed and newpgrp is NULL"));
488 	if (newpgrp != NULL)
489 		free(newpgrp, M_PGRP);
490 	return (error);
491 }
492 
493 /*
494  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
495  * compatible.  It says that setting the uid/gid to euid/egid is a special
496  * case of "appropriate privilege".  Once the rules are expanded out, this
497  * basically means that setuid(nnn) sets all three id's, in all permitted
498  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
499  * does not set the saved id - this is dangerous for traditional BSD
500  * programs.  For this reason, we *really* do not want to set
501  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
502  */
503 #define POSIX_APPENDIX_B_4_2_2
504 
505 #ifndef _SYS_SYSPROTO_H_
506 struct setuid_args {
507 	uid_t	uid;
508 };
509 #endif
510 /* ARGSUSED */
511 int
512 sys_setuid(struct thread *td, struct setuid_args *uap)
513 {
514 	struct proc *p = td->td_proc;
515 	struct ucred *newcred, *oldcred;
516 	uid_t uid;
517 	struct uidinfo *uip;
518 	int error;
519 
520 	uid = uap->uid;
521 	AUDIT_ARG_UID(uid);
522 	newcred = crget();
523 	uip = uifind(uid);
524 	PROC_LOCK(p);
525 	/*
526 	 * Copy credentials so other references do not see our changes.
527 	 */
528 	oldcred = crcopysafe(p, newcred);
529 
530 #ifdef MAC
531 	error = mac_cred_check_setuid(oldcred, uid);
532 	if (error)
533 		goto fail;
534 #endif
535 
536 	/*
537 	 * See if we have "permission" by POSIX 1003.1 rules.
538 	 *
539 	 * Note that setuid(geteuid()) is a special case of
540 	 * "appropriate privileges" in appendix B.4.2.2.  We need
541 	 * to use this clause to be compatible with traditional BSD
542 	 * semantics.  Basically, it means that "setuid(xx)" sets all
543 	 * three id's (assuming you have privs).
544 	 *
545 	 * Notes on the logic.  We do things in three steps.
546 	 * 1: We determine if the euid is going to change, and do EPERM
547 	 *    right away.  We unconditionally change the euid later if this
548 	 *    test is satisfied, simplifying that part of the logic.
549 	 * 2: We determine if the real and/or saved uids are going to
550 	 *    change.  Determined by compile options.
551 	 * 3: Change euid last. (after tests in #2 for "appropriate privs")
552 	 */
553 	if (uid != oldcred->cr_ruid &&		/* allow setuid(getuid()) */
554 #ifdef _POSIX_SAVED_IDS
555 	    uid != oldcred->cr_svuid &&		/* allow setuid(saved gid) */
556 #endif
557 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
558 	    uid != oldcred->cr_uid &&		/* allow setuid(geteuid()) */
559 #endif
560 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETUID, 0)) != 0)
561 		goto fail;
562 
563 #ifdef _POSIX_SAVED_IDS
564 	/*
565 	 * Do we have "appropriate privileges" (are we root or uid == euid)
566 	 * If so, we are changing the real uid and/or saved uid.
567 	 */
568 	if (
569 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use the clause from B.4.2.2 */
570 	    uid == oldcred->cr_uid ||
571 #endif
572 	    /* We are using privs. */
573 	    priv_check_cred(oldcred, PRIV_CRED_SETUID, 0) == 0)
574 #endif
575 	{
576 		/*
577 		 * Set the real uid and transfer proc count to new user.
578 		 */
579 		if (uid != oldcred->cr_ruid) {
580 			change_ruid(newcred, uip);
581 			setsugid(p);
582 		}
583 		/*
584 		 * Set saved uid
585 		 *
586 		 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
587 		 * the security of seteuid() depends on it.  B.4.2.2 says it
588 		 * is important that we should do this.
589 		 */
590 		if (uid != oldcred->cr_svuid) {
591 			change_svuid(newcred, uid);
592 			setsugid(p);
593 		}
594 	}
595 
596 	/*
597 	 * In all permitted cases, we are changing the euid.
598 	 */
599 	if (uid != oldcred->cr_uid) {
600 		change_euid(newcred, uip);
601 		setsugid(p);
602 	}
603 	p->p_ucred = newcred;
604 	PROC_UNLOCK(p);
605 #ifdef RACCT
606 	racct_proc_ucred_changed(p, oldcred, newcred);
607 #endif
608 	uifree(uip);
609 	crfree(oldcred);
610 	return (0);
611 
612 fail:
613 	PROC_UNLOCK(p);
614 	uifree(uip);
615 	crfree(newcred);
616 	return (error);
617 }
618 
619 #ifndef _SYS_SYSPROTO_H_
620 struct seteuid_args {
621 	uid_t	euid;
622 };
623 #endif
624 /* ARGSUSED */
625 int
626 sys_seteuid(struct thread *td, struct seteuid_args *uap)
627 {
628 	struct proc *p = td->td_proc;
629 	struct ucred *newcred, *oldcred;
630 	uid_t euid;
631 	struct uidinfo *euip;
632 	int error;
633 
634 	euid = uap->euid;
635 	AUDIT_ARG_EUID(euid);
636 	newcred = crget();
637 	euip = uifind(euid);
638 	PROC_LOCK(p);
639 	/*
640 	 * Copy credentials so other references do not see our changes.
641 	 */
642 	oldcred = crcopysafe(p, newcred);
643 
644 #ifdef MAC
645 	error = mac_cred_check_seteuid(oldcred, euid);
646 	if (error)
647 		goto fail;
648 #endif
649 
650 	if (euid != oldcred->cr_ruid &&		/* allow seteuid(getuid()) */
651 	    euid != oldcred->cr_svuid &&	/* allow seteuid(saved uid) */
652 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID, 0)) != 0)
653 		goto fail;
654 
655 	/*
656 	 * Everything's okay, do it.
657 	 */
658 	if (oldcred->cr_uid != euid) {
659 		change_euid(newcred, euip);
660 		setsugid(p);
661 	}
662 	p->p_ucred = newcred;
663 	PROC_UNLOCK(p);
664 	uifree(euip);
665 	crfree(oldcred);
666 	return (0);
667 
668 fail:
669 	PROC_UNLOCK(p);
670 	uifree(euip);
671 	crfree(newcred);
672 	return (error);
673 }
674 
675 #ifndef _SYS_SYSPROTO_H_
676 struct setgid_args {
677 	gid_t	gid;
678 };
679 #endif
680 /* ARGSUSED */
681 int
682 sys_setgid(struct thread *td, struct setgid_args *uap)
683 {
684 	struct proc *p = td->td_proc;
685 	struct ucred *newcred, *oldcred;
686 	gid_t gid;
687 	int error;
688 
689 	gid = uap->gid;
690 	AUDIT_ARG_GID(gid);
691 	newcred = crget();
692 	PROC_LOCK(p);
693 	oldcred = crcopysafe(p, newcred);
694 
695 #ifdef MAC
696 	error = mac_cred_check_setgid(oldcred, gid);
697 	if (error)
698 		goto fail;
699 #endif
700 
701 	/*
702 	 * See if we have "permission" by POSIX 1003.1 rules.
