xref: /freebsd/sys/kern/kern_prot.c (revision 52c2bb75163559a6e2866ad374a7de67a4ea1273)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
5  *	The Regents of the University of California.
6  * (c) UNIX System Laboratories, Inc.
7  * Copyright (c) 2000-2001 Robert N. M. Watson.
8  * All rights reserved.
9  *
10  * All or some portions of this file are derived from material licensed
11  * to the University of California by American Telephone and Telegraph
12  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
13  * the permission of UNIX System Laboratories, Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	@(#)kern_prot.c	8.6 (Berkeley) 1/21/94
40  */
41 
42 /*
43  * System calls related to processes and protection
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include "opt_inet.h"
50 #include "opt_inet6.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/acct.h>
55 #include <sys/kdb.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/loginclass.h>
59 #include <sys/malloc.h>
60 #include <sys/mutex.h>
61 #include <sys/refcount.h>
62 #include <sys/sx.h>
63 #include <sys/priv.h>
64 #include <sys/proc.h>
65 #include <sys/sysproto.h>
66 #include <sys/jail.h>
67 #include <sys/pioctl.h>
68 #include <sys/racct.h>
69 #include <sys/rctl.h>
70 #include <sys/resourcevar.h>
71 #include <sys/socket.h>
72 #include <sys/socketvar.h>
73 #include <sys/syscallsubr.h>
74 #include <sys/sysctl.h>
75 
76 #ifdef REGRESSION
77 FEATURE(regression,
78     "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
79 #endif
80 
81 #include <security/audit/audit.h>
82 #include <security/mac/mac_framework.h>
83 
84 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
85 
86 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW, 0, "BSD security policy");
87 
88 static void crsetgroups_locked(struct ucred *cr, int ngrp,
89     gid_t *groups);
90 
91 #ifndef _SYS_SYSPROTO_H_
92 struct getpid_args {
93 	int	dummy;
94 };
95 #endif
96 /* ARGSUSED */
97 int
98 sys_getpid(struct thread *td, struct getpid_args *uap)
99 {
100 	struct proc *p = td->td_proc;
101 
102 	td->td_retval[0] = p->p_pid;
103 #if defined(COMPAT_43)
104 	td->td_retval[1] = kern_getppid(td);
105 #endif
106 	return (0);
107 }
108 
109 #ifndef _SYS_SYSPROTO_H_
110 struct getppid_args {
111         int     dummy;
112 };
113 #endif
114 /* ARGSUSED */
115 int
116 sys_getppid(struct thread *td, struct getppid_args *uap)
117 {
118 
119 	td->td_retval[0] = kern_getppid(td);
120 	return (0);
121 }
122 
123 int
124 kern_getppid(struct thread *td)
125 {
126 	struct proc *p = td->td_proc;
127 
128 	return (p->p_oppid);
129 }
130 
131 /*
132  * Get process group ID; note that POSIX getpgrp takes no parameter.
133  */
134 #ifndef _SYS_SYSPROTO_H_
135 struct getpgrp_args {
136         int     dummy;
137 };
138 #endif
139 int
140 sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
141 {
142 	struct proc *p = td->td_proc;
143 
144 	PROC_LOCK(p);
145 	td->td_retval[0] = p->p_pgrp->pg_id;
146 	PROC_UNLOCK(p);
147 	return (0);
148 }
149 
150 /* Get an arbitrary pid's process group id */
151 #ifndef _SYS_SYSPROTO_H_
152 struct getpgid_args {
153 	pid_t	pid;
154 };
155 #endif
156 int
157 sys_getpgid(struct thread *td, struct getpgid_args *uap)
158 {
159 	struct proc *p;
160 	int error;
161 
162 	if (uap->pid == 0) {
163 		p = td->td_proc;
164 		PROC_LOCK(p);
165 	} else {
166 		p = pfind(uap->pid);
167 		if (p == NULL)
168 			return (ESRCH);
169 		error = p_cansee(td, p);
170 		if (error) {
171 			PROC_UNLOCK(p);
172 			return (error);
173 		}
174 	}
175 	td->td_retval[0] = p->p_pgrp->pg_id;
176 	PROC_UNLOCK(p);
177 	return (0);
178 }
179 
180 /*
181  * Get an arbitrary pid's session id.
182  */
183 #ifndef _SYS_SYSPROTO_H_
184 struct getsid_args {
185 	pid_t	pid;
186 };
187 #endif
188 int
189 sys_getsid(struct thread *td, struct getsid_args *uap)
190 {
191 	struct proc *p;
192 	int error;
193 
194 	if (uap->pid == 0) {
195 		p = td->td_proc;
196 		PROC_LOCK(p);
197 	} else {
198 		p = pfind(uap->pid);
199 		if (p == NULL)
200 			return (ESRCH);
201 		error = p_cansee(td, p);
202 		if (error) {
203 			PROC_UNLOCK(p);
204 			return (error);
205 		}
206 	}
207 	td->td_retval[0] = p->p_session->s_sid;
208 	PROC_UNLOCK(p);
209 	return (0);
210 }
211 
212 #ifndef _SYS_SYSPROTO_H_
213 struct getuid_args {
214         int     dummy;
215 };
216 #endif
217 /* ARGSUSED */
218 int
219 sys_getuid(struct thread *td, struct getuid_args *uap)
220 {
221 
222 	td->td_retval[0] = td->td_ucred->cr_ruid;
223 #if defined(COMPAT_43)
224 	td->td_retval[1] = td->td_ucred->cr_uid;
225 #endif
226 	return (0);
227 }
228 
229 #ifndef _SYS_SYSPROTO_H_
230 struct geteuid_args {
231         int     dummy;
232 };
233 #endif
234 /* ARGSUSED */
235 int
236 sys_geteuid(struct thread *td, struct geteuid_args *uap)
237 {
238 
239 	td->td_retval[0] = td->td_ucred->cr_uid;
240 	return (0);
241 }
242 
243 #ifndef _SYS_SYSPROTO_H_
244 struct getgid_args {
245         int     dummy;
246 };
247 #endif
248 /* ARGSUSED */
249 int
250 sys_getgid(struct thread *td, struct getgid_args *uap)
251 {
252 
253 	td->td_retval[0] = td->td_ucred->cr_rgid;
254 #if defined(COMPAT_43)
255 	td->td_retval[1] = td->td_ucred->cr_groups[0];
256 #endif
257 	return (0);
258 }
259 
260 /*
261  * Get effective group ID.  The "egid" is groups[0], and could be obtained
262  * via getgroups.  This syscall exists because it is somewhat painful to do
263  * correctly in a library function.
264  */
265 #ifndef _SYS_SYSPROTO_H_
266 struct getegid_args {
267         int     dummy;
268 };
269 #endif
270 /* ARGSUSED */
271 int
272 sys_getegid(struct thread *td, struct getegid_args *uap)
273 {
274 
275 	td->td_retval[0] = td->td_ucred->cr_groups[0];
276 	return (0);
277 }
278 
279 #ifndef _SYS_SYSPROTO_H_
280 struct getgroups_args {
281 	u_int	gidsetsize;
282 	gid_t	*gidset;
283 };
284 #endif
285 int
286 sys_getgroups(struct thread *td, struct getgroups_args *uap)
287 {
288 	struct ucred *cred;
289 	u_int ngrp;
290 	int error;
291 
292 	cred = td->td_ucred;
293 	ngrp = cred->cr_ngroups;
294 
295 	if (uap->gidsetsize == 0) {
296 		error = 0;
297 		goto out;
298 	}
299 	if (uap->gidsetsize < ngrp)
300 		return (EINVAL);
301 
302 	error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
303 out:
304 	td->td_retval[0] = ngrp;
305 	return (error);
306 }
307 
308 #ifndef _SYS_SYSPROTO_H_
309 struct setsid_args {
310         int     dummy;
311 };
312 #endif
313 /* ARGSUSED */
314 int
315 sys_setsid(struct thread *td, struct setsid_args *uap)
316 {
317 	struct pgrp *pgrp;
318 	int error;
319 	struct proc *p = td->td_proc;
320 	struct pgrp *newpgrp;
321 	struct session *newsess;
322 
323 	error = 0;
324 	pgrp = NULL;
325 
326 	newpgrp = malloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
327 	newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
328 
329 	sx_xlock(&proctree_lock);
330 
331 	if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
332 		if (pgrp != NULL)
333 			PGRP_UNLOCK(pgrp);
334 		error = EPERM;
335 	} else {
336 		(void)enterpgrp(p, p->p_pid, newpgrp, newsess);
337 		td->td_retval[0] = p->p_pid;
338 		newpgrp = NULL;
339 		newsess = NULL;
340 	}
341 
342 	sx_xunlock(&proctree_lock);
343 
344 	if (newpgrp != NULL)
345 		free(newpgrp, M_PGRP);
346 	if (newsess != NULL)
347 		free(newsess, M_SESSION);
348 
349 	return (error);
350 }
351 
352 /*
353  * set process group (setpgid/old setpgrp)
354  *
355  * caller does setpgid(targpid, targpgid)
356  *
357  * pid must be caller or child of caller (ESRCH)
358  * if a child
359  *	pid must be in same session (EPERM)
360  *	pid can't have done an exec (EACCES)
361  * if pgid != pid
362  * 	there must exist some pid in same session having pgid (EPERM)
363  * pid must not be session leader (EPERM)
364  */
365 #ifndef _SYS_SYSPROTO_H_
366 struct setpgid_args {
367 	int	pid;		/* target process id */
368 	int	pgid;		/* target pgrp id */
369 };
370 #endif
371 /* ARGSUSED */
372 int
373 sys_setpgid(struct thread *td, struct setpgid_args *uap)
374 {
375 	struct proc *curp = td->td_proc;
376 	struct proc *targp;	/* target process */
377 	struct pgrp *pgrp;	/* target pgrp */
378 	int error;
379 	struct pgrp *newpgrp;
380 
381 	if (uap->pgid < 0)
382 		return (EINVAL);
383 
384 	error = 0;
385 
386 	newpgrp = malloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
387 
388 	sx_xlock(&proctree_lock);
389 	if (uap->pid != 0 && uap->pid != curp->p_pid) {
390 		if ((targp = pfind(uap->pid)) == NULL) {
391 			error = ESRCH;
392 			goto done;
393 		}
394 		if (!inferior(targp)) {
395 			PROC_UNLOCK(targp);
396 			error = ESRCH;
397 			goto done;
398 		}
399 		if ((error = p_cansee(td, targp))) {
400 			PROC_UNLOCK(targp);
401 			goto done;
402 		}
403 		if (targp->p_pgrp == NULL ||
404 		    targp->p_session != curp->p_session) {
405 			PROC_UNLOCK(targp);
406 			error = EPERM;
407 			goto done;
408 		}
409 		if (targp->p_flag & P_EXEC) {
410 			PROC_UNLOCK(targp);
411 			error = EACCES;
412 			goto done;
413 		}
414 		PROC_UNLOCK(targp);
415 	} else
416 		targp = curp;
417 	if (SESS_LEADER(targp)) {
418 		error = EPERM;
419 		goto done;
420 	}
421 	if (uap->pgid == 0)
422 		uap->pgid = targp->p_pid;
423 	if ((pgrp = pgfind(uap->pgid)) == NULL) {
424 		if (uap->pgid == targp->p_pid) {
425 			error = enterpgrp(targp, uap->pgid, newpgrp,
426 			    NULL);
427 			if (error == 0)
428 				newpgrp = NULL;
429 		} else
430 			error = EPERM;
431 	} else {
432 		if (pgrp == targp->p_pgrp) {
433 			PGRP_UNLOCK(pgrp);
434 			goto done;
435 		}
436 		if (pgrp->pg_id != targp->p_pid &&
437 		    pgrp->pg_session != curp->p_session) {
438 			PGRP_UNLOCK(pgrp);
439 			error = EPERM;
440 			goto done;
441 		}
442 		PGRP_UNLOCK(pgrp);
443 		error = enterthispgrp(targp, pgrp);
444 	}
445 done:
446 	sx_xunlock(&proctree_lock);
447 	KASSERT((error == 0) || (newpgrp != NULL),
448 	    ("setpgid failed and newpgrp is NULL"));
449 	if (newpgrp != NULL)
450 		free(newpgrp, M_PGRP);
451 	return (error);
452 }
453 
454 /*
455  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
456  * compatible.  It says that setting the uid/gid to euid/egid is a special
457  * case of "appropriate privilege".  Once the rules are expanded out, this
458  * basically means that setuid(nnn) sets all three id's, in all permitted
459  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
460  * does not set the saved id - this is dangerous for traditional BSD
461  * programs.  For this reason, we *really* do not want to set
462  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
463  */
464 #define POSIX_APPENDIX_B_4_2_2
465 
466 #ifndef _SYS_SYSPROTO_H_
467 struct setuid_args {
468 	uid_t	uid;
469 };
470 #endif
471 /* ARGSUSED */
472 int
473 sys_setuid(struct thread *td, struct setuid_args *uap)
474 {
475 	struct proc *p = td->td_proc;
476 	struct ucred *newcred, *oldcred;
477 	uid_t uid;
478 	struct uidinfo *uip;
479 	int error;
480 
481 	uid = uap->uid;
482 	AUDIT_ARG_UID(uid);
483 	newcred = crget();
484 	uip = uifind(uid);
485 	PROC_LOCK(p);
486 	/*
487 	 * Copy credentials so other references do not see our changes.
488 	 */
489 	oldcred = crcopysafe(p, newcred);
490 
491 #ifdef MAC
492 	error = mac_cred_check_setuid(oldcred, uid);
493 	if (error)
494 		goto fail;
495 #endif
496 
497 	/*
498 	 * See if we have "permission" by POSIX 1003.1 rules.
499 	 *
500 	 * Note that setuid(geteuid()) is a special case of
501 	 * "appropriate privileges" in appendix B.4.2.2.  We need
502 	 * to use this clause to be compatible with traditional BSD
503 	 * semantics.  Basically, it means that "setuid(xx)" sets all
504 	 * three id's (assuming you have privs).
505 	 *
506 	 * Notes on the logic.  We do things in three steps.
507 	 * 1: We determine if the euid is going to change, and do EPERM
508 	 *    right away.  We unconditionally change the euid later if this
509 	 *    test is satisfied, simplifying that part of the logic.
510 	 * 2: We determine if the real and/or saved uids are going to
511 	 *    change.  Determined by compile options.
512 	 * 3: Change euid last. (after tests in #2 for "appropriate privs")
513 	 */
514 	if (uid != oldcred->cr_ruid &&		/* allow setuid(getuid()) */
515 #ifdef _POSIX_SAVED_IDS
516 	    uid != oldcred->cr_svuid &&		/* allow setuid(saved gid) */
517 #endif
518 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
519 	    uid != oldcred->cr_uid &&		/* allow setuid(geteuid()) */
520 #endif
521 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETUID)) != 0)
522 		goto fail;
523 
524 #ifdef _POSIX_SAVED_IDS
525 	/*
526 	 * Do we have "appropriate privileges" (are we root or uid == euid)
527 	 * If so, we are changing the real uid and/or saved uid.
528 	 */
529 	if (
530 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use the clause from B.4.2.2 */
531 	    uid == oldcred->cr_uid ||
532 #endif
533 	    /* We are using privs. */
534 	    priv_check_cred(oldcred, PRIV_CRED_SETUID) == 0)
535 #endif
536 	{
537 		/*
538 		 * Set the real uid and transfer proc count to new user.
539 		 */
540 		if (uid != oldcred->cr_ruid) {
541 			change_ruid(newcred, uip);
542 			setsugid(p);
543 		}
544 		/*
545 		 * Set saved uid
546 		 *
547 		 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
548 		 * the security of seteuid() depends on it.  B.4.2.2 says it
549 		 * is important that we should do this.
550 		 */
551 		if (uid != oldcred->cr_svuid) {
552 			change_svuid(newcred, uid);
553 			setsugid(p);
554 		}
555 	}
556 
557 	/*
558 	 * In all permitted cases, we are changing the euid.
559 	 */
560 	if (uid != oldcred->cr_uid) {
561 		change_euid(newcred, uip);
562 		setsugid(p);
563 	}
564 	proc_set_cred(p, newcred);
565 #ifdef RACCT
566 	racct_proc_ucred_changed(p, oldcred, newcred);
567 	crhold(newcred);
568 #endif
569 	PROC_UNLOCK(p);
570 #ifdef RCTL
571 	rctl_proc_ucred_changed(p, newcred);
572 	crfree(newcred);
573 #endif
574 	uifree(uip);
575 	crfree(oldcred);
576 	return (0);
577 
578 fail:
579 	PROC_UNLOCK(p);
580 	uifree(uip);
581 	crfree(newcred);
582 	return (error);
583 }
584 
585 #ifndef _SYS_SYSPROTO_H_
586 struct seteuid_args {
587 	uid_t	euid;
588 };
589 #endif
590 /* ARGSUSED */
591 int
592 sys_seteuid(struct thread *td, struct seteuid_args *uap)
593 {
594 	struct proc *p = td->td_proc;
595 	struct ucred *newcred, *oldcred;
596 	uid_t euid;
597 	struct uidinfo *euip;
598 	int error;
599 
600 	euid = uap->euid;
601 	AUDIT_ARG_EUID(euid);
602 	newcred = crget();
603 	euip = uifind(euid);
604 	PROC_LOCK(p);
605 	/*
606 	 * Copy credentials so other references do not see our changes.
607 	 */
608 	oldcred = crcopysafe(p, newcred);
609 
610 #ifdef MAC
611 	error = mac_cred_check_seteuid(oldcred, euid);
612 	if (error)
613 		goto fail;
614 #endif
615 
616 	if (euid != oldcred->cr_ruid &&		/* allow seteuid(getuid()) */
617 	    euid != oldcred->cr_svuid &&	/* allow seteuid(saved uid) */
618 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID)) != 0)
619 		goto fail;
620 
621 	/*
622 	 * Everything's okay, do it.
623 	 */
624 	if (oldcred->cr_uid != euid) {
625 		change_euid(newcred, euip);
626 		setsugid(p);
627 	}
628 	proc_set_cred(p, newcred);
629 	PROC_UNLOCK(p);
630 	uifree(euip);
631 	crfree(oldcred);
632 	return (0);
633 
634 fail:
635 	PROC_UNLOCK(p);
636 	uifree(euip);
637 	crfree(newcred);
638 	return (error);
639 }
640 
641 #ifndef _SYS_SYSPROTO_H_
642 struct setgid_args {
643 	gid_t	gid;
644 };
645 #endif
646 /* ARGSUSED */
647 int
648 sys_setgid(struct thread *td, struct setgid_args *uap)
649 {
650 	struct proc *p = td->td_proc;
651 	struct ucred *newcred, *oldcred;
652 	gid_t gid;
653 	int error;
654 
655 	gid = uap->gid;
656 	AUDIT_ARG_GID(gid);
657 	newcred = crget();
658 	PROC_LOCK(p);
659 	oldcred = crcopysafe(p, newcred);
660 
661 #ifdef MAC
662 	error = mac_cred_check_setgid(oldcred, gid);
663 	if (error)
664 		goto fail;
665 #endif
666 
667 	/*
668 	 * See if we have "permission" by POSIX 1003.1 rules.
669 	 *
670 	 * Note that setgid(getegid()) is a special case of
671 	 * "appropriate privileges" in appendix B.4.2.2.  We need
672 	 * to use this clause to be compatible with traditional BSD
673 	 * semantics.  Basically, it means that "setgid(xx)" sets all
674 	 * three id's (assuming you have privs).
675 	 *
676 	 * For notes on the logic here, see setuid() above.
677 	 */
678 	if (gid != oldcred->cr_rgid &&		/* allow setgid(getgid()) */
679 #ifdef _POSIX_SAVED_IDS
680 	    gid != oldcred->cr_svgid &&		/* allow setgid(saved gid) */
681 #endif
682 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
683 	    gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
684 #endif
685 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETGID)) != 0)
686 		goto fail;
687 
688 #ifdef _POSIX_SAVED_IDS
689 	/*
690 	 * Do we have "appropriate privileges" (are we root or gid == egid)
691 	 * If so, we are changing the real uid and saved gid.
692 	 */
693 	if (
694 #ifdef POSIX_APPENDIX_B_4_2_2	/* use the clause from B.4.2.2 */
695 	    gid == oldcred->cr_groups[0] ||
696 #endif
697 	    /* We are using privs. */
698 	    priv_check_cred(oldcred, PRIV_CRED_SETGID) == 0)
699 #endif
700 	{
701 		/*
702 		 * Set real gid
703 		 */
704 		if (oldcred->cr_rgid != gid) {
705 			change_rgid(newcred, gid);
706 			setsugid(p);
707 		}
708 		/*
709 		 * Set saved gid
710 		 *
711 		 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
712 		 * the security of setegid() depends on it.  B.4.2.2 says it
713 		 * is important that we should do this.
714 		 */
715 		if (oldcred->cr_svgid != gid) {
716 			change_svgid(newcred, gid);
717 			setsugid(p);
718 		}
719 	}
720 	/*
721 	 * In all cases permitted cases, we are changing the egid.
722 	 * Copy credentials so other references do not see our changes.
723 	 */
724 	if (oldcred->cr_groups[0] != gid) {
725 		change_egid(newcred, gid);
726 		setsugid(p);
727 	}
728 	proc_set_cred(p, newcred);
729 	PROC_UNLOCK(p);
730 	crfree(oldcred);
731 	return (0);
732 
733 fail:
734 	PROC_UNLOCK(p);
735 	crfree(newcred);
736 	return (error);
737 }
738 
739 #ifndef _SYS_SYSPROTO_H_
740 struct setegid_args {
741 	gid_t	egid;
742 };
743 #endif
744 /* ARGSUSED */
745 int
746 sys_setegid(struct thread *td, struct setegid_args *uap)
747 {
748 	struct proc *p = td->td_proc;
749 	struct ucred *newcred, *oldcred;
750 	gid_t egid;
751 	int error;
752 
753 	egid = uap->egid;
754 	AUDIT_ARG_EGID(egid);
755 	newcred = crget();
756 	PROC_LOCK(p);
757 	oldcred = crcopysafe(p, newcred);
758 
759 #ifdef MAC
760 	error = mac_cred_check_setegid(oldcred, egid);
761 	if (error)
762 		goto fail;
763 #endif
764 
765 	if (egid != oldcred->cr_rgid &&		/* allow setegid(getgid()) */
766 	    egid != oldcred->cr_svgid &&	/* allow setegid(saved gid) */
767 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID)) != 0)
768 		goto fail;
769 
770 	if (oldcred->cr_groups[0] != egid) {
771 		change_egid(newcred, egid);
772 		setsugid(p);
773 	}
774 	proc_set_cred(p, newcred);
775 	PROC_UNLOCK(p);
776 	crfree(oldcred);
777 	return (0);
778 
779 fail:
780 	PROC_UNLOCK(p);
781 	crfree(newcred);
782 	return (error);
783 }
784 
785 #ifndef _SYS_SYSPROTO_H_
786 struct setgroups_args {
787 	u_int	gidsetsize;
788 	gid_t	*gidset;
789 };
790 #endif
791 /* ARGSUSED */
792 int
793 sys_setgroups(struct thread *td, struct setgroups_args *uap)
794 {
795 	gid_t smallgroups[XU_NGROUPS];
796 	gid_t *groups;
797 	u_int gidsetsize;
798 	int error;
799 
800 	gidsetsize = uap->gidsetsize;
801 	if (gidsetsize > ngroups_max + 1)
802 		return (EINVAL);
803 
804 	if (gidsetsize > XU_NGROUPS)
805 		groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
806 	else
807 		groups = smallgroups;
808 
809 	error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
810 	if (error == 0)
811 		error = kern_setgroups(td, gidsetsize, groups);
812 
813 	if (gidsetsize > XU_NGROUPS)
814 		free(groups, M_TEMP);
815 	return (error);
816 }
817 
818 int
819 kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups)
820 {
821 	struct proc *p = td->td_proc;
822 	struct ucred *newcred, *oldcred;
823 	int error;
824 
825 	MPASS(ngrp <= ngroups_max + 1);
826 	AUDIT_ARG_GROUPSET(groups, ngrp);
827 	newcred = crget();
828 	crextend(newcred, ngrp);
829 	PROC_LOCK(p);
830 	oldcred = crcopysafe(p, newcred);
831 
832 #ifdef MAC
833 	error = mac_cred_check_setgroups(oldcred, ngrp, groups);
834 	if (error)
835 		goto fail;
836 #endif
837 
838 	error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS);
839 	if (error)
840 		goto fail;
841 
842 	if (ngrp == 0) {
843 		/*
844 		 * setgroups(0, NULL) is a legitimate way of clearing the
845 		 * groups vector on non-BSD systems (which generally do not
846 		 * have the egid in the groups[0]).  We risk security holes
847 		 * when running non-BSD software if we do not do the same.
