1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993 3 * The Regents of the University of California. 4 * (c) UNIX System Laboratories, Inc. 5 * Copyright (c) 2000-2001 Robert N. M. Watson. 6 * All rights reserved. 7 * 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)kern_prot.c 8.6 (Berkeley) 1/21/94 38 */ 39 40 /* 41 * System calls related to processes and protection 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_compat.h" 48 #include "opt_inet.h" 49 #include "opt_inet6.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/acct.h> 54 #include <sys/kdb.h> 55 #include <sys/kernel.h> 56 #include <sys/lock.h> 57 #include <sys/loginclass.h> 58 #include <sys/malloc.h> 59 #include <sys/mutex.h> 60 #include <sys/refcount.h> 61 #include <sys/sx.h> 62 #include <sys/priv.h> 63 #include <sys/proc.h> 64 #include <sys/sysproto.h> 65 #include <sys/jail.h> 66 #include <sys/pioctl.h> 67 #include <sys/racct.h> 68 #include <sys/resourcevar.h> 69 #include <sys/socket.h> 70 #include <sys/socketvar.h> 71 #include <sys/syscallsubr.h> 72 #include <sys/sysctl.h> 73 74 #ifdef REGRESSION 75 FEATURE(regression, 76 "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)"); 77 #endif 78 79 #if defined(INET) || defined(INET6) 80 #include <netinet/in.h> 81 #include <netinet/in_pcb.h> 82 #endif 83 84 #include <security/audit/audit.h> 85 #include <security/mac/mac_framework.h> 86 87 static MALLOC_DEFINE(M_CRED, "cred", "credentials"); 88 89 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW, 0, "BSD security policy"); 90 91 static void crextend(struct ucred *cr, int n); 92 static void crsetgroups_locked(struct ucred *cr, int ngrp, 93 gid_t *groups); 94 95 #ifndef _SYS_SYSPROTO_H_ 96 struct getpid_args { 97 int dummy; 98 }; 99 #endif 100 /* ARGSUSED */ 101 int 102 sys_getpid(struct thread *td, struct getpid_args *uap) 103 { 104 struct proc *p = td->td_proc; 105 106 td->td_retval[0] = p->p_pid; 107 #if defined(COMPAT_43) 108 td->td_retval[1] = kern_getppid(td); 109 #endif 110 return (0); 111 } 112 113 #ifndef _SYS_SYSPROTO_H_ 114 struct getppid_args { 115 int dummy; 116 }; 117 #endif 118 /* ARGSUSED */ 119 int 120 sys_getppid(struct thread *td, struct getppid_args *uap) 121 { 122 123 td->td_retval[0] = kern_getppid(td); 124 return (0); 125 } 126 127 int 128 kern_getppid(struct thread *td) 129 { 130 struct proc *p = td->td_proc; 131 struct proc *pp; 132 int ppid; 133 134 PROC_LOCK(p); 135 if (!(p->p_flag & P_TRACED)) { 136 ppid = p->p_pptr->p_pid; 137 PROC_UNLOCK(p); 138 } else { 139 PROC_UNLOCK(p); 140 sx_slock(&proctree_lock); 141 pp = proc_realparent(p); 142 ppid = pp->p_pid; 143 sx_sunlock(&proctree_lock); 144 } 145 146 return (ppid); 147 } 148 149 /* 150 * Get process group ID; note that POSIX getpgrp takes no parameter. 151 */ 152 #ifndef _SYS_SYSPROTO_H_ 153 struct getpgrp_args { 154 int dummy; 155 }; 156 #endif 157 int 158 sys_getpgrp(struct thread *td, struct getpgrp_args *uap) 159 { 160 struct proc *p = td->td_proc; 161 162 PROC_LOCK(p); 163 td->td_retval[0] = p->p_pgrp->pg_id; 164 PROC_UNLOCK(p); 165 return (0); 166 } 167 168 /* Get an arbitary pid's process group id */ 169 #ifndef _SYS_SYSPROTO_H_ 170 struct getpgid_args { 171 pid_t pid; 172 }; 173 #endif 174 int 175 sys_getpgid(struct thread *td, struct getpgid_args *uap) 176 { 177 struct proc *p; 