703 	 *
704 	 * Note that setgid(getegid()) is a special case of
705 	 * "appropriate privileges" in appendix B.4.2.2.  We need
706 	 * to use this clause to be compatible with traditional BSD
707 	 * semantics.  Basically, it means that "setgid(xx)" sets all
708 	 * three id's (assuming you have privs).
709 	 *
710 	 * For notes on the logic here, see setuid() above.
711 	 */
712 	if (gid != oldcred->cr_rgid &&		/* allow setgid(getgid()) */
713 #ifdef _POSIX_SAVED_IDS
714 	    gid != oldcred->cr_svgid &&		/* allow setgid(saved gid) */
715 #endif
716 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
717 	    gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
718 #endif
719 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETGID, 0)) != 0)
720 		goto fail;
721 
722 #ifdef _POSIX_SAVED_IDS
723 	/*
724 	 * Do we have "appropriate privileges" (are we root or gid == egid)
725 	 * If so, we are changing the real uid and saved gid.
726 	 */
727 	if (
728 #ifdef POSIX_APPENDIX_B_4_2_2	/* use the clause from B.4.2.2 */
729 	    gid == oldcred->cr_groups[0] ||
730 #endif
731 	    /* We are using privs. */
732 	    priv_check_cred(oldcred, PRIV_CRED_SETGID, 0) == 0)
733 #endif
734 	{
735 		/*
736 		 * Set real gid
737 		 */
738 		if (oldcred->cr_rgid != gid) {
739 			change_rgid(newcred, gid);
740 			setsugid(p);
741 		}
742 		/*
743 		 * Set saved gid
744 		 *
745 		 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
746 		 * the security of setegid() depends on it.  B.4.2.2 says it
747 		 * is important that we should do this.
748 		 */
749 		if (oldcred->cr_svgid != gid) {
750 			change_svgid(newcred, gid);
751 			setsugid(p);
752 		}
753 	}
754 	/*
755 	 * In all cases permitted cases, we are changing the egid.
756 	 * Copy credentials so other references do not see our changes.
757 	 */
758 	if (oldcred->cr_groups[0] != gid) {
759 		change_egid(newcred, gid);
760 		setsugid(p);
761 	}
762 	p->p_ucred = newcred;
763 	PROC_UNLOCK(p);
764 	crfree(oldcred);
765 	return (0);
766 
767 fail:
768 	PROC_UNLOCK(p);
769 	crfree(newcred);
770 	return (error);
771 }
772 
773 #ifndef _SYS_SYSPROTO_H_
774 struct setegid_args {
775 	gid_t	egid;
776 };
777 #endif
778 /* ARGSUSED */
779 int
780 sys_setegid(struct thread *td, struct setegid_args *uap)
781 {
782 	struct proc *p = td->td_proc;
783 	struct ucred *newcred, *oldcred;
784 	gid_t egid;
785 	int error;
786 
787 	egid = uap->egid;
788 	AUDIT_ARG_EGID(egid);
789 	newcred = crget();
790 	PROC_LOCK(p);
791 	oldcred = crcopysafe(p, newcred);
792 
793 #ifdef MAC
794 	error = mac_cred_check_setegid(oldcred, egid);
795 	if (error)
796 		goto fail;
797 #endif
798 
799 	if (egid != oldcred->cr_rgid &&		/* allow setegid(getgid()) */
800 	    egid != oldcred->cr_svgid &&	/* allow setegid(saved gid) */
801 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID, 0)) != 0)
802 		goto fail;
803 
804 	if (oldcred->cr_groups[0] != egid) {
805 		change_egid(newcred, egid);
806 		setsugid(p);
807 	}
808 	p->p_ucred = newcred;
809 	PROC_UNLOCK(p);
810 	crfree(oldcred);
811 	return (0);
812 
813 fail:
814 	PROC_UNLOCK(p);
815 	crfree(newcred);
816 	return (error);
817 }
818 
819 #ifndef _SYS_SYSPROTO_H_
820 struct setgroups_args {
821 	u_int	gidsetsize;
822 	gid_t	*gidset;
823 };
824 #endif
825 /* ARGSUSED */
826 int
827 sys_setgroups(struct thread *td, struct setgroups_args *uap)
828 {
829 	gid_t *groups = NULL;
830 	int error;
831 
832 	if (uap->gidsetsize > ngroups_max + 1)
833 		return (EINVAL);
834 	groups = malloc(uap->gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
835 	error = copyin(uap->gidset, groups, uap->gidsetsize * sizeof(gid_t));
836 	if (error)
837 		goto out;
838 	error = kern_setgroups(td, uap->gidsetsize, groups);
839 out:
840 	free(groups, M_TEMP);
841 	return (error);
842 }
843 
844 int
845 kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups)
846 {
847 	struct proc *p = td->td_proc;
848 	struct ucred *newcred, *oldcred;
849 	int error;
850 
851 	if (ngrp > ngroups_max + 1)
852 		return (EINVAL);
853 	AUDIT_ARG_GROUPSET(groups, ngrp);
854 	newcred = crget();
855 	crextend(newcred, ngrp);
856 	PROC_LOCK(p);
857 	oldcred = crcopysafe(p, newcred);
858 
859 #ifdef MAC
860 	error = mac_cred_check_setgroups(oldcred, ngrp, groups);
861 	if (error)
862 		goto fail;
863 #endif
864 
865 	error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS, 0);
866 	if (error)
867 		goto fail;
868 
869 	if (ngrp < 1) {
870 		/*
871 		 * setgroups(0, NULL) is a legitimate way of clearing the
872 		 * groups vector on non-BSD systems (which generally do not
873 		 * have the egid in the groups[0]).  We risk security holes
874 		 * when running non-BSD software if we do not do the same.
875 		 */
876 		newcred->cr_ngroups = 1;
877 	} else {
878 		crsetgroups_locked(newcred, ngrp, groups);
879 	}
880 	setsugid(p);
881 	p->p_ucred = newcred;
882 	PROC_UNLOCK(p);
883 	crfree(oldcred);
884 	return (0);
885 
886 fail:
887 	PROC_UNLOCK(p);
888 	crfree(newcred);
889 	return (error);
890 }
891 
892 #ifndef _SYS_SYSPROTO_H_
893 struct setreuid_args {
894 	uid_t	ruid;
895 	uid_t	euid;
896 };
897 #endif
898 /* ARGSUSED */
899 int
900 sys_setreuid(register struct thread *td, struct setreuid_args *uap)
901 {
902 	struct proc *p = td->td_proc;
903 	struct ucred *newcred, *oldcred;
904 	uid_t euid, ruid;
905 	struct uidinfo *euip, *ruip;
906 	int error;
907 
908 	euid = uap->euid;
909 	ruid = uap->ruid;
910 	AUDIT_ARG_EUID(euid);
911 	AUDIT_ARG_RUID(ruid);
912 	newcred = crget();
913 	euip = uifind(euid);
914 	ruip = uifind(ruid);
915 	PROC_LOCK(p);
916 	oldcred = crcopysafe(p, newcred);
917 
918 #ifdef MAC
919 	error = mac_cred_check_setreuid(oldcred, ruid, euid);
920 	if (error)
921 		goto fail;
922 #endif
923 
924 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
925 	      ruid != oldcred->cr_svuid) ||
926 	     (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
927 	      euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
928 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID, 0)) != 0)
929 		goto fail;
930 
931 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
932 		change_euid(newcred, euip);
933 		setsugid(p);
934 	}
935 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
936 		change_ruid(newcred, ruip);
937 		setsugid(p);
938 	}
939 	if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
940 	    newcred->cr_svuid != newcred->cr_uid) {
941 		change_svuid(newcred, newcred->cr_uid);
942 		setsugid(p);
943 	}
944 	p->p_ucred = newcred;
945 	PROC_UNLOCK(p);
946 #ifdef RACCT
947 	racct_proc_ucred_changed(p, oldcred, newcred);
948 #endif
949 	uifree(ruip);
950 	uifree(euip);
951 	crfree(oldcred);
952 	return (0);
953 
954 fail:
955 	PROC_UNLOCK(p);
956 	uifree(ruip);
957 	uifree(euip);
958 	crfree(newcred);
959 	return (error);
960 }
961 
962 #ifndef _SYS_SYSPROTO_H_
963 struct setregid_args {
964 	gid_t	rgid;
965 	gid_t	egid;
966 };
967 #endif
968 /* ARGSUSED */
969 int
970 sys_setregid(register struct thread *td, struct setregid_args *uap)
971 {
972 	struct proc *p = td->td_proc;
973 	struct ucred *newcred, *oldcred;
974 	gid_t egid, rgid;
975 	int error;
976 
977 	egid = uap->egid;
978 	rgid = uap->rgid;
979 	AUDIT_ARG_EGID(egid);
980 	AUDIT_ARG_RGID(rgid);
981 	newcred = crget();
982 	PROC_LOCK(p);
983 	oldcred = crcopysafe(p, newcred);
984 
985 #ifdef MAC
986 	error = mac_cred_check_setregid(oldcred, rgid, egid);
987 	if (error)
988 		goto fail;
989 #endif
990 
991 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
992 	    rgid != oldcred->cr_svgid) ||
993 	     (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
994 	     egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
995 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID, 0)) != 0)
996 		goto fail;
997 
998 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
999 		change_egid(newcred, egid);
1000 		setsugid(p);
1001 	}
1002 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1003 		change_rgid(newcred, rgid);
1004 		setsugid(p);
1005 	}
1006 	if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
1007 	    newcred->cr_svgid != newcred->cr_groups[0]) {
1008 		change_svgid(newcred, newcred->cr_groups[0]);
1009 		setsugid(p);
1010 	}
1011 	p->p_ucred = newcred;
1012 	PROC_UNLOCK(p);
1013 	crfree(oldcred);
1014 	return (0);
1015 
1016 fail:
1017 	PROC_UNLOCK(p);
1018 	crfree(newcred);
1019 	return (error);
1020 }
1021 
1022 /*
1023  * setresuid(ruid, euid, suid) is like setreuid except control over the saved
1024  * uid is explicit.
1025  */
1026 #ifndef _SYS_SYSPROTO_H_
1027 struct setresuid_args {
1028 	uid_t	ruid;
1029 	uid_t	euid;
1030 	uid_t	suid;
1031 };
1032 #endif
1033 /* ARGSUSED */
1034 int
1035 sys_setresuid(register struct thread *td, struct setresuid_args *uap)
1036 {
1037 	struct proc *p = td->td_proc;
1038 	struct ucred *newcred, *oldcred;
1039 	uid_t euid, ruid, suid;
1040 	struct uidinfo *euip, *ruip;
1041 	int error;
1042 
1043 	euid = uap->euid;
1044 	ruid = uap->ruid;
1045 	suid = uap->suid;
1046 	AUDIT_ARG_EUID(euid);
1047 	AUDIT_ARG_RUID(ruid);
1048 	AUDIT_ARG_SUID(suid);
1049 	newcred = crget();
1050 	euip = uifind(euid);
1051 	ruip = uifind(ruid);
1052 	PROC_LOCK(p);
1053 	oldcred = crcopysafe(p, newcred);
1054 
1055 #ifdef MAC
1056 	error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
1057 	if (error)
1058 		goto fail;
1059 #endif
1060 
1061 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1062 	     ruid != oldcred->cr_svuid &&
1063 	      ruid != oldcred->cr_uid) ||
1064 	     (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
1065 	    euid != oldcred->cr_svuid &&
1066 	      euid != oldcred->cr_uid) ||
1067 	     (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
1068 	    suid != oldcred->cr_svuid &&
1069 	      suid != oldcred->cr_uid)) &&
1070 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID, 0)) != 0)
1071 		goto fail;
1072 
1073 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1074 		change_euid(newcred, euip);
1075 		setsugid(p);
1076 	}
1077 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1078 		change_ruid(newcred, ruip);
1079 		setsugid(p);
1080 	}
1081 	if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
1082 		change_svuid(newcred, suid);
1083 		setsugid(p);
1084 	}
1085 	p->p_ucred = newcred;
1086 	PROC_UNLOCK(p);
1087 #ifdef RACCT
1088 	racct_proc_ucred_changed(p, oldcred, newcred);
1089 #endif
1090 	uifree(ruip);
1091 	uifree(euip);
1092 	crfree(oldcred);
1093 	return (0);
1094 
1095 fail:
1096 	PROC_UNLOCK(p);
1097 	uifree(ruip);
1098 	uifree(euip);
1099 	crfree(newcred);
1100 	return (error);
1101 
1102 }
1103 
1104 /*
1105  * setresgid(rgid, egid, sgid) is like setregid except control over the saved
1106  * gid is explicit.
1107  */
1108 #ifndef _SYS_SYSPROTO_H_
1109 struct setresgid_args {
1110 	gid_t	rgid;
1111 	gid_t	egid;
1112 	gid_t	sgid;
1113 };
1114 #endif
1115 /* ARGSUSED */
1116 int
1117 sys_setresgid(register struct thread *td, struct setresgid_args *uap)
1118 {
1119 	struct proc *p = td->td_proc;
1120 	struct ucred *newcred, *oldcred;
1121 	gid_t egid, rgid, sgid;
1122 	int error;
1123 
1124 	egid = uap->egid;
1125 	rgid = uap->rgid;
1126 	sgid = uap->sgid;
1127 	AUDIT_ARG_EGID(egid);
1128 	AUDIT_ARG_RGID(rgid);
1129 	AUDIT_ARG_SGID(sgid);
1130 	newcred = crget();
1131 	PROC_LOCK(p);
1132 	oldcred = crcopysafe(p, newcred);
1133 
1134 #ifdef MAC
1135 	error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
1136 	if (error)
1137 		goto fail;
1138 #endif
1139 
1140 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1141 	      rgid != oldcred->cr_svgid &&
1142 	      rgid != oldcred->cr_groups[0]) ||
1143 	     (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
1144 	      egid != oldcred->cr_svgid &&
1145 	      egid != oldcred->cr_groups[0]) ||
1146 	     (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
1147 	      sgid != oldcred->cr_svgid &&
1148 	      sgid != oldcred->cr_groups[0])) &&
1149 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID, 0)) != 0)
1150 		goto fail;
1151 
1152 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
1153 		change_egid(newcred, egid);
1154 		setsugid(p);
1155 	}
1156 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1157 		change_rgid(newcred, rgid);
1158 		setsugid(p);
1159 	}
1160 	if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
1161 		change_svgid(newcred, sgid);
1162 		setsugid(p);
1163 	}
1164 	p->p_ucred = newcred;
1165 	PROC_UNLOCK(p);
1166 	crfree(oldcred);
1167 	return (0);
1168 
1169 fail:
1170 	PROC_UNLOCK(p);
1171 	crfree(newcred);
1172 	return (error);
1173 }
1174 
1175 #ifndef _SYS_SYSPROTO_H_
1176 struct getresuid_args {
1177 	uid_t	*ruid;
1178 	uid_t	*euid;
1179 	uid_t	*suid;
1180 };
1181 #endif
1182 /* ARGSUSED */
1183 int
1184 sys_getresuid(register struct thread *td, struct getresuid_args *uap)
1185 {
1186 	struct ucred *cred;
1187 	int error1 = 0, error2 = 0, error3 = 0;
1188 
1189 	cred = td->td_ucred;
1190 	if (uap->ruid)
1191 		error1 = copyout(&cred->cr_ruid,
1192 		    uap->ruid, sizeof(cred->cr_ruid));
1193 	if (uap->euid)
1194 		error2 = copyout(&cred->cr_uid,
1195 		    uap->euid, sizeof(cred->cr_uid));
1196 	if (uap->suid)
1197 		error3 = copyout(&cred->cr_svuid,
1198 		    uap->suid, sizeof(cred->cr_svuid));
1199 	return (error1 ? error1 : error2 ? error2 : error3);
1200 }
1201 
1202 #ifndef _SYS_SYSPROTO_H_
1203 struct getresgid_args {
1204 	gid_t	*rgid;
1205 	gid_t	*egid;
1206 	gid_t	*sgid;
1207 };
1208 #endif
1209 /* ARGSUSED */
1210 int
1211 sys_getresgid(register struct thread *td, struct getresgid_args *uap)
1212 {
1213 	struct ucred *cred;
1214 	int error1 = 0, error2 = 0, error3 = 0;
1215 
1216 	cred = td->td_ucred;
1217 	if (uap->rgid)
1218 		error1 = copyout(&cred->cr_rgid,
1219 		    uap->rgid, sizeof(cred->cr_rgid));
1220 	if (uap->egid)
1221 		error2 = copyout(&cred->cr_groups[0],
1222 		    uap->egid, sizeof(cred->cr_groups[0]));
1223 	if (uap->sgid)
1224 		error3 = copyout(&cred->cr_svgid,
1225 		    uap->sgid, sizeof(cred->cr_svgid));
1226 	return (error1 ? error1 : error2 ? error2 : error3);
1227 }
1228 
1229 #ifndef _SYS_SYSPROTO_H_
1230 struct issetugid_args {
1231 	int dummy;
1232 };
1233 #endif
1234 /* ARGSUSED */
1235 int
1236 sys_issetugid(register struct thread *td, struct issetugid_args *uap)
1237 {
1238 	struct proc *p = td->td_proc;
1239 
1240 	/*
1241 	 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
1242 	 * we use P_SUGID because we consider changing the owners as
1243 	 * "tainting" as well.
1244 	 * This is significant for procs that start as root and "become"
1245 	 * a user without an exec - programs cannot know *everything*
1246 	 * that libc *might* have put in their data segment.
1247 	 */
1248 	PROC_LOCK(p);
1249 	td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
1250 	PROC_UNLOCK(p);
1251 	return (0);
1252 }
1253 
1254 int
1255 sys___setugid(struct thread *td, struct __setugid_args *uap)
1256 {
1257 #ifdef REGRESSION
1258 	struct proc *p;
1259 
1260 	p = td->td_proc;
1261 	switch (uap->flag) {
1262 	case 0:
1263 		PROC_LOCK(p);
1264 		p->p_flag &= ~P_SUGID;
1265 		PROC_UNLOCK(p);
1266 		return (0);
1267 	case 1:
1268 		PROC_LOCK(p);
1269 		p->p_flag |= P_SUGID;
1270 		PROC_UNLOCK(p);
1271 		return (0);
1272 	default:
1273 		return (EINVAL);
1274 	}
1275 #else /* !REGRESSION */
1276 
1277 	return (ENOSYS);
1278 #endif /* REGRESSION */
1279 }
1280 
1281 /*
1282  * Check if gid is a member of the group set.
1283  */
1284 int
1285 groupmember(gid_t gid, struct ucred *cred)
1286 {
1287 	int l;
1288 	int h;
1289 	int m;
1290 
1291 	if (cred->cr_groups[0] == gid)
1292 		return(1);
1293 
1294 	/*
1295 	 * If gid was not our primary group, perform a binary search
1296 	 * of the supplemental groups.  This is possible because we
1297 	 * sort the groups in crsetgroups().
1298 	 */
1299 	l = 1;
1300 	h = cred->cr_ngroups;
1301 	while (l < h) {
1302 		m = l + ((h - l) / 2);
1303 		if (cred->cr_groups[m] < gid)
1304 			l = m + 1;
1305 		else
1306 			h = m;
1307 	}
1308 	if ((l < cred->cr_ngroups) && (cred->cr_groups[l] == gid))
1309 		return (1);
1310 
1311 	return (0);
1312 }
1313 
1314 /*
1315  * Test the active securelevel against a given level.  securelevel_gt()
1316  * implements (securelevel > level).  securelevel_ge() implements
1317  * (securelevel >= level).  Note that the logic is inverted -- these
1318  * functions return EPERM on "success" and 0 on "failure".
1319  *
1320  * Due to care taken when setting the securelevel, we know that no jail will
1321  * be less secure that its parent (or the physical system), so it is sufficient
1322  * to test the current jail only.
1323  *
1324  * XXXRW: Possibly since this has to do with privilege, it should move to
1325  * kern_priv.c.
1326  */
1327 int
1328 securelevel_gt(struct ucred *cr, int level)
1329 {
1330 
1331 	return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
1332 }
1333 
1334 int
1335 securelevel_ge(struct ucred *cr, int level)
1336 {
1337 
1338 	return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
1339 }
1340 
1341 /*
1342  * 'see_other_uids' determines whether or not visibility of processes
1343  * and sockets with credentials holding different real uids is possible
1344  * using a variety of system MIBs.
1345  * XXX: data declarations should be together near the beginning of the file.
1346  */
1347 static int	see_other_uids = 1;
1348 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
1349     &see_other_uids, 0,
1350     "Unprivileged processes may see subjects/objects with different real uid");
1351 
1352 /*-
1353  * Determine if u1 "can see" the subject specified by u2, according to the
1354  * 'see_other_uids' policy.
1355  * Returns: 0 for permitted, ESRCH otherwise
1356  * Locks: none
1357  * References: *u1 and *u2 must not change during the call
1358  *             u1 may equal u2, in which case only one reference is required
1359  */
1360 static int
1361 cr_seeotheruids(struct ucred *u1, struct ucred *u2)
1362 {
1363 
1364 	if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
1365 		if (priv_check_cred(u1, PRIV_SEEOTHERUIDS, 0) != 0)
1366 			return (ESRCH);
1367 	}
1368 	return (0);
1369 }
1370 
1371 /*
1372  * 'see_other_gids' determines whether or not visibility of processes
1373  * and sockets with credentials holding different real gids is possible
1374  * using a variety of system MIBs.
1375  * XXX: data declarations should be together near the beginning of the file.
1376  */
1377 static int	see_other_gids = 1;
1378 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
1379     &see_other_gids, 0,
1380     "Unprivileged processes may see subjects/objects with different real gid");
1381 
1382 /*
1383  * Determine if u1 can "see" the subject specified by u2, according to the
1384  * 'see_other_gids' policy.
1385  * Returns: 0 for permitted, ESRCH otherwise
1386  * Locks: none
1387  * References: *u1 and *u2 must not change during the call
1388  *             u1 may equal u2, in which case only one reference is required
1389  */
1390 static int
1391 cr_seeothergids(struct ucred *u1, struct ucred *u2)
1392 {
1393 	int i, match;
1394 
1395 	if (!see_other_gids) {
1396 		match = 0;
1397 		for (i = 0; i < u1->cr_ngroups; i++) {
1398 			if (groupmember(u1->cr_groups[i], u2))
1399 				match = 1;
1400 			if (match)
1401 				break;
1402 		}
1403 		if (!match) {
1404 			if (priv_check_cred(u1, PRIV_SEEOTHERGIDS, 0) != 0)
1405 				return (ESRCH);
1406 		}
1407 	}
1408 	return (0);
1409 }
1410 
1411 /*-
1412  * Determine if u1 "can see" the subject specified by u2.
1413  * Returns: 0 for permitted, an errno value otherwise
1414  * Locks: none
1415  * References: *u1 and *u2 must not change during the call
1416  *             u1 may equal u2, in which case only one reference is required
1417  */
1418 int
1419 cr_cansee(struct ucred *u1, struct ucred *u2)
1420 {
1421 	int error;
1422 
1423 	if ((error = prison_check(u1, u2)))
1424 		return (error);
1425 #ifdef MAC
1426 	if ((error = mac_cred_check_visible(u1, u2)))
1427 		return (error);
1428 #endif
1429 	if ((error = cr_seeotheruids(u1, u2)))
1430 		return (error);
1431 	if ((error = cr_seeothergids(u1, u2)))
1432 		return (error);
1433 	return (0);
1434 }
1435 
1436 /*-
1437  * Determine if td "can see" the subject specified by p.
1438  * Returns: 0 for permitted, an errno value otherwise
1439  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
1440  *        should be curthread.
1441  * References: td and p must be valid for the lifetime of the call
1442  */
1443 int
1444 p_cansee(struct thread *td, struct proc *p)
1445 {
1446 
1447 	/* Wrap cr_cansee() for all functionality. */
1448 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1449 	PROC_LOCK_ASSERT(p, MA_OWNED);
1450 	return (cr_cansee(td->td_ucred, p->p_ucred));
1451 }
1452 
1453 /*
1454  * 'conservative_signals' prevents the delivery of a broad class of
1455  * signals by unprivileged processes to processes that have changed their
1456  * credentials since the last invocation of execve().  This can prevent
1457  * the leakage of cached information or retained privileges as a result
1458  * of a common class of signal-related vulnerabilities.  However, this
1459  * may interfere with some applications that expect to be able to
1460  * deliver these signals to peer processes after having given up
1461  * privilege.
1462  */
1463 static int	conservative_signals = 1;
1464 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
1465     &conservative_signals, 0, "Unprivileged processes prevented from "
1466     "sending certain signals to processes whose credentials have changed");
1467 /*-
1468  * Determine whether cred may deliver the specified signal to proc.
1469  * Returns: 0 for permitted, an errno value otherwise.
1470  * Locks: A lock must be held for proc.
1471  * References: cred and proc must be valid for the lifetime of the call.
1472  */
1473 int
1474 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
1475 {
1476 	int error;
1477 
1478 	PROC_LOCK_ASSERT(proc, MA_OWNED);
1479 	/*
1480 	 * Jail semantics limit the scope of signalling to proc in the
1481 	 * same jail as cred, if cred is in jail.
1482 	 */
1483 	error = prison_check(cred, proc->p_ucred);
1484 	if (error)
1485 		return (error);
1486 #ifdef MAC
1487 	if ((error = mac_proc_check_signal(cred, proc, signum)))
1488 		return (error);
1489 #endif
1490 	if ((error = cr_seeotheruids(cred, proc->p_ucred)))
1491 		return (error);
1492 	if ((error = cr_seeothergids(cred, proc->p_ucred)))
1493 		return (error);
1494 
1495 	/*
1496 	 * UNIX signal semantics depend on the status of the P_SUGID
1497 	 * bit on the target process.  If the bit is set, then additional
1498 	 * restrictions are placed on the set of available signals.
1499 	 */
1500 	if (conservative_signals && (proc->p_flag & P_SUGID)) {
1501 		switch (signum) {
1502 		case 0:
1503 		case SIGKILL:
1504 		case SIGINT:
1505 		case SIGTERM:
1506 		case SIGALRM:
1507 		case SIGSTOP:
1508 		case SIGTTIN:
1509 		case SIGTTOU:
1510 		case SIGTSTP:
1511 		case SIGHUP:
1512 		case SIGUSR1:
1513 		case SIGUSR2:
1514 			/*
1515 			 * Generally, permit job and terminal control
1516 			 * signals.
1517 			 */
1518 			break;
1519 		default:
1520 			/* Not permitted without privilege. */
1521 			error = priv_check_cred(cred, PRIV_SIGNAL_SUGID, 0);
1522 			if (error)
1523 				return (error);
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * Generally, the target credential's ruid or svuid must match the
1529 	 * subject credential's ruid or euid.
1530 	 */
1531 	if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
1532 	    cred->cr_ruid != proc->p_ucred->cr_svuid &&
1533 	    cred->cr_uid != proc->p_ucred->cr_ruid &&
1534 	    cred->cr_uid != proc->p_ucred->cr_svuid) {
1535 		error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED, 0);
1536 		if (error)
1537 			return (error);
1538 	}
1539 
1540 	return (0);
1541 }
1542 
1543 /*-
1544  * Determine whether td may deliver the specified signal to p.
1545  * Returns: 0 for permitted, an errno value otherwise
1546  * Locks: Sufficient locks to protect various components of td and p
1547  *        must be held.  td must be curthread, and a lock must be
1548  *        held for p.
1549  * References: td and p must be valid for the lifetime of the call
1550  */
1551 int
1552 p_cansignal(struct thread *td, struct proc *p, int signum)
1553 {
1554 
1555 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1556 	PROC_LOCK_ASSERT(p, MA_OWNED);
1557 	if (td->td_proc == p)
1558 		return (0);
1559 
1560 	/*
1561 	 * UNIX signalling semantics require that processes in the same
1562 	 * session always be able to deliver SIGCONT to one another,
1563 	 * overriding the remaining protections.
1564 	 */
1565 	/* XXX: This will require an additional lock of some sort. */
1566 	if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
1567 		return (0);
1568 	/*
1569 	 * Some compat layers use SIGTHR and higher signals for
1570 	 * communication between different kernel threads of the same
1571 	 * process, so that they expect that it's always possible to
1572 	 * deliver them, even for suid applications where cr_cansignal() can
1573 	 * deny such ability for security consideration.  It should be
1574 	 * pretty safe to do since the only way to create two processes
1575 	 * with the same p_leader is via rfork(2).
1576 	 */
1577 	if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
1578 	    signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
1579 		return (0);
1580 
1581 	return (cr_cansignal(td->td_ucred, p, signum));
1582 }
1583 
1584 /*-
1585  * Determine whether td may reschedule p.
1586  * Returns: 0 for permitted, an errno value otherwise
1587  * Locks: Sufficient locks to protect various components of td and p
1588  *        must be held.  td must be curthread, and a lock must
1589  *        be held for p.
1590  * References: td and p must be valid for the lifetime of the call
1591  */
1592 int
1593 p_cansched(struct thread *td, struct proc *p)
1594 {
1595 	int error;
1596 
1597 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1598 	PROC_LOCK_ASSERT(p, MA_OWNED);
1599 	if (td->td_proc == p)
1600 		return (0);
1601 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1602 		return (error);
1603 #ifdef MAC
1604 	if ((error = mac_proc_check_sched(td->td_ucred, p)))
1605 		return (error);
1606 #endif
1607 	if ((error = cr_seeotheruids(td->td_ucred, p->p_ucred)))
1608 		return (error);
1609 	if ((error = cr_seeothergids(td->td_ucred, p->p_ucred)))
1610 		return (error);
1611 	if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
1612 	    td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
1613 		error = priv_check(td, PRIV_SCHED_DIFFCRED);
1614 		if (error)
1615 			return (error);
1616 	}
1617 	return (0);
1618 }
1619 
1620 /*
1621  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
1622  * unprivileged inter-process debugging services, including some procfs
1623  * functionality, ptrace(), and ktrace().  In the past, inter-process
1624  * debugging has been involved in a variety of security problems, and sites
1625  * not requiring the service might choose to disable it when hardening
1626  * systems.
1627  *
1628  * XXX: Should modifying and reading this variable require locking?
1629  * XXX: data declarations should be together near the beginning of the file.
1630  */
1631 static int	unprivileged_proc_debug = 1;
1632 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_proc_debug, CTLFLAG_RW,
1633     &unprivileged_proc_debug, 0,
1634     "Unprivileged processes may use process debugging facilities");
1635 
1636 /*-
1637  * Determine whether td may debug p.
1638  * Returns: 0 for permitted, an errno value otherwise
1639  * Locks: Sufficient locks to protect various components of td and p
1640  *        must be held.  td must be curthread, and a lock must
1641  *        be held for p.
1642  * References: td and p must be valid for the lifetime of the call
1643  */
1644 int
1645 p_candebug(struct thread *td, struct proc *p)
1646 {
1647 	int credentialchanged, error, grpsubset, i, uidsubset;
1648 
1649 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1650 	PROC_LOCK_ASSERT(p, MA_OWNED);
1651 	if (!unprivileged_proc_debug) {
1652 		error = priv_check(td, PRIV_DEBUG_UNPRIV);
1653 		if (error)
1654 			return (error);
1655 	}
1656 	if (td->td_proc == p)
1657 		return (0);
1658 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1659 		return (error);
1660 #ifdef MAC
1661 	if ((error = mac_proc_check_debug(td->td_ucred, p)))
1662 		return (error);
1663 #endif
1664 	if ((error = cr_seeotheruids(td->td_ucred, p->p_ucred)))
1665 		return (error);
1666 	if ((error = cr_seeothergids(td->td_ucred, p->p_ucred)))
1667 		return (error);
1668 
1669 	/*
1670 	 * Is p's group set a subset of td's effective group set?  This
1671 	 * includes p's egid, group access list, rgid, and svgid.
1672 	 */
1673 	grpsubset = 1;
1674 	for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
1675 		if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
1676 			grpsubset = 0;
1677 			break;
1678 		}
1679 	}
1680 	grpsubset = grpsubset &&
1681 	    groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
1682 	    groupmember(p->p_ucred->cr_svgid, td->td_ucred);
1683 
1684 	/*
1685 	 * Are the uids present in p's credential equal to td's
1686 	 * effective uid?  This includes p's euid, svuid, and ruid.
1687 	 */
1688 	uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
1689 	    td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
1690 	    td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
1691 
1692 	/*
1693 	 * Has the credential of the process changed since the last exec()?
1694 	 */
1695 	credentialchanged = (p->p_flag & P_SUGID);
1696 
1697 	/*
1698 	 * If p's gids aren't a subset, or the uids aren't a subset,
1699 	 * or the credential has changed, require appropriate privilege
1700 	 * for td to debug p.
1701 	 */
1702 	if (!grpsubset || !uidsubset) {
1703 		error = priv_check(td, PRIV_DEBUG_DIFFCRED);
1704 		if (error)
1705 			return (error);
1706 	}
1707 
1708 	if (credentialchanged) {
1709 		error = priv_check(td, PRIV_DEBUG_SUGID);
1710 		if (error)
1711 			return (error);
1712 	}
1713 
1714 	/* Can't trace init when securelevel > 0. */
1715 	if (p == initproc) {
1716 		error = securelevel_gt(td->td_ucred, 0);
1717 		if (error)
1718 			return (error);
1719 	}
1720 
1721 	/*
1722 	 * Can't trace a process that's currently exec'ing.
1723 	 *
1724 	 * XXX: Note, this is not a security policy decision, it's a
1725 	 * basic correctness/functionality decision.  Therefore, this check
1726 	 * should be moved to the caller's of p_candebug().
1727 	 */
1728 	if ((p->p_flag & P_INEXEC) != 0)
1729 		return (EBUSY);
1730 
1731 	return (0);
1732 }
1733 
1734 /*-
1735  * Determine whether the subject represented by cred can "see" a socket.
1736  * Returns: 0 for permitted, ENOENT otherwise.
1737  */
1738 int
1739 cr_canseesocket(struct ucred *cred, struct socket *so)
1740 {
1741 	int error;
1742 
1743 	error = prison_check(cred, so->so_cred);
1744 	if (error)
1745 		return (ENOENT);
1746 #ifdef MAC
1747 	error = mac_socket_check_visible(cred, so);
1748 	if (error)
1749 		return (error);
1750 #endif
1751 	if (cr_seeotheruids(cred, so->so_cred))
1752 		return (ENOENT);
1753 	if (cr_seeothergids(cred, so->so_cred))
1754 		return (ENOENT);
1755 
1756 	return (0);
1757 }
1758 
1759 #if defined(INET) || defined(INET6)
1760 /*-
1761  * Determine whether the subject represented by cred can "see" a socket.
1762  * Returns: 0 for permitted, ENOENT otherwise.
1763  */
1764 int
1765 cr_canseeinpcb(struct ucred *cred, struct inpcb *inp)
1766 {
1767 	int error;
1768 
1769 	error = prison_check(cred, inp->inp_cred);
1770 	if (error)
1771 		return (ENOENT);
1772 #ifdef MAC
1773 	INP_LOCK_ASSERT(inp);
1774 	error = mac_inpcb_check_visible(cred, inp);
1775 	if (error)
1776 		return (error);
1777 #endif
1778 	if (cr_seeotheruids(cred, inp->inp_cred))
1779 		return (ENOENT);
1780 	if (cr_seeothergids(cred, inp->inp_cred))
1781 		return (ENOENT);
1782 
1783 	return (0);
1784 }
1785 #endif
1786 
1787 /*-
1788  * Determine whether td can wait for the exit of p.
1789  * Returns: 0 for permitted, an errno value otherwise
1790  * Locks: Sufficient locks to protect various components of td and p
1791  *        must be held.  td must be curthread, and a lock must
1792  *        be held for p.