848 		 */
849 		newcred->cr_ngroups = 1;
850 	} else {
851 		crsetgroups_locked(newcred, ngrp, groups);
852 	}
853 	setsugid(p);
854 	proc_set_cred(p, newcred);
855 	PROC_UNLOCK(p);
856 	crfree(oldcred);
857 	return (0);
858 
859 fail:
860 	PROC_UNLOCK(p);
861 	crfree(newcred);
862 	return (error);
863 }
864 
865 #ifndef _SYS_SYSPROTO_H_
866 struct setreuid_args {
867 	uid_t	ruid;
868 	uid_t	euid;
869 };
870 #endif
871 /* ARGSUSED */
872 int
873 sys_setreuid(struct thread *td, struct setreuid_args *uap)
874 {
875 	struct proc *p = td->td_proc;
876 	struct ucred *newcred, *oldcred;
877 	uid_t euid, ruid;
878 	struct uidinfo *euip, *ruip;
879 	int error;
880 
881 	euid = uap->euid;
882 	ruid = uap->ruid;
883 	AUDIT_ARG_EUID(euid);
884 	AUDIT_ARG_RUID(ruid);
885 	newcred = crget();
886 	euip = uifind(euid);
887 	ruip = uifind(ruid);
888 	PROC_LOCK(p);
889 	oldcred = crcopysafe(p, newcred);
890 
891 #ifdef MAC
892 	error = mac_cred_check_setreuid(oldcred, ruid, euid);
893 	if (error)
894 		goto fail;
895 #endif
896 
897 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
898 	      ruid != oldcred->cr_svuid) ||
899 	     (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
900 	      euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
901 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID)) != 0)
902 		goto fail;
903 
904 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
905 		change_euid(newcred, euip);
906 		setsugid(p);
907 	}
908 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
909 		change_ruid(newcred, ruip);
910 		setsugid(p);
911 	}
912 	if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
913 	    newcred->cr_svuid != newcred->cr_uid) {
914 		change_svuid(newcred, newcred->cr_uid);
915 		setsugid(p);
916 	}
917 	proc_set_cred(p, newcred);
918 #ifdef RACCT
919 	racct_proc_ucred_changed(p, oldcred, newcred);
920 	crhold(newcred);
921 #endif
922 	PROC_UNLOCK(p);
923 #ifdef RCTL
924 	rctl_proc_ucred_changed(p, newcred);
925 	crfree(newcred);
926 #endif
927 	uifree(ruip);
928 	uifree(euip);
929 	crfree(oldcred);
930 	return (0);
931 
932 fail:
933 	PROC_UNLOCK(p);
934 	uifree(ruip);
935 	uifree(euip);
936 	crfree(newcred);
937 	return (error);
938 }
939 
940 #ifndef _SYS_SYSPROTO_H_
941 struct setregid_args {
942 	gid_t	rgid;
943 	gid_t	egid;
944 };
945 #endif
946 /* ARGSUSED */
947 int
948 sys_setregid(struct thread *td, struct setregid_args *uap)
949 {
950 	struct proc *p = td->td_proc;
951 	struct ucred *newcred, *oldcred;
952 	gid_t egid, rgid;
953 	int error;
954 
955 	egid = uap->egid;
956 	rgid = uap->rgid;
957 	AUDIT_ARG_EGID(egid);
958 	AUDIT_ARG_RGID(rgid);
959 	newcred = crget();
960 	PROC_LOCK(p);
961 	oldcred = crcopysafe(p, newcred);
962 
963 #ifdef MAC
964 	error = mac_cred_check_setregid(oldcred, rgid, egid);
965 	if (error)
966 		goto fail;
967 #endif
968 
969 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
970 	    rgid != oldcred->cr_svgid) ||
971 	     (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
972 	     egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
973 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID)) != 0)
974 		goto fail;
975 
976 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
977 		change_egid(newcred, egid);
978 		setsugid(p);
979 	}
980 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
981 		change_rgid(newcred, rgid);
982 		setsugid(p);
983 	}
984 	if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
985 	    newcred->cr_svgid != newcred->cr_groups[0]) {
986 		change_svgid(newcred, newcred->cr_groups[0]);
987 		setsugid(p);
988 	}
989 	proc_set_cred(p, newcred);
990 	PROC_UNLOCK(p);
991 	crfree(oldcred);
992 	return (0);
993 
994 fail:
995 	PROC_UNLOCK(p);
996 	crfree(newcred);
997 	return (error);
998 }
999 
1000 /*
1001  * setresuid(ruid, euid, suid) is like setreuid except control over the saved
1002  * uid is explicit.
1003  */
1004 #ifndef _SYS_SYSPROTO_H_
1005 struct setresuid_args {
1006 	uid_t	ruid;
1007 	uid_t	euid;
1008 	uid_t	suid;
1009 };
1010 #endif
1011 /* ARGSUSED */
1012 int
1013 sys_setresuid(struct thread *td, struct setresuid_args *uap)
1014 {
1015 	struct proc *p = td->td_proc;
1016 	struct ucred *newcred, *oldcred;
1017 	uid_t euid, ruid, suid;
1018 	struct uidinfo *euip, *ruip;
1019 	int error;
1020 
1021 	euid = uap->euid;
1022 	ruid = uap->ruid;
1023 	suid = uap->suid;
1024 	AUDIT_ARG_EUID(euid);
1025 	AUDIT_ARG_RUID(ruid);
1026 	AUDIT_ARG_SUID(suid);
1027 	newcred = crget();
1028 	euip = uifind(euid);
1029 	ruip = uifind(ruid);
1030 	PROC_LOCK(p);
1031 	oldcred = crcopysafe(p, newcred);
1032 
1033 #ifdef MAC
1034 	error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
1035 	if (error)
1036 		goto fail;
1037 #endif
1038 
1039 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1040 	     ruid != oldcred->cr_svuid &&
1041 	      ruid != oldcred->cr_uid) ||
1042 	     (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
1043 	    euid != oldcred->cr_svuid &&
1044 	      euid != oldcred->cr_uid) ||
1045 	     (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
1046 	    suid != oldcred->cr_svuid &&
1047 	      suid != oldcred->cr_uid)) &&
1048 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID)) != 0)
1049 		goto fail;
1050 
1051 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1052 		change_euid(newcred, euip);
1053 		setsugid(p);
1054 	}
1055 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1056 		change_ruid(newcred, ruip);
1057 		setsugid(p);
1058 	}
1059 	if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
1060 		change_svuid(newcred, suid);
1061 		setsugid(p);
1062 	}
1063 	proc_set_cred(p, newcred);
1064 #ifdef RACCT
1065 	racct_proc_ucred_changed(p, oldcred, newcred);
1066 	crhold(newcred);
1067 #endif
1068 	PROC_UNLOCK(p);
1069 #ifdef RCTL
1070 	rctl_proc_ucred_changed(p, newcred);
1071 	crfree(newcred);
1072 #endif
1073 	uifree(ruip);
1074 	uifree(euip);
1075 	crfree(oldcred);
1076 	return (0);
1077 
1078 fail:
1079 	PROC_UNLOCK(p);
1080 	uifree(ruip);
1081 	uifree(euip);
1082 	crfree(newcred);
1083 	return (error);
1084 
1085 }
1086 
1087 /*
1088  * setresgid(rgid, egid, sgid) is like setregid except control over the saved
1089  * gid is explicit.
1090  */
1091 #ifndef _SYS_SYSPROTO_H_
1092 struct setresgid_args {
1093 	gid_t	rgid;
1094 	gid_t	egid;
1095 	gid_t	sgid;
1096 };
1097 #endif
1098 /* ARGSUSED */
1099 int
1100 sys_setresgid(struct thread *td, struct setresgid_args *uap)
1101 {
1102 	struct proc *p = td->td_proc;
1103 	struct ucred *newcred, *oldcred;
1104 	gid_t egid, rgid, sgid;
1105 	int error;
1106 
1107 	egid = uap->egid;
1108 	rgid = uap->rgid;
1109 	sgid = uap->sgid;
1110 	AUDIT_ARG_EGID(egid);
1111 	AUDIT_ARG_RGID(rgid);
1112 	AUDIT_ARG_SGID(sgid);
1113 	newcred = crget();
1114 	PROC_LOCK(p);
1115 	oldcred = crcopysafe(p, newcred);
1116 
1117 #ifdef MAC
1118 	error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
1119 	if (error)
1120 		goto fail;
1121 #endif
1122 
1123 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1124 	      rgid != oldcred->cr_svgid &&
1125 	      rgid != oldcred->cr_groups[0]) ||
1126 	     (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
1127 	      egid != oldcred->cr_svgid &&
1128 	      egid != oldcred->cr_groups[0]) ||
1129 	     (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
1130 	      sgid != oldcred->cr_svgid &&
1131 	      sgid != oldcred->cr_groups[0])) &&
1132 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID)) != 0)
1133 		goto fail;
1134 
1135 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
1136 		change_egid(newcred, egid);
1137 		setsugid(p);
1138 	}
1139 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1140 		change_rgid(newcred, rgid);
1141 		setsugid(p);
1142 	}
1143 	if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
1144 		change_svgid(newcred, sgid);
1145 		setsugid(p);
1146 	}
1147 	proc_set_cred(p, newcred);
1148 	PROC_UNLOCK(p);
1149 	crfree(oldcred);
1150 	return (0);
1151 
1152 fail:
1153 	PROC_UNLOCK(p);
1154 	crfree(newcred);
1155 	return (error);
1156 }
1157 
1158 #ifndef _SYS_SYSPROTO_H_
1159 struct getresuid_args {
1160 	uid_t	*ruid;
1161 	uid_t	*euid;
1162 	uid_t	*suid;
1163 };
1164 #endif
1165 /* ARGSUSED */
1166 int
1167 sys_getresuid(struct thread *td, struct getresuid_args *uap)
1168 {
1169 	struct ucred *cred;
1170 	int error1 = 0, error2 = 0, error3 = 0;
1171 
1172 	cred = td->td_ucred;
1173 	if (uap->ruid)
1174 		error1 = copyout(&cred->cr_ruid,
1175 		    uap->ruid, sizeof(cred->cr_ruid));
1176 	if (uap->euid)
1177 		error2 = copyout(&cred->cr_uid,
1178 		    uap->euid, sizeof(cred->cr_uid));
1179 	if (uap->suid)
1180 		error3 = copyout(&cred->cr_svuid,
1181 		    uap->suid, sizeof(cred->cr_svuid));
1182 	return (error1 ? error1 : error2 ? error2 : error3);
1183 }
1184 
1185 #ifndef _SYS_SYSPROTO_H_
1186 struct getresgid_args {
1187 	gid_t	*rgid;
1188 	gid_t	*egid;
1189 	gid_t	*sgid;
1190 };
1191 #endif
1192 /* ARGSUSED */
1193 int
1194 sys_getresgid(struct thread *td, struct getresgid_args *uap)
1195 {
1196 	struct ucred *cred;
1197 	int error1 = 0, error2 = 0, error3 = 0;
1198 
1199 	cred = td->td_ucred;
1200 	if (uap->rgid)
1201 		error1 = copyout(&cred->cr_rgid,
1202 		    uap->rgid, sizeof(cred->cr_rgid));
1203 	if (uap->egid)
1204 		error2 = copyout(&cred->cr_groups[0],
1205 		    uap->egid, sizeof(cred->cr_groups[0]));
1206 	if (uap->sgid)
1207 		error3 = copyout(&cred->cr_svgid,
1208 		    uap->sgid, sizeof(cred->cr_svgid));
1209 	return (error1 ? error1 : error2 ? error2 : error3);
1210 }
1211 
1212 #ifndef _SYS_SYSPROTO_H_
1213 struct issetugid_args {
1214 	int dummy;
1215 };
1216 #endif
1217 /* ARGSUSED */
1218 int
1219 sys_issetugid(struct thread *td, struct issetugid_args *uap)
1220 {
1221 	struct proc *p = td->td_proc;
1222 
1223 	/*
1224 	 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
1225 	 * we use P_SUGID because we consider changing the owners as
1226 	 * "tainting" as well.
