xref: /freebsd/sys/kern/kern_prot.c (revision 5686c6c38a3e1cc78804eaf5f880bda23dcf592f)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
3  *	The Regents of the University of California.
4  * (c) UNIX System Laboratories, Inc.
5  * Copyright (c) 2000-2001 Robert N. M. Watson.
6  * All rights reserved.
7  *
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_prot.c	8.6 (Berkeley) 1/21/94
38  */
39 
40 /*
41  * System calls related to processes and protection
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_compat.h"
48 #include "opt_inet.h"
49 #include "opt_inet6.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/acct.h>
54 #include <sys/kdb.h>
55 #include <sys/kernel.h>
56 #include <sys/lock.h>
57 #include <sys/loginclass.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/refcount.h>
61 #include <sys/sx.h>
62 #include <sys/priv.h>
63 #include <sys/proc.h>
64 #include <sys/sysproto.h>
65 #include <sys/jail.h>
66 #include <sys/pioctl.h>
67 #include <sys/racct.h>
68 #include <sys/resourcevar.h>
69 #include <sys/socket.h>
70 #include <sys/socketvar.h>
71 #include <sys/syscallsubr.h>
72 #include <sys/sysctl.h>
73 
74 #ifdef REGRESSION
75 FEATURE(regression,
76     "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
77 #endif
78 
79 #if defined(INET) || defined(INET6)
80 #include <netinet/in.h>
81 #include <netinet/in_pcb.h>
82 #endif
83 
84 #include <security/audit/audit.h>
85 #include <security/mac/mac_framework.h>
86 
87 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
88 
89 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW, 0, "BSD security policy");
90 
91 static void crextend(struct ucred *cr, int n);
92 static void crsetgroups_locked(struct ucred *cr, int ngrp,
93     gid_t *groups);
94 
95 #ifndef _SYS_SYSPROTO_H_
96 struct getpid_args {
97 	int	dummy;
98 };
99 #endif
100 /* ARGSUSED */
101 int
102 sys_getpid(struct thread *td, struct getpid_args *uap)
103 {
104 	struct proc *p = td->td_proc;
105 
106 	td->td_retval[0] = p->p_pid;
107 #if defined(COMPAT_43)
108 	PROC_LOCK(p);
109 	td->td_retval[1] = p->p_pptr->p_pid;
110 	PROC_UNLOCK(p);
111 #endif
112 	return (0);
113 }
114 
115 #ifndef _SYS_SYSPROTO_H_
116 struct getppid_args {
117         int     dummy;
118 };
119 #endif
120 /* ARGSUSED */
121 int
122 sys_getppid(struct thread *td, struct getppid_args *uap)
123 {
124 	struct proc *p = td->td_proc;
125 
126 	PROC_LOCK(p);
127 	td->td_retval[0] = p->p_pptr->p_pid;
128 	PROC_UNLOCK(p);
129 	return (0);
130 }
131 
132 /*
133  * Get process group ID; note that POSIX getpgrp takes no parameter.
134  */
135 #ifndef _SYS_SYSPROTO_H_
136 struct getpgrp_args {
137         int     dummy;
138 };
139 #endif
140 int
141 sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
142 {
143 	struct proc *p = td->td_proc;
144 
145 	PROC_LOCK(p);
146 	td->td_retval[0] = p->p_pgrp->pg_id;
147 	PROC_UNLOCK(p);
148 	return (0);
149 }
150 
151 /* Get an arbitary pid's process group id */
152 #ifndef _SYS_SYSPROTO_H_
153 struct getpgid_args {
154 	pid_t	pid;
155 };
156 #endif
157 int
158 sys_getpgid(struct thread *td, struct getpgid_args *uap)
159 {
160 	struct proc *p;
161 	int error;
162 
163 	if (uap->pid == 0) {
164 		p = td->td_proc;
165 		PROC_LOCK(p);
166 	} else {
167 		p = pfind(uap->pid);
168 		if (p == NULL)
169 			return (ESRCH);
170 		error = p_cansee(td, p);
171 		if (error) {
172 			PROC_UNLOCK(p);
173 			return (error);
174 		}
175 	}
176 	td->td_retval[0] = p->p_pgrp->pg_id;
177 	PROC_UNLOCK(p);
178 	return (0);
179 }
180 
181 /*
182  * Get an arbitary pid's session id.
183  */
184 #ifndef _SYS_SYSPROTO_H_
185 struct getsid_args {
186 	pid_t	pid;
187 };
188 #endif
189 int
190 sys_getsid(struct thread *td, struct getsid_args *uap)
191 {
192 	struct proc *p;
193 	int error;
194 
195 	if (uap->pid == 0) {
196 		p = td->td_proc;
197 		PROC_LOCK(p);
198 	} else {
199 		p = pfind(uap->pid);
200 		if (p == NULL)
201 			return (ESRCH);
202 		error = p_cansee(td, p);
203 		if (error) {
204 			PROC_UNLOCK(p);
205 			return (error);
206 		}
207 	}
208 	td->td_retval[0] = p->p_session->s_sid;
209 	PROC_UNLOCK(p);
210 	return (0);
211 }
212 
213 #ifndef _SYS_SYSPROTO_H_
214 struct getuid_args {
215         int     dummy;
216 };
217 #endif
218 /* ARGSUSED */
219 int
220 sys_getuid(struct thread *td, struct getuid_args *uap)
221 {
222 
223 	td->td_retval[0] = td->td_ucred->cr_ruid;
224 #if defined(COMPAT_43)
225 	td->td_retval[1] = td->td_ucred->cr_uid;
226 #endif
227 	return (0);
228 }
229 
230 #ifndef _SYS_SYSPROTO_H_
231 struct geteuid_args {
232         int     dummy;
233 };
234 #endif
235 /* ARGSUSED */
236 int
237 sys_geteuid(struct thread *td, struct geteuid_args *uap)
238 {
239 
240 	td->td_retval[0] = td->td_ucred->cr_uid;
241 	return (0);
242 }
243 
244 #ifndef _SYS_SYSPROTO_H_
245 struct getgid_args {
246         int     dummy;
247 };
248 #endif
249 /* ARGSUSED */
250 int
251 sys_getgid(struct thread *td, struct getgid_args *uap)
252 {
253 
254 	td->td_retval[0] = td->td_ucred->cr_rgid;
255 #if defined(COMPAT_43)
256 	td->td_retval[1] = td->td_ucred->cr_groups[0];
257 #endif
258 	return (0);
259 }
260 
261 /*
262  * Get effective group ID.  The "egid" is groups[0], and could be obtained
263  * via getgroups.  This syscall exists because it is somewhat painful to do
264  * correctly in a library function.
265  */
266 #ifndef _SYS_SYSPROTO_H_
267 struct getegid_args {
268         int     dummy;
269 };
270 #endif
271 /* ARGSUSED */
272 int
273 sys_getegid(struct thread *td, struct getegid_args *uap)
274 {
275 
276 	td->td_retval[0] = td->td_ucred->cr_groups[0];
277 	return (0);
278 }
279 
280 #ifndef _SYS_SYSPROTO_H_
281 struct getgroups_args {
282 	u_int	gidsetsize;
283 	gid_t	*gidset;
284 };
285 #endif
286 int
287 sys_getgroups(struct thread *td, register struct getgroups_args *uap)
288 {
289 	gid_t *groups;
290 	u_int ngrp;
291 	int error;
292 
293 	if (uap->gidsetsize < td->td_ucred->cr_ngroups) {
294 		if (uap->gidsetsize == 0)
295 			ngrp = 0;
296 		else
297 			return (EINVAL);
298 	} else
299 		ngrp = td->td_ucred->cr_ngroups;
300 	groups = malloc(ngrp * sizeof(*groups), M_TEMP, M_WAITOK);
301 	error = kern_getgroups(td, &ngrp, groups);
302 	if (error)
303 		goto out;
304 	if (uap->gidsetsize > 0)
305 		error = copyout(groups, uap->gidset, ngrp * sizeof(gid_t));
306 	if (error == 0)
307 		td->td_retval[0] = ngrp;
308 out:
309 	free(groups, M_TEMP);
310 	return (error);
311 }
312 
313 int
314 kern_getgroups(struct thread *td, u_int *ngrp, gid_t *groups)
315 {
316 	struct ucred *cred;
317 
318 	cred = td->td_ucred;
319 	if (*ngrp == 0) {
320 		*ngrp = cred->cr_ngroups;
321 		return (0);
322 	}
323 	if (*ngrp < cred->cr_ngroups)
324 		return (EINVAL);
325 	*ngrp = cred->cr_ngroups;
326 	bcopy(cred->cr_groups, groups, *ngrp * sizeof(gid_t));
327 	return (0);
328 }
329 
330 #ifndef _SYS_SYSPROTO_H_
331 struct setsid_args {
332         int     dummy;
333 };
334 #endif
335 /* ARGSUSED */
336 int
337 sys_setsid(register struct thread *td, struct setsid_args *uap)
338 {
339 	struct pgrp *pgrp;
340 	int error;
341 	struct proc *p = td->td_proc;
342 	struct pgrp *newpgrp;
343 	struct session *newsess;
344 
345 	error = 0;
346 	pgrp = NULL;
347 
348 	newpgrp = malloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
349 	newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
350 
351 	sx_xlock(&proctree_lock);
352 
353 	if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
354 		if (pgrp != NULL)
355 			PGRP_UNLOCK(pgrp);
356 		error = EPERM;
357 	} else {
358 		(void)enterpgrp(p, p->p_pid, newpgrp, newsess);
359 		td->td_retval[0] = p->p_pid;
360 		newpgrp = NULL;
361 		newsess = NULL;
362 	}
363 
364 	sx_xunlock(&proctree_lock);
365 
366 	if (newpgrp != NULL)
367 		free(newpgrp, M_PGRP);
368 	if (newsess != NULL)
369 		free(newsess, M_SESSION);
370 
371 	return (error);
372 }
373 
374 /*
375  * set process group (setpgid/old setpgrp)
376  *
377  * caller does setpgid(targpid, targpgid)
378  *
379  * pid must be caller or child of caller (ESRCH)
380  * if a child
381  *	pid must be in same session (EPERM)
382  *	pid can't have done an exec (EACCES)
383  * if pgid != pid
384  * 	there must exist some pid in same session having pgid (EPERM)
385  * pid must not be session leader (EPERM)
386  */
387 #ifndef _SYS_SYSPROTO_H_
388 struct setpgid_args {
389 	int	pid;		/* target process id */
390 	int	pgid;		/* target pgrp id */
391 };
392 #endif
393 /* ARGSUSED */
394 int
395 sys_setpgid(struct thread *td, register struct setpgid_args *uap)
396 {
397 	struct proc *curp = td->td_proc;
398 	register struct proc *targp;	/* target process */
399 	register struct pgrp *pgrp;	/* target pgrp */
400 	int error;
401 	struct pgrp *newpgrp;
402 
403 	if (uap->pgid < 0)
404 		return (EINVAL);
405 
406 	error = 0;
407 
408 	newpgrp = malloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
409 
410 	sx_xlock(&proctree_lock);
411 	if (uap->pid != 0 && uap->pid != curp->p_pid) {
412 		if ((targp = pfind(uap->pid)) == NULL) {
413 			error = ESRCH;
414 			goto done;
415 		}
416 		if (!inferior(targp)) {
417 			PROC_UNLOCK(targp);
418 			error = ESRCH;
419 			goto done;
420 		}
421 		if ((error = p_cansee(td, targp))) {
422 			PROC_UNLOCK(targp);
423 			goto done;
424 		}
425 		if (targp->p_pgrp == NULL ||
426 		    targp->p_session != curp->p_session) {
427 			PROC_UNLOCK(targp);
428 			error = EPERM;
429 			goto done;
430 		}
431 		if (targp->p_flag & P_EXEC) {
432 			PROC_UNLOCK(targp);
433 			error = EACCES;
434 			goto done;
435 		}
436 		PROC_UNLOCK(targp);
437 	} else
438 		targp = curp;
439 	if (SESS_LEADER(targp)) {
440 		error = EPERM;
441 		goto done;
442 	}
443 	if (uap->pgid == 0)
444 		uap->pgid = targp->p_pid;
445 	if ((pgrp = pgfind(uap->pgid)) == NULL) {
446 		if (uap->pgid == targp->p_pid) {
447 			error = enterpgrp(targp, uap->pgid, newpgrp,
448 			    NULL);
449 			if (error == 0)
450 				newpgrp = NULL;
451 		} else
452 			error = EPERM;
453 	} else {
454 		if (pgrp == targp->p_pgrp) {
455 			PGRP_UNLOCK(pgrp);
456 			goto done;
457 		}
458 		if (pgrp->pg_id != targp->p_pid &&
459 		    pgrp->pg_session != curp->p_session) {
460 			PGRP_UNLOCK(pgrp);
461 			error = EPERM;
462 			goto done;
463 		}
464 		PGRP_UNLOCK(pgrp);
465 		error = enterthispgrp(targp, pgrp);
466 	}
467 done:
468 	sx_xunlock(&proctree_lock);
469 	KASSERT((error == 0) || (newpgrp != NULL),
470 	    ("setpgid failed and newpgrp is NULL"));
471 	if (newpgrp != NULL)
472 		free(newpgrp, M_PGRP);
473 	return (error);
474 }
475 
476 /*
477  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
478  * compatible.  It says that setting the uid/gid to euid/egid is a special
479  * case of "appropriate privilege".  Once the rules are expanded out, this
480  * basically means that setuid(nnn) sets all three id's, in all permitted
481  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
482  * does not set the saved id - this is dangerous for traditional BSD
483  * programs.  For this reason, we *really* do not want to set
484  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
485  */
486 #define POSIX_APPENDIX_B_4_2_2
487 
488 #ifndef _SYS_SYSPROTO_H_
489 struct setuid_args {
490 	uid_t	uid;
491 };
492 #endif
493 /* ARGSUSED */
494 int
495 sys_setuid(struct thread *td, struct setuid_args *uap)
496 {
497 	struct proc *p = td->td_proc;
498 	struct ucred *newcred, *oldcred;
499 	uid_t uid;
500 	struct uidinfo *uip;
501 	int error;
502 
503 	uid = uap->uid;
504 	AUDIT_ARG_UID(uid);
505 	newcred = crget();
506 	uip = uifind(uid);
507 	PROC_LOCK(p);
508 	/*
509 	 * Copy credentials so other references do not see our changes.
510 	 */
511 	oldcred = crcopysafe(p, newcred);
512 
513 #ifdef MAC
514 	error = mac_cred_check_setuid(oldcred, uid);
515 	if (error)
516 		goto fail;
517 #endif
518 
519 	/*
520 	 * See if we have "permission" by POSIX 1003.1 rules.
521 	 *
522 	 * Note that setuid(geteuid()) is a special case of
523 	 * "appropriate privileges" in appendix B.4.2.2.  We need
524 	 * to use this clause to be compatible with traditional BSD
525 	 * semantics.  Basically, it means that "setuid(xx)" sets all
526 	 * three id's (assuming you have privs).
527 	 *
528 	 * Notes on the logic.  We do things in three steps.
529 	 * 1: We determine if the euid is going to change, and do EPERM
530 	 *    right away.  We unconditionally change the euid later if this
531 	 *    test is satisfied, simplifying that part of the logic.
532 	 * 2: We determine if the real and/or saved uids are going to
533 	 *    change.  Determined by compile options.
534 	 * 3: Change euid last. (after tests in #2 for "appropriate privs")
535 	 */
536 	if (uid != oldcred->cr_ruid &&		/* allow setuid(getuid()) */
537 #ifdef _POSIX_SAVED_IDS
538 	    uid != oldcred->cr_svuid &&		/* allow setuid(saved gid) */
539 #endif
540 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
541 	    uid != oldcred->cr_uid &&		/* allow setuid(geteuid()) */
542 #endif
543 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETUID, 0)) != 0)
544 		goto fail;
545 
546 #ifdef _POSIX_SAVED_IDS
547 	/*
548 	 * Do we have "appropriate privileges" (are we root or uid == euid)
549 	 * If so, we are changing the real uid and/or saved uid.
550 	 */
551 	if (
552 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use the clause from B.4.2.2 */
553 	    uid == oldcred->cr_uid ||
554 #endif
555 	    /* We are using privs. */
556 	    priv_check_cred(oldcred, PRIV_CRED_SETUID, 0) == 0)
557 #endif
558 	{
559 		/*
560 		 * Set the real uid and transfer proc count to new user.
561 		 */
562 		if (uid != oldcred->cr_ruid) {
563 			change_ruid(newcred, uip);
564 			setsugid(p);
565 		}
566 		/*
567 		 * Set saved uid
568 		 *
569 		 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
570 		 * the security of seteuid() depends on it.  B.4.2.2 says it
571 		 * is important that we should do this.
572 		 */
573 		if (uid != oldcred->cr_svuid) {
574 			change_svuid(newcred, uid);
575 			setsugid(p);
576 		}
577 	}
578 
579 	/*
580 	 * In all permitted cases, we are changing the euid.