1793  * References: td and p must be valid for the lifetime of the call
1794 
1795  */
1796 int
1797 p_canwait(struct thread *td, struct proc *p)
1798 {
1799 	int error;
1800 
1801 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1802 	PROC_LOCK_ASSERT(p, MA_OWNED);
1803 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1804 		return (error);
1805 #ifdef MAC
1806 	if ((error = mac_proc_check_wait(td->td_ucred, p)))
1807 		return (error);
1808 #endif
1809 #if 0
1810 	/* XXXMAC: This could have odd effects on some shells. */
1811 	if ((error = cr_seeotheruids(td->td_ucred, p->p_ucred)))
1812 		return (error);
1813 #endif
1814 
1815 	return (0);
1816 }
1817 
1818 /*
1819  * Allocate a zeroed cred structure.
1820  */
1821 struct ucred *
1822 crget(void)
1823 {
1824 	register struct ucred *cr;
1825 
1826 	cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
1827 	refcount_init(&cr->cr_ref, 1);
1828 #ifdef AUDIT
1829 	audit_cred_init(cr);
1830 #endif
1831 #ifdef MAC
1832 	mac_cred_init(cr);
1833 #endif
1834 	crextend(cr, XU_NGROUPS);
1835 	return (cr);
1836 }
1837 
1838 /*
1839  * Claim another reference to a ucred structure.
1840  */
1841 struct ucred *
1842 crhold(struct ucred *cr)
1843 {
1844 
1845 	refcount_acquire(&cr->cr_ref);
1846 	return (cr);
1847 }
1848 
1849 /*
1850  * Free a cred structure.  Throws away space when ref count gets to 0.
1851  */
1852 void
1853 crfree(struct ucred *cr)
1854 {
1855 
1856 	KASSERT(cr->cr_ref > 0, ("bad ucred refcount: %d", cr->cr_ref));
1857 	KASSERT(cr->cr_ref != 0xdeadc0de, ("dangling reference to ucred"));
1858 	if (refcount_release(&cr->cr_ref)) {
1859 		/*
1860 		 * Some callers of crget(), such as nfs_statfs(),
1861 		 * allocate a temporary credential, but don't
1862 		 * allocate a uidinfo structure.
1863 		 */
1864 		if (cr->cr_uidinfo != NULL)
1865 			uifree(cr->cr_uidinfo);
1866 		if (cr->cr_ruidinfo != NULL)
1867 			uifree(cr->cr_ruidinfo);
1868 		/*
1869 		 * Free a prison, if any.
1870 		 */
1871 		if (cr->cr_prison != NULL)
1872 			prison_free(cr->cr_prison);
1873 		if (cr->cr_loginclass != NULL)
1874 			loginclass_free(cr->cr_loginclass);
1875 #ifdef AUDIT
1876 		audit_cred_destroy(cr);
1877 #endif
1878 #ifdef MAC
1879 		mac_cred_destroy(cr);
1880 #endif
1881 		free(cr->cr_groups, M_CRED);
1882 		free(cr, M_CRED);
1883 	}
1884 }
1885 
1886 /*
1887  * Check to see if this ucred is shared.
1888  */
1889 int
1890 crshared(struct ucred *cr)
1891 {
1892 
1893 	return (cr->cr_ref > 1);
1894 }
1895 
1896 /*
1897  * Copy a ucred's contents from a template.  Does not block.
1898  */
1899 void
1900 crcopy(struct ucred *dest, struct ucred *src)
1901 {
1902 
1903 	KASSERT(crshared(dest) == 0, ("crcopy of shared ucred"));
1904 	bcopy(&src->cr_startcopy, &dest->cr_startcopy,
1905 	    (unsigned)((caddr_t)&src->cr_endcopy -
1906 		(caddr_t)&src->cr_startcopy));
1907 	crsetgroups(dest, src->cr_ngroups, src->cr_groups);
1908 	uihold(dest->cr_uidinfo);
1909 	uihold(dest->cr_ruidinfo);
1910 	prison_hold(dest->cr_prison);
1911 	loginclass_hold(dest->cr_loginclass);
1912 #ifdef AUDIT
1913 	audit_cred_copy(src, dest);
1914 #endif
1915 #ifdef MAC
1916 	mac_cred_copy(src, dest);
1917 #endif
1918 }
1919 
1920 /*
1921  * Dup cred struct to a new held one.
1922  */
1923 struct ucred *
1924 crdup(struct ucred *cr)
1925 {
1926 	struct ucred *newcr;
1927 
1928 	newcr = crget();
1929 	crcopy(newcr, cr);
1930 	return (newcr);
1931 }
1932 
1933 /*
1934  * Fill in a struct xucred based on a struct ucred.
1935  */
1936 void
1937 cru2x(struct ucred *cr, struct xucred *xcr)
1938 {
1939 	int ngroups;
1940 
1941 	bzero(xcr, sizeof(*xcr));
1942 	xcr->cr_version = XUCRED_VERSION;
1943 	xcr->cr_uid = cr->cr_uid;
1944 
1945 	ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
1946 	xcr->cr_ngroups = ngroups;
1947 	bcopy(cr->cr_groups, xcr->cr_groups,
1948 	    ngroups * sizeof(*cr->cr_groups));
1949 }
1950 
1951 /*
1952  * small routine to swap a thread's current ucred for the correct one taken
1953  * from the process.
1954  */
1955 void
1956 cred_update_thread(struct thread *td)
1957 {
1958 	struct proc *p;
1959 	struct ucred *cred;
1960 
1961 	p = td->td_proc;
1962 	cred = td->td_ucred;
1963 	PROC_LOCK(p);
1964 	td->td_ucred = crhold(p->p_ucred);
1965 	PROC_UNLOCK(p);
1966 	if (cred != NULL)
1967 		crfree(cred);
1968 }
1969 
1970 struct ucred *
1971 crcopysafe(struct proc *p, struct ucred *cr)
1972 {
1973 	struct ucred *oldcred;
1974 	int groups;
1975 
1976 	PROC_LOCK_ASSERT(p, MA_OWNED);
1977 
1978 	oldcred = p->p_ucred;
1979 	while (cr->cr_agroups < oldcred->cr_agroups) {
1980 		groups = oldcred->cr_agroups;
1981 		PROC_UNLOCK(p);
1982 		crextend(cr, groups);
1983 		PROC_LOCK(p);
1984 		oldcred = p->p_ucred;
1985 	}
1986 	crcopy(cr, oldcred);
1987 
1988 	return (oldcred);
1989 }
1990 
1991 /*
1992  * Extend the passed in credential to hold n items.
1993  */
1994 static void
1995 crextend(struct ucred *cr, int n)
1996 {
1997 	int cnt;
1998 
1999 	/* Truncate? */
2000 	if (n <= cr->cr_agroups)
2001 		return;
2002 
2003 	/*
2004 	 * We extend by 2 each time since we're using a power of two
2005 	 * allocator until we need enough groups to fill a page.
2006 	 * Once we're allocating multiple pages, only allocate as many
2007 	 * as we actually need.  The case of processes needing a
2008 	 * non-power of two number of pages seems more likely than
2009 	 * a real world process that adds thousands of groups one at a
2010 	 * time.