1227 	 * This is significant for procs that start as root and "become"
1228 	 * a user without an exec - programs cannot know *everything*
1229 	 * that libc *might* have put in their data segment.
1230 	 */
1231 	td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
1232 	return (0);
1233 }
1234 
1235 int
1236 sys___setugid(struct thread *td, struct __setugid_args *uap)
1237 {
1238 #ifdef REGRESSION
1239 	struct proc *p;
1240 
1241 	p = td->td_proc;
1242 	switch (uap->flag) {
1243 	case 0:
1244 		PROC_LOCK(p);
1245 		p->p_flag &= ~P_SUGID;
1246 		PROC_UNLOCK(p);
1247 		return (0);
1248 	case 1:
1249 		PROC_LOCK(p);
1250 		p->p_flag |= P_SUGID;
1251 		PROC_UNLOCK(p);
1252 		return (0);
1253 	default:
1254 		return (EINVAL);
1255 	}
1256 #else /* !REGRESSION */
1257 
1258 	return (ENOSYS);
1259 #endif /* REGRESSION */
1260 }
1261 
1262 /*
1263  * Check if gid is a member of the group set.
1264  */
1265 int
1266 groupmember(gid_t gid, struct ucred *cred)
1267 {
1268 	int l;
1269 	int h;
1270 	int m;
1271 
1272 	if (cred->cr_groups[0] == gid)
1273 		return(1);
1274 
1275 	/*
1276 	 * If gid was not our primary group, perform a binary search
1277 	 * of the supplemental groups.  This is possible because we
1278 	 * sort the groups in crsetgroups().
1279 	 */
1280 	l = 1;
1281 	h = cred->cr_ngroups;
1282 	while (l < h) {
1283 		m = l + ((h - l) / 2);
1284 		if (cred->cr_groups[m] < gid)
1285 			l = m + 1;
1286 		else
1287 			h = m;
1288 	}
1289 	if ((l < cred->cr_ngroups) && (cred->cr_groups[l] == gid))
1290 		return (1);
1291 
1292 	return (0);
1293 }
1294 
1295 /*
1296  * Test the active securelevel against a given level.  securelevel_gt()
1297  * implements (securelevel > level).  securelevel_ge() implements
1298  * (securelevel >= level).  Note that the logic is inverted -- these
1299  * functions return EPERM on "success" and 0 on "failure".
1300  *
1301  * Due to care taken when setting the securelevel, we know that no jail will
1302  * be less secure that its parent (or the physical system), so it is sufficient
1303  * to test the current jail only.
1304  *
1305  * XXXRW: Possibly since this has to do with privilege, it should move to
1306  * kern_priv.c.
1307  */
1308 int
1309 securelevel_gt(struct ucred *cr, int level)
1310 {
1311 
1312 	return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
1313 }
1314 
1315 int
1316 securelevel_ge(struct ucred *cr, int level)
1317 {
1318 
1319 	return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
1320 }
1321 
1322 /*
1323  * 'see_other_uids' determines whether or not visibility of processes
1324  * and sockets with credentials holding different real uids is possible
1325  * using a variety of system MIBs.
1326  * XXX: data declarations should be together near the beginning of the file.
1327  */
1328 static int	see_other_uids = 1;
1329 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
1330     &see_other_uids, 0,
1331     "Unprivileged processes may see subjects/objects with different real uid");
1332 
1333 /*-
1334  * Determine if u1 "can see" the subject specified by u2, according to the
1335  * 'see_other_uids' policy.
1336  * Returns: 0 for permitted, ESRCH otherwise
1337  * Locks: none
1338  * References: *u1 and *u2 must not change during the call
1339  *             u1 may equal u2, in which case only one reference is required
1340  */
1341 int
1342 cr_canseeotheruids(struct ucred *u1, struct ucred *u2)
1343 {
1344 
1345 	if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
1346 		if (priv_check_cred(u1, PRIV_SEEOTHERUIDS) != 0)
1347 			return (ESRCH);
1348 	}
1349 	return (0);
1350 }
1351 
1352 /*
1353  * 'see_other_gids' determines whether or not visibility of processes
1354  * and sockets with credentials holding different real gids is possible
1355  * using a variety of system MIBs.
1356  * XXX: data declarations should be together near the beginning of the file.
1357  */
1358 static int	see_other_gids = 1;
1359 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
1360     &see_other_gids, 0,
1361     "Unprivileged processes may see subjects/objects with different real gid");
1362 
1363 /*
1364  * Determine if u1 can "see" the subject specified by u2, according to the
1365  * 'see_other_gids' policy.
1366  * Returns: 0 for permitted, ESRCH otherwise
1367  * Locks: none
1368  * References: *u1 and *u2 must not change during the call
1369  *             u1 may equal u2, in which case only one reference is required
1370  */
1371 int
1372 cr_canseeothergids(struct ucred *u1, struct ucred *u2)
1373 {
1374 	int i, match;
1375 
1376 	if (!see_other_gids) {
1377 		match = 0;
1378 		for (i = 0; i < u1->cr_ngroups; i++) {
1379 			if (groupmember(u1->cr_groups[i], u2))
1380 				match = 1;
1381 			if (match)
1382 				break;
1383 		}
1384 		if (!match) {
1385 			if (priv_check_cred(u1, PRIV_SEEOTHERGIDS) != 0)
1386 				return (ESRCH);
1387 		}
1388 	}
1389 	return (0);
1390 }
1391 
1392 /*
1393  * 'see_jail_proc' determines whether or not visibility of processes and
1394  * sockets with credentials holding different jail ids is possible using a
1395  * variety of system MIBs.
1396  *
1397  * XXX: data declarations should be together near the beginning of the file.
1398  */
1399 
1400 static int	see_jail_proc = 1;
1401 SYSCTL_INT(_security_bsd, OID_AUTO, see_jail_proc, CTLFLAG_RW,
1402     &see_jail_proc, 0,
1403     "Unprivileged processes may see subjects/objects with different jail ids");
1404 
1405 /*-
1406  * Determine if u1 "can see" the subject specified by u2, according to the
1407  * 'see_jail_proc' policy.
1408  * Returns: 0 for permitted, ESRCH otherwise
1409  * Locks: none
1410  * References: *u1 and *u2 must not change during the call
1411  *             u1 may equal u2, in which case only one reference is required
1412  */
1413 int
1414 cr_canseejailproc(struct ucred *u1, struct ucred *u2)
1415 {
1416 	if (u1->cr_uid == 0)
1417 		return (0);
1418 	return (!see_jail_proc && u1->cr_prison != u2->cr_prison ? ESRCH : 0);
1419 }
1420 
1421 /*-
1422  * Determine if u1 "can see" the subject specified by u2.
1423  * Returns: 0 for permitted, an errno value otherwise
1424  * Locks: none
1425  * References: *u1 and *u2 must not change during the call
1426  *             u1 may equal u2, in which case only one reference is required
1427  */
1428 int
1429 cr_cansee(struct ucred *u1, struct ucred *u2)
1430 {
1431 	int error;
1432 
1433 	if ((error = prison_check(u1, u2)))
1434 		return (error);
1435 #ifdef MAC
1436 	if ((error = mac_cred_check_visible(u1, u2)))
1437 		return (error);
1438 #endif
1439 	if ((error = cr_canseeotheruids(u1, u2)))
1440 		return (error);
1441 	if ((error = cr_canseeothergids(u1, u2)))
1442 		return (error);
1443 	if ((error = cr_canseejailproc(u1, u2)))
1444 		return (error);
1445 	return (0);
1446 }
1447 
1448 /*-
1449  * Determine if td "can see" the subject specified by p.
1450  * Returns: 0 for permitted, an errno value otherwise
1451  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
1452  *        should be curthread.
1453  * References: td and p must be valid for the lifetime of the call
1454  */
1455 int
1456 p_cansee(struct thread *td, struct proc *p)
1457 {
1458 
1459 	/* Wrap cr_cansee() for all functionality. */
1460 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1461 	PROC_LOCK_ASSERT(p, MA_OWNED);
1462 	return (cr_cansee(td->td_ucred, p->p_ucred));
1463 }
1464 
1465 /*
1466  * 'conservative_signals' prevents the delivery of a broad class of
1467  * signals by unprivileged processes to processes that have changed their
1468  * credentials since the last invocation of execve().  This can prevent
1469  * the leakage of cached information or retained privileges as a result
1470  * of a common class of signal-related vulnerabilities.  However, this
1471  * may interfere with some applications that expect to be able to
1472  * deliver these signals to peer processes after having given up
1473  * privilege.
1474  */
1475 static int	conservative_signals = 1;
1476 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
1477     &conservative_signals, 0, "Unprivileged processes prevented from "
1478     "sending certain signals to processes whose credentials have changed");
1479 /*-
1480  * Determine whether cred may deliver the specified signal to proc.
1481  * Returns: 0 for permitted, an errno value otherwise.
1482  * Locks: A lock must be held for proc.
1483  * References: cred and proc must be valid for the lifetime of the call.
1484  */
1485 int
1486 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
1487 {
1488 	int error;
1489 
1490 	PROC_LOCK_ASSERT(proc, MA_OWNED);
1491 	/*
1492 	 * Jail semantics limit the scope of signalling to proc in the
1493 	 * same jail as cred, if cred is in jail.
1494 	 */
1495 	error = prison_check(cred, proc->p_ucred);
1496 	if (error)
1497 		return (error);
1498 #ifdef MAC
1499 	if ((error = mac_proc_check_signal(cred, proc, signum)))
1500 		return (error);
1501 #endif
1502 	if ((error = cr_canseeotheruids(cred, proc->p_ucred)))
1503 		return (error);
1504 	if ((error = cr_canseeothergids(cred, proc->p_ucred)))
1505 		return (error);
1506 
1507 	/*
1508 	 * UNIX signal semantics depend on the status of the P_SUGID
1509 	 * bit on the target process.  If the bit is set, then additional
1510 	 * restrictions are placed on the set of available signals.
1511 	 */
1512 	if (conservative_signals && (proc->p_flag & P_SUGID)) {
1513 		switch (signum) {
1514 		case 0:
1515 		case SIGKILL:
1516 		case SIGINT:
1517 		case SIGTERM:
1518 		case SIGALRM:
1519 		case SIGSTOP:
1520 		case SIGTTIN:
1521 		case SIGTTOU:
1522 		case SIGTSTP:
1523 		case SIGHUP:
1524 		case SIGUSR1:
1525 		case SIGUSR2:
1526 			/*
1527 			 * Generally, permit job and terminal control
1528 			 * signals.
1529 			 */
1530 			break;
1531 		default:
1532 			/* Not permitted without privilege. */
1533 			error = priv_check_cred(cred, PRIV_SIGNAL_SUGID);
1534 			if (error)
1535 				return (error);
1536 		}
1537 	}
1538 
1539 	/*
1540 	 * Generally, the target credential's ruid or svuid must match the
1541 	 * subject credential's ruid or euid.
1542 	 */
1543 	if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
1544 	    cred->cr_ruid != proc->p_ucred->cr_svuid &&
1545 	    cred->cr_uid != proc->p_ucred->cr_ruid &&
1546 	    cred->cr_uid != proc->p_ucred->cr_svuid) {
1547 		error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED);
1548 		if (error)
1549 			return (error);
1550 	}
1551 
1552 	return (0);
1553 }
1554 
1555 /*-
1556  * Determine whether td may deliver the specified signal to p.
1557  * Returns: 0 for permitted, an errno value otherwise
1558  * Locks: Sufficient locks to protect various components of td and p
1559  *        must be held.  td must be curthread, and a lock must be
1560  *        held for p.
1561  * References: td and p must be valid for the lifetime of the call
1562  */
1563 int
1564 p_cansignal(struct thread *td, struct proc *p, int signum)
1565 {
1566 
1567 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1568 	PROC_LOCK_ASSERT(p, MA_OWNED);
1569 	if (td->td_proc == p)
1570 		return (0);
1571 
1572 	/*
1573 	 * UNIX signalling semantics require that processes in the same
1574 	 * session always be able to deliver SIGCONT to one another,
1575 	 * overriding the remaining protections.
1576 	 */
1577 	/* XXX: This will require an additional lock of some sort. */
1578 	if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
1579 		return (0);
1580 	/*
1581 	 * Some compat layers use SIGTHR and higher signals for
1582 	 * communication between different kernel threads of the same
1583 	 * process, so that they expect that it's always possible to
1584 	 * deliver them, even for suid applications where cr_cansignal() can
1585 	 * deny such ability for security consideration.  It should be
1586 	 * pretty safe to do since the only way to create two processes
1587 	 * with the same p_leader is via rfork(2).
1588 	 */
1589 	if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
1590 	    signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
1591 		return (0);
1592 
1593 	return (cr_cansignal(td->td_ucred, p, signum));
1594 }
1595 
1596 /*-
1597  * Determine whether td may reschedule p.
1598  * Returns: 0 for permitted, an errno value otherwise
1599  * Locks: Sufficient locks to protect various components of td and p
1600  *        must be held.  td must be curthread, and a lock must
1601  *        be held for p.
1602  * References: td and p must be valid for the lifetime of the call
1603  */
1604 int
1605 p_cansched(struct thread *td, struct proc *p)
1606 {
1607 	int error;
1608 
1609 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1610 	PROC_LOCK_ASSERT(p, MA_OWNED);
1611 	if (td->td_proc == p)
1612 		return (0);
1613 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1614 		return (error);
1615 #ifdef MAC
1616 	if ((error = mac_proc_check_sched(td->td_ucred, p)))
1617 		return (error);
1618 #endif
1619 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1620 		return (error);
1621 	if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
1622 		return (error);
1623 	if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
1624 	    td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
1625 		error = priv_check(td, PRIV_SCHED_DIFFCRED);
1626 		if (error)
1627 			return (error);
1628 	}
1629 	return (0);
1630 }
1631 
1632 /*
1633  * Handle getting or setting the prison's unprivileged_proc_debug
1634  * value.
1635  */
1636 static int
1637 sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS)
1638 {
1639 	struct prison *pr;
1640 	int error, val;
1641 
1642 	val = prison_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG) != 0;
1643 	error = sysctl_handle_int(oidp, &val, 0, req);
1644 	if (error != 0 || req->newptr == NULL)
1645 		return (error);
1646 	pr = req->td->td_ucred->cr_prison;
1647 	mtx_lock(&pr->pr_mtx);
1648 	switch (val) {
1649 	case 0:
1650 		pr->pr_allow &= ~(PR_ALLOW_UNPRIV_DEBUG);
1651 		break;
1652 	case 1:
1653 		pr->pr_allow |= PR_ALLOW_UNPRIV_DEBUG;
1654 		break;
1655 	default:
1656 		error = EINVAL;
1657 	}
1658 	mtx_unlock(&pr->pr_mtx);
1659 
1660 	return (error);
1661 }
1662 
1663 /*
1664  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
1665  * unprivileged inter-process debugging services, including some procfs
1666  * functionality, ptrace(), and ktrace().  In the past, inter-process
1667  * debugging has been involved in a variety of security problems, and sites
1668  * not requiring the service might choose to disable it when hardening
1669  * systems.
1670  */
1671 SYSCTL_PROC(_security_bsd, OID_AUTO, unprivileged_proc_debug,
1672     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_SECURE, 0, 0,
1673     sysctl_unprivileged_proc_debug, "I",
1674     "Unprivileged processes may use process debugging facilities");
1675 
1676 /*-
1677  * Determine whether td may debug p.
1678  * Returns: 0 for permitted, an errno value otherwise
1679  * Locks: Sufficient locks to protect various components of td and p
1680  *        must be held.  td must be curthread, and a lock must
1681  *        be held for p.
1682  * References: td and p must be valid for the lifetime of the call
1683  */
1684 int
1685 p_candebug(struct thread *td, struct proc *p)
1686 {
1687 	int credentialchanged, error, grpsubset, i, uidsubset;
1688 
1689 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1690 	PROC_LOCK_ASSERT(p, MA_OWNED);
1691 	if ((error = priv_check(td, PRIV_DEBUG_UNPRIV)))
1692 		return (error);
1693 	if (td->td_proc == p)
1694 		return (0);
1695 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1696 		return (error);
1697 #ifdef MAC
1698 	if ((error = mac_proc_check_debug(td->td_ucred, p)))
1699 		return (error);
1700 #endif
1701 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1702 		return (error);
1703 	if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
1704 		return (error);
1705 
1706 	/*
1707 	 * Is p's group set a subset of td's effective group set?  This
1708 	 * includes p's egid, group access list, rgid, and svgid.
1709 	 */
1710 	grpsubset = 1;
1711 	for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
1712 		if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
1713 			grpsubset = 0;
1714 			break;
1715 		}
1716 	}
1717 	grpsubset = grpsubset &&
1718 	    groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
1719 	    groupmember(p->p_ucred->cr_svgid, td->td_ucred);
1720 
1721 	/*
1722 	 * Are the uids present in p's credential equal to td's
1723 	 * effective uid?  This includes p's euid, svuid, and ruid.
1724 	 */
1725 	uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
1726 	    td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
1727 	    td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
1728 
1729 	/*
1730 	 * Has the credential of the process changed since the last exec()?
1731 	 */
1732 	credentialchanged = (p->p_flag & P_SUGID);
1733 
1734 	/*
1735 	 * If p's gids aren't a subset, or the uids aren't a subset,
1736 	 * or the credential has changed, require appropriate privilege
1737 	 * for td to debug p.
1738 	 */
1739 	if (!grpsubset || !uidsubset) {
1740 		error = priv_check(td, PRIV_DEBUG_DIFFCRED);
1741 		if (error)
1742 			return (error);
1743 	}
1744 
1745 	if (credentialchanged) {
1746 		error = priv_check(td, PRIV_DEBUG_SUGID);
1747 		if (error)
1748 			return (error);
1749 	}
1750 
1751 	/* Can't trace init when securelevel > 0. */
1752 	if (p == initproc) {
1753 		error = securelevel_gt(td->td_ucred, 0);
1754 		if (error)
1755 			return (error);
1756 	}
1757 
1758 	/*
1759 	 * Can't trace a process that's currently exec'ing.
1760 	 *
1761 	 * XXX: Note, this is not a security policy decision, it's a
1762 	 * basic correctness/functionality decision.  Therefore, this check
1763 	 * should be moved to the caller's of p_candebug().
1764 	 */
1765 	if ((p->p_flag & P_INEXEC) != 0)
1766 		return (EBUSY);
1767 
1768 	/* Denied explicitely */
1769 	if ((p->p_flag2 & P2_NOTRACE) != 0) {
1770 		error = priv_check(td, PRIV_DEBUG_DENIED);
1771 		if (error != 0)
1772 			return (error);
1773 	}
1774 
1775 	return (0);
1776 }
1777 
1778 /*-
1779  * Determine whether the subject represented by cred can "see" a socket.
1780  * Returns: 0 for permitted, ENOENT otherwise.
1781  */
1782 int
1783 cr_canseesocket(struct ucred *cred, struct socket *so)
1784 {
1785 	int error;
1786 
1787 	error = prison_check(cred, so->so_cred);
1788 	if (error)
1789 		return (ENOENT);
1790 #ifdef MAC
1791 	error = mac_socket_check_visible(cred, so);
1792 	if (error)
1793 		return (error);
1794 #endif
1795 	if (cr_canseeotheruids(cred, so->so_cred))
1796 		return (ENOENT);
1797 	if (cr_canseeothergids(cred, so->so_cred))
1798 		return (ENOENT);
1799 
1800 	return (0);
1801 }
1802 
1803 /*-
1804  * Determine whether td can wait for the exit of p.
1805  * Returns: 0 for permitted, an errno value otherwise
1806  * Locks: Sufficient locks to protect various components of td and p
1807  *        must be held.  td must be curthread, and a lock must
1808  *        be held for p.
1809  * References: td and p must be valid for the lifetime of the call
1810 
1811  */
1812 int
1813 p_canwait(struct thread *td, struct proc *p)
1814 {
1815 	int error;
1816 
1817 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1818 	PROC_LOCK_ASSERT(p, MA_OWNED);
1819 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1820 		return (error);
1821 #ifdef MAC
1822 	if ((error = mac_proc_check_wait(td->td_ucred, p)))
1823 		return (error);
1824 #endif
1825 #if 0
1826 	/* XXXMAC: This could have odd effects on some shells. */
1827 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1828 		return (error);
1829 #endif
1830 
1831 	return (0);
1832 }
1833 
1834 /*
1835  * Allocate a zeroed cred structure.
1836  */
1837 struct ucred *
1838 crget(void)
1839 {
1840 	struct ucred *cr;
1841 
1842 	cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
1843 	refcount_init(&cr->cr_ref, 1);
1844 #ifdef AUDIT
1845 	audit_cred_init(cr);
1846 #endif
1847 #ifdef MAC
1848 	mac_cred_init(cr);
1849 #endif
1850 	cr->cr_groups = cr->cr_smallgroups;
1851 	cr->cr_agroups =
1852 	    sizeof(cr->cr_smallgroups) / sizeof(cr->cr_smallgroups[0]);
1853 	return (cr);
1854 }
1855 
1856 /*
1857  * Claim another reference to a ucred structure.
1858  */
1859 struct ucred *
1860 crhold(struct ucred *cr)
1861 {
1862 
1863 	refcount_acquire(&cr->cr_ref);
1864 	return (cr);
1865 }
1866 
1867 /*
1868  * Free a cred structure.  Throws away space when ref count gets to 0.
1869  */
1870 void
1871 crfree(struct ucred *cr)
1872 {
1873 
1874 	KASSERT(cr->cr_ref > 0, ("bad ucred refcount: %d", cr->cr_ref));
1875 	KASSERT(cr->cr_ref != 0xdeadc0de, ("dangling reference to ucred"));
1876 	if (refcount_release(&cr->cr_ref)) {
1877 		/*
1878 		 * Some callers of crget(), such as nfs_statfs(),
1879 		 * allocate a temporary credential, but don't
1880 		 * allocate a uidinfo structure.
1881 		 */
1882 		if (cr->cr_uidinfo != NULL)
1883 			uifree(cr->cr_uidinfo);
1884 		if (cr->cr_ruidinfo != NULL)
1885 			uifree(cr->cr_ruidinfo);
1886 		/*
1887 		 * Free a prison, if any.
1888 		 */
1889 		if (cr->cr_prison != NULL)
1890 			prison_free(cr->cr_prison);
1891 		if (cr->cr_loginclass != NULL)
1892 			loginclass_free(cr->cr_loginclass);
1893 #ifdef AUDIT
1894 		audit_cred_destroy(cr);
1895 #endif
1896 #ifdef MAC
1897 		mac_cred_destroy(cr);
1898 #endif
1899 		if (cr->cr_groups != cr->cr_smallgroups)
1900 			free(cr->cr_groups, M_CRED);
1901 		free(cr, M_CRED);
1902 	}
1903 }
1904 
1905 /*
1906  * Copy a ucred's contents from a template.  Does not block.
1907  */
1908 void
1909 crcopy(struct ucred *dest, struct ucred *src)
1910 {
1911 
1912 	KASSERT(dest->cr_ref == 1, ("crcopy of shared ucred"));
1913 	bcopy(&src->cr_startcopy, &dest->cr_startcopy,
1914 	    (unsigned)((caddr_t)&src->cr_endcopy -
1915 		(caddr_t)&src->cr_startcopy));
1916 	crsetgroups(dest, src->cr_ngroups, src->cr_groups);
1917 	uihold(dest->cr_uidinfo);
1918 	uihold(dest->cr_ruidinfo);
1919 	prison_hold(dest->cr_prison);
1920 	loginclass_hold(dest->cr_loginclass);
1921 #ifdef AUDIT
1922 	audit_cred_copy(src, dest);
1923 #endif
1924 #ifdef MAC
1925 	mac_cred_copy(src, dest);
1926 #endif
1927 }
1928 
1929 /*
1930  * Dup cred struct to a new held one.
1931  */
1932 struct ucred *
1933 crdup(struct ucred *cr)
1934 {
1935 	struct ucred *newcr;
1936 
1937 	newcr = crget();
1938 	crcopy(newcr, cr);
1939 	return (newcr);
1940 }
1941 
1942 /*
1943  * Fill in a struct xucred based on a struct ucred.
1944  */
1945 void
1946 cru2x(struct ucred *cr, struct xucred *xcr)
1947 {
1948 	int ngroups;
1949 
1950 	bzero(xcr, sizeof(*xcr));
1951 	xcr->cr_version = XUCRED_VERSION;
1952 	xcr->cr_uid = cr->cr_uid;
1953 
1954 	ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
1955 	xcr->cr_ngroups = ngroups;
1956 	bcopy(cr->cr_groups, xcr->cr_groups,
1957 	    ngroups * sizeof(*cr->cr_groups));
1958 }
1959 
1960 /*
1961  * Set initial process credentials.
1962  * Callers are responsible for providing the reference for provided credentials.
1963  */
1964 void
1965 proc_set_cred_init(struct proc *p, struct ucred *newcred)
1966 {
1967 
1968 	p->p_ucred = newcred;
1969 }
1970 
1971 /*
1972  * Change process credentials.
1973  * Callers are responsible for providing the reference for passed credentials
1974  * and for freeing old ones.
1975  *
1976  * Process has to be locked except when it does not have credentials (as it
1977  * should not be visible just yet) or when newcred is NULL (as this can be
1978  * only used when the process is about to be freed, at which point it should
1979  * not be visible anymore).