178 int error; 179 180 if (uap->pid == 0) { 181 p = td->td_proc; 182 PROC_LOCK(p); 183 } else { 184 p = pfind(uap->pid); 185 if (p == NULL) 186 return (ESRCH); 187 error = p_cansee(td, p); 188 if (error) { 189 PROC_UNLOCK(p); 190 return (error); 191 } 192 } 193 td->td_retval[0] = p->p_pgrp->pg_id; 194 PROC_UNLOCK(p); 195 return (0); 196 } 197 198 /* 199 * Get an arbitary pid's session id. 200 */ 201 #ifndef _SYS_SYSPROTO_H_ 202 struct getsid_args { 203 pid_t pid; 204 }; 205 #endif 206 int 207 sys_getsid(struct thread *td, struct getsid_args *uap) 208 { 209 struct proc *p; 210 int error; 211 212 if (uap->pid == 0) { 213 p = td->td_proc; 214 PROC_LOCK(p); 215 } else { 216 p = pfind(uap->pid); 217 if (p == NULL) 218 return (ESRCH); 219 error = p_cansee(td, p); 220 if (error) { 221 PROC_UNLOCK(p); 222 return (error); 223 } 224 } 225 td->td_retval[0] = p->p_session->s_sid; 226 PROC_UNLOCK(p); 227 return (0); 228 } 229 230 #ifndef _SYS_SYSPROTO_H_ 231 struct getuid_args { 232 int dummy; 233 }; 234 #endif 235 /* ARGSUSED */ 236 int 237 sys_getuid(struct thread *td, struct getuid_args *uap) 238 { 239 240 td->td_retval[0] = td->td_ucred->cr_ruid; 241 #if defined(COMPAT_43) 242 td->td_retval[1] = td->td_ucred->cr_uid; 243 #endif 244 return (0); 245 } 246 247 #ifndef _SYS_SYSPROTO_H_ 248 struct geteuid_args { 249 int dummy; 250 }; 251 #endif 252 /* ARGSUSED */ 253 int 254 sys_geteuid(struct thread *td, struct geteuid_args *uap) 255 { 256 257 td->td_retval[0] = td->td_ucred->cr_uid; 258 return (0); 259 } 260 261 #ifndef _SYS_SYSPROTO_H_ 262 struct getgid_args { 263 int dummy; 264 }; 265 #endif 266 /* ARGSUSED */ 267 int 268 sys_getgid(struct thread *td, struct getgid_args *uap) 269 { 270 271 td->td_retval[0] = td->td_ucred->cr_rgid; 272 #if defined(COMPAT_43) 273 td->td_retval[1] = td->td_ucred->cr_groups[0]; 274 #endif 275 return (0); 276 } 277 278 /* 279 * Get effective group ID. The "egid" is groups[0], and could be obtained 280 * via getgroups. This syscall exists because it is somewhat painful to do 281 * correctly in a library function. 282 */ 283 #ifndef _SYS_SYSPROTO_H_ 284 struct getegid_args { 285 int dummy; 286 }; 287 #endif 288 /* ARGSUSED */ 289 int 290 sys_getegid(struct thread *td, struct getegid_args *uap) 291 { 292 293 td->td_retval[0] = td->td_ucred->cr_groups[0]; 294 return (0); 295 } 296 297 #ifndef _SYS_SYSPROTO_H_ 298 struct getgroups_args { 299 u_int gidsetsize; 300 gid_t *gidset; 301 }; 302 #endif 303 int 304 sys_getgroups(struct thread *td, register struct getgroups_args *uap) 305 { 306 struct ucred *cred; 307 u_int ngrp; 308 int error; 309 310 cred = td->td_ucred; 311 ngrp = cred->cr_ngroups; 312 313 if (uap->gidsetsize == 0) { 314 error = 0; 315 goto out; 316 } 317 if (uap->gidsetsize < ngrp) 318 return (EINVAL); 319 320 error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t)); 321 out: 322 td->td_retval[0] = ngrp; 323 return (error); 324 } 325 326 #ifndef _SYS_SYSPROTO_H_ 327 struct setsid_args { 328 int dummy; 329 }; 330 #endif 331 /* ARGSUSED */ 332 int 333 sys_setsid(register struct thread *td, struct setsid_args *uap) 334 { 335 struct pgrp *pgrp; 336 int error; 337 struct proc *p = td->td_proc; 338 struct pgrp *newpgrp; 339 struct session *newsess; 340 341 error = 0; 342 pgrp = NULL; 343 344 newpgrp = malloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO); 345 newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO); 346 347 sx_xlock(&proctree_lock); 348 349 if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) { 350 if (pgrp != NULL) 351 PGRP_UNLOCK(pgrp); 352 error = EPERM; 353 } else { 354 (void)enterpgrp(p, p->p_pid, newpgrp, newsess); 355 td->td_retval[0] = p->p_pid; 356 newpgrp = NULL; 357 newsess = NULL; 358 } 359 360 sx_xunlock(&proctree_lock); 361 362 if (newpgrp != NULL) 363 free(newpgrp, M_PGRP); 364 if (newsess != NULL) 365 free(newsess, M_SESSION); 366 367 return (error); 368 } 369 370 /* 371 * set process group (setpgid/old setpgrp) 372 * 373 * caller does setpgid(targpid, targpgid) 374 * 375 * pid must be caller or child of caller (ESRCH) 376 * if a child 377 * pid must be in same session (EPERM) 378 * pid can't have done an exec (EACCES) 379 * if pgid != pid 380 * there must exist some pid in same session having pgid (EPERM) 381 * pid must not be session leader (EPERM) 382 */ 383 #ifndef _SYS_SYSPROTO_H_ 384 struct setpgid_args { 385 int pid; /* target process id */ 386 int pgid; /* target pgrp id */ 387 }; 388 #endif 389 /* ARGSUSED */ 390 int 391 sys_setpgid(struct thread *td, register struct setpgid_args *uap) 392 { 393 struct proc *curp = td->td_proc; 394 register struct proc *targp; /* target process */ 395 register struct pgrp *pgrp; /* target pgrp */ 396 int error; 397 struct pgrp *newpgrp; 398 399 if (uap->pgid < 0) 400 return (EINVAL); 401 402 error = 0; 403 404 newpgrp = malloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO); 405 406 sx_xlock(&proctree_lock); 407 if (uap->pid != 0 && uap->pid != curp->p_pid) { 408 if ((targp = pfind(uap->pid)) == NULL) { 409 error = ESRCH; 410 goto done; 411 } 412 if (!inferior(targp)) { 413 PROC_UNLOCK(targp); 414 error = ESRCH; 415 goto done; 416 } 417 if ((error = p_cansee(td, targp))) { 418 PROC_UNLOCK(targp); 419 goto done; 420 } 421 if (targp->p_pgrp == NULL || 422 targp->p_session != curp->p_session) { 423 PROC_UNLOCK(targp); 424 error = EPERM; 425 goto done; 426 } 427 if (targp->p_flag & P_EXEC) { 428 PROC_UNLOCK(targp); 429 error = EACCES; 430 goto done; 431 } 432 PROC_UNLOCK(targp); 433 } else 434 targp = curp; 435 if (SESS_LEADER(targp)) { 436 error = EPERM; 437 goto done; 438 } 439 if (uap->pgid == 0) 440 uap->pgid = targp->p_pid; 441 if ((pgrp = pgfind(uap->pgid)) == NULL) { 442 if (uap->pgid == targp->p_pid) { 443 error = enterpgrp(targp, uap->pgid, newpgrp, 444 NULL); 445 if (error == 0) 446 newpgrp = NULL; 447 } else 448 error = EPERM; 449 } else { 450 if (pgrp == targp->p_pgrp) { 451 PGRP_UNLOCK(pgrp); 452 goto done; 453 } 454 if (pgrp->pg_id != targp->p_pid && 455 pgrp->pg_session != curp->p_session) { 456 PGRP_UNLOCK(pgrp); 457 error = EPERM; 458 goto done; 459 } 460 PGRP_UNLOCK(pgrp); 461 error = enterthispgrp(targp, pgrp); 462 } 463 done: 464 sx_xunlock(&proctree_lock); 465 KASSERT((error == 0) || (newpgrp != NULL), 466 ("setpgid failed and newpgrp is NULL")); 467 if (newpgrp != NULL) 468 free(newpgrp, M_PGRP); 469 return (error); 470 } 471 472 /* 473 * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD 474 * compatible. It says that setting the uid/gid to euid/egid is a special 475 * case of "appropriate privilege". Once the rules are expanded out, this 476 * basically means that setuid(nnn) sets all three id's, in all permitted 477 * cases unless _POSIX_SAVED_IDS is enabled. In that case, setuid(getuid()) 478 * does not set the saved id - this is dangerous for traditional BSD 479 * programs. For this reason, we *really* do not want to set 480 * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2. 481 */ 482 #define POSIX_APPENDIX_B_4_2_2 483 484 #ifndef _SYS_SYSPROTO_H_ 485 struct setuid_args { 486 uid_t uid; 487 }; 488 #endif 489 /* ARGSUSED */ 490 int 491 sys_setuid(struct thread *td, struct setuid_args *uap) 492 { 493 struct proc *p = td->td_proc; 494 struct ucred *newcred, *oldcred; 495 uid_t uid; 496 struct uidinfo *uip; 497 int error; 498 499 uid = uap->uid; 500 AUDIT_ARG_UID(uid); 501 newcred = crget(); 502 uip = uifind(uid); 503 PROC_LOCK(p); 504 /* 505 * Copy credentials so other references do not see our changes. 506 */ 507 oldcred = crcopysafe(p, newcred); 508 509 #ifdef MAC 510 error = mac_cred_check_setuid(oldcred, uid); 511 if (error) 512 goto fail; 513 #endif 514 515 /* 516 * See if we have "permission" by POSIX 1003.1 rules. 517 * 518 * Note that setuid(geteuid()) is a special case of 519 * "appropriate privileges" in appendix B.4.2.2. We need 520 * to use this clause to be compatible with traditional BSD 521 * semantics. Basically, it means that "setuid(xx)" sets all 522 * three id's (assuming you have privs). 523 * 524 * Notes on the logic. We do things in three steps. 525 * 1: We determine if the euid is going to change, and do EPERM 526 * right away. We unconditionally change the euid later if this 527 * test is satisfied, simplifying that part of the logic. 528 * 2: We determine if the real and/or saved uids are going to 529 * change. Determined by compile options. 530 * 3: Change euid last. (after tests in #2 for "appropriate privs") 531 */ 532 if (uid != oldcred->cr_ruid && /* allow setuid(getuid()) */ 533 #ifdef _POSIX_SAVED_IDS 534 uid != oldcred->cr_svuid && /* allow setuid(saved gid) */ 535 #endif 536 #ifdef POSIX_APPENDIX_B_4_2_2 /* Use BSD-compat clause from B.4.2.2 */ 537 uid != oldcred->cr_uid && /* allow setuid(geteuid()) */ 538 #endif 539 (error = priv_check_cred(oldcred, PRIV_CRED_SETUID, 0)) != 0) 540 goto fail; 541 542 #ifdef _POSIX_SAVED_IDS 543 /* 544 * Do we have "appropriate privileges" (are we root or uid == euid) 545 * If so, we are changing the real uid and/or saved uid. 546 */ 547 if ( 548 #ifdef POSIX_APPENDIX_B_4_2_2 /* Use the clause from B.4.2.2 */ 549 uid == oldcred->cr_uid || 550 #endif 551 /* We are using privs. */ 552 priv_check_cred(oldcred, PRIV_CRED_SETUID, 0) == 0) 553 #endif 554 { 555 /* 556 * Set the real uid and transfer proc count to new user. 557 */ 558 if (uid != oldcred->cr_ruid) { 559 change_ruid(newcred, uip); 560 setsugid(p); 561 } 562 /* 563 * Set saved uid 564 * 565 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as 566 * the security of seteuid() depends on it. B.4.2.2 says it 567 * is important that we should do this. 568 */ 569 if (uid != oldcred->cr_svuid) { 570 change_svuid(newcred, uid); 571 setsugid(p); 572 } 573 } 574 575 /* 576 * In all permitted cases, we are changing the euid. 577 */ 578 if (uid != oldcred->cr_uid) { 579 change_euid(newcred, uip); 580 setsugid(p); 581 } 582 p->p_ucred = newcred; 583 PROC_UNLOCK(p); