1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993 5 * The Regents of the University of California. 6 * (c) UNIX System Laboratories, Inc. 7 * Copyright (c) 2000-2001 Robert N. M. Watson. 8 * All rights reserved. 9 * 10 * All or some portions of this file are derived from material licensed 11 * to the University of California by American Telephone and Telegraph 12 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 13 * the permission of UNIX System Laboratories, Inc. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. Neither the name of the University nor the names of its contributors 24 * may be used to endorse or promote products derived from this software 25 * without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 37 * SUCH DAMAGE. 38 */ 39 40 /* 41 * System calls related to processes and protection 42 */ 43 44 #include <sys/cdefs.h> 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/abi_compat.h> 51 #include <sys/acct.h> 52 #include <sys/kdb.h> 53 #include <sys/kernel.h> 54 #include <sys/libkern.h> 55 #include <sys/lock.h> 56 #include <sys/loginclass.h> 57 #include <sys/malloc.h> 58 #include <sys/mutex.h> 59 #include <sys/ptrace.h> 60 #include <sys/refcount.h> 61 #include <sys/sx.h> 62 #include <sys/priv.h> 63 #include <sys/proc.h> 64 #ifdef COMPAT_43 65 #include <sys/sysent.h> 66 #endif 67 #include <sys/sysproto.h> 68 #include <sys/jail.h> 69 #include <sys/racct.h> 70 #include <sys/rctl.h> 71 #include <sys/resourcevar.h> 72 #include <sys/socket.h> 73 #include <sys/socketvar.h> 74 #include <sys/syscallsubr.h> 75 #include <sys/sysctl.h> 76 77 #ifdef MAC 78 #include <security/mac/mac_syscalls.h> 79 #endif 80 81 #include <vm/uma.h> 82 83 #ifdef REGRESSION 84 FEATURE(regression, 85 "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)"); 86 #endif 87 88 #include <security/audit/audit.h> 89 #include <security/mac/mac_framework.h> 90 91 static MALLOC_DEFINE(M_CRED, "cred", "credentials"); 92 93 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 94 "BSD security policy"); 95 96 static void crfree_final(struct ucred *cr); 97 98 static inline void 99 groups_check_positive_len(int ngrp) 100 { 101 MPASS2(ngrp >= 0, "negative number of groups"); 102 } 103 static inline void 104 groups_check_max_len(int ngrp) 105 { 106 MPASS2(ngrp <= ngroups_max, "too many supplementary groups"); 107 } 108 109 static void groups_normalize(int *ngrp, gid_t *groups); 110 static void crsetgroups_internal(struct ucred *cr, int ngrp, 111 const gid_t *groups); 112 113 static int cr_canseeotheruids(struct ucred *u1, struct ucred *u2); 114 static int cr_canseeothergids(struct ucred *u1, struct ucred *u2); 115 static int cr_canseejailproc(struct ucred *u1, struct ucred *u2); 116 117 #ifndef _SYS_SYSPROTO_H_ 118 struct getpid_args { 119 int dummy; 120 }; 121 #endif 122 /* ARGSUSED */ 123 int 124 sys_getpid(struct thread *td, struct getpid_args *uap) 125 { 126 struct proc *p = td->td_proc; 127 128 td->td_retval[0] = p->p_pid; 129 #if defined(COMPAT_43) 130 if (SV_PROC_FLAG(p, SV_AOUT)) 131 td->td_retval[1] = kern_getppid(td); 132 #endif 133 return (0); 134 } 135 136 #ifndef _SYS_SYSPROTO_H_ 137 struct getppid_args { 138 int dummy; 139 }; 140 #endif 141 /* ARGSUSED */ 142 int 143 sys_getppid(struct thread *td, struct getppid_args *uap) 144 { 145 146 td->td_retval[0] = kern_getppid(td); 147 return (0); 148 } 149 150 int 151 kern_getppid(struct thread *td) 152 { 153 struct proc *p = td->td_proc; 154 155 return (p->p_oppid); 156 } 157 158 /* 159 * Get process group ID; note that POSIX getpgrp takes no parameter. 160 */ 161 #ifndef _SYS_SYSPROTO_H_ 162 struct getpgrp_args { 163 int dummy; 164 }; 165 #endif 166 int 167 sys_getpgrp(struct thread *td, struct getpgrp_args *uap) 168 { 169 struct proc *p = td->td_proc; 170 171 PROC_LOCK(p); 172 td->td_retval[0] = p->p_pgrp->pg_id; 173 PROC_UNLOCK(p); 174 return (0); 175 } 176 177 /* Get an arbitrary pid's process group id */ 178 #ifndef _SYS_SYSPROTO_H_ 179 struct getpgid_args { 180 pid_t pid; 181 }; 182 #endif 183 int 184 sys_getpgid(struct thread *td, struct getpgid_args *uap) 185 { 186 struct proc *p; 187 int error; 188 189 if (uap->pid == 0) { 190 p = td->td_proc; 191 PROC_LOCK(p); 192 } else { 193 p = pfind(uap->pid); 194 if (p == NULL) 195 return (ESRCH); 196 error = p_cansee(td, p); 197 if (error) { 198 PROC_UNLOCK(p); 199 return (error); 200 } 201 } 202 td->td_retval[0] = p->p_pgrp->pg_id; 203 PROC_UNLOCK(p); 204 return (0); 205 } 206 207 /* 208 * Get an arbitrary pid's session id. 209 */ 210 #ifndef _SYS_SYSPROTO_H_ 211 struct getsid_args { 212 pid_t pid; 213 }; 214 #endif 215 int 216 sys_getsid(struct thread *td, struct getsid_args *uap) 217 { 218 219 return (kern_getsid(td, uap->pid)); 220 } 221 222 int 223 kern_getsid(struct thread *td, pid_t pid) 224 { 225 struct proc *p; 226 int error; 227 228 if (pid == 0) { 229 p = td->td_proc; 230 PROC_LOCK(p); 231 } else { 232 p = pfind(pid); 233 if (p == NULL) 234 return (ESRCH); 235 error = p_cansee(td, p); 236 if (error) { 237 PROC_UNLOCK(p); 238 return (error); 239 } 240 } 241 td->td_retval[0] = p->p_session->s_sid; 242 PROC_UNLOCK(p); 243 return (0); 244 } 245 246 #ifndef _SYS_SYSPROTO_H_ 247 struct getuid_args { 248 int dummy; 249 }; 250 #endif 251 /* ARGSUSED */ 252 int 253 sys_getuid(struct thread *td, struct getuid_args *uap) 254 { 255 256 td->td_retval[0] = td->td_ucred->cr_ruid; 257 #if defined(COMPAT_43) 258 td->td_retval[1] = td->td_ucred->cr_uid; 259 #endif 260 return (0); 261 } 262 263 #ifndef _SYS_SYSPROTO_H_ 264 struct geteuid_args { 265 int dummy; 266 }; 267 #endif 268 /* ARGSUSED */ 269 int 270 sys_geteuid(struct thread *td, struct geteuid_args *uap) 271 { 272 273 td->td_retval[0] = td->td_ucred->cr_uid; 274 return (0); 275 } 276 277 #ifndef _SYS_SYSPROTO_H_ 278 struct getgid_args { 279 int dummy; 280 }; 281 #endif 282 /* ARGSUSED */ 283 int 284 sys_getgid(struct thread *td, struct getgid_args *uap) 285 { 286 287 td->td_retval[0] = td->td_ucred->cr_rgid; 288 #if defined(COMPAT_43) 289 td->td_retval[1] = td->td_ucred->cr_gid; 290 #endif 291 return (0); 292 } 293 294 /* 295 * Get effective group ID. The "egid" is groups[0], and could be obtained 296 * via getgroups. This syscall exists because it is somewhat painful to do 297 * correctly in a library function. 298 */ 299 #ifndef _SYS_SYSPROTO_H_ 300 struct getegid_args { 301 int dummy; 302 }; 303 #endif 304 /* ARGSUSED */ 305 int 306 sys_getegid(struct thread *td, struct getegid_args *uap) 307 { 308 309 td->td_retval[0] = td->td_ucred->cr_gid; 310 return (0); 311 } 312 313 #ifndef _SYS_SYSPROTO_H_ 314 struct getgroups_args { 315 int gidsetsize; 316 gid_t *gidset; 317 }; 318 #endif 319 int 320 sys_getgroups(struct thread *td, struct getgroups_args *uap) 321 { 322 struct ucred *cred; 323 gid_t *ugidset; 324 int ngrp, error; 325 326 cred = td->td_ucred; 327 328 /* 329 * cr_gid has been moved out of cr_groups, but we'll continue exporting 330 * the egid as groups[0] for the time being until we audit userland for 331 * any surprises. 332 */ 333 ngrp = cred->cr_ngroups + 1; 334 335 if (uap->gidsetsize == 0) { 336 error = 0; 337 goto out; 338 } 339 if (uap->gidsetsize < ngrp) 340 return (EINVAL); 341 342 ugidset = uap->gidset; 343 error = copyout(&cred->cr_gid, ugidset, sizeof(*ugidset)); 344 if (error != 0) 345 goto out; 346 347 if (ngrp > 1) 348 error = copyout(cred->cr_groups, ugidset + 1, 349 (ngrp - 1) * sizeof(*ugidset)); 350 out: 351 td->td_retval[0] = ngrp; 352 return (error); 353 } 354 355 #ifndef _SYS_SYSPROTO_H_ 356 struct setsid_args { 357 int dummy; 358 }; 359 #endif 360 /* ARGSUSED */ 361 int 362 sys_setsid(struct thread *td, struct setsid_args *uap) 363 { 364 struct pgrp *pgrp; 365 int error; 366 struct proc *p = td->td_proc; 367 struct pgrp *newpgrp; 368 struct session *newsess; 369 370 pgrp = NULL; 371 372 newpgrp = uma_zalloc(pgrp_zone, M_WAITOK); 373 newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO); 374 375 again: 376 error = 0; 377 sx_xlock(&proctree_lock); 378 379 if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) { 380 if (pgrp != NULL) 381 PGRP_UNLOCK(pgrp); 382 error = EPERM; 383 } else { 384 error = enterpgrp(p, p->p_pid, newpgrp, newsess); 385 if (error == ERESTART) 386 goto again; 387 MPASS(error == 0); 388 td->td_retval[0] = p->p_pid; 389 newpgrp = NULL; 390 newsess = NULL; 391 } 392 393 sx_xunlock(&proctree_lock); 394 395 uma_zfree(pgrp_zone, newpgrp); 396 free(newsess, M_SESSION); 397 398 return (error); 399 } 400 401 /* 402 * set process group (setpgid/old setpgrp) 403 * 404 * caller does setpgid(targpid, targpgid) 405 * 406 * pid must be caller or child of caller (ESRCH) 407 * if a child 408 * pid must be in same session (EPERM) 409 * pid can't have done an exec (EACCES) 410 * if pgid != pid 411 * there must exist some pid in same session having pgid (EPERM) 412 * pid must not be session leader (EPERM) 413 */ 414 #ifndef _SYS_SYSPROTO_H_ 415 struct setpgid_args { 416 int pid; /* target process id */ 417 int pgid; /* target pgrp id */ 418 }; 419 #endif 420 /* ARGSUSED */ 421 int 422 sys_setpgid(struct thread *td, struct setpgid_args *uap) 423 { 424 struct proc *curp = td->td_proc; 425 struct proc *targp; /* target process */ 426 struct pgrp *pgrp; /* target pgrp */ 427 int error; 428 struct pgrp *newpgrp; 429 430 if (uap->pgid < 0) 431 return (EINVAL); 432 433 newpgrp = uma_zalloc(pgrp_zone, M_WAITOK); 434 435 again: 436 error = 0; 437 438 sx_xlock(&proctree_lock); 439 if (uap->pid != 0 && uap->pid != curp->p_pid) { 440 if ((targp = pfind(uap->pid)) == NULL) { 441 error = ESRCH; 442 goto done; 443 } 444 if (!inferior(targp)) { 445 PROC_UNLOCK(targp); 446 error = ESRCH; 447 goto done; 448 } 449 if ((error = p_cansee(td, targp))) { 450 PROC_UNLOCK(targp); 451 goto done; 452 } 453 if (targp->p_pgrp == NULL || 454 targp->p_session != curp->p_session) { 455 PROC_UNLOCK(targp); 456 error = EPERM; 457 goto done; 458 } 459 if (targp->p_flag & P_EXEC) { 460 PROC_UNLOCK(targp); 461 error = EACCES; 462 goto done; 463 } 464 PROC_UNLOCK(targp); 465 } else 466 targp = curp; 467 if (SESS_LEADER(targp)) { 468 error = EPERM; 469 goto done; 470 } 471 if (uap->pgid == 0) 472 uap->pgid = targp->p_pid; 473 if ((pgrp = pgfind(uap->pgid)) == NULL) { 474 if (uap->pgid == targp->p_pid) { 475 error = enterpgrp(targp, uap->pgid, newpgrp, 476 NULL); 477 if (error == 0) 478 newpgrp = NULL; 479 } else 480 error = EPERM; 481 } else { 482 if (pgrp == targp->p_pgrp) { 483 PGRP_UNLOCK(pgrp); 484 goto done; 485 } 486 if (pgrp->pg_id != targp->p_pid && 487 pgrp->pg_session != curp->p_session) { 488 PGRP_UNLOCK(pgrp); 489 error = EPERM; 490 goto done; 491 } 492 PGRP_UNLOCK(pgrp); 493 error = enterthispgrp(targp, pgrp); 494 } 495 done: 496 KASSERT(error == 0 || newpgrp != NULL, 497 ("setpgid failed and newpgrp is NULL")); 498 if (error == ERESTART) 499 goto again; 500 sx_xunlock(&proctree_lock); 501 uma_zfree(pgrp_zone, newpgrp); 502 return (error); 503 } 504 505 static int 506 gidp_cmp(const void *p1, const void *p2) 507 { 508 const gid_t g1 = *(const gid_t *)p1; 509 const gid_t g2 = *(const gid_t *)p2; 510 511 return ((g1 > g2) - (g1 < g2)); 512 } 513 514 /* 515 * Final storage for supplementary groups will be returned via 'groups'. 516 * '*groups' must be NULL on input, and if not equal to 'smallgroups' 517 * on output, must be freed (M_TEMP) *even if* an error is returned. 518 */ 519 static int 520 kern_setcred_copyin_supp_groups(struct setcred *const wcred, 521 const u_int flags, gid_t *const smallgroups, gid_t **const groups) 522 { 523 MPASS(*groups == NULL); 524 525 if (flags & SETCREDF_SUPP_GROUPS) { 526 int error; 527 528 /* 529 * Check for the limit for number of groups right now in order 530 * to limit the amount of bytes to copy. 531 */ 532 if (wcred->sc_supp_groups_nb > ngroups_max) 533 return (EINVAL); 534 535 /* 536 * Since we are going to be copying the supplementary groups 537 * from userland, make room also for the effective GID right 538 * now, to avoid having to allocate and copy again the 539 * supplementary groups. 540 */ 541 *groups = wcred->sc_supp_groups_nb <= CRED_SMALLGROUPS_NB ? 542 smallgroups : malloc(wcred->sc_supp_groups_nb * 543 sizeof(*groups), M_TEMP, M_WAITOK); 544 545 error = copyin(wcred->sc_supp_groups, *groups, 546 wcred->sc_supp_groups_nb * sizeof(*groups)); 547 if (error != 0) 548 return (error); 549 wcred->sc_supp_groups = *groups; 550 } else { 551 wcred->sc_supp_groups_nb = 0; 552 wcred->sc_supp_groups = NULL; 553 } 554 555 return (0); 556 } 557 558 int 559 user_setcred(struct thread *td, const u_int flags, 560 const void *const uwcred, const size_t size, bool is_32bit) 561 { 562 struct setcred wcred; 563 #ifdef MAC 564 struct mac mac; 565 /* Pointer to 'struct mac' or 'struct mac32'. */ 566 void *umac; 567 #endif 568 gid_t smallgroups[CRED_SMALLGROUPS_NB]; 569 gid_t *groups = NULL; 570 int error; 571 572 /* 573 * As the only point of this wrapper function is to copyin() from 574 * userland, we only interpret the data pieces we need to perform this 575 * operation and defer further sanity checks to kern_setcred(), except 576 * that we redundantly check here that no unknown flags have been 577 * passed. 578 */ 579 if ((flags & ~SETCREDF_MASK) != 0) 580 return (EINVAL); 581 582 #ifdef COMPAT_FREEBSD32 583 if (is_32bit) { 584 struct setcred32 wcred32; 585 586 if (size != sizeof(wcred32)) 587 return (EINVAL); 588 error = copyin(uwcred, &wcred32, sizeof(wcred32)); 589 if (error != 0) 590 return (error); 591 /* These fields have exactly the same sizes and positions. */ 592 memcpy(&wcred, &wcred32, &wcred32.setcred32_copy_end - 593 &wcred32.setcred32_copy_start); 594 /* Remaining fields are pointers and need PTRIN*(). */ 595 PTRIN_CP(wcred32, wcred, sc_supp_groups); 596 PTRIN_CP(wcred32, wcred, sc_label); 597 } else 598 #endif /* COMPAT_FREEBSD32 */ 599 { 600 if (size != sizeof(wcred)) 601 return (EINVAL); 602 error = copyin(uwcred, &wcred, sizeof(wcred)); 603 if (error != 0) 604 return (error); 605 } 606 #ifdef MAC 607 umac = wcred.sc_label; 608 #endif 609 /* Also done on !MAC as a defensive measure. */ 610 wcred.sc_label = NULL; 611 612 /* 613 * Copy supplementary groups as needed. There is no specific 614 * alternative for 32-bit compatibility as 'gid_t' has the same size 615 * everywhere. 616 */ 617 error = kern_setcred_copyin_supp_groups(&wcred, flags, smallgroups, 618 &groups); 619 if (error != 0) 620 goto free_groups; 621 622 #ifdef MAC 623 if ((flags & SETCREDF_MAC_LABEL) != 0) { 624 #ifdef COMPAT_FREEBSD32 625 if (is_32bit) 626 error = mac_label_copyin32(umac, &mac, NULL); 627 else 628 #endif 629 error = mac_label_copyin(umac, &mac, NULL); 630 if (error != 0) 631 goto free_groups; 632 wcred.sc_label = &mac; 633 } 634 #endif 635 636 error = kern_setcred(td, flags, &wcred, groups); 637 638 #ifdef MAC 639 if (wcred.sc_label != NULL) 640 free_copied_label(wcred.sc_label); 641 #endif 642 643 free_groups: 644 if (groups != smallgroups) 645 free(groups, M_TEMP); 646 647 return (error); 648 } 649 650 #ifndef _SYS_SYSPROTO_H_ 651 struct setcred_args { 652 u_int flags; /* Flags. */ 653 const struct setcred *wcred; 654 size_t size; /* Passed 'setcred' structure length. */ 655 }; 656 #endif 657 /* ARGSUSED */ 658 int 659 sys_setcred(struct thread *td, struct setcred_args *uap) 660 { 661 return (user_setcred(td, uap->flags, uap->wcred, uap->size, false)); 662 } 663 664 /* 665 * CAUTION: This function normalizes groups in 'wcred'. 666 * 667 * If 'preallocated_groups' is non-NULL, it must be an already allocated array 668 * of size 'wcred->sc_supp_groups_nb' containing the supplementary groups, and 669 * 'wcred->sc_supp_groups' then must point to it. 670 */ 671 int 672 kern_setcred(struct thread *const td, const u_int flags, 673 struct setcred *const wcred, gid_t *preallocated_groups) 674 { 675 struct proc *const p = td->td_proc; 676 struct ucred *new_cred, *old_cred, *to_free_cred; 677 struct uidinfo *uip = NULL, *ruip = NULL; 678 #ifdef MAC 679 void *mac_set_proc_data = NULL; 680 bool proc_label_set = false; 681 #endif 682 gid_t *groups = NULL; 683 gid_t smallgroups[CRED_SMALLGROUPS_NB]; 684 int error; 685 bool cred_set; 686 687 /* Bail out on unrecognized flags. */ 688 if (flags & ~SETCREDF_MASK) 689 return (EINVAL); 690 691 /* 692 * Part 1: We allocate and perform preparatory operations with no locks. 693 */ 694 695 if (flags & SETCREDF_SUPP_GROUPS) { 696 if (wcred->sc_supp_groups_nb > ngroups_max) 697 return (EINVAL); 698 if (preallocated_groups != NULL) { 699 groups = preallocated_groups; 700 MPASS(preallocated_groups == wcred->sc_supp_groups); 701 } else { 702 if (wcred->sc_supp_groups_nb <= CRED_SMALLGROUPS_NB) 703 groups = smallgroups; 704 else 705 groups = malloc(wcred->sc_supp_groups_nb * 706 sizeof(*groups), M_TEMP, M_WAITOK); 707 memcpy(groups, wcred->sc_supp_groups, 708 wcred->sc_supp_groups_nb * sizeof(*groups)); 709 } 710 } 711 712 if (flags & SETCREDF_MAC_LABEL) { 713 #ifdef MAC 714 error = mac_set_proc_prepare(td, wcred->sc_label, 715 &mac_set_proc_data); 716 if (error != 0) 717 goto free_groups; 718 #else 719 error = ENOTSUP; 720 goto free_groups; 721 #endif 722 } 723 724 if (flags & SETCREDF_UID) { 725 AUDIT_ARG_EUID(wcred->sc_uid); 726 uip = uifind(wcred->sc_uid); 727 } 728 if (flags & SETCREDF_RUID) { 729 AUDIT_ARG_RUID(wcred->sc_ruid); 730 ruip = uifind(wcred->sc_ruid); 731 } 732 if (flags & SETCREDF_SVUID) 733 AUDIT_ARG_SUID(wcred->sc_svuid); 734 735 if (flags & SETCREDF_GID) 736 AUDIT_ARG_EGID(wcred->sc_gid); 737 if (flags & SETCREDF_RGID) 738 AUDIT_ARG_RGID(wcred->sc_rgid); 739 if (flags & SETCREDF_SVGID) 740 AUDIT_ARG_SGID(wcred->sc_svgid); 741 if (flags & SETCREDF_SUPP_GROUPS) { 742 /* 743 * Output the raw supplementary groups array for better 744 * traceability. 745 */ 746 AUDIT_ARG_GROUPSET(groups, wcred->sc_supp_groups_nb); 747 groups_normalize(&wcred->sc_supp_groups_nb, groups); 748 } 749 750 /* 751 * We first completely build the new credentials and only then pass them 752 * to MAC along with the old ones so that modules can check whether the 753 * requested transition is allowed. 754 */ 755 new_cred = crget(); 756 to_free_cred = new_cred; 757 if (flags & SETCREDF_SUPP_GROUPS) 758 crextend(new_cred, wcred->sc_supp_groups_nb); 759 760 #ifdef MAC 761 mac_cred_setcred_enter(); 762 #endif 763 764 /* 765 * Part 2: We grab the process lock as to have a stable view of its 766 * current credentials, and prepare a copy of them with the requested 767 * changes applied under that lock. 768 */ 769 770 PROC_LOCK(p); 771 old_cred = crcopysafe(p, new_cred); 772 773 /* 774 * Change user IDs. 775 */ 776 if (flags & SETCREDF_UID) 777 change_euid(new_cred, uip); 778 if (flags & SETCREDF_RUID) 779 change_ruid(new_cred, ruip); 780 if (flags & SETCREDF_SVUID) 781 change_svuid(new_cred, wcred->sc_svuid); 782 783 /* 784 * Change groups. 785 */ 786 if (flags & SETCREDF_SUPP_GROUPS) 787 crsetgroups_internal(new_cred, wcred->sc_supp_groups_nb, 788 groups); 789 if (flags & SETCREDF_GID) 790 change_egid(new_cred, wcred->sc_gid); 791 if (flags & SETCREDF_RGID) 792 change_rgid(new_cred, wcred->sc_rgid); 793 if (flags & SETCREDF_SVGID) 794 change_svgid(new_cred, wcred->sc_svgid); 795 796 #ifdef MAC 797 /* 798 * Change the MAC label. 799 */ 800 if (flags & SETCREDF_MAC_LABEL) { 801 error = mac_set_proc_core(td, new_cred, mac_set_proc_data); 802 if (error != 0) 803 goto unlock_finish; 804 proc_label_set = true; 805 } 806 807 /* 808 * MAC security modules checks. 809 */ 810 error = mac_cred_check_setcred(flags, old_cred, new_cred); 811 if (error != 0) 812 goto unlock_finish; 813 #endif 814 /* 815 * Privilege check. 816 */ 817 error = priv_check_cred(old_cred, PRIV_CRED_SETCRED); 818 if (error != 0) 819 goto unlock_finish; 820 821 /* 822 * Set the new credentials, noting that they have changed. 823 */ 824 cred_set = proc_set_cred_enforce_proc_lim(p, new_cred); 825 if (cred_set) { 826 setsugid(p); 827 to_free_cred = old_cred; 828 MPASS(error == 0); 829 } else 830 error = EAGAIN; 831 832 unlock_finish: 833 PROC_UNLOCK(p); 834 /* 835 * Part 3: After releasing the process lock, we perform cleanups and 836 * finishing operations. 837 */ 838 839 #ifdef MAC 840 if (mac_set_proc_data != NULL) 841 mac_set_proc_finish(td, proc_label_set, mac_set_proc_data); 842 mac_cred_setcred_exit(); 843 #endif 844 crfree(to_free_cred); 845 if (uip != NULL) 846 uifree(uip); 847 if (ruip != NULL) 848 uifree(ruip); 849 free_groups: 850 if (groups != preallocated_groups && groups != smallgroups) 851 free(groups, M_TEMP); /* Deals with 'groups' being NULL. */ 852 return (error); 853 } 854 855 /* 856 * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD 857 * compatible. It says that setting the uid/gid to euid/egid is a special 858 * case of "appropriate privilege". Once the rules are expanded out, this 859 * basically means that setuid(nnn) sets all three id's, in all permitted 860 * cases unless _POSIX_SAVED_IDS is enabled. In that case, setuid(getuid()) 861 * does not set the saved id - this is dangerous for traditional BSD 862 * programs. For this reason, we *really* do not want to set 863 * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2. 864 */ 865 #define POSIX_APPENDIX_B_4_2_2 866 867 #ifndef _SYS_SYSPROTO_H_ 868 struct setuid_args { 869 uid_t uid; 870 }; 871 #endif 872 /* ARGSUSED */ 873 int 874 sys_setuid(struct thread *td, struct setuid_args *uap) 875 { 876 struct proc *p = td->td_proc; 877 struct ucred *newcred, *oldcred; 878 uid_t uid; 879 struct uidinfo *uip; 880 int error; 881 882 uid = uap->uid; 883 AUDIT_ARG_UID(uid); 884 newcred = crget(); 885 uip = uifind(uid); 886 PROC_LOCK(p); 887 /* 888 * Copy credentials so other references do not see our changes. 889 */ 890 oldcred = crcopysafe(p, newcred); 891 892 #ifdef MAC 893 error = mac_cred_check_setuid(oldcred, uid); 894 if (error) 895 goto fail; 896 #endif 897 898 /* 899 * See if we have "permission" by POSIX 1003.1 rules. 900 * 901 * Note that setuid(geteuid()) is a special case of 902 * "appropriate privileges" in appendix B.4.2.2. We need 903 * to use this clause to be compatible with traditional BSD 904 * semantics. Basically, it means that "setuid(xx)" sets all 905 * three id's (assuming you have privs). 906 * 907 * Notes on the logic. We do things in three steps. 908 * 1: We determine if the euid is going to change, and do EPERM 909 * right away. We unconditionally change the euid later if this 910 * test is satisfied, simplifying that part of the logic. 911 * 2: We determine if the real and/or saved uids are going to 912 * change. Determined by compile options. 913 * 3: Change euid last. (after tests in #2 for "appropriate privs") 914 */ 915 if (uid != oldcred->cr_ruid && /* allow setuid(getuid()) */ 916 #ifdef _POSIX_SAVED_IDS 917 uid != oldcred->cr_svuid && /* allow setuid(saved gid) */ 918 #endif 919 #ifdef POSIX_APPENDIX_B_4_2_2 /* Use BSD-compat clause from B.4.2.2 */ 920 uid != oldcred->cr_uid && /* allow setuid(geteuid()) */ 921 #endif 922 (error = priv_check_cred(oldcred, PRIV_CRED_SETUID)) != 0) 923 goto fail; 924 925 #ifdef _POSIX_SAVED_IDS 926 /* 927 * Do we have "appropriate privileges" (are we root or uid == euid) 928 * If so, we are changing the real uid and/or saved uid. 929 */ 930 if ( 931 #ifdef POSIX_APPENDIX_B_4_2_2 /* Use the clause from B.4.2.2 */ 932 uid == oldcred->cr_uid || 933 #endif 934 /* We are using privs. */ 935 priv_check_cred(oldcred, PRIV_CRED_SETUID) == 0) 936 #endif 937 { 938 /* 939 * Set the real uid. 940 */ 941 if (uid != oldcred->cr_ruid) { 942 change_ruid(newcred, uip); 943 setsugid(p); 944 } 945 /* 946 * Set saved uid 947 * 948 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as 949 * the security of seteuid() depends on it. B.4.2.2 says it 950 * is important that we should do this. 951 */ 952 if (uid != oldcred->cr_svuid) { 953 change_svuid(newcred, uid); 954 setsugid(p); 955 } 956 } 957 958 /* 959 * In all permitted cases, we are changing the euid. 960 */ 961 if (uid != oldcred->cr_uid) { 962 change_euid(newcred, uip); 963 setsugid(p); 964 } 965 /* 966 * This also transfers the proc count to the new user. 967 */ 968 proc_set_cred(p, newcred); 969 #ifdef RACCT 970 racct_proc_ucred_changed(p, oldcred, newcred); 971 crhold(newcred); 972 #endif 973 PROC_UNLOCK(p); 974 #ifdef RCTL 975 rctl_proc_ucred_changed(p, newcred); 976 crfree(newcred); 977 #endif 978 uifree(uip); 979 crfree(oldcred); 980 return (0); 981 982 fail: 983 PROC_UNLOCK(p); 984 uifree(uip); 985 crfree(newcred); 986 return (error); 987 } 988 989 #ifndef _SYS_SYSPROTO_H_ 990 struct seteuid_args { 991 uid_t euid; 992 }; 993 #endif 994 /* ARGSUSED */ 995 int 996 sys_seteuid(struct thread *td, struct seteuid_args *uap) 997 { 998 struct proc *p = td->td_proc; 999 struct ucred *newcred, *oldcred; 1000 uid_t euid; 1001 struct uidinfo *euip; 1002 int error; 1003 1004 euid = uap->euid; 1005 AUDIT_ARG_EUID(euid); 1006 newcred = crget(); 1007 euip = uifind(euid); 1008 PROC_LOCK(p); 1009 /* 1010 * Copy credentials so other references do not see our changes. 1011 */ 1012 oldcred = crcopysafe(p, newcred); 1013 1014 #ifdef MAC 1015 error = mac_cred_check_seteuid(oldcred, euid); 1016 if (error) 1017 goto fail; 1018 #endif 1019 1020 if (euid != oldcred->cr_ruid && /* allow seteuid(getuid()) */ 1021 euid != oldcred->cr_svuid && /* allow seteuid(saved uid) */ 1022 (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID)) != 0) 1023 goto fail; 1024 1025 /* 1026 * Everything's okay, do it. 1027 */ 1028 if (oldcred->cr_uid != euid) { 1029 change_euid(newcred, euip); 1030 setsugid(p); 1031 } 1032 proc_set_cred(p, newcred); 1033 PROC_UNLOCK(p); 1034 uifree(euip); 1035 crfree(oldcred); 1036 return (0); 1037 1038 fail: 1039 PROC_UNLOCK(p); 1040 uifree(euip); 1041 crfree(newcred); 1042 return (error); 1043 } 1044 1045 #ifndef _SYS_SYSPROTO_H_ 1046 struct setgid_args { 1047 gid_t gid; 1048 }; 1049 #endif 1050 /* ARGSUSED */ 1051 int 1052 sys_setgid(struct thread *td, struct setgid_args *uap) 1053 { 1054 struct proc *p = td->td_proc; 1055 struct ucred *newcred, *oldcred; 1056 gid_t gid; 1057 int error; 1058 1059 gid = uap->gid; 1060 AUDIT_ARG_GID(gid); 1061 newcred = crget(); 1062 PROC_LOCK(p); 1063 oldcred = crcopysafe(p, newcred); 1064 1065 #ifdef MAC 1066 error = mac_cred_check_setgid(oldcred, gid); 1067 if (error) 1068 goto fail; 1069 #endif 1070 1071 /* 1072 * See if we have "permission" by POSIX 1003.1 rules. 1073 * 1074 * Note that setgid(getegid()) is a special case of 1075 * "appropriate privileges" in appendix B.4.2.2. We need 1076 * to use this clause to be compatible with traditional BSD 1077 * semantics. Basically, it means that "setgid(xx)" sets all 1078 * three id's (assuming you have privs). 1079 * 1080 * For notes on the logic here, see setuid() above. 1081 */ 1082 if (gid != oldcred->cr_rgid && /* allow setgid(getgid()) */ 1083 #ifdef _POSIX_SAVED_IDS 1084 gid != oldcred->cr_svgid && /* allow setgid(saved gid) */ 1085 #endif 1086 #ifdef POSIX_APPENDIX_B_4_2_2 /* Use BSD-compat clause from B.4.2.2 */ 1087 gid != oldcred->cr_gid && /* allow setgid(getegid()) */ 1088 #endif 1089 (error = priv_check_cred(oldcred, PRIV_CRED_SETGID)) != 0) 1090 goto fail; 1091 1092 #ifdef _POSIX_SAVED_IDS 1093 /* 1094 * Do we have "appropriate privileges" (are we root or gid == egid) 1095 * If so, we are changing the real uid and saved gid. 1096 */ 1097 if ( 1098 #ifdef POSIX_APPENDIX_B_4_2_2 /* use the clause from B.4.2.2 */ 1099 gid == oldcred->cr_gid || 1100 #endif 1101 /* We are using privs. */ 1102 priv_check_cred(oldcred, PRIV_CRED_SETGID) == 0) 1103 #endif 1104 { 1105 /* 1106 * Set real gid 1107 */ 1108 if (oldcred->cr_rgid != gid) { 1109 change_rgid(newcred, gid); 1110 setsugid(p); 1111 } 1112 /* 1113 * Set saved gid 1114 * 1115 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as 1116 * the security of setegid() depends on it. B.4.2.2 says it 1117 * is important that we should do this. 1118 */ 1119 if (oldcred->cr_svgid != gid) { 1120 change_svgid(newcred, gid); 1121 setsugid(p); 1122 } 1123 } 1124 /* 1125 * In all cases permitted cases, we are changing the egid. 1126 * Copy credentials so other references do not see our changes. 1127 */ 1128 if (oldcred->cr_gid != gid) { 1129 change_egid(newcred, gid); 1130 setsugid(p); 1131 } 1132 proc_set_cred(p, newcred); 1133 PROC_UNLOCK(p); 1134 crfree(oldcred); 1135 return (0); 1136 1137 fail: 1138 PROC_UNLOCK(p); 1139 crfree(newcred); 1140 return (error); 1141 } 1142 1143 #ifndef _SYS_SYSPROTO_H_ 1144 struct setegid_args { 1145 gid_t egid; 1146 }; 1147 #endif 1148 /* ARGSUSED */ 1149 int 1150 sys_setegid(struct thread *td, struct setegid_args *uap) 1151 { 1152 struct proc *p = td->td_proc; 1153 struct ucred *newcred, *oldcred; 1154 gid_t egid; 1155 int error; 1156 1157 egid = uap->egid; 1158 AUDIT_ARG_EGID(egid); 1159 newcred = crget(); 1160 PROC_LOCK(p); 1161 oldcred = crcopysafe(p, newcred); 1162 1163 #ifdef MAC 1164 error = mac_cred_check_setegid(oldcred, egid); 1165 if (error) 1166 goto fail; 1167 #endif 1168 1169 if (egid != oldcred->cr_rgid && /* allow setegid(getgid()) */ 1170 egid != oldcred->cr_svgid && /* allow setegid(saved gid) */ 1171 (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID)) != 0) 1172 goto fail; 1173 1174 if (oldcred->cr_gid != egid) { 1175 change_egid(newcred, egid); 1176 setsugid(p); 1177 } 1178 proc_set_cred(p, newcred); 1179 PROC_UNLOCK(p); 1180 crfree(oldcred); 1181 return (0); 1182 1183 fail: 1184 PROC_UNLOCK(p); 1185 crfree(newcred); 1186 return (error); 1187 } 1188 1189 #ifndef _SYS_SYSPROTO_H_ 1190 struct setgroups_args { 1191 int gidsetsize; 1192 gid_t *gidset; 1193 }; 1194 #endif 1195 /* ARGSUSED */ 1196 int 1197 sys_setgroups(struct thread *td, struct setgroups_args *uap) 1198 { 1199 gid_t smallgroups[CRED_SMALLGROUPS_NB]; 1200 gid_t *groups; 1201 int gidsetsize, error; 1202 1203 /* 1204 * Sanity check size now to avoid passing too big a value to copyin(), 1205 * even if kern_setgroups() will do it again. 1206 * 1207 * Ideally, the 'gidsetsize' argument should have been a 'u_int' (and it 1208 * was, in this implementation, for a long time), but POSIX standardized 1209 * getgroups() to take an 'int' and it would be quite entrapping to have 1210 * setgroups() differ. 1211 */ 1212 gidsetsize = uap->gidsetsize; 1213 /* XXXKE Limit to ngroups_max when we change the userland interface. */ 1214 if (gidsetsize > ngroups_max + 1 || gidsetsize < 0) 1215 return (EINVAL); 1216 1217 if (gidsetsize > CRED_SMALLGROUPS_NB) 1218 groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK); 1219 else 1220 groups = smallgroups; 1221 1222 error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t)); 1223 if (error == 0) 1224 error = kern_setgroups(td, &gidsetsize, groups); 1225 1226 if (groups != smallgroups) 1227 free(groups, M_TEMP); 1228 return (error); 1229 } 1230 1231 /* 1232 * CAUTION: This function normalizes 'groups', possibly also changing the value 1233 * of '*ngrpp' as a consequence. 1234 */ 1235 int 1236 kern_setgroups(struct thread *td, int *ngrpp, gid_t *groups) 1237 { 1238 struct proc *p = td->td_proc; 1239 struct ucred *newcred, *oldcred; 1240 int ngrp, error; 1241 gid_t egid; 1242 1243 ngrp = *ngrpp; 1244 /* Sanity check size. */ 1245 /* XXXKE Limit to ngroups_max when we change the userland interface. */ 1246 if (ngrp < 0 || ngrp > ngroups_max + 1) 1247 return (EINVAL); 1248 1249 AUDIT_ARG_GROUPSET(groups, ngrp); 1250 /* 1251 * setgroups(0, NULL) is a legitimate way of clearing the groups vector 1252 * on non-BSD systems (which generally do not have the egid in the 1253 * groups[0]). We risk security holes when running non-BSD software if 1254 * we do not do the same. So we allow and treat 0 for 'ngrp' specially 1255 * below (twice). 1256 */ 1257 if (ngrp != 0) { 1258 /* 1259 * To maintain userland compat for now, we use the first group 1260 * as our egid and we'll use the rest as our supplemental 1261 * groups. 1262 */ 1263 egid = groups[0]; 1264 ngrp--; 1265 groups++; 1266 1267 groups_normalize(&ngrp, groups); 1268 *ngrpp = ngrp; 1269 } 1270 newcred = crget(); 1271 crextend(newcred, ngrp); 1272 PROC_LOCK(p); 1273 oldcred = crcopysafe(p, newcred); 1274 1275 #ifdef MAC 1276 /* 1277 * We pass NULL here explicitly if we don't have any supplementary 1278 * groups mostly for the sake of normalization, but also to avoid/detect 1279 * a situation where a MAC module has some assumption about the layout 1280 * of `groups` matching historical behavior. 1281 */ 1282 error = mac_cred_check_setgroups(oldcred, ngrp, 1283 ngrp == 0 ? NULL : groups); 1284 if (error) 1285 goto fail; 1286 #endif 1287 1288 error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS); 1289 if (error) 1290 goto fail; 1291 1292 /* 1293 * If some groups were passed, the first one is currently the desired 1294 * egid. This code is to be removed (along with some commented block 1295 * above) when setgroups() is changed to take only supplementary groups. 1296 */ 1297 if (ngrp != 0) 1298 newcred->cr_gid = egid; 1299 crsetgroups_internal(newcred, ngrp, groups); 1300 1301 setsugid(p); 1302 proc_set_cred(p, newcred); 1303 PROC_UNLOCK(p); 1304 crfree(oldcred); 1305 return (0); 1306 1307 fail: 1308 PROC_UNLOCK(p); 1309 crfree(newcred); 1310 return (error); 1311 } 1312 1313 #ifndef _SYS_SYSPROTO_H_ 1314 struct setreuid_args { 1315 uid_t ruid; 1316 uid_t euid; 1317 }; 1318 #endif 1319 /* ARGSUSED */ 1320 int 1321 sys_setreuid(struct thread *td, struct setreuid_args *uap) 1322 { 1323 struct proc *p = td->td_proc; 1324 struct ucred *newcred, *oldcred; 1325 uid_t euid, ruid; 1326 struct uidinfo *euip, *ruip; 1327 int error; 1328 1329 euid = uap->euid; 1330 ruid = uap->ruid; 1331 AUDIT_ARG_EUID(euid); 1332 AUDIT_ARG_RUID(ruid); 1333 newcred = crget(); 1334 euip = uifind(euid); 1335 ruip = uifind(ruid); 1336 PROC_LOCK(p); 1337 oldcred = crcopysafe(p, newcred); 1338 1339 #ifdef MAC 1340 error = mac_cred_check_setreuid(oldcred, ruid, euid); 1341 if (error) 1342 goto fail; 1343 #endif 1344 1345 if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid && 1346 ruid != oldcred->cr_svuid) || 1347 (euid != (uid_t)-1 && euid != oldcred->cr_uid && 1348 euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) && 1349 (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID)) != 0) 1350 goto fail; 1351 1352 if (euid != (uid_t)-1 && oldcred->cr_uid != euid) { 1353 change_euid(newcred, euip); 1354 setsugid(p); 1355 } 1356 if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) { 1357 change_ruid(newcred, ruip); 1358 setsugid(p); 1359 } 1360 if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) && 1361 newcred->cr_svuid != newcred->cr_uid) { 1362 change_svuid(newcred, newcred->cr_uid); 1363 setsugid(p); 1364 } 1365 proc_set_cred(p, newcred); 1366 #ifdef RACCT 1367 racct_proc_ucred_changed(p, oldcred, newcred); 1368 crhold(newcred); 1369 #endif 1370 PROC_UNLOCK(p); 1371 #ifdef RCTL 1372 rctl_proc_ucred_changed(p, newcred); 1373 crfree(newcred); 1374 #endif 1375 uifree(ruip); 1376 uifree(euip); 1377 crfree(oldcred); 1378 return (0); 1379 1380 fail: 1381 PROC_UNLOCK(p); 1382 uifree(ruip); 1383 uifree(euip); 1384 crfree(newcred); 1385 return (error); 1386 } 1387 1388 #ifndef _SYS_SYSPROTO_H_ 1389 struct setregid_args { 1390 gid_t rgid; 1391 gid_t egid; 1392 }; 1393 #endif 1394 /* ARGSUSED */ 1395 int 1396 sys_setregid(struct thread *td, struct setregid_args *uap) 1397 { 1398 struct proc *p = td->td_proc; 1399 struct ucred *newcred, *oldcred; 1400 gid_t egid, rgid; 1401 int error; 1402 1403 egid = uap->egid; 1404 rgid = uap->rgid; 1405 AUDIT_ARG_EGID(egid); 1406 AUDIT_ARG_RGID(rgid); 1407 newcred = crget(); 1408 PROC_LOCK(p); 1409 oldcred = crcopysafe(p, newcred); 1410 1411 #ifdef MAC 1412 error = mac_cred_check_setregid(oldcred, rgid, egid); 1413 if (error) 1414 goto fail; 1415 #endif 1416 1417 if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid && 1418 rgid != oldcred->cr_svgid) || 1419 (egid != (gid_t)-1 && egid != oldcred->cr_gid && 1420 egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) && 1421 (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID)) != 0) 1422 goto fail; 1423 1424 if (egid != (gid_t)-1 && oldcred->cr_gid != egid) { 1425 change_egid(newcred, egid); 1426 setsugid(p); 1427 } 1428 if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) { 1429 change_rgid(newcred, rgid); 1430 setsugid(p); 1431 } 1432 if ((rgid != (gid_t)-1 || newcred->cr_gid != newcred->cr_rgid) && 1433 newcred->cr_svgid != newcred->cr_gid) { 1434 change_svgid(newcred, newcred->cr_gid); 1435 setsugid(p); 1436 } 1437 proc_set_cred(p, newcred); 1438 PROC_UNLOCK(p); 1439 crfree(oldcred); 1440 return (0); 1441 1442 fail: 1443 PROC_UNLOCK(p); 1444 crfree(newcred); 1445 return (error); 1446 } 1447 1448 /* 1449 * setresuid(ruid, euid, suid) is like setreuid except control over the saved 1450 * uid is explicit. 1451 */ 1452 #ifndef _SYS_SYSPROTO_H_ 1453 struct setresuid_args { 1454 uid_t ruid; 1455 uid_t euid; 1456 uid_t suid; 1457 }; 1458 #endif 1459 /* ARGSUSED */ 1460 int 1461 sys_setresuid(struct thread *td, struct setresuid_args *uap) 1462 { 1463 struct proc *p = td->td_proc; 1464 struct ucred *newcred, *oldcred; 1465 uid_t euid, ruid, suid; 1466 struct uidinfo *euip, *ruip; 1467 int error; 1468 1469 euid = uap->euid; 1470 ruid = uap->ruid; 1471 suid = uap->suid; 1472 AUDIT_ARG_EUID(euid); 1473 AUDIT_ARG_RUID(ruid); 1474 AUDIT_ARG_SUID(suid); 1475 newcred = crget(); 1476 euip = uifind(euid); 1477 ruip = uifind(ruid); 1478 PROC_LOCK(p); 1479 oldcred = crcopysafe(p, newcred); 1480 1481 #ifdef MAC 1482 error = mac_cred_check_setresuid(oldcred, ruid, euid, suid); 1483 if (error) 1484 goto fail; 1485 #endif 1486 1487 if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid && 1488 ruid != oldcred->cr_svuid && 1489 ruid != oldcred->cr_uid) || 1490 (euid != (uid_t)-1 && euid != oldcred->cr_ruid && 1491 euid != oldcred->cr_svuid && 1492 euid != oldcred->cr_uid) || 1493 (suid != (uid_t)-1 && suid != oldcred->cr_ruid && 1494 suid != oldcred->cr_svuid && 1495 suid != oldcred->cr_uid)) && 1496 (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID)) != 0) 1497 goto fail; 1498 1499 if (euid != (uid_t)-1 && oldcred->cr_uid != euid) { 1500 change_euid(newcred, euip); 1501 setsugid(p); 1502 } 1503 if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) { 1504 change_ruid(newcred, ruip); 1505 setsugid(p); 1506 } 1507 if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) { 1508 change_svuid(newcred, suid); 1509 setsugid(p); 1510 } 1511 proc_set_cred(p, newcred); 1512 #ifdef RACCT 1513 racct_proc_ucred_changed(p, oldcred, newcred); 1514 crhold(newcred); 1515 #endif 1516 PROC_UNLOCK(p); 1517 #ifdef RCTL 1518 rctl_proc_ucred_changed(p, newcred); 1519 crfree(newcred); 1520 #endif 1521 uifree(ruip); 1522 uifree(euip); 1523 crfree(oldcred); 1524 return (0); 1525 1526 fail: 1527 PROC_UNLOCK(p); 1528 uifree(ruip); 1529 uifree(euip); 1530 crfree(newcred); 1531 return (error); 1532 1533 } 1534 1535 /* 1536 * setresgid(rgid, egid, sgid) is like setregid except control over the saved 1537 * gid is explicit. 1538 */ 1539 #ifndef _SYS_SYSPROTO_H_ 1540 struct setresgid_args { 1541 gid_t rgid; 1542 gid_t egid; 1543 gid_t sgid; 1544 }; 1545 #endif 1546 /* ARGSUSED */ 1547 int 1548 sys_setresgid(struct thread *td, struct setresgid_args *uap) 1549 { 1550 struct proc *p = td->td_proc; 1551 struct ucred *newcred, *oldcred; 1552 gid_t egid, rgid, sgid; 1553 int error; 1554 1555 egid = uap->egid; 1556 rgid = uap->rgid; 1557 sgid = uap->sgid; 1558 AUDIT_ARG_EGID(egid); 1559 AUDIT_ARG_RGID(rgid); 1560 AUDIT_ARG_SGID(sgid); 1561 newcred = crget(); 1562 PROC_LOCK(p); 1563 oldcred = crcopysafe(p, newcred); 1564 1565 #ifdef MAC 1566 error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid); 1567 if (error) 1568 goto fail; 1569 #endif 1570 1571 if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid && 1572 rgid != oldcred->cr_svgid && 1573 rgid != oldcred->cr_gid) || 1574 (egid != (gid_t)-1 && egid != oldcred->cr_rgid && 1575 egid != oldcred->cr_svgid && 1576 egid != oldcred->cr_gid) || 1577 (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid && 1578 sgid != oldcred->cr_svgid && 1579 sgid != oldcred->cr_gid)) && 1580 (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID)) != 0) 1581 goto fail; 1582 1583 if (egid != (gid_t)-1 && oldcred->cr_gid != egid) { 1584 change_egid(newcred, egid); 1585 setsugid(p); 1586 } 1587 if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) { 1588 change_rgid(newcred, rgid); 1589 setsugid(p); 1590 } 1591 if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) { 1592 change_svgid(newcred, sgid); 1593 setsugid(p); 1594 } 1595 proc_set_cred(p, newcred); 1596 PROC_UNLOCK(p); 1597 crfree(oldcred); 1598 return (0); 1599 1600 fail: 1601 PROC_UNLOCK(p); 1602 crfree(newcred); 1603 return (error); 1604 } 1605 1606 #ifndef _SYS_SYSPROTO_H_ 1607 struct getresuid_args { 1608 uid_t *ruid; 1609 uid_t *euid; 1610 uid_t *suid; 1611 }; 1612 #endif 1613 /* ARGSUSED */ 1614 int 1615 sys_getresuid(struct thread *td, struct getresuid_args *uap) 1616 { 1617 struct ucred *cred; 1618 int error1 = 0, error2 = 0, error3 = 0; 1619 1620 cred = td->td_ucred; 1621 if (uap->ruid) 1622 error1 = copyout(&cred->cr_ruid, 1623 uap->ruid, sizeof(cred->cr_ruid)); 1624 if (uap->euid) 1625 error2 = copyout(&cred->cr_uid, 1626 uap->euid, sizeof(cred->cr_uid)); 1627 if (uap->suid) 1628 error3 = copyout(&cred->cr_svuid, 1629 uap->suid, sizeof(cred->cr_svuid)); 1630 return (error1 ? error1 : error2 ? error2 : error3); 1631 } 1632 1633 #ifndef _SYS_SYSPROTO_H_ 1634 struct getresgid_args { 1635 gid_t *rgid; 1636 gid_t *egid; 1637 gid_t *sgid; 1638 }; 1639 #endif 1640 /* ARGSUSED */ 1641 int 1642 sys_getresgid(struct thread *td, struct getresgid_args *uap) 1643 { 1644 struct ucred *cred; 1645 int error1 = 0, error2 = 0, error3 = 0; 1646 1647 cred = td->td_ucred; 1648 if (uap->rgid) 1649 error1 = copyout(&cred->cr_rgid, 1650 uap->rgid, sizeof(cred->cr_rgid)); 1651 if (uap->egid) 1652 error2 = copyout(&cred->cr_gid, 1653 uap->egid, sizeof(cred->cr_gid)); 1654 if (uap->sgid) 1655 error3 = copyout(&cred->cr_svgid, 1656 uap->sgid, sizeof(cred->cr_svgid)); 1657 return (error1 ? error1 : error2 ? error2 : error3); 1658 } 1659 1660 #ifndef _SYS_SYSPROTO_H_ 1661 struct issetugid_args { 1662 int dummy; 1663 }; 1664 #endif 1665 /* ARGSUSED */ 1666 int 1667 sys_issetugid(struct thread *td, struct issetugid_args *uap) 1668 { 1669 struct proc *p = td->td_proc; 1670 1671 /* 1672 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time, 1673 * we use P_SUGID because we consider changing the owners as 1674 * "tainting" as well. 1675 * This is significant for procs that start as root and "become" 1676 * a user without an exec - programs cannot know *everything* 1677 * that libc *might* have put in their data segment. 1678 */ 1679 td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0; 1680 return (0); 1681 } 1682 1683 int 1684 sys___setugid(struct thread *td, struct __setugid_args *uap) 1685 { 1686 #ifdef REGRESSION 1687 struct proc *p; 1688 1689 p = td->td_proc; 1690 switch (uap->flag) { 1691 case 0: 1692 PROC_LOCK(p); 1693 p->p_flag &= ~P_SUGID; 1694 PROC_UNLOCK(p); 1695 return (0); 1696 case 1: 1697 PROC_LOCK(p); 1698 p->p_flag |= P_SUGID; 1699 PROC_UNLOCK(p); 1700 return (0); 1701 default: 1702 return (EINVAL); 1703 } 1704 #else /* !REGRESSION */ 1705 1706 return (ENOSYS); 1707 #endif /* REGRESSION */ 1708 } 1709 1710 #ifdef INVARIANTS 1711 static void 1712 groups_check_normalized(int ngrp, const gid_t *groups) 1713 { 1714 gid_t prev_g; 1715 1716 groups_check_positive_len(ngrp); 1717 groups_check_max_len(ngrp); 1718 1719 if (ngrp <= 1) 1720 return; 1721 1722 prev_g = groups[0]; 1723 for (int i = 1; i < ngrp; ++i) { 1724 const gid_t g = groups[i]; 1725 1726 if (prev_g >= g) 1727 panic("%s: groups[%d] (%u) >= groups[%d] (%u)", 1728 __func__, i - 1, prev_g, i, g); 1729 prev_g = g; 1730 } 1731 } 1732 #else 1733 #define groups_check_normalized(...) 1734 #endif 1735 1736 /* 1737 * Returns whether gid designates a supplementary group in cred. 1738 */ 1739 bool 1740 group_is_supplementary(const gid_t gid, const struct ucred *const cred) 1741 { 1742 1743 groups_check_normalized(cred->cr_ngroups, cred->cr_groups); 1744 1745 /* 1746 * Perform a binary search of the supplementary groups. This is 1747 * possible because we sort the groups in crsetgroups(). 1748 */ 1749 return (bsearch(&gid, cred->cr_groups, cred->cr_ngroups, 1750 sizeof(gid), gidp_cmp) != NULL); 1751 } 1752 1753 /* 1754 * Check if gid is a member of the (effective) group set (i.e., effective and 1755 * supplementary groups). 1756 */ 1757 bool 1758 groupmember(gid_t gid, const struct ucred *cred) 1759 { 1760 1761 groups_check_positive_len(cred->cr_ngroups); 1762 1763 if (gid == cred->cr_gid) 1764 return (true); 1765 1766 return (group_is_supplementary(gid, cred)); 1767 } 1768 1769 /* 1770 * Check if gid is a member of the real group set (i.e., real and supplementary 1771 * groups). 1772 */ 1773 bool 1774 realgroupmember(gid_t gid, const struct ucred *cred) 1775 { 1776 /* 1777 * Although the equality test on 'cr_rgid' below doesn't access 1778 * 'cr_groups', we check for the latter's length here as we assume that, 1779 * if 'cr_ngroups' is 0, the passed 'struct ucred' is invalid, and 1780 * 'cr_rgid' may not have been filled. 1781 */ 1782 groups_check_positive_len(cred->cr_ngroups); 1783 1784 if (gid == cred->cr_rgid) 1785 return (true); 1786 1787 return (group_is_supplementary(gid, cred)); 1788 } 1789 1790 /* 1791 * Test the active securelevel against a given level. securelevel_gt() 1792 * implements (securelevel > level). securelevel_ge() implements 1793 * (securelevel >= level). Note that the logic is inverted -- these 1794 * functions return EPERM on "success" and 0 on "failure". 1795 * 1796 * Due to care taken when setting the securelevel, we know that no jail will 1797 * be less secure that its parent (or the physical system), so it is sufficient 1798 * to test the current jail only. 1799 * 1800 * XXXRW: Possibly since this has to do with privilege, it should move to 1801 * kern_priv.c. 1802 */ 1803 int 1804 securelevel_gt(struct ucred *cr, int level) 1805 { 1806 1807 return (cr->cr_prison->pr_securelevel > level ? EPERM : 0); 1808 } 1809 1810 int 1811 securelevel_ge(struct ucred *cr, int level) 1812 { 1813 1814 return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0); 1815 } 1816 1817 /* 1818 * 'see_other_uids' determines whether or not visibility of processes 1819 * and sockets with credentials holding different real uids is possible 1820 * using a variety of system MIBs. 1821 * XXX: data declarations should be together near the beginning of the file. 1822 */ 1823 static int see_other_uids = 1; 1824 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW, 1825 &see_other_uids, 0, 1826 "Unprivileged processes may see subjects/objects with different real uid"); 1827 1828 /*- 1829 * Determine if u1 "can see" the subject specified by u2, according to the 1830 * 'see_other_uids' policy. 1831 * Returns: 0 for permitted, ESRCH otherwise 1832 * Locks: none 1833 * References: *u1 and *u2 must not change during the call 1834 * u1 may equal u2, in which case only one reference is required 1835 */ 1836 static int 1837 cr_canseeotheruids(struct ucred *u1, struct ucred *u2) 1838 { 1839 1840 if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) { 1841 if (priv_check_cred(u1, PRIV_SEEOTHERUIDS) != 0) 1842 return (ESRCH); 1843 } 1844 return (0); 1845 } 1846 1847 /* 1848 * 'see_other_gids' determines whether or not visibility of processes 1849 * and sockets with credentials holding different real gids is possible 1850 * using a variety of system MIBs. 1851 * XXX: data declarations should be together near the beginning of the file. 1852 */ 1853 static int see_other_gids = 1; 1854 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW, 1855 &see_other_gids, 0, 1856 "Unprivileged processes may see subjects/objects with different real gid"); 1857 1858 /* 1859 * Determine if u1 can "see" the subject specified by u2, according to the 1860 * 'see_other_gids' policy. 1861 * Returns: 0 for permitted, ESRCH otherwise 1862 * Locks: none 1863 * References: *u1 and *u2 must not change during the call 1864 * u1 may equal u2, in which case only one reference is required 1865 */ 1866 static int 1867 cr_canseeothergids(struct ucred *u1, struct ucred *u2) 1868 { 1869 if (!see_other_gids) { 1870 if (realgroupmember(u1->cr_rgid, u2)) 1871 return (0); 1872 1873 for (int i = 1; i < u1->cr_ngroups; i++) 1874 if (realgroupmember(u1->cr_groups[i], u2)) 1875 return (0); 1876 1877 if (priv_check_cred(u1, PRIV_SEEOTHERGIDS) != 0) 1878 return (ESRCH); 1879 } 1880 1881 return (0); 1882 } 1883 1884 /* 1885 * 'see_jail_proc' determines whether or not visibility of processes and 1886 * sockets with credentials holding different jail ids is possible using a 1887 * variety of system MIBs. 1888 * 1889 * XXX: data declarations should be together near the beginning of the file. 1890 */ 1891 1892 static int see_jail_proc = 1; 1893 SYSCTL_INT(_security_bsd, OID_AUTO, see_jail_proc, CTLFLAG_RW, 1894 &see_jail_proc, 0, 1895 "Unprivileged processes may see subjects/objects with different jail ids"); 1896 1897 /*- 1898 * Determine if u1 "can see" the subject specified by u2, according to the 1899 * 'see_jail_proc' policy. 1900 * Returns: 0 for permitted, ESRCH otherwise 1901 * Locks: none 1902 * References: *u1 and *u2 must not change during the call 1903 * u1 may equal u2, in which case only one reference is required 1904 */ 1905 static int 1906 cr_canseejailproc(struct ucred *u1, struct ucred *u2) 1907 { 1908 if (see_jail_proc || /* Policy deactivated. */ 1909 u1->cr_prison == u2->cr_prison || /* Same jail. */ 1910 priv_check_cred(u1, PRIV_SEEJAILPROC) == 0) /* Privileged. */ 1911 return (0); 1912 1913 return (ESRCH); 1914 } 1915 1916 /* 1917 * Helper for cr_cansee*() functions to abide by system-wide security.bsd.see_* 1918 * policies. Determines if u1 "can see" u2 according to these policies. 1919 * Returns: 0 for permitted, ESRCH otherwise 1920 */ 1921 int 1922 cr_bsd_visible(struct ucred *u1, struct ucred *u2) 1923 { 1924 int error; 1925 1926 error = cr_canseeotheruids(u1, u2); 1927 if (error != 0) 1928 return (error); 1929 error = cr_canseeothergids(u1, u2); 1930 if (error != 0) 1931 return (error); 1932 error = cr_canseejailproc(u1, u2); 1933 if (error != 0) 1934 return (error); 1935 return (0); 1936 } 1937 1938 /*- 1939 * Determine if u1 "can see" the subject specified by u2. 1940 * Returns: 0 for permitted, an errno value otherwise 1941 * Locks: none 1942 * References: *u1 and *u2 must not change during the call 1943 * u1 may equal u2, in which case only one reference is required 1944 */ 1945 int 1946 cr_cansee(struct ucred *u1, struct ucred *u2) 1947 { 1948 int error; 1949 1950 if ((error = prison_check(u1, u2))) 1951 return (error); 1952 #ifdef MAC 1953 if ((error = mac_cred_check_visible(u1, u2))) 1954 return (error); 1955 #endif 1956 if ((error = cr_bsd_visible(u1, u2))) 1957 return (error); 1958 return (0); 1959 } 1960 1961 /*- 1962 * Determine if td "can see" the subject specified by p. 1963 * Returns: 0 for permitted, an errno value otherwise 1964 * Locks: Sufficient locks to protect p->p_ucred must be held. td really 1965 * should be curthread. 1966 * References: td and p must be valid for the lifetime of the call 1967 */ 1968 int 1969 p_cansee(struct thread *td, struct proc *p) 1970 { 1971 /* Wrap cr_cansee() for all functionality. */ 1972 KASSERT(td == curthread, ("%s: td not curthread", __func__)); 1973 PROC_LOCK_ASSERT(p, MA_OWNED); 1974 1975 if (td->td_proc == p) 1976 return (0); 1977 return (cr_cansee(td->td_ucred, p->p_ucred)); 1978 } 1979 1980 /* 1981 * 'conservative_signals' prevents the delivery of a broad class of 1982 * signals by unprivileged processes to processes that have changed their 1983 * credentials since the last invocation of execve(). This can prevent 1984 * the leakage of cached information or retained privileges as a result 1985 * of a common class of signal-related vulnerabilities. However, this 1986 * may interfere with some applications that expect to be able to 1987 * deliver these signals to peer processes after having given up 1988 * privilege. 1989 */ 1990 static int conservative_signals = 1; 1991 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW, 1992 &conservative_signals, 0, "Unprivileged processes prevented from " 1993 "sending certain signals to processes whose credentials have changed"); 1994 /*- 1995 * Determine whether cred may deliver the specified signal to proc. 1996 * Returns: 0 for permitted, an errno value otherwise. 1997 * Locks: A lock must be held for proc. 1998 * References: cred and proc must be valid for the lifetime of the call. 1999 */ 2000 int 2001 cr_cansignal(struct ucred *cred, struct proc *proc, int signum) 2002 { 2003 int error; 2004 2005 PROC_LOCK_ASSERT(proc, MA_OWNED); 2006 /* 2007 * Jail semantics limit the scope of signalling to proc in the 2008 * same jail as cred, if cred is in jail. 2009 */ 2010 error = prison_check(cred, proc->p_ucred); 2011 if (error) 2012 return (error); 2013 #ifdef MAC 2014 if ((error = mac_proc_check_signal(cred, proc, signum))) 2015 return (error); 2016 #endif 2017 if ((error = cr_bsd_visible(cred, proc->p_ucred))) 2018 return (error); 2019 2020 /* 2021 * UNIX signal semantics depend on the status of the P_SUGID 2022 * bit on the target process. If the bit is set, then additional 2023 * restrictions are placed on the set of available signals. 2024 */ 2025 if (conservative_signals && (proc->p_flag & P_SUGID)) { 2026 switch (signum) { 2027 case 0: 2028 case SIGKILL: 2029 case SIGINT: 2030 case SIGTERM: 2031 case SIGALRM: 2032 case SIGSTOP: 2033 case SIGTTIN: 2034 case SIGTTOU: 2035 case SIGTSTP: 2036 case SIGHUP: 2037 case SIGUSR1: 2038 case SIGUSR2: 2039 /* 2040 * Generally, permit job and terminal control 2041 * signals. 2042 */ 2043 break; 2044 default: 2045 /* Not permitted without privilege. */ 2046 error = priv_check_cred(cred, PRIV_SIGNAL_SUGID); 2047 if (error) 2048 return (error); 2049 } 2050 } 2051 2052 /* 2053 * Generally, the target credential's ruid or svuid must match the 2054 * subject credential's ruid or euid. 2055 */ 2056 if (cred->cr_ruid != proc->p_ucred->cr_ruid && 2057 cred->cr_ruid != proc->p_ucred->cr_svuid && 2058 cred->cr_uid != proc->p_ucred->cr_ruid && 2059 cred->cr_uid != proc->p_ucred->cr_svuid) { 2060 error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED); 2061 if (error) 2062 return (error); 2063 } 2064 2065 return (0); 2066 } 2067 2068 /*- 2069 * Determine whether td may deliver the specified signal to p. 2070 * Returns: 0 for permitted, an errno value otherwise 2071 * Locks: Sufficient locks to protect various components of td and p 2072 * must be held. td must be curthread, and a lock must be 2073 * held for p. 2074 * References: td and p must be valid for the lifetime of the call 2075 */ 2076 int 2077 p_cansignal(struct thread *td, struct proc *p, int signum) 2078 { 2079 2080 KASSERT(td == curthread, ("%s: td not curthread", __func__)); 2081 PROC_LOCK_ASSERT(p, MA_OWNED); 2082 if (td->td_proc == p) 2083 return (0); 2084 2085 /* 2086 * UNIX signalling semantics require that processes in the same 2087 * session always be able to deliver SIGCONT to one another, 2088 * overriding the remaining protections. 2089 */ 2090 /* XXX: This will require an additional lock of some sort. */ 2091 if (signum == SIGCONT && td->td_proc->p_session == p->p_session) 2092 return (0); 2093 /* 2094 * Some compat layers use SIGTHR and higher signals for 2095 * communication between different kernel threads of the same 2096 * process, so that they expect that it's always possible to 2097 * deliver them, even for suid applications where cr_cansignal() can 2098 * deny such ability for security consideration. It should be 2099 * pretty safe to do since the only way to create two processes 2100 * with the same p_leader is via rfork(2). 2101 */ 2102 if (td->td_proc->p_leader != NULL && signum >= SIGTHR && 2103 signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader) 2104 return (0); 2105 2106 return (cr_cansignal(td->td_ucred, p, signum)); 2107 } 2108 2109 /*- 2110 * Determine whether td may reschedule p. 2111 * Returns: 0 for permitted, an errno value otherwise 2112 * Locks: Sufficient locks to protect various components of td and p 2113 * must be held. td must be curthread, and a lock must 2114 * be held for p. 2115 * References: td and p must be valid for the lifetime of the call 2116 */ 2117 int 2118 p_cansched(struct thread *td, struct proc *p) 2119 { 2120 int error; 2121 2122 KASSERT(td == curthread, ("%s: td not curthread", __func__)); 2123 PROC_LOCK_ASSERT(p, MA_OWNED); 2124 if (td->td_proc == p) 2125 return (0); 2126 if ((error = prison_check(td->td_ucred, p->p_ucred))) 2127 return (error); 2128 #ifdef MAC 2129 if ((error = mac_proc_check_sched(td->td_ucred, p))) 2130 return (error); 2131 #endif 2132 if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred))) 2133 return (error); 2134 2135 if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid && 2136 td->td_ucred->cr_uid != p->p_ucred->cr_ruid) { 2137 error = priv_check(td, PRIV_SCHED_DIFFCRED); 2138 if (error) 2139 return (error); 2140 } 2141 return (0); 2142 } 2143 2144 /* 2145 * Handle getting or setting the prison's unprivileged_proc_debug 2146 * value. 2147 */ 2148 static int 2149 sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS) 2150 { 2151 int error, val; 2152 2153 val = prison_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG); 2154 error = sysctl_handle_int(oidp, &val, 0, req); 2155 if (error != 0 || req->newptr == NULL) 2156 return (error); 2157 if (val != 0 && val != 1) 2158 return (EINVAL); 2159 prison_set_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG, val); 2160 return (0); 2161 } 2162 2163 /* 2164 * The 'unprivileged_proc_debug' flag may be used to disable a variety of 2165 * unprivileged inter-process debugging services, including some procfs 2166 * functionality, ptrace(), and ktrace(). In the past, inter-process 2167 * debugging has been involved in a variety of security problems, and sites 2168 * not requiring the service might choose to disable it when hardening 2169 * systems. 2170 */ 2171 SYSCTL_PROC(_security_bsd, OID_AUTO, unprivileged_proc_debug, 2172 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_SECURE | 2173 CTLFLAG_MPSAFE, 0, 0, sysctl_unprivileged_proc_debug, "I", 2174 "Unprivileged processes may use process debugging facilities"); 2175 2176 /* 2177 * Return true if the object owner/group ids are subset of the active 2178 * credentials. 2179 */ 2180 bool 2181 cr_xids_subset(struct ucred *active_cred, struct ucred *obj_cred) 2182 { 2183 int i; 2184 bool grpsubset, uidsubset; 2185 2186 /* 2187 * Is p's group set a subset of td's effective group set? This 2188 * includes p's egid, group access list, rgid, and svgid. 2189 */ 2190 grpsubset = true; 2191 for (i = 0; i < obj_cred->cr_ngroups; i++) { 2192 if (!groupmember(obj_cred->cr_groups[i], active_cred)) { 2193 grpsubset = false; 2194 break; 2195 } 2196 } 2197 grpsubset = grpsubset && 2198 groupmember(obj_cred->cr_rgid, active_cred) && 2199 groupmember(obj_cred->cr_svgid, active_cred); 2200 2201 /* 2202 * Are the uids present in obj_cred's credential equal to 2203 * active_cred's effective uid? This includes obj_cred's 2204 * euid, svuid, and ruid. 2205 */ 2206 uidsubset = (active_cred->cr_uid == obj_cred->cr_uid && 2207 active_cred->cr_uid == obj_cred->cr_svuid && 2208 active_cred->cr_uid == obj_cred->cr_ruid); 2209 2210 return (uidsubset && grpsubset); 2211 } 2212 2213 /*- 2214 * Determine whether td may debug p. 2215 * Returns: 0 for permitted, an errno value otherwise 2216 * Locks: Sufficient locks to protect various components of td and p 2217 * must be held. td must be curthread, and a lock must 2218 * be held for p. 2219 * References: td and p must be valid for the lifetime of the call 2220 */ 2221 int 2222 p_candebug(struct thread *td, struct proc *p) 2223 { 2224 int error; 2225 2226 KASSERT(td == curthread, ("%s: td not curthread", __func__)); 2227 PROC_LOCK_ASSERT(p, MA_OWNED); 2228 if (td->td_proc == p) 2229 return (0); 2230 if ((error = priv_check(td, PRIV_DEBUG_UNPRIV))) 2231 return (error); 2232 if ((error = prison_check(td->td_ucred, p->p_ucred))) 2233 return (error); 2234 #ifdef MAC 2235 if ((error = mac_proc_check_debug(td->td_ucred, p))) 2236 return (error); 2237 #endif 2238 if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred))) 2239 return (error); 2240 2241 /* 2242 * If p's gids aren't a subset, or the uids aren't a subset, 2243 * or the credential has changed, require appropriate privilege 2244 * for td to debug p. 2245 */ 2246 if (!cr_xids_subset(td->td_ucred, p->p_ucred)) { 2247 error = priv_check(td, PRIV_DEBUG_DIFFCRED); 2248 if (error) 2249 return (error); 2250 } 2251 2252 /* 2253 * Has the credential of the process changed since the last exec()? 2254 */ 2255 if ((p->p_flag & P_SUGID) != 0) { 2256 error = priv_check(td, PRIV_DEBUG_SUGID); 2257 if (error) 2258 return (error); 2259 } 2260 2261 /* Can't trace init when securelevel > 0. */ 2262 if (p == initproc) { 2263 error = securelevel_gt(td->td_ucred, 0); 2264 if (error) 2265 return (error); 2266 } 2267 2268 /* 2269 * Can't trace a process that's currently exec'ing. 2270 * 2271 * XXX: Note, this is not a security policy decision, it's a 2272 * basic correctness/functionality decision. Therefore, this check 2273 * should be moved to the caller's of p_candebug(). 2274 */ 2275 if ((p->p_flag & P_INEXEC) != 0) 2276 return (EBUSY); 2277 2278 /* Denied explicitly */ 2279 if ((p->p_flag2 & P2_NOTRACE) != 0) { 2280 error = priv_check(td, PRIV_DEBUG_DENIED); 2281 if (error != 0) 2282 return (error); 2283 } 2284 2285 return (0); 2286 } 2287 2288 /*- 2289 * Determine whether the subject represented by cred can "see" a socket. 2290 * Returns: 0 for permitted, ENOENT otherwise. 2291 */ 2292 int 2293 cr_canseesocket(struct ucred *cred, struct socket *so) 2294 { 2295 int error; 2296 2297 error = prison_check(cred, so->so_cred); 2298 if (error) 2299 return (ENOENT); 2300 #ifdef MAC 2301 error = mac_socket_check_visible(cred, so); 2302 if (error) 2303 return (error); 2304 #endif 2305 if (cr_bsd_visible(cred, so->so_cred)) 2306 return (ENOENT); 2307 2308 return (0); 2309 } 2310 2311 /*- 2312 * Determine whether td can wait for the exit of p. 2313 * Returns: 0 for permitted, an errno value otherwise 2314 * Locks: Sufficient locks to protect various components of td and p 2315 * must be held. td must be curthread, and a lock must 2316 * be held for p. 2317 * References: td and p must be valid for the lifetime of the call 2318 2319 */ 2320 int 2321 p_canwait(struct thread *td, struct proc *p) 2322 { 2323 int error; 2324 2325 KASSERT(td == curthread, ("%s: td not curthread", __func__)); 2326 PROC_LOCK_ASSERT(p, MA_OWNED); 2327 if ((error = prison_check(td->td_ucred, p->p_ucred))) 2328 return (error); 2329 #ifdef MAC 2330 if ((error = mac_proc_check_wait(td->td_ucred, p))) 2331 return (error); 2332 #endif 2333 #if 0 2334 /* XXXMAC: This could have odd effects on some shells. */ 2335 if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred))) 2336 return (error); 2337 #endif 2338 2339 return (0); 2340 } 2341 2342 /* 2343 * Credential management. 2344 * 2345 * struct ucred objects are rarely allocated but gain and lose references all 2346 * the time (e.g., on struct file alloc/dealloc) turning refcount updates into 2347 * a significant source of cache-line ping ponging. Common cases are worked 2348 * around by modifying thread-local counter instead if the cred to operate on 2349 * matches td_realucred. 2350 * 2351 * The counter is split into 2 parts: 2352 * - cr_users -- total count of all struct proc and struct thread objects 2353 * which have given cred in p_ucred and td_ucred respectively 2354 * - cr_ref -- the actual ref count, only valid if cr_users == 0 2355 * 2356 * If users == 0 then cr_ref behaves similarly to refcount(9), in particular if 2357 * the count reaches 0 the object is freeable. 2358 * If users > 0 and curthread->td_realucred == cred, then updates are performed 2359 * against td_ucredref. 2360 * In other cases updates are performed against cr_ref. 2361 * 2362 * Changing td_realucred into something else decrements cr_users and transfers 2363 * accumulated updates. 2364 */ 2365 struct ucred * 2366 crcowget(struct ucred *cr) 2367 { 2368 2369 mtx_lock(&cr->cr_mtx); 2370 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p", 2371 __func__, cr->cr_users, cr)); 2372 cr->cr_users++; 2373 cr->cr_ref++; 2374 mtx_unlock(&cr->cr_mtx); 2375 return (cr); 2376 } 2377 2378 static struct ucred * 2379 crunuse(struct thread *td) 2380 { 2381 struct ucred *cr, *crold; 2382 2383 MPASS(td->td_realucred == td->td_ucred); 2384 cr = td->td_realucred; 2385 mtx_lock(&cr->cr_mtx); 2386 cr->cr_ref += td->td_ucredref; 2387 td->td_ucredref = 0; 2388 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p", 2389 __func__, cr->cr_users, cr)); 2390 cr->cr_users--; 2391 if (cr->cr_users == 0) { 2392 KASSERT(cr->cr_ref > 0, ("%s: ref %ld not > 0 on cred %p", 2393 __func__, cr->cr_ref, cr)); 2394 crold = cr; 2395 } else { 2396 cr->cr_ref--; 2397 crold = NULL; 2398 } 2399 mtx_unlock(&cr->cr_mtx); 2400 td->td_realucred = NULL; 2401 return (crold); 2402 } 2403 2404 static void 2405 crunusebatch(struct ucred *cr, u_int users, long ref) 2406 { 2407 2408 KASSERT(users > 0, ("%s: passed users %d not > 0 ; cred %p", 2409 __func__, users, cr)); 2410 mtx_lock(&cr->cr_mtx); 2411 KASSERT(cr->cr_users >= users, ("%s: users %d not > %d on cred %p", 2412 __func__, cr->cr_users, users, cr)); 2413 cr->cr_users -= users; 2414 cr->cr_ref += ref; 2415 cr->cr_ref -= users; 2416 if (cr->cr_users > 0) { 2417 mtx_unlock(&cr->cr_mtx); 2418 return; 2419 } 2420 KASSERT(cr->cr_ref >= 0, ("%s: ref %ld not >= 0 on cred %p", 2421 __func__, cr->cr_ref, cr)); 2422 if (cr->cr_ref > 0) { 2423 mtx_unlock(&cr->cr_mtx); 2424 return; 2425 } 2426 crfree_final(cr); 2427 } 2428 2429 void 2430 crcowfree(struct thread *td) 2431 { 2432 struct ucred *cr; 2433 2434 cr = crunuse(td); 2435 if (cr != NULL) 2436 crfree(cr); 2437 } 2438 2439 struct ucred * 2440 crcowsync(void) 2441 { 2442 struct thread *td; 2443 struct proc *p; 2444 struct ucred *crnew, *crold; 2445 2446 td = curthread; 2447 p = td->td_proc; 2448 PROC_LOCK_ASSERT(p, MA_OWNED); 2449 2450 MPASS(td->td_realucred == td->td_ucred); 2451 if (td->td_realucred == p->p_ucred) 2452 return (NULL); 2453 2454 crnew = crcowget(p->p_ucred); 2455 crold = crunuse(td); 2456 td->td_realucred = crnew; 2457 td->td_ucred = td->td_realucred; 2458 return (crold); 2459 } 2460 2461 /* 2462 * Batching. 2463 */ 2464 void 2465 credbatch_add(struct credbatch *crb, struct thread *td) 2466 { 2467 struct ucred *cr; 2468 2469 MPASS(td->td_realucred != NULL); 2470 MPASS(td->td_realucred == td->td_ucred); 2471 MPASS(TD_GET_STATE(td) == TDS_INACTIVE); 2472 cr = td->td_realucred; 2473 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p", 2474 __func__, cr->cr_users, cr)); 2475 if (crb->cred != cr) { 2476 if (crb->users > 0) { 2477 MPASS(crb->cred != NULL); 2478 crunusebatch(crb->cred, crb->users, crb->ref); 2479 crb->users = 0; 2480 crb->ref = 0; 2481 } 2482 } 2483 crb->cred = cr; 2484 crb->users++; 2485 crb->ref += td->td_ucredref; 2486 td->td_ucredref = 0; 2487 td->td_realucred = NULL; 2488 } 2489 2490 void 2491 credbatch_final(struct credbatch *crb) 2492 { 2493 2494 MPASS(crb->cred != NULL); 2495 MPASS(crb->users > 0); 2496 crunusebatch(crb->cred, crb->users, crb->ref); 2497 } 2498 2499 /* 2500 * Allocate a zeroed cred structure. 2501 */ 2502 struct ucred * 2503 crget(void) 2504 { 2505 struct ucred *cr; 2506 2507 cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO); 2508 mtx_init(&cr->cr_mtx, "cred", NULL, MTX_DEF); 2509 cr->cr_ref = 1; 2510 #ifdef AUDIT 2511 audit_cred_init(cr); 2512 #endif 2513 #ifdef MAC 2514 mac_cred_init(cr); 2515 #endif 2516 cr->cr_groups = cr->cr_smallgroups; 2517 cr->cr_agroups = nitems(cr->cr_smallgroups); 2518 return (cr); 2519 } 2520 2521 /* 2522 * Claim another reference to a ucred structure. 2523 */ 2524 struct ucred * 2525 crhold(struct ucred *cr) 2526 { 2527 struct thread *td; 2528 2529 td = curthread; 2530 if (__predict_true(td->td_realucred == cr)) { 2531 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p", 2532 __func__, cr->cr_users, cr)); 2533 td->td_ucredref++; 2534 return (cr); 2535 } 2536 mtx_lock(&cr->cr_mtx); 2537 cr->cr_ref++; 2538 mtx_unlock(&cr->cr_mtx); 2539 return (cr); 2540 } 2541 2542 /* 2543 * Free a cred structure. Throws away space when ref count gets to 0. 2544 */ 2545 void 2546 crfree(struct ucred *cr) 2547 { 2548 struct thread *td; 2549 2550 td = curthread; 2551 if (__predict_true(td->td_realucred == cr)) { 2552 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p", 2553 __func__, cr->cr_users, cr)); 2554 td->td_ucredref--; 2555 return; 2556 } 2557 mtx_lock(&cr->cr_mtx); 2558 KASSERT(cr->cr_users >= 0, ("%s: users %d not >= 0 on cred %p", 2559 __func__, cr->cr_users, cr)); 2560 cr->cr_ref--; 2561 if (cr->cr_users > 0) { 2562 mtx_unlock(&cr->cr_mtx); 2563 return; 2564 } 2565 KASSERT(cr->cr_ref >= 0, ("%s: ref %ld not >= 0 on cred %p", 2566 __func__, cr->cr_ref, cr)); 2567 if (cr->cr_ref > 0) { 2568 mtx_unlock(&cr->cr_mtx); 2569 return; 2570 } 2571 crfree_final(cr); 2572 } 2573 2574 static void 2575 crfree_final(struct ucred *cr) 2576 { 2577 2578 KASSERT(cr->cr_users == 0, ("%s: users %d not == 0 on cred %p", 2579 __func__, cr->cr_users, cr)); 2580 KASSERT(cr->cr_ref == 0, ("%s: ref %ld not == 0 on cred %p", 2581 __func__, cr->cr_ref, cr)); 2582 2583 /* 2584 * Some callers of crget(), such as nfs_statfs(), allocate a temporary 2585 * credential, but don't allocate a uidinfo structure. 2586 */ 2587 if (cr->cr_uidinfo != NULL) 2588 uifree(cr->cr_uidinfo); 2589 if (cr->cr_ruidinfo != NULL) 2590 uifree(cr->cr_ruidinfo); 2591 if (cr->cr_prison != NULL) 2592 prison_free(cr->cr_prison); 2593 if (cr->cr_loginclass != NULL) 2594 loginclass_free(cr->cr_loginclass); 2595 #ifdef AUDIT 2596 audit_cred_destroy(cr); 2597 #endif 2598 #ifdef MAC 2599 mac_cred_destroy(cr); 2600 #endif 2601 mtx_destroy(&cr->cr_mtx); 2602 if (cr->cr_groups != cr->cr_smallgroups) 2603 free(cr->cr_groups, M_CRED); 2604 free(cr, M_CRED); 2605 } 2606 2607 /* 2608 * Copy a ucred's contents from a template. Does not block. 2609 */ 2610 void 2611 crcopy(struct ucred *dest, struct ucred *src) 2612 { 2613 2614 bcopy(&src->cr_startcopy, &dest->cr_startcopy, 2615 (unsigned)((caddr_t)&src->cr_endcopy - 2616 (caddr_t)&src->cr_startcopy)); 2617 dest->cr_flags = src->cr_flags; 2618 crsetgroups(dest, src->cr_ngroups, src->cr_groups); 2619 uihold(dest->cr_uidinfo); 2620 uihold(dest->cr_ruidinfo); 2621 prison_hold(dest->cr_prison); 2622 loginclass_hold(dest->cr_loginclass); 2623 #ifdef AUDIT 2624 audit_cred_copy(src, dest); 2625 #endif 2626 #ifdef MAC 2627 mac_cred_copy(src, dest); 2628 #endif 2629 } 2630 2631 /* 2632 * Dup cred struct to a new held one. 2633 */ 2634 struct ucred * 2635 crdup(struct ucred *cr) 2636 { 2637 struct ucred *newcr; 2638 2639 newcr = crget(); 2640 crcopy(newcr, cr); 2641 return (newcr); 2642 } 2643 2644 /* 2645 * Fill in a struct xucred based on a struct ucred. 2646 */ 2647 void 2648 cru2x(struct ucred *cr, struct xucred *xcr) 2649 { 2650 int ngroups; 2651 2652 bzero(xcr, sizeof(*xcr)); 2653 xcr->cr_version = XUCRED_VERSION; 2654 xcr->cr_uid = cr->cr_uid; 2655 xcr->cr_gid = cr->cr_gid; 2656 2657 /* 2658 * We use a union to alias cr_gid to cr_groups[0] in the xucred, so 2659 * this is kind of ugly; cr_ngroups still includes the egid for our 2660 * purposes to avoid bumping the xucred version. 2661 */ 2662 ngroups = MIN(cr->cr_ngroups + 1, nitems(xcr->cr_groups)); 2663 xcr->cr_ngroups = ngroups; 2664 bcopy(cr->cr_groups, xcr->cr_sgroups, 2665 (ngroups - 1) * sizeof(*cr->cr_groups)); 2666 } 2667 2668 void 2669 cru2xt(struct thread *td, struct xucred *xcr) 2670 { 2671 2672 cru2x(td->td_ucred, xcr); 2673 xcr->cr_pid = td->td_proc->p_pid; 2674 } 2675 2676 /* 2677 * Change process credentials. 2678 * 2679 * Callers are responsible for providing the reference for passed credentials 2680 * and for freeing old ones. Calls chgproccnt() to correctly account the 2681 * current process to the proper real UID, if the latter has changed. Returns 2682 * whether the operation was successful. Failure can happen only on 2683 * 'enforce_proc_lim' being true and if no new process can be accounted to the 2684 * new real UID because of the current limit (see the inner comment for more 2685 * details) and the caller does not have privilege (PRIV_PROC_LIMIT) to override 2686 * that. 2687 */ 2688 static bool 2689 _proc_set_cred(struct proc *p, struct ucred *newcred, bool enforce_proc_lim) 2690 { 2691 struct ucred *const oldcred = p->p_ucred; 2692 2693 MPASS(oldcred != NULL); 2694 PROC_LOCK_ASSERT(p, MA_OWNED); 2695 KASSERT(newcred->cr_users == 0, ("%s: users %d not 0 on cred %p", 2696 __func__, newcred->cr_users, newcred)); 2697 KASSERT(newcred->cr_ref == 1, ("%s: ref %ld not 1 on cred %p", 2698 __func__, newcred->cr_ref, newcred)); 2699 2700 if (newcred->cr_ruidinfo != oldcred->cr_ruidinfo) { 2701 /* 2702 * XXXOC: This check is flawed but nonetheless the best we can 2703 * currently do as we don't really track limits per UID contrary 2704 * to what we pretend in setrlimit(2). Until this is reworked, 2705 * we just check here that the number of processes for our new 2706 * real UID doesn't exceed this process' process number limit 2707 * (which is meant to be associated with the current real UID). 2708 */ 2709 const int proccnt_changed = chgproccnt(newcred->cr_ruidinfo, 1, 2710 enforce_proc_lim ? lim_cur_proc(p, RLIMIT_NPROC) : 0); 2711 2712 if (!proccnt_changed) { 2713 if (priv_check_cred(oldcred, PRIV_PROC_LIMIT) != 0) 2714 return (false); 2715 (void)chgproccnt(newcred->cr_ruidinfo, 1, 0); 2716 } 2717 } 2718 2719 mtx_lock(&oldcred->cr_mtx); 2720 KASSERT(oldcred->cr_users > 0, ("%s: users %d not > 0 on cred %p", 2721 __func__, oldcred->cr_users, oldcred)); 2722 oldcred->cr_users--; 2723 mtx_unlock(&oldcred->cr_mtx); 2724 p->p_ucred = newcred; 2725 newcred->cr_users = 1; 2726 PROC_UPDATE_COW(p); 2727 if (newcred->cr_ruidinfo != oldcred->cr_ruidinfo) 2728 (void)chgproccnt(oldcred->cr_ruidinfo, -1, 0); 2729 return (true); 2730 } 2731 2732 void 2733 proc_set_cred(struct proc *p, struct ucred *newcred) 2734 { 2735 bool success __diagused = _proc_set_cred(p, newcred, false); 2736 2737 MPASS(success); 2738 } 2739 2740 bool 2741 proc_set_cred_enforce_proc_lim(struct proc *p, struct ucred *newcred) 2742 { 2743 return (_proc_set_cred(p, newcred, true)); 2744 } 2745 2746 void 2747 proc_unset_cred(struct proc *p, bool decrement_proc_count) 2748 { 2749 struct ucred *cr; 2750 2751 MPASS(p->p_state == PRS_ZOMBIE || p->p_state == PRS_NEW); 2752 cr = p->p_ucred; 2753 p->p_ucred = NULL; 2754 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p", 2755 __func__, cr->cr_users, cr)); 2756 mtx_lock(&cr->cr_mtx); 2757 cr->cr_users--; 2758 if (cr->cr_users == 0) 2759 KASSERT(cr->cr_ref > 0, ("%s: ref %ld not > 0 on cred %p", 2760 __func__, cr->cr_ref, cr)); 2761 mtx_unlock(&cr->cr_mtx); 2762 if (decrement_proc_count) 2763 (void)chgproccnt(cr->cr_ruidinfo, -1, 0); 2764 crfree(cr); 2765 } 2766 2767 struct ucred * 2768 crcopysafe(struct proc *p, struct ucred *cr) 2769 { 2770 struct ucred *oldcred; 2771 int groups; 2772 2773 PROC_LOCK_ASSERT(p, MA_OWNED); 2774 2775 oldcred = p->p_ucred; 2776 while (cr->cr_agroups < oldcred->cr_ngroups) { 2777 groups = oldcred->cr_ngroups; 2778 PROC_UNLOCK(p); 2779 crextend(cr, groups); 2780 PROC_LOCK(p); 2781 oldcred = p->p_ucred; 2782 } 2783 crcopy(cr, oldcred); 2784 2785 return (oldcred); 2786 } 2787 2788 /* 2789 * Extend the passed-in credentials to hold n groups. 2790 * 2791 * Must not be called after groups have been set. 2792 */ 2793 void 2794 crextend(struct ucred *cr, int n) 2795 { 2796 size_t nbytes; 2797 2798 MPASS2(cr->cr_ref == 1, "'cr_ref' must be 1 (referenced, unshared)"); 2799 MPASS2((cr->cr_flags & CRED_FLAG_GROUPSET) == 0, 2800 "groups on 'cr' already set!"); 2801 groups_check_positive_len(n); 2802 groups_check_max_len(n); 2803 2804 if (n <= cr->cr_agroups) 2805 return; 2806 2807 nbytes = n * sizeof(gid_t); 2808 if (nbytes < n) 2809 panic("Too many groups (memory size overflow)! " 2810 "Computation of 'kern.ngroups' should have prevented this, " 2811 "please fix it. In the meantime, reduce 'kern.ngroups'."); 2812 2813 /* 2814 * We allocate a power of 2 larger than 'nbytes', except when that 2815 * exceeds PAGE_SIZE, in which case we allocate the right multiple of 2816 * pages. We assume PAGE_SIZE is a power of 2 (the call to roundup2() 2817 * below) but do not need to for sizeof(gid_t). 2818 */ 2819 if (nbytes < PAGE_SIZE) { 2820 if (!powerof2(nbytes)) 2821 /* fls*() return a bit index starting at 1. */ 2822 nbytes = 1 << flsl(nbytes); 2823 } else 2824 nbytes = roundup2(nbytes, PAGE_SIZE); 2825 2826 /* Free the old array. */ 2827 if (cr->cr_groups != cr->cr_smallgroups) 2828 free(cr->cr_groups, M_CRED); 2829 2830 cr->cr_groups = malloc(nbytes, M_CRED, M_WAITOK | M_ZERO); 2831 cr->cr_agroups = nbytes / sizeof(gid_t); 2832 } 2833 2834 /* 2835 * Normalizes a set of groups to be applied to a 'struct ucred'. 2836 * 2837 * Normalization ensures that the supplementary groups are sorted in ascending 2838 * order and do not contain duplicates. 2839 */ 2840 static void 2841 groups_normalize(int *ngrp, gid_t *groups) 2842 { 2843 gid_t prev_g; 2844 int ins_idx; 2845 2846 groups_check_positive_len(*ngrp); 2847 groups_check_max_len(*ngrp); 2848 2849 if (*ngrp <= 1) 2850 return; 2851 2852 qsort(groups, *ngrp, sizeof(*groups), gidp_cmp); 2853 2854 /* Remove duplicates. */ 2855 prev_g = groups[0]; 2856 ins_idx = 1; 2857 for (int i = ins_idx; i < *ngrp; ++i) { 2858 const gid_t g = groups[i]; 2859 2860 if (g != prev_g) { 2861 if (i != ins_idx) 2862 groups[ins_idx] = g; 2863 ++ins_idx; 2864 prev_g = g; 2865 } 2866 } 2867 *ngrp = ins_idx; 2868 2869 groups_check_normalized(*ngrp, groups); 2870 } 2871 2872 /* 2873 * Internal function copying groups into a credential. 2874 * 2875 * 'ngrp' must be strictly positive. Either the passed 'groups' array must have 2876 * been normalized in advance (see groups_normalize()), else it must be so 2877 * before the structure is to be used again. 2878 * 2879 * This function is suitable to be used under any lock (it doesn't take any lock 2880 * itself nor sleep, and in particular doesn't allocate memory). crextend() 2881 * must have been called beforehand to ensure sufficient space is available. 2882 * See also crsetgroups(), which handles that. 2883 */ 2884 static void 2885 crsetgroups_internal(struct ucred *cr, int ngrp, const gid_t *groups) 2886 { 2887 2888 MPASS2(cr->cr_ref == 1, "'cr_ref' must be 1 (referenced, unshared)"); 2889 MPASS2(cr->cr_agroups >= ngrp, "'cr_agroups' too small"); 2890 groups_check_positive_len(ngrp); 2891 2892 bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t)); 2893 cr->cr_ngroups = ngrp; 2894 cr->cr_flags |= CRED_FLAG_GROUPSET; 2895 } 2896 2897 /* 2898 * Copy groups in to a credential after expanding it if required. 2899 * 2900 * May sleep in order to allocate memory (except if, e.g., crextend() was called 2901 * before with 'ngrp' or greater). Truncates the list to ngroups_max if 2902 * it is too large. Array 'groups' doesn't need to be sorted. 'ngrp' must be 2903 * strictly positive. 2904 */ 2905 void 2906 crsetgroups(struct ucred *cr, int ngrp, const gid_t *groups) 2907 { 2908 2909 if (ngrp > ngroups_max) 2910 ngrp = ngroups_max; 2911 cr->cr_ngroups = 0; 2912 if (ngrp == 0) { 2913 cr->cr_flags |= CRED_FLAG_GROUPSET; 2914 return; 2915 } 2916 2917 /* 2918 * crextend() asserts that groups are not set, as it may allocate a new 2919 * backing storage without copying the content of the old one. Since we 2920 * are going to install a completely new set anyway, signal that we 2921 * consider the old ones thrown away. 2922 */ 2923 cr->cr_flags &= ~CRED_FLAG_GROUPSET; 2924 2925 crextend(cr, ngrp); 2926 crsetgroups_internal(cr, ngrp, groups); 2927 groups_normalize(&cr->cr_ngroups, cr->cr_groups); 2928 } 2929 2930 /* 2931 * Same as crsetgroups() but sets the effective GID as well. 2932 * 2933 * This function ensures that an effective GID is always present in credentials. 2934 * An empty array will only set the effective GID to the default_egid, while a 2935 * non-empty array will peel off groups[0] to set as the effective GID and use 2936 * the remainder, if any, as supplementary groups. 2937 */ 2938 void 2939 crsetgroups_and_egid(struct ucred *cr, int ngrp, const gid_t *groups, 2940 const gid_t default_egid) 2941 { 2942 if (ngrp == 0) { 2943 cr->cr_gid = default_egid; 2944 cr->cr_ngroups = 0; 2945 cr->cr_flags |= CRED_FLAG_GROUPSET; 2946 return; 2947 } 2948 2949 crsetgroups(cr, ngrp - 1, groups + 1); 2950 cr->cr_gid = groups[0]; 2951 } 2952 2953 /* 2954 * Get login name, if available. 2955 */ 2956 #ifndef _SYS_SYSPROTO_H_ 2957 struct getlogin_args { 2958 char *namebuf; 2959 u_int namelen; 2960 }; 2961 #endif 2962 /* ARGSUSED */ 2963 int 2964 sys_getlogin(struct thread *td, struct getlogin_args *uap) 2965 { 2966 char login[MAXLOGNAME]; 2967 struct proc *p = td->td_proc; 2968 size_t len; 2969 2970 if (uap->namelen > MAXLOGNAME) 2971 uap->namelen = MAXLOGNAME; 2972 PROC_LOCK(p); 2973 SESS_LOCK(p->p_session); 2974 len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1; 2975 SESS_UNLOCK(p->p_session); 2976 PROC_UNLOCK(p); 2977 if (len > uap->namelen) 2978 return (ERANGE); 2979 return (copyout(login, uap->namebuf, len)); 2980 } 2981 2982 /* 2983 * Set login name. 2984 */ 2985 #ifndef _SYS_SYSPROTO_H_ 2986 struct setlogin_args { 2987 char *namebuf; 2988 }; 2989 #endif 2990 /* ARGSUSED */ 2991 int 2992 sys_setlogin(struct thread *td, struct setlogin_args *uap) 2993 { 2994 struct proc *p = td->td_proc; 2995 int error; 2996 char logintmp[MAXLOGNAME]; 2997 2998 CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp)); 2999 3000 error = priv_check(td, PRIV_PROC_SETLOGIN); 3001 if (error) 3002 return (error); 3003 error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL); 3004 if (error != 0) { 3005 if (error == ENAMETOOLONG) 3006 error = EINVAL; 3007 return (error); 3008 } 3009 AUDIT_ARG_LOGIN(logintmp); 3010 PROC_LOCK(p); 3011 SESS_LOCK(p->p_session); 3012 strcpy(p->p_session->s_login, logintmp); 3013 SESS_UNLOCK(p->p_session); 3014 PROC_UNLOCK(p); 3015 return (0); 3016 } 3017 3018 void 3019 setsugid(struct proc *p) 3020 { 3021 3022 PROC_LOCK_ASSERT(p, MA_OWNED); 3023 p->p_flag |= P_SUGID; 3024 } 3025 3026 /*- 3027 * Change a process's effective uid. 3028 * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified. 3029 * References: newcred must be an exclusive credential reference for the 3030 * duration of the call. 3031 */ 3032 void 3033 change_euid(struct ucred *newcred, struct uidinfo *euip) 3034 { 3035 3036 newcred->cr_uid = euip->ui_uid; 3037 uihold(euip); 3038 uifree(newcred->cr_uidinfo); 3039 newcred->cr_uidinfo = euip; 3040 } 3041 3042 /*- 3043 * Change a process's effective gid. 3044 * Side effects: newcred->cr_gid will be modified. 3045 * References: newcred must be an exclusive credential reference for the 3046 * duration of the call. 3047 */ 3048 void 3049 change_egid(struct ucred *newcred, gid_t egid) 3050 { 3051 3052 newcred->cr_gid = egid; 3053 } 3054 3055 /*- 3056 * Change a process's real uid. 3057 * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo 3058 * will be updated. 3059 * References: newcred must be an exclusive credential reference for the 3060 * duration of the call. 3061 */ 3062 void 3063 change_ruid(struct ucred *newcred, struct uidinfo *ruip) 3064 { 3065 3066 newcred->cr_ruid = ruip->ui_uid; 3067 uihold(ruip); 3068 uifree(newcred->cr_ruidinfo); 3069 newcred->cr_ruidinfo = ruip; 3070 } 3071 3072 /*- 3073 * Change a process's real gid. 3074 * Side effects: newcred->cr_rgid will be updated. 3075 * References: newcred must be an exclusive credential reference for the 3076 * duration of the call. 3077 */ 3078 void 3079 change_rgid(struct ucred *newcred, gid_t rgid) 3080 { 3081 3082 newcred->cr_rgid = rgid; 3083 } 3084 3085 /*- 3086 * Change a process's saved uid. 3087 * Side effects: newcred->cr_svuid will be updated. 3088 * References: newcred must be an exclusive credential reference for the 3089 * duration of the call. 3090 */ 3091 void 3092 change_svuid(struct ucred *newcred, uid_t svuid) 3093 { 3094 3095 newcred->cr_svuid = svuid; 3096 } 3097 3098 /*- 3099 * Change a process's saved gid. 3100 * Side effects: newcred->cr_svgid will be updated. 3101 * References: newcred must be an exclusive credential reference for the 3102 * duration of the call. 3103 */ 3104 void 3105 change_svgid(struct ucred *newcred, gid_t svgid) 3106 { 3107 3108 newcred->cr_svgid = svgid; 3109 } 3110 3111 bool allow_ptrace = true; 3112 SYSCTL_BOOL(_security_bsd, OID_AUTO, allow_ptrace, CTLFLAG_RWTUN, 3113 &allow_ptrace, 0, 3114 "Deny ptrace(2) use by returning ENOSYS"); 3115