2011 	 */
2012 	if ( n < PAGE_SIZE / sizeof(gid_t) ) {
2013 		if (cr->cr_agroups == 0)
2014 			cnt = MINALLOCSIZE / sizeof(gid_t);
2015 		else
2016 			cnt = cr->cr_agroups * 2;
2017 
2018 		while (cnt < n)
2019 			cnt *= 2;
2020 	} else
2021 		cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t));
2022 
2023 	/* Free the old array. */
2024 	if (cr->cr_groups)
2025 		free(cr->cr_groups, M_CRED);
2026 
2027 	cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO);
2028 	cr->cr_agroups = cnt;
2029 }
2030 
2031 /*
2032  * Copy groups in to a credential, preserving any necessary invariants.
2033  * Currently this includes the sorting of all supplemental gids.
2034  * crextend() must have been called before hand to ensure sufficient
2035  * space is available.
2036  */
2037 static void
2038 crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups)
2039 {
2040 	int i;
2041 	int j;
2042 	gid_t g;
2043 
2044 	KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small"));
2045 
2046 	bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
2047 	cr->cr_ngroups = ngrp;
2048 
2049 	/*
2050 	 * Sort all groups except cr_groups[0] to allow groupmember to
2051 	 * perform a binary search.
2052 	 *
2053 	 * XXX: If large numbers of groups become common this should
2054 	 * be replaced with shell sort like linux uses or possibly
2055 	 * heap sort.
2056 	 */
2057 	for (i = 2; i < ngrp; i++) {
2058 		g = cr->cr_groups[i];
2059 		for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--)
2060 			cr->cr_groups[j + 1] = cr->cr_groups[j];
2061 		cr->cr_groups[j + 1] = g;
2062 	}
2063 }
2064 
2065 /*
2066  * Copy groups in to a credential after expanding it if required.
2067  * Truncate the list to (ngroups_max + 1) if it is too large.
2068  */
2069 void
2070 crsetgroups(struct ucred *cr, int ngrp, gid_t *groups)
2071 {
2072 
2073 	if (ngrp > ngroups_max + 1)
2074 		ngrp = ngroups_max + 1;
2075 
2076 	crextend(cr, ngrp);
2077 	crsetgroups_locked(cr, ngrp, groups);
2078 }
2079 
2080 /*
2081  * Get login name, if available.
2082  */
2083 #ifndef _SYS_SYSPROTO_H_
2084 struct getlogin_args {
2085 	char	*namebuf;
2086 	u_int	namelen;
2087 };
2088 #endif
2089 /* ARGSUSED */
2090 int
2091 sys_getlogin(struct thread *td, struct getlogin_args *uap)
2092 {
2093 	int error;
2094 	char login[MAXLOGNAME];
2095 	struct proc *p = td->td_proc;
2096 
2097 	if (uap->namelen > MAXLOGNAME)
2098 		uap->namelen = MAXLOGNAME;
2099 	PROC_LOCK(p);
2100 	SESS_LOCK(p->p_session);
2101 	bcopy(p->p_session->s_login, login, uap->namelen);
2102 	SESS_UNLOCK(p->p_session);
2103 	PROC_UNLOCK(p);
2104 	if (strlen(login) + 1 > uap->namelen)
2105 		return (ERANGE);
2106 	error = copyout(login, uap->namebuf, uap->namelen);
2107 	return (error);
2108 }
2109 
2110 /*
2111  * Set login name.
2112  */
2113 #ifndef _SYS_SYSPROTO_H_
2114 struct setlogin_args {
2115 	char	*namebuf;
2116 };
2117 #endif
2118 /* ARGSUSED */
2119 int
2120 sys_setlogin(struct thread *td, struct setlogin_args *uap)
2121 {
2122 	struct proc *p = td->td_proc;
2123 	int error;
2124 	char logintmp[MAXLOGNAME];
2125 
2126 	error = priv_check(td, PRIV_PROC_SETLOGIN);
2127 	if (error)
2128 		return (error);
2129 	error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
2130 	if (error == ENAMETOOLONG)
2131 		error = EINVAL;
2132 	else if (!error) {
2133 		PROC_LOCK(p);
2134 		SESS_LOCK(p->p_session);
2135 		(void) memcpy(p->p_session->s_login, logintmp,
2136 		    sizeof(logintmp));
2137 		SESS_UNLOCK(p->p_session);
2138 		PROC_UNLOCK(p);
2139 	}
2140 	return (error);
2141 }
2142 
2143 void
2144 setsugid(struct proc *p)
2145 {
2146 
2147 	PROC_LOCK_ASSERT(p, MA_OWNED);
2148 	p->p_flag |= P_SUGID;
2149 	if (!(p->p_pfsflags & PF_ISUGID))
2150 		p->p_stops = 0;
2151 }
2152 
2153 /*-
2154  * Change a process's effective uid.
2155  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
2156  * References: newcred must be an exclusive credential reference for the
2157  *             duration of the call.
2158  */
2159 void
2160 change_euid(struct ucred *newcred, struct uidinfo *euip)
2161 {
2162 
2163 	newcred->cr_uid = euip->ui_uid;
2164 	uihold(euip);
2165 	uifree(newcred->cr_uidinfo);
2166 	newcred->cr_uidinfo = euip;
2167 }
2168 
2169 /*-
2170  * Change a process's effective gid.
2171  * Side effects: newcred->cr_gid will be modified.
2172  * References: newcred must be an exclusive credential reference for the
2173  *             duration of the call.
2174  */
2175 void
2176 change_egid(struct ucred *newcred, gid_t egid)
2177 {
2178 
2179 	newcred->cr_groups[0] = egid;
2180 }
2181 
2182 /*-
2183  * Change a process's real uid.
2184  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
2185  *               will be updated, and the old and new cr_ruidinfo proc
2186  *               counts will be updated.
2187  * References: newcred must be an exclusive credential reference for the
2188  *             duration of the call.
2189  */
2190 void
2191 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
2192 {
2193 
2194 	(void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
2195 	newcred->cr_ruid = ruip->ui_uid;
2196 	uihold(ruip);
2197 	uifree(newcred->cr_ruidinfo);
2198 	newcred->cr_ruidinfo = ruip;
2199 	(void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
2200 }
2201 
2202 /*-
2203  * Change a process's real gid.
2204  * Side effects: newcred->cr_rgid will be updated.
2205  * References: newcred must be an exclusive credential reference for the
2206  *             duration of the call.
2207  */
2208 void
2209 change_rgid(struct ucred *newcred, gid_t rgid)
2210 {
2211 
2212 	newcred->cr_rgid = rgid;
2213 }
2214 
2215 /*-
2216  * Change a process's saved uid.
2217  * Side effects: newcred->cr_svuid will be updated.
2218  * References: newcred must be an exclusive credential reference for the
2219  *             duration of the call.
2220  */
2221 void
2222 change_svuid(struct ucred *newcred, uid_t svuid)
2223 {
2224 
2225 	newcred->cr_svuid = svuid;
2226 }
2227 
2228 /*-
2229  * Change a process's saved gid.
2230  * Side effects: newcred->cr_svgid will be updated.
2231  * References: newcred must be an exclusive credential reference for the
2232  *             duration of the call.
2233  */
2234 void
2235 change_svgid(struct ucred *newcred, gid_t svgid)
2236 {
2237 
2238 	newcred->cr_svgid = svgid;
2239 }
2240