581 	 */
582 	if (uid != oldcred->cr_uid) {
583 		change_euid(newcred, uip);
584 		setsugid(p);
585 	}
586 	p->p_ucred = newcred;
587 	PROC_UNLOCK(p);
588 #ifdef RACCT
589 	racct_proc_ucred_changed(p, oldcred, newcred);
590 #endif
591 	uifree(uip);
592 	crfree(oldcred);
593 	return (0);
594 
595 fail:
596 	PROC_UNLOCK(p);
597 	uifree(uip);
598 	crfree(newcred);
599 	return (error);
600 }
601 
602 #ifndef _SYS_SYSPROTO_H_
603 struct seteuid_args {
604 	uid_t	euid;
605 };
606 #endif
607 /* ARGSUSED */
608 int
609 sys_seteuid(struct thread *td, struct seteuid_args *uap)
610 {
611 	struct proc *p = td->td_proc;
612 	struct ucred *newcred, *oldcred;
613 	uid_t euid;
614 	struct uidinfo *euip;
615 	int error;
616 
617 	euid = uap->euid;
618 	AUDIT_ARG_EUID(euid);
619 	newcred = crget();
620 	euip = uifind(euid);
621 	PROC_LOCK(p);
622 	/*
623 	 * Copy credentials so other references do not see our changes.
624 	 */
625 	oldcred = crcopysafe(p, newcred);
626 
627 #ifdef MAC
628 	error = mac_cred_check_seteuid(oldcred, euid);
629 	if (error)
630 		goto fail;
631 #endif
632 
633 	if (euid != oldcred->cr_ruid &&		/* allow seteuid(getuid()) */
634 	    euid != oldcred->cr_svuid &&	/* allow seteuid(saved uid) */
635 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID, 0)) != 0)
636 		goto fail;
637 
638 	/*
639 	 * Everything's okay, do it.
640 	 */
641 	if (oldcred->cr_uid != euid) {
642 		change_euid(newcred, euip);
643 		setsugid(p);
644 	}
645 	p->p_ucred = newcred;
646 	PROC_UNLOCK(p);
647 	uifree(euip);
648 	crfree(oldcred);
649 	return (0);
650 
651 fail:
652 	PROC_UNLOCK(p);
653 	uifree(euip);
654 	crfree(newcred);
655 	return (error);
656 }
657 
658 #ifndef _SYS_SYSPROTO_H_
659 struct setgid_args {
660 	gid_t	gid;
661 };
662 #endif
663 /* ARGSUSED */
664 int
665 sys_setgid(struct thread *td, struct setgid_args *uap)
666 {
667 	struct proc *p = td->td_proc;
668 	struct ucred *newcred, *oldcred;
669 	gid_t gid;
670 	int error;
671 
672 	gid = uap->gid;
673 	AUDIT_ARG_GID(gid);
674 	newcred = crget();
675 	PROC_LOCK(p);
676 	oldcred = crcopysafe(p, newcred);
677 
678 #ifdef MAC
679 	error = mac_cred_check_setgid(oldcred, gid);
680 	if (error)
681 		goto fail;
682 #endif
683 
684 	/*
685 	 * See if we have "permission" by POSIX 1003.1 rules.
686 	 *
687 	 * Note that setgid(getegid()) is a special case of
688 	 * "appropriate privileges" in appendix B.4.2.2.  We need
689 	 * to use this clause to be compatible with traditional BSD
690 	 * semantics.  Basically, it means that "setgid(xx)" sets all
691 	 * three id's (assuming you have privs).
692 	 *
693 	 * For notes on the logic here, see setuid() above.
694 	 */
695 	if (gid != oldcred->cr_rgid &&		/* allow setgid(getgid()) */
696 #ifdef _POSIX_SAVED_IDS
697 	    gid != oldcred->cr_svgid &&		/* allow setgid(saved gid) */
698 #endif
699 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
700 	    gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
701 #endif
702 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETGID, 0)) != 0)
703 		goto fail;
704 
705 #ifdef _POSIX_SAVED_IDS
706 	/*
707 	 * Do we have "appropriate privileges" (are we root or gid == egid)
708 	 * If so, we are changing the real uid and saved gid.
709 	 */
710 	if (
711 #ifdef POSIX_APPENDIX_B_4_2_2	/* use the clause from B.4.2.2 */
712 	    gid == oldcred->cr_groups[0] ||
713 #endif
714 	    /* We are using privs. */
715 	    priv_check_cred(oldcred, PRIV_CRED_SETGID, 0) == 0)
716 #endif
717 	{
718 		/*
719 		 * Set real gid
720 		 */
721 		if (oldcred->cr_rgid != gid) {
722 			change_rgid(newcred, gid);
723 			setsugid(p);
724 		}
725 		/*
726 		 * Set saved gid
727 		 *
728 		 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
729 		 * the security of setegid() depends on it.  B.4.2.2 says it
730 		 * is important that we should do this.
731 		 */
732 		if (oldcred->cr_svgid != gid) {
733 			change_svgid(newcred, gid);
734 			setsugid(p);
735 		}
736 	}
737 	/*
738 	 * In all cases permitted cases, we are changing the egid.
739 	 * Copy credentials so other references do not see our changes.
740 	 */
741 	if (oldcred->cr_groups[0] != gid) {
742 		change_egid(newcred, gid);
743 		setsugid(p);
744 	}
745 	p->p_ucred = newcred;
746 	PROC_UNLOCK(p);
747 	crfree(oldcred);
748 	return (0);
749 
750 fail:
751 	PROC_UNLOCK(p);
752 	crfree(newcred);
753 	return (error);
754 }
755 
756 #ifndef _SYS_SYSPROTO_H_
757 struct setegid_args {
758 	gid_t	egid;
759 };
760 #endif
761 /* ARGSUSED */
762 int
763 sys_setegid(struct thread *td, struct setegid_args *uap)
764 {
765 	struct proc *p = td->td_proc;
766 	struct ucred *newcred, *oldcred;
767 	gid_t egid;
768 	int error;
769 
770 	egid = uap->egid;
771 	AUDIT_ARG_EGID(egid);
772 	newcred = crget();
773 	PROC_LOCK(p);
774 	oldcred = crcopysafe(p, newcred);
775 
776 #ifdef MAC
777 	error = mac_cred_check_setegid(oldcred, egid);
778 	if (error)
779 		goto fail;
780 #endif
781 
782 	if (egid != oldcred->cr_rgid &&		/* allow setegid(getgid()) */
783 	    egid != oldcred->cr_svgid &&	/* allow setegid(saved gid) */
784 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID, 0)) != 0)
785 		goto fail;
786 
787 	if (oldcred->cr_groups[0] != egid) {
788 		change_egid(newcred, egid);
789 		setsugid(p);
790 	}
791 	p->p_ucred = newcred;
792 	PROC_UNLOCK(p);
793 	crfree(oldcred);
794 	return (0);
795 
796 fail:
797 	PROC_UNLOCK(p);
798 	crfree(newcred);
799 	return (error);
800 }
801 
802 #ifndef _SYS_SYSPROTO_H_
803 struct setgroups_args {
804 	u_int	gidsetsize;
805 	gid_t	*gidset;
806 };
807 #endif
808 /* ARGSUSED */
809 int
810 sys_setgroups(struct thread *td, struct setgroups_args *uap)
811 {
812 	gid_t *groups = NULL;
813 	int error;
814 
815 	if (uap->gidsetsize > ngroups_max + 1)
816 		return (EINVAL);
817 	groups = malloc(uap->gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
818 	error = copyin(uap->gidset, groups, uap->gidsetsize * sizeof(gid_t));
819 	if (error)
820 		goto out;
821 	error = kern_setgroups(td, uap->gidsetsize, groups);
822 out:
823 	free(groups, M_TEMP);
824 	return (error);
825 }
826 
827 int
828 kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups)
829 {
830 	struct proc *p = td->td_proc;
831 	struct ucred *newcred, *oldcred;
832 	int error;
833 
834 	if (ngrp > ngroups_max + 1)
835 		return (EINVAL);
836 	AUDIT_ARG_GROUPSET(groups, ngrp);
837 	newcred = crget();
838 	crextend(newcred, ngrp);
839 	PROC_LOCK(p);
840 	oldcred = crcopysafe(p, newcred);
841 
842 #ifdef MAC
843 	error = mac_cred_check_setgroups(oldcred, ngrp, groups);
844 	if (error)
845 		goto fail;
846 #endif
847 
848 	error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS, 0);
849 	if (error)
850 		goto fail;
851 
852 	if (ngrp < 1) {
853 		/*
854 		 * setgroups(0, NULL) is a legitimate way of clearing the
855 		 * groups vector on non-BSD systems (which generally do not
856 		 * have the egid in the groups[0]).  We risk security holes
857 		 * when running non-BSD software if we do not do the same.
858 		 */
859 		newcred->cr_ngroups = 1;
860 	} else {
861 		crsetgroups_locked(newcred, ngrp, groups);
862 	}
863 	setsugid(p);
864 	p->p_ucred = newcred;
865 	PROC_UNLOCK(p);
866 	crfree(oldcred);
867 	return (0);
868 
869 fail:
870 	PROC_UNLOCK(p);
871 	crfree(newcred);
872 	return (error);
873 }
874 
875 #ifndef _SYS_SYSPROTO_H_
876 struct setreuid_args {
877 	uid_t	ruid;
878 	uid_t	euid;
879 };
880 #endif
881 /* ARGSUSED */
882 int
883 sys_setreuid(register struct thread *td, struct setreuid_args *uap)
884 {
885 	struct proc *p = td->td_proc;
886 	struct ucred *newcred, *oldcred;
887 	uid_t euid, ruid;
888 	struct uidinfo *euip, *ruip;
889 	int error;
890 
891 	euid = uap->euid;
892 	ruid = uap->ruid;
893 	AUDIT_ARG_EUID(euid);
894 	AUDIT_ARG_RUID(ruid);
895 	newcred = crget();
896 	euip = uifind(euid);
897 	ruip = uifind(ruid);
898 	PROC_LOCK(p);
899 	oldcred = crcopysafe(p, newcred);
900 
901 #ifdef MAC
902 	error = mac_cred_check_setreuid(oldcred, ruid, euid);
903 	if (error)
904 		goto fail;
905 #endif
906 
907 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
908 	      ruid != oldcred->cr_svuid) ||
909 	     (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
910 	      euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
911 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID, 0)) != 0)
912 		goto fail;
913 
914 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
915 		change_euid(newcred, euip);
916 		setsugid(p);
917 	}
918 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
919 		change_ruid(newcred, ruip);
920 		setsugid(p);
921 	}
922 	if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
923 	    newcred->cr_svuid != newcred->cr_uid) {
924 		change_svuid(newcred, newcred->cr_uid);
925 		setsugid(p);
926 	}
927 	p->p_ucred = newcred;
928 	PROC_UNLOCK(p);
929 #ifdef RACCT
930 	racct_proc_ucred_changed(p, oldcred, newcred);
931 #endif
932 	uifree(ruip);
933 	uifree(euip);
934 	crfree(oldcred);
935 	return (0);
936 
937 fail:
938 	PROC_UNLOCK(p);
939 	uifree(ruip);
940 	uifree(euip);
941 	crfree(newcred);
942 	return (error);
943 }
944 
945 #ifndef _SYS_SYSPROTO_H_
946 struct setregid_args {
947 	gid_t	rgid;
948 	gid_t	egid;
949 };
950 #endif
951 /* ARGSUSED */
952 int
953 sys_setregid(register struct thread *td, struct setregid_args *uap)
954 {
955 	struct proc *p = td->td_proc;
956 	struct ucred *newcred, *oldcred;
957 	gid_t egid, rgid;
958 	int error;
959 
960 	egid = uap->egid;
961 	rgid = uap->rgid;
962 	AUDIT_ARG_EGID(egid);
963 	AUDIT_ARG_RGID(rgid);
964 	newcred = crget();
965 	PROC_LOCK(p);
966 	oldcred = crcopysafe(p, newcred);
967 
968 #ifdef MAC
969 	error = mac_cred_check_setregid(oldcred, rgid, egid);
970 	if (error)
971 		goto fail;
972 #endif
973 
974 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
975 	    rgid != oldcred->cr_svgid) ||
976 	     (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
977 	     egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
978 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID, 0)) != 0)
979 		goto fail;
980 
981 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
982 		change_egid(newcred, egid);
983 		setsugid(p);
984 	}
985 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
986 		change_rgid(newcred, rgid);
987 		setsugid(p);
988 	}
989 	if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
990 	    newcred->cr_svgid != newcred->cr_groups[0]) {
991 		change_svgid(newcred, newcred->cr_groups[0]);
992 		setsugid(p);
993 	}
994 	p->p_ucred = newcred;
995 	PROC_UNLOCK(p);
996 	crfree(oldcred);
997 	return (0);
998 
999 fail:
1000 	PROC_UNLOCK(p);
1001 	crfree(newcred);
1002 	return (error);
1003 }
1004 
1005 /*
1006  * setresuid(ruid, euid, suid) is like setreuid except control over the saved
1007  * uid is explicit.
1008  */
1009 #ifndef _SYS_SYSPROTO_H_
1010 struct setresuid_args {
1011 	uid_t	ruid;
1012 	uid_t	euid;
1013 	uid_t	suid;
1014 };
1015 #endif
1016 /* ARGSUSED */
1017 int
1018 sys_setresuid(register struct thread *td, struct setresuid_args *uap)
1019 {
1020 	struct proc *p = td->td_proc;
1021 	struct ucred *newcred, *oldcred;
1022 	uid_t euid, ruid, suid;
1023 	struct uidinfo *euip, *ruip;
1024 	int error;
1025 
1026 	euid = uap->euid;
1027 	ruid = uap->ruid;
1028 	suid = uap->suid;
1029 	AUDIT_ARG_EUID(euid);
1030 	AUDIT_ARG_RUID(ruid);
1031 	AUDIT_ARG_SUID(suid);
1032 	newcred = crget();
1033 	euip = uifind(euid);
1034 	ruip = uifind(ruid);
1035 	PROC_LOCK(p);
1036 	oldcred = crcopysafe(p, newcred);
1037 
1038 #ifdef MAC
1039 	error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
1040 	if (error)
1041 		goto fail;
1042 #endif
1043 
1044 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1045 	     ruid != oldcred->cr_svuid &&
1046 	      ruid != oldcred->cr_uid) ||
1047 	     (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
1048 	    euid != oldcred->cr_svuid &&
1049 	      euid != oldcred->cr_uid) ||
1050 	     (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
1051 	    suid != oldcred->cr_svuid &&
1052 	      suid != oldcred->cr_uid)) &&
1053 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID, 0)) != 0)
1054 		goto fail;
1055 
1056 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1057 		change_euid(newcred, euip);
1058 		setsugid(p);
1059 	}
1060 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1061 		change_ruid(newcred, ruip);
1062 		setsugid(p);
1063 	}
1064 	if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
1065 		change_svuid(newcred, suid);
1066 		setsugid(p);
1067 	}
1068 	p->p_ucred = newcred;
1069 	PROC_UNLOCK(p);
1070 #ifdef RACCT
1071 	racct_proc_ucred_changed(p, oldcred, newcred);
1072 #endif
1073 	uifree(ruip);
1074 	uifree(euip);
1075 	crfree(oldcred);
1076 	return (0);
1077 
1078 fail:
1079 	PROC_UNLOCK(p);
1080 	uifree(ruip);
1081 	uifree(euip);
1082 	crfree(newcred);
1083 	return (error);
1084 
1085 }
1086 
1087 /*
1088  * setresgid(rgid, egid, sgid) is like setregid except control over the saved
1089  * gid is explicit.
1090  */
1091 #ifndef _SYS_SYSPROTO_H_
1092 struct setresgid_args {
1093 	gid_t	rgid;
1094 	gid_t	egid;
1095 	gid_t	sgid;
1096 };
1097 #endif
1098 /* ARGSUSED */
1099 int
1100 sys_setresgid(register struct thread *td, struct setresgid_args *uap)
1101 {
1102 	struct proc *p = td->td_proc;
1103 	struct ucred *newcred, *oldcred;
1104 	gid_t egid, rgid, sgid;
1105 	int error;
1106 
1107 	egid = uap->egid;
1108 	rgid = uap->rgid;
1109 	sgid = uap->sgid;
1110 	AUDIT_ARG_EGID(egid);
1111 	AUDIT_ARG_RGID(rgid);
1112 	AUDIT_ARG_SGID(sgid);
1113 	newcred = crget();
1114 	PROC_LOCK(p);
1115 	oldcred = crcopysafe(p, newcred);
1116 
1117 #ifdef MAC
1118 	error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
1119 	if (error)
1120 		goto fail;
1121 #endif
1122 
1123 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1124 	      rgid != oldcred->cr_svgid &&
1125 	      rgid != oldcred->cr_groups[0]) ||
1126 	     (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
1127 	      egid != oldcred->cr_svgid &&
1128 	      egid != oldcred->cr_groups[0]) ||
1129 	     (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
1130 	      sgid != oldcred->cr_svgid &&
1131 	      sgid != oldcred->cr_groups[0])) &&
1132 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID, 0)) != 0)
1133 		goto fail;
1134 
1135 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
1136 		change_egid(newcred, egid);
1137 		setsugid(p);
1138 	}
1139 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1140 		change_rgid(newcred, rgid);
1141 		setsugid(p);
1142 	}
1143 	if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
1144 		change_svgid(newcred, sgid);
1145 		setsugid(p);
1146 	}
1147 	p->p_ucred = newcred;
1148 	PROC_UNLOCK(p);
1149 	crfree(oldcred);
1150 	return (0);
1151 
1152 fail:
1153 	PROC_UNLOCK(p);
1154 	crfree(newcred);
1155 	return (error);
1156 }
1157 
1158 #ifndef _SYS_SYSPROTO_H_
1159 struct getresuid_args {
1160 	uid_t	*ruid;
1161 	uid_t	*euid;
1162 	uid_t	*suid;
1163 };
1164 #endif
1165 /* ARGSUSED */
1166 int
1167 sys_getresuid(register struct thread *td, struct getresuid_args *uap)
1168 {
1169 	struct ucred *cred;
1170 	int error1 = 0, error2 = 0, error3 = 0;
1171 
1172 	cred = td->td_ucred;
1173 	if (uap->ruid)
1174 		error1 = copyout(&cred->cr_ruid,
1175 		    uap->ruid, sizeof(cred->cr_ruid));
1176 	if (uap->euid)
1177 		error2 = copyout(&cred->cr_uid,
1178 		    uap->euid, sizeof(cred->cr_uid));
1179 	if (uap->suid)
1180 		error3 = copyout(&cred->cr_svuid,
1181 		    uap->suid, sizeof(cred->cr_svuid));
1182 	return (error1 ? error1 : error2 ? error2 : error3);
1183 }
1184 
1185 #ifndef _SYS_SYSPROTO_H_
1186 struct getresgid_args {
1187 	gid_t	*rgid;
1188 	gid_t	*egid;
1189 	gid_t	*sgid;
1190 };
1191 #endif
1192 /* ARGSUSED */
1193 int
1194 sys_getresgid(register struct thread *td, struct getresgid_args *uap)
1195 {
1196 	struct ucred *cred;
1197 	int error1 = 0, error2 = 0, error3 = 0;
1198 
1199 	cred = td->td_ucred;
1200 	if (uap->rgid)
1201 		error1 = copyout(&cred->cr_rgid,
1202 		    uap->rgid, sizeof(cred->cr_rgid));
1203 	if (uap->egid)
1204 		error2 = copyout(&cred->cr_groups[0],
1205 		    uap->egid, sizeof(cred->cr_groups[0]));
1206 	if (uap->sgid)
1207 		error3 = copyout(&cred->cr_svgid,
1208 		    uap->sgid, sizeof(cred->cr_svgid));
1209 	return (error1 ? error1 : error2 ? error2 : error3);
1210 }
1211 
1212 #ifndef _SYS_SYSPROTO_H_
1213 struct issetugid_args {
1214 	int dummy;
1215 };
1216 #endif
1217 /* ARGSUSED */
1218 int
1219 sys_issetugid(register struct thread *td, struct issetugid_args *uap)
1220 {
1221 	struct proc *p = td->td_proc;
1222 
1223 	/*
1224 	 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
1225 	 * we use P_SUGID because we consider changing the owners as
1226 	 * "tainting" as well.
1227 	 * This is significant for procs that start as root and "become"
1228 	 * a user without an exec - programs cannot know *everything*
1229 	 * that libc *might* have put in their data segment.
1230 	 */
1231 	PROC_LOCK(p);
1232 	td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
1233 	PROC_UNLOCK(p);
1234 	return (0);
1235 }
1236 
1237 int
1238 sys___setugid(struct thread *td, struct __setugid_args *uap)
1239 {
1240 #ifdef REGRESSION
1241 	struct proc *p;
1242 
1243 	p = td->td_proc;
1244 	switch (uap->flag) {
1245 	case 0:
1246 		PROC_LOCK(p);
1247 		p->p_flag &= ~P_SUGID;
1248 		PROC_UNLOCK(p);
1249 		return (0);
1250 	case 1:
1251 		PROC_LOCK(p);
1252 		p->p_flag |= P_SUGID;
1253 		PROC_UNLOCK(p);
1254 		return (0);
1255 	default:
1256 		return (EINVAL);
1257 	}
1258 #else /* !REGRESSION */
1259 
1260 	return (ENOSYS);
1261 #endif /* REGRESSION */
1262 }
1263 
1264 /*
1265  * Check if gid is a member of the group set.
1266  */
1267 int
1268 groupmember(gid_t gid, struct ucred *cred)
1269 {
1270 	int l;
1271 	int h;
1272 	int m;
1273 
1274 	if (cred->cr_groups[0] == gid)
1275 		return(1);
1276 
1277 	/*
1278 	 * If gid was not our primary group, perform a binary search
1279 	 * of the supplemental groups.  This is possible because we
1280 	 * sort the groups in crsetgroups().
1281 	 */
1282 	l = 1;
1283 	h = cred->cr_ngroups;
1284 	while (l < h) {
1285 		m = l + ((h - l) / 2);
1286 		if (cred->cr_groups[m] < gid)
1287 			l = m + 1;
1288 		else
1289 			h = m;
1290 	}
1291 	if ((l < cred->cr_ngroups) && (cred->cr_groups[l] == gid))
1292 		return (1);
1293 
1294 	return (0);
1295 }
1296 
1297 /*
1298  * Test the active securelevel against a given level.  securelevel_gt()
1299  * implements (securelevel > level).  securelevel_ge() implements
1300  * (securelevel >= level).  Note that the logic is inverted -- these
1301  * functions return EPERM on "success" and 0 on "failure".
1302  *
1303  * Due to care taken when setting the securelevel, we know that no jail will
1304  * be less secure that its parent (or the physical system), so it is sufficient
1305  * to test the current jail only.
1306  *
1307  * XXXRW: Possibly since this has to do with privilege, it should move to
1308  * kern_priv.c.
1309  */
1310 int
1311 securelevel_gt(struct ucred *cr, int level)
1312 {
1313 
1314 	return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
1315 }
1316 
1317 int
1318 securelevel_ge(struct ucred *cr, int level)
1319 {
1320 
1321 	return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
1322 }
1323 
1324 /*
1325  * 'see_other_uids' determines whether or not visibility of processes
1326  * and sockets with credentials holding different real uids is possible
1327  * using a variety of system MIBs.
1328  * XXX: data declarations should be together near the beginning of the file.
1329  */
1330 static int	see_other_uids = 1;
1331 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
1332     &see_other_uids, 0,
1333     "Unprivileged processes may see subjects/objects with different real uid");
1334 
1335 /*-
1336  * Determine if u1 "can see" the subject specified by u2, according to the
1337  * 'see_other_uids' policy.
1338  * Returns: 0 for permitted, ESRCH otherwise
1339  * Locks: none
1340  * References: *u1 and *u2 must not change during the call
1341  *             u1 may equal u2, in which case only one reference is required
1342  */
1343 static int
1344 cr_seeotheruids(struct ucred *u1, struct ucred *u2)
1345 {
1346 
1347 	if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
1348 		if (priv_check_cred(u1, PRIV_SEEOTHERUIDS, 0) != 0)
1349 			return (ESRCH);
1350 	}
1351 	return (0);
1352 }
1353 
1354 /*
1355  * 'see_other_gids' determines whether or not visibility of processes
1356  * and sockets with credentials holding different real gids is possible
1357  * using a variety of system MIBs.
1358  * XXX: data declarations should be together near the beginning of the file.
1359  */
1360 static int	see_other_gids = 1;
1361 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
1362     &see_other_gids, 0,
1363     "Unprivileged processes may see subjects/objects with different real gid");
1364 
1365 /*
1366  * Determine if u1 can "see" the subject specified by u2, according to the
1367  * 'see_other_gids' policy.
1368  * Returns: 0 for permitted, ESRCH otherwise
1369  * Locks: none
1370  * References: *u1 and *u2 must not change during the call
1371  *             u1 may equal u2, in which case only one reference is required
1372  */
1373 static int
1374 cr_seeothergids(struct ucred *u1, struct ucred *u2)
1375 {
1376 	int i, match;
1377 
1378 	if (!see_other_gids) {
1379 		match = 0;
1380 		for (i = 0; i < u1->cr_ngroups; i++) {
1381 			if (groupmember(u1->cr_groups[i], u2))
1382 				match = 1;
1383 			if (match)
1384 				break;
1385 		}
1386 		if (!match) {
1387 			if (priv_check_cred(u1, PRIV_SEEOTHERGIDS, 0) != 0)
1388 				return (ESRCH);
1389 		}
1390 	}
1391 	return (0);
1392 }
1393 
1394 /*-
1395  * Determine if u1 "can see" the subject specified by u2.
1396  * Returns: 0 for permitted, an errno value otherwise
1397  * Locks: none
1398  * References: *u1 and *u2 must not change during the call
1399  *             u1 may equal u2, in which case only one reference is required
1400  */
1401 int
1402 cr_cansee(struct ucred *u1, struct ucred *u2)
1403 {
1404 	int error;
1405 
1406 	if ((error = prison_check(u1, u2)))
1407 		return (error);
1408 #ifdef MAC
1409 	if ((error = mac_cred_check_visible(u1, u2)))
1410 		return (error);
1411 #endif
1412 	if ((error = cr_seeotheruids(u1, u2)))
1413 		return (error);
1414 	if ((error = cr_seeothergids(u1, u2)))
1415 		return (error);
1416 	return (0);
1417 }
1418 
1419 /*-
1420  * Determine if td "can see" the subject specified by p.
1421  * Returns: 0 for permitted, an errno value otherwise
1422  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
1423  *        should be curthread.
1424  * References: td and p must be valid for the lifetime of the call
1425  */
1426 int
1427 p_cansee(struct thread *td, struct proc *p)
1428 {
1429 
1430 	/* Wrap cr_cansee() for all functionality. */
1431 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1432 	PROC_LOCK_ASSERT(p, MA_OWNED);
1433 	return (cr_cansee(td->td_ucred, p->p_ucred));
1434 }
1435 
1436 /*
1437  * 'conservative_signals' prevents the delivery of a broad class of
1438  * signals by unprivileged processes to processes that have changed their
1439  * credentials since the last invocation of execve().  This can prevent
1440  * the leakage of cached information or retained privileges as a result
1441  * of a common class of signal-related vulnerabilities.  However, this
1442  * may interfere with some applications that expect to be able to
1443  * deliver these signals to peer processes after having given up
1444  * privilege.
1445  */
1446 static int	conservative_signals = 1;
1447 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
1448     &conservative_signals, 0, "Unprivileged processes prevented from "
1449     "sending certain signals to processes whose credentials have changed");
1450 /*-
1451  * Determine whether cred may deliver the specified signal to proc.
1452  * Returns: 0 for permitted, an errno value otherwise.
1453  * Locks: A lock must be held for proc.
1454  * References: cred and proc must be valid for the lifetime of the call.
1455  */
1456 int
1457 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
1458 {
1459 	int error;
1460 
1461 	PROC_LOCK_ASSERT(proc, MA_OWNED);
1462 	/*
1463 	 * Jail semantics limit the scope of signalling to proc in the
1464 	 * same jail as cred, if cred is in jail.
1465 	 */
1466 	error = prison_check(cred, proc->p_ucred);
1467 	if (error)
1468 		return (error);
1469 #ifdef MAC
1470 	if ((error = mac_proc_check_signal(cred, proc, signum)))
1471 		return (error);
1472 #endif
1473 	if ((error = cr_seeotheruids(cred, proc->p_ucred)))
1474 		return (error);
1475 	if ((error = cr_seeothergids(cred, proc->p_ucred)))
1476 		return (error);
1477 
1478 	/*
1479 	 * UNIX signal semantics depend on the status of the P_SUGID
1480 	 * bit on the target process.  If the bit is set, then additional
1481 	 * restrictions are placed on the set of available signals.
1482 	 */
1483 	if (conservative_signals && (proc->p_flag & P_SUGID)) {
1484 		switch (signum) {
1485 		case 0:
1486 		case SIGKILL:
1487 		case SIGINT:
1488 		case SIGTERM:
1489 		case SIGALRM:
1490 		case SIGSTOP:
1491 		case SIGTTIN:
1492 		case SIGTTOU:
1493 		case SIGTSTP:
1494 		case SIGHUP:
1495 		case SIGUSR1:
1496 		case SIGUSR2:
1497 			/*
1498 			 * Generally, permit job and terminal control
1499 			 * signals.
1500 			 */
1501 			break;
1502 		default:
1503 			/* Not permitted without privilege. */
1504 			error = priv_check_cred(cred, PRIV_SIGNAL_SUGID, 0);
1505 			if (error)
1506 				return (error);
1507 		}
1508 	}
1509 
1510 	/*
1511 	 * Generally, the target credential's ruid or svuid must match the
1512 	 * subject credential's ruid or euid.
1513 	 */
1514 	if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
1515 	    cred->cr_ruid != proc->p_ucred->cr_svuid &&
1516 	    cred->cr_uid != proc->p_ucred->cr_ruid &&
1517 	    cred->cr_uid != proc->p_ucred->cr_svuid) {
1518 		error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED, 0);
1519 		if (error)
1520 			return (error);
1521 	}
1522 
1523 	return (0);
1524 }
1525 
1526 /*-
1527  * Determine whether td may deliver the specified signal to p.
1528  * Returns: 0 for permitted, an errno value otherwise
1529  * Locks: Sufficient locks to protect various components of td and p
1530  *        must be held.  td must be curthread, and a lock must be
1531  *        held for p.
1532  * References: td and p must be valid for the lifetime of the call
1533  */
1534 int
1535 p_cansignal(struct thread *td, struct proc *p, int signum)
1536 {
1537 
1538 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1539 	PROC_LOCK_ASSERT(p, MA_OWNED);
1540 	if (td->td_proc == p)
1541 		return (0);
1542 
1543 	/*
1544 	 * UNIX signalling semantics require that processes in the same
1545 	 * session always be able to deliver SIGCONT to one another,
1546 	 * overriding the remaining protections.
1547 	 */
1548 	/* XXX: This will require an additional lock of some sort. */
1549 	if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
1550 		return (0);
1551 	/*
1552 	 * Some compat layers use SIGTHR and higher signals for
1553 	 * communication between different kernel threads of the same
1554 	 * process, so that they expect that it's always possible to
1555 	 * deliver them, even for suid applications where cr_cansignal() can
1556 	 * deny such ability for security consideration.  It should be
1557 	 * pretty safe to do since the only way to create two processes
1558 	 * with the same p_leader is via rfork(2).
1559 	 */
1560 	if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
1561 	    signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
1562 		return (0);
1563 
1564 	return (cr_cansignal(td->td_ucred, p, signum));
1565 }
1566 
1567 /*-
1568  * Determine whether td may reschedule p.
1569  * Returns: 0 for permitted, an errno value otherwise
1570  * Locks: Sufficient locks to protect various components of td and p
1571  *        must be held.  td must be curthread, and a lock must
1572  *        be held for p.
1573  * References: td and p must be valid for the lifetime of the call
1574  */
1575 int
1576 p_cansched(struct thread *td, struct proc *p)
1577 {
1578 	int error;
1579 
1580 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1581 	PROC_LOCK_ASSERT(p, MA_OWNED);
1582 	if (td->td_proc == p)
1583 		return (0);
1584 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1585 		return (error);
1586 #ifdef MAC
1587 	if ((error = mac_proc_check_sched(td->td_ucred, p)))
1588 		return (error);
1589 #endif
1590 	if ((error = cr_seeotheruids(td->td_ucred, p->p_ucred)))
1591 		return (error);
1592 	if ((error = cr_seeothergids(td->td_ucred, p->p_ucred)))
1593 		return (error);
1594 	if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
1595 	    td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
1596 		error = priv_check(td, PRIV_SCHED_DIFFCRED);
1597 		if (error)
1598 			return (error);
1599 	}
1600 	return (0);
1601 }
1602 
1603 /*
1604  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
1605  * unprivileged inter-process debugging services, including some procfs
1606  * functionality, ptrace(), and ktrace().  In the past, inter-process
1607  * debugging has been involved in a variety of security problems, and sites
1608  * not requiring the service might choose to disable it when hardening
1609  * systems.
1610  *
1611  * XXX: Should modifying and reading this variable require locking?
1612  * XXX: data declarations should be together near the beginning of the file.
1613  */
1614 static int	unprivileged_proc_debug = 1;
1615 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_proc_debug, CTLFLAG_RW,
1616     &unprivileged_proc_debug, 0,
1617     "Unprivileged processes may use process debugging facilities");
1618 
1619 /*-
1620  * Determine whether td may debug p.
1621  * Returns: 0 for permitted, an errno value otherwise
1622  * Locks: Sufficient locks to protect various components of td and p
1623  *        must be held.  td must be curthread, and a lock must
1624  *        be held for p.
1625  * References: td and p must be valid for the lifetime of the call
1626  */
1627 int
1628 p_candebug(struct thread *td, struct proc *p)
1629 {
1630 	int credentialchanged, error, grpsubset, i, uidsubset;
1631 
1632 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1633 	PROC_LOCK_ASSERT(p, MA_OWNED);
1634 	if (!unprivileged_proc_debug) {
1635 		error = priv_check(td, PRIV_DEBUG_UNPRIV);
1636 		if (error)
1637 			return (error);
1638 	}
1639 	if (td->td_proc == p)
1640 		return (0);
1641 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1642 		return (error);
1643 #ifdef MAC
1644 	if ((error = mac_proc_check_debug(td->td_ucred, p)))
1645 		return (error);
1646 #endif
1647 	if ((error = cr_seeotheruids(td->td_ucred, p->p_ucred)))
1648 		return (error);
1649 	if ((error = cr_seeothergids(td->td_ucred, p->p_ucred)))
1650 		return (error);
1651 
1652 	/*
1653 	 * Is p's group set a subset of td's effective group set?  This
1654 	 * includes p's egid, group access list, rgid, and svgid.
1655 	 */
1656 	grpsubset = 1;
1657 	for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
1658 		if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
1659 			grpsubset = 0;
1660 			break;
1661 		}
1662 	}
1663 	grpsubset = grpsubset &&
1664 	    groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
1665 	    groupmember(p->p_ucred->cr_svgid, td->td_ucred);
1666 
1667 	/*
1668 	 * Are the uids present in p's credential equal to td's
1669 	 * effective uid?  This includes p's euid, svuid, and ruid.
1670 	 */
1671 	uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
1672 	    td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
1673 	    td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
1674 
1675 	/*
1676 	 * Has the credential of the process changed since the last exec()?
1677 	 */
1678 	credentialchanged = (p->p_flag & P_SUGID);
1679 
1680 	/*
1681 	 * If p's gids aren't a subset, or the uids aren't a subset,
1682 	 * or the credential has changed, require appropriate privilege
1683 	 * for td to debug p.
1684 	 */
1685 	if (!grpsubset || !uidsubset) {
1686 		error = priv_check(td, PRIV_DEBUG_DIFFCRED);
1687 		if (error)
1688 			return (error);
1689 	}
1690 
1691 	if (credentialchanged) {
1692 		error = priv_check(td, PRIV_DEBUG_SUGID);
1693 		if (error)
1694 			return (error);
1695 	}
1696 
1697 	/* Can't trace init when securelevel > 0. */
1698 	if (p == initproc) {
1699 		error = securelevel_gt(td->td_ucred, 0);
1700 		if (error)
1701 			return (error);
1702 	}
1703 
1704 	/*
1705 	 * Can't trace a process that's currently exec'ing.
1706 	 *
1707 	 * XXX: Note, this is not a security policy decision, it's a
1708 	 * basic correctness/functionality decision.  Therefore, this check
1709 	 * should be moved to the caller's of p_candebug().
1710 	 */
1711 	if ((p->p_flag & P_INEXEC) != 0)
1712 		return (EBUSY);
1713 
1714 	return (0);
1715 }
1716 
1717 /*-
1718  * Determine whether the subject represented by cred can "see" a socket.
1719  * Returns: 0 for permitted, ENOENT otherwise.
1720  */
1721 int
1722 cr_canseesocket(struct ucred *cred, struct socket *so)
1723 {
1724 	int error;
1725 
1726 	error = prison_check(cred, so->so_cred);
1727 	if (error)
1728 		return (ENOENT);
1729 #ifdef MAC
1730 	error = mac_socket_check_visible(cred, so);
1731 	if (error)
1732 		return (error);
1733 #endif
1734 	if (cr_seeotheruids(cred, so->so_cred))
1735 		return (ENOENT);
1736 	if (cr_seeothergids(cred, so->so_cred))
1737 		return (ENOENT);
1738 
1739 	return (0);
1740 }
1741 
1742 #if defined(INET) || defined(INET6)
1743 /*-
1744  * Determine whether the subject represented by cred can "see" a socket.
1745  * Returns: 0 for permitted, ENOENT otherwise.
1746  */
1747 int
1748 cr_canseeinpcb(struct ucred *cred, struct inpcb *inp)
1749 {
1750 	int error;
1751 
1752 	error = prison_check(cred, inp->inp_cred);
1753 	if (error)
1754 		return (ENOENT);
1755 #ifdef MAC
1756 	INP_LOCK_ASSERT(inp);
1757 	error = mac_inpcb_check_visible(cred, inp);
1758 	if (error)
1759 		return (error);
1760 #endif
1761 	if (cr_seeotheruids(cred, inp->inp_cred))
1762 		return (ENOENT);
1763 	if (cr_seeothergids(cred, inp->inp_cred))
1764 		return (ENOENT);
1765 
1766 	return (0);
1767 }
1768 #endif
1769 
1770 /*-
1771  * Determine whether td can wait for the exit of p.
1772  * Returns: 0 for permitted, an errno value otherwise
1773  * Locks: Sufficient locks to protect various components of td and p
1774  *        must be held.  td must be curthread, and a lock must
1775  *        be held for p.
1776  * References: td and p must be valid for the lifetime of the call
1777 
1778  */
1779 int
1780 p_canwait(struct thread *td, struct proc *p)
1781 {
1782 	int error;
1783 
1784 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1785 	PROC_LOCK_ASSERT(p, MA_OWNED);
1786 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1787 		return (error);
1788 #ifdef MAC
1789 	if ((error = mac_proc_check_wait(td->td_ucred, p)))
1790 		return (error);
1791 #endif
1792 #if 0
1793 	/* XXXMAC: This could have odd effects on some shells. */
1794 	if ((error = cr_seeotheruids(td->td_ucred, p->p_ucred)))
1795 		return (error);
1796 #endif
1797 
1798 	return (0);
1799 }
1800 
1801 /*
1802  * Allocate a zeroed cred structure.
1803  */
1804 struct ucred *
1805 crget(void)
1806 {
1807 	register struct ucred *cr;
1808 
1809 	cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
1810 	refcount_init(&cr->cr_ref, 1);
1811 #ifdef AUDIT
1812 	audit_cred_init(cr);
1813 #endif
1814 #ifdef MAC
1815 	mac_cred_init(cr);
1816 #endif
1817 	crextend(cr, XU_NGROUPS);
1818 	return (cr);
1819 }
1820 
1821 /*
1822  * Claim another reference to a ucred structure.
1823  */
1824 struct ucred *
1825 crhold(struct ucred *cr)
1826 {
1827 
1828 	refcount_acquire(&cr->cr_ref);
1829 	return (cr);
1830 }
1831 
1832 /*
1833  * Free a cred structure.  Throws away space when ref count gets to 0.
1834  */
1835 void
1836 crfree(struct ucred *cr)
1837 {
1838 
1839 	KASSERT(cr->cr_ref > 0, ("bad ucred refcount: %d", cr->cr_ref));
1840 	KASSERT(cr->cr_ref != 0xdeadc0de, ("dangling reference to ucred"));
1841 	if (refcount_release(&cr->cr_ref)) {
1842 		/*
1843 		 * Some callers of crget(), such as nfs_statfs(),
1844 		 * allocate a temporary credential, but don't
1845 		 * allocate a uidinfo structure.
1846 		 */
1847 		if (cr->cr_uidinfo != NULL)
1848 			uifree(cr->cr_uidinfo);
1849 		if (cr->cr_ruidinfo != NULL)
1850 			uifree(cr->cr_ruidinfo);
1851 		/*
1852 		 * Free a prison, if any.
1853 		 */
1854 		if (cr->cr_prison != NULL)
1855 			prison_free(cr->cr_prison);
1856 		if (cr->cr_loginclass != NULL)
1857 			loginclass_free(cr->cr_loginclass);
1858 #ifdef AUDIT
1859 		audit_cred_destroy(cr);
1860 #endif
1861 #ifdef MAC
1862 		mac_cred_destroy(cr);
1863 #endif
1864 		free(cr->cr_groups, M_CRED);
1865 		free(cr, M_CRED);
1866 	}
1867 }
1868 
1869 /*
1870  * Check to see if this ucred is shared.
1871  */
1872 int
1873 crshared(struct ucred *cr)
1874 {
1875 
1876 	return (cr->cr_ref > 1);
1877 }
1878 
1879 /*
1880  * Copy a ucred's contents from a template.  Does not block.
1881  */
1882 void
1883 crcopy(struct ucred *dest, struct ucred *src)
1884 {
1885 
1886 	KASSERT(crshared(dest) == 0, ("crcopy of shared ucred"));
1887 	bcopy(&src->cr_startcopy, &dest->cr_startcopy,
1888 	    (unsigned)((caddr_t)&src->cr_endcopy -
1889 		(caddr_t)&src->cr_startcopy));
1890 	crsetgroups(dest, src->cr_ngroups, src->cr_groups);
1891 	uihold(dest->cr_uidinfo);
1892 	uihold(dest->cr_ruidinfo);
1893 	prison_hold(dest->cr_prison);
1894 	loginclass_hold(dest->cr_loginclass);
1895 #ifdef AUDIT
1896 	audit_cred_copy(src, dest);
1897 #endif
1898 #ifdef MAC
1899 	mac_cred_copy(src, dest);
1900 #endif
1901 }
1902 
1903 /*
1904  * Dup cred struct to a new held one.
1905  */
1906 struct ucred *
1907 crdup(struct ucred *cr)
1908 {
1909 	struct ucred *newcr;
1910 
1911 	newcr = crget();
1912 	crcopy(newcr, cr);
1913 	return (newcr);
1914 }
1915 
1916 /*
1917  * Fill in a struct xucred based on a struct ucred.
1918  */
1919 void
1920 cru2x(struct ucred *cr, struct xucred *xcr)
1921 {
1922 	int ngroups;
1923 
1924 	bzero(xcr, sizeof(*xcr));
1925 	xcr->cr_version = XUCRED_VERSION;
1926 	xcr->cr_uid = cr->cr_uid;
1927 
1928 	ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
1929 	xcr->cr_ngroups = ngroups;
1930 	bcopy(cr->cr_groups, xcr->cr_groups,
1931 	    ngroups * sizeof(*cr->cr_groups));
1932 }
1933 
1934 /*
1935  * small routine to swap a thread's current ucred for the correct one taken
1936  * from the process.
1937  */
1938 void
1939 cred_update_thread(struct thread *td)
1940 {
1941 	struct proc *p;
1942 	struct ucred *cred;
1943 
1944 	p = td->td_proc;
1945 	cred = td->td_ucred;
1946 	PROC_LOCK(p);
1947 	td->td_ucred = crhold(p->p_ucred);
1948 	PROC_UNLOCK(p);
1949 	if (cred != NULL)
1950 		crfree(cred);
1951 }
1952 
1953 struct ucred *
1954 crcopysafe(struct proc *p, struct ucred *cr)
1955 {
1956 	struct ucred *oldcred;
1957 	int groups;
1958 
1959 	PROC_LOCK_ASSERT(p, MA_OWNED);
1960 
1961 	oldcred = p->p_ucred;
1962 	while (cr->cr_agroups < oldcred->cr_agroups) {
1963 		groups = oldcred->cr_agroups;
1964 		PROC_UNLOCK(p);
1965 		crextend(cr, groups);
1966 		PROC_LOCK(p);
1967 		oldcred = p->p_ucred;
1968 	}
1969 	crcopy(cr, oldcred);
1970 
1971 	return (oldcred);
1972 }
1973 
1974 /*
1975  * Extend the passed in credential to hold n items.
1976  */
1977 static void
1978 crextend(struct ucred *cr, int n)
1979 {
1980 	int cnt;
1981 
1982 	/* Truncate? */
1983 	if (n <= cr->cr_agroups)
1984 		return;
1985 
1986 	/*
1987 	 * We extend by 2 each time since we're using a power of two
1988 	 * allocator until we need enough groups to fill a page.
1989 	 * Once we're allocating multiple pages, only allocate as many
1990 	 * as we actually need.  The case of processes needing a
1991 	 * non-power of two number of pages seems more likely than
1992 	 * a real world process that adds thousands of groups one at a
1993 	 * time.
1994 	 */
1995 	if ( n < PAGE_SIZE / sizeof(gid_t) ) {
1996 		if (cr->cr_agroups == 0)
1997 			cnt = MINALLOCSIZE / sizeof(gid_t);
1998 		else
1999 			cnt = cr->cr_agroups * 2;
2000 
2001 		while (cnt < n)
2002 			cnt *= 2;
2003 	} else
2004 		cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t));
2005 
2006 	/* Free the old array. */
2007 	if (cr->cr_groups)
2008 		free(cr->cr_groups, M_CRED);
2009 
2010 	cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO);
2011 	cr->cr_agroups = cnt;
2012 }
2013 
2014 /*
2015  * Copy groups in to a credential, preserving any necessary invariants.
2016  * Currently this includes the sorting of all supplemental gids.
2017  * crextend() must have been called before hand to ensure sufficient
2018  * space is available.
2019  */
2020 static void
2021 crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups)
2022 {
2023 	int i;
2024 	int j;
2025 	gid_t g;
2026 
2027 	KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small"));
2028 
2029 	bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
2030 	cr->cr_ngroups = ngrp;
2031 
2032 	/*
2033 	 * Sort all groups except cr_groups[0] to allow groupmember to
2034 	 * perform a binary search.
2035 	 *
2036 	 * XXX: If large numbers of groups become common this should
2037 	 * be replaced with shell sort like linux uses or possibly
2038 	 * heap sort.
2039 	 */
2040 	for (i = 2; i < ngrp; i++) {
2041 		g = cr->cr_groups[i];
2042 		for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--)
2043 			cr->cr_groups[j + 1] = cr->cr_groups[j];
2044 		cr->cr_groups[j + 1] = g;
2045 	}
2046 }
2047 
2048 /*
2049  * Copy groups in to a credential after expanding it if required.
2050  * Truncate the list to (ngroups_max + 1) if it is too large.
2051  */
2052 void
2053 crsetgroups(struct ucred *cr, int ngrp, gid_t *groups)
2054 {
2055 
2056 	if (ngrp > ngroups_max + 1)
2057 		ngrp = ngroups_max + 1;
2058 
2059 	crextend(cr, ngrp);
2060 	crsetgroups_locked(cr, ngrp, groups);
2061 }
2062 
2063 /*
2064  * Get login name, if available.
2065  */
2066 #ifndef _SYS_SYSPROTO_H_
2067 struct getlogin_args {
2068 	char	*namebuf;
2069 	u_int	namelen;
2070 };
2071 #endif
2072 /* ARGSUSED */
2073 int
2074 sys_getlogin(struct thread *td, struct getlogin_args *uap)
2075 {
2076 	int error;
2077 	char login[MAXLOGNAME];
2078 	struct proc *p = td->td_proc;
2079 
2080 	if (uap->namelen > MAXLOGNAME)
2081 		uap->namelen = MAXLOGNAME;
2082 	PROC_LOCK(p);
2083 	SESS_LOCK(p->p_session);
2084 	bcopy(p->p_session->s_login, login, uap->namelen);
2085 	SESS_UNLOCK(p->p_session);
2086 	PROC_UNLOCK(p);
2087 	if (strlen(login) + 1 > uap->namelen)
2088 		return (ERANGE);
2089 	error = copyout(login, uap->namebuf, uap->namelen);
2090 	return (error);
2091 }
2092 
2093 /*
2094  * Set login name.
2095  */
2096 #ifndef _SYS_SYSPROTO_H_
2097 struct setlogin_args {
2098 	char	*namebuf;
2099 };
2100 #endif
2101 /* ARGSUSED */
2102 int
2103 sys_setlogin(struct thread *td, struct setlogin_args *uap)
2104 {
2105 	struct proc *p = td->td_proc;
2106 	int error;
2107 	char logintmp[MAXLOGNAME];
2108 
2109 	error = priv_check(td, PRIV_PROC_SETLOGIN);
2110 	if (error)
2111 		return (error);
2112 	error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
2113 	if (error == ENAMETOOLONG)
2114 		error = EINVAL;
2115 	else if (!error) {
2116 		PROC_LOCK(p);
2117 		SESS_LOCK(p->p_session);
2118 		(void) memcpy(p->p_session->s_login, logintmp,
2119 		    sizeof(logintmp));
2120 		SESS_UNLOCK(p->p_session);
2121 		PROC_UNLOCK(p);
2122 	}
2123 	return (error);
2124 }
2125 
2126 void
2127 setsugid(struct proc *p)
2128 {
2129 
2130 	PROC_LOCK_ASSERT(p, MA_OWNED);
2131 	p->p_flag |= P_SUGID;
2132 	if (!(p->p_pfsflags & PF_ISUGID))
2133 		p->p_stops = 0;
2134 }
2135 
2136 /*-
2137  * Change a process's effective uid.
2138  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
2139  * References: newcred must be an exclusive credential reference for the
2140  *             duration of the call.
2141  */
2142 void
2143 change_euid(struct ucred *newcred, struct uidinfo *euip)
2144 {
2145 
2146 	newcred->cr_uid = euip->ui_uid;
2147 	uihold(euip);
2148 	uifree(newcred->cr_uidinfo);
2149 	newcred->cr_uidinfo = euip;
2150 }
2151 
2152 /*-
2153  * Change a process's effective gid.
2154  * Side effects: newcred->cr_gid will be modified.
2155  * References: newcred must be an exclusive credential reference for the
2156  *             duration of the call.
2157  */
2158 void
2159 change_egid(struct ucred *newcred, gid_t egid)
2160 {
2161 
2162 	newcred->cr_groups[0] = egid;
2163 }
2164 
2165 /*-
2166  * Change a process's real uid.
2167  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
2168  *               will be updated, and the old and new cr_ruidinfo proc
2169  *               counts will be updated.
2170  * References: newcred must be an exclusive credential reference for the
2171  *             duration of the call.
2172  */
2173 void
2174 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
2175 {
2176 
2177 	(void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
2178 	newcred->cr_ruid = ruip->ui_uid;
2179 	uihold(ruip);
2180 	uifree(newcred->cr_ruidinfo);
2181 	newcred->cr_ruidinfo = ruip;
2182 	(void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
2183 }
2184 
2185 /*-
2186  * Change a process's real gid.
2187  * Side effects: newcred->cr_rgid will be updated.
2188  * References: newcred must be an exclusive credential reference for the
2189  *             duration of the call.
2190  */
2191 void
2192 change_rgid(struct ucred *newcred, gid_t rgid)
2193 {
2194 
2195 	newcred->cr_rgid = rgid;
2196 }
2197 
2198 /*-
2199  * Change a process's saved uid.
2200  * Side effects: newcred->cr_svuid will be updated.
2201  * References: newcred must be an exclusive credential reference for the
2202  *             duration of the call.
2203  */
2204 void
2205 change_svuid(struct ucred *newcred, uid_t svuid)
2206 {
2207 
2208 	newcred->cr_svuid = svuid;
2209 }
2210 
2211 /*-
2212  * Change a process's saved gid.
2213  * Side effects: newcred->cr_svgid will be updated.
2214  * References: newcred must be an exclusive credential reference for the
2215  *             duration of the call.
2216  */
2217 void
2218 change_svgid(struct ucred *newcred, gid_t svgid)
2219 {
2220 
2221 	newcred->cr_svgid = svgid;
2222 }
2223