1980  */
1981 struct ucred *
1982 proc_set_cred(struct proc *p, struct ucred *newcred)
1983 {
1984 	struct ucred *oldcred;
1985 
1986 	MPASS(p->p_ucred != NULL);
1987 	if (newcred == NULL)
1988 		MPASS(p->p_state == PRS_ZOMBIE);
1989 	else
1990 		PROC_LOCK_ASSERT(p, MA_OWNED);
1991 
1992 	oldcred = p->p_ucred;
1993 	p->p_ucred = newcred;
1994 	if (newcred != NULL)
1995 		PROC_UPDATE_COW(p);
1996 	return (oldcred);
1997 }
1998 
1999 struct ucred *
2000 crcopysafe(struct proc *p, struct ucred *cr)
2001 {
2002 	struct ucred *oldcred;
2003 	int groups;
2004 
2005 	PROC_LOCK_ASSERT(p, MA_OWNED);
2006 
2007 	oldcred = p->p_ucred;
2008 	while (cr->cr_agroups < oldcred->cr_agroups) {
2009 		groups = oldcred->cr_agroups;
2010 		PROC_UNLOCK(p);
2011 		crextend(cr, groups);
2012 		PROC_LOCK(p);
2013 		oldcred = p->p_ucred;
2014 	}
2015 	crcopy(cr, oldcred);
2016 
2017 	return (oldcred);
2018 }
2019 
2020 /*
2021  * Extend the passed in credential to hold n items.
2022  */
2023 void
2024 crextend(struct ucred *cr, int n)
2025 {
2026 	int cnt;
2027 
2028 	/* Truncate? */
2029 	if (n <= cr->cr_agroups)
2030 		return;
2031 
2032 	/*
2033 	 * We extend by 2 each time since we're using a power of two
2034 	 * allocator until we need enough groups to fill a page.
2035 	 * Once we're allocating multiple pages, only allocate as many
2036 	 * as we actually need.  The case of processes needing a
2037 	 * non-power of two number of pages seems more likely than
2038 	 * a real world process that adds thousands of groups one at a
2039 	 * time.
2040 	 */
2041 	if ( n < PAGE_SIZE / sizeof(gid_t) ) {
2042 		if (cr->cr_agroups == 0)
2043 			cnt = MINALLOCSIZE / sizeof(gid_t);
2044 		else
2045 			cnt = cr->cr_agroups * 2;
2046 
2047 		while (cnt < n)
2048 			cnt *= 2;
2049 	} else
2050 		cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t));
2051 
2052 	/* Free the old array. */
2053 	if (cr->cr_groups != cr->cr_smallgroups)
2054 		free(cr->cr_groups, M_CRED);
2055 
2056 	cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO);
2057 	cr->cr_agroups = cnt;
2058 }
2059 
2060 /*
2061  * Copy groups in to a credential, preserving any necessary invariants.
2062  * Currently this includes the sorting of all supplemental gids.
2063  * crextend() must have been called before hand to ensure sufficient
2064  * space is available.
2065  */
2066 static void
2067 crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups)
2068 {
2069 	int i;
2070 	int j;
2071 	gid_t g;
2072 
2073 	KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small"));
2074 
2075 	bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
2076 	cr->cr_ngroups = ngrp;
2077 
2078 	/*
2079 	 * Sort all groups except cr_groups[0] to allow groupmember to
2080 	 * perform a binary search.
2081 	 *
2082 	 * XXX: If large numbers of groups become common this should
2083 	 * be replaced with shell sort like linux uses or possibly
2084 	 * heap sort.
2085 	 */
2086 	for (i = 2; i < ngrp; i++) {
2087 		g = cr->cr_groups[i];
2088 		for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--)
2089 			cr->cr_groups[j + 1] = cr->cr_groups[j];
2090 		cr->cr_groups[j + 1] = g;
2091 	}
2092 }
2093 
2094 /*
2095  * Copy groups in to a credential after expanding it if required.
2096  * Truncate the list to (ngroups_max + 1) if it is too large.
2097  */
2098 void
2099 crsetgroups(struct ucred *cr, int ngrp, gid_t *groups)
2100 {
2101 
2102 	if (ngrp > ngroups_max + 1)
2103 		ngrp = ngroups_max + 1;
2104 
2105 	crextend(cr, ngrp);
2106 	crsetgroups_locked(cr, ngrp, groups);
2107 }
2108 
2109 /*
2110  * Get login name, if available.
2111  */
2112 #ifndef _SYS_SYSPROTO_H_
2113 struct getlogin_args {
2114 	char	*namebuf;
2115 	u_int	namelen;
2116 };
2117 #endif
2118 /* ARGSUSED */
2119 int
2120 sys_getlogin(struct thread *td, struct getlogin_args *uap)
2121 {
2122 	char login[MAXLOGNAME];
2123 	struct proc *p = td->td_proc;
2124 	size_t len;
2125 
2126 	if (uap->namelen > MAXLOGNAME)
2127 		uap->namelen = MAXLOGNAME;
2128 	PROC_LOCK(p);
2129 	SESS_LOCK(p->p_session);
2130 	len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1;
2131 	SESS_UNLOCK(p->p_session);
2132 	PROC_UNLOCK(p);
2133 	if (len > uap->namelen)
2134 		return (ERANGE);
2135 	return (copyout(login, uap->namebuf, len));
2136 }
2137 
2138 /*
2139  * Set login name.
2140  */
2141 #ifndef _SYS_SYSPROTO_H_
2142 struct setlogin_args {
2143 	char	*namebuf;
2144 };
2145 #endif
2146 /* ARGSUSED */
2147 int
2148 sys_setlogin(struct thread *td, struct setlogin_args *uap)
2149 {
2150 	struct proc *p = td->td_proc;
2151 	int error;
2152 	char logintmp[MAXLOGNAME];
2153 
2154 	CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp));
2155 
2156 	error = priv_check(td, PRIV_PROC_SETLOGIN);
2157 	if (error)
2158 		return (error);
2159 	error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
2160 	if (error != 0) {
2161 		if (error == ENAMETOOLONG)
2162 			error = EINVAL;
2163 		return (error);
2164 	}
2165 	AUDIT_ARG_LOGIN(logintmp);
2166 	PROC_LOCK(p);
2167 	SESS_LOCK(p->p_session);
2168 	strcpy(p->p_session->s_login, logintmp);
2169 	SESS_UNLOCK(p->p_session);
2170 	PROC_UNLOCK(p);
2171 	return (0);
2172 }
2173 
2174 void
2175 setsugid(struct proc *p)
2176 {
2177 
2178 	PROC_LOCK_ASSERT(p, MA_OWNED);
2179 	p->p_flag |= P_SUGID;
2180 	if (!(p->p_pfsflags & PF_ISUGID))
2181 		p->p_stops = 0;
2182 }
2183 
2184 /*-
2185  * Change a process's effective uid.
2186  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
2187  * References: newcred must be an exclusive credential reference for the
2188  *             duration of the call.
2189  */
2190 void
2191 change_euid(struct ucred *newcred, struct uidinfo *euip)
2192 {
2193 
2194 	newcred->cr_uid = euip->ui_uid;
2195 	uihold(euip);
2196 	uifree(newcred->cr_uidinfo);
2197 	newcred->cr_uidinfo = euip;
2198 }
2199 
2200 /*-
2201  * Change a process's effective gid.
2202  * Side effects: newcred->cr_gid will be modified.
2203  * References: newcred must be an exclusive credential reference for the
2204  *             duration of the call.
2205  */
2206 void
2207 change_egid(struct ucred *newcred, gid_t egid)
2208 {
2209 
2210 	newcred->cr_groups[0] = egid;
2211 }
2212 
2213 /*-
2214  * Change a process's real uid.
2215  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
2216  *               will be updated, and the old and new cr_ruidinfo proc
2217  *               counts will be updated.
2218  * References: newcred must be an exclusive credential reference for the
2219  *             duration of the call.
2220  */
2221 void
2222 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
2223 {
2224 
2225 	(void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
2226 	newcred->cr_ruid = ruip->ui_uid;
2227 	uihold(ruip);
2228 	uifree(newcred->cr_ruidinfo);
2229 	newcred->cr_ruidinfo = ruip;
2230 	(void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
2231 }
2232 
2233 /*-
2234  * Change a process's real gid.
2235  * Side effects: newcred->cr_rgid will be updated.
2236  * References: newcred must be an exclusive credential reference for the
2237  *             duration of the call.
2238  */
2239 void
2240 change_rgid(struct ucred *newcred, gid_t rgid)
2241 {
2242 
2243 	newcred->cr_rgid = rgid;
2244 }
2245 
2246 /*-
2247  * Change a process's saved uid.
2248  * Side effects: newcred->cr_svuid will be updated.
2249  * References: newcred must be an exclusive credential reference for the
2250  *             duration of the call.
2251  */
2252 void
2253 change_svuid(struct ucred *newcred, uid_t svuid)
2254 {
2255 
2256 	newcred->cr_svuid = svuid;
2257 }
2258 
2259 /*-
2260  * Change a process's saved gid.
2261  * Side effects: newcred->cr_svgid will be updated.
2262  * References: newcred must be an exclusive credential reference for the
2263  *             duration of the call.
2264  */
2265 void
2266 change_svgid(struct ucred *newcred, gid_t svgid)
2267 {
2268 
2269 	newcred->cr_svgid = svgid;
2270 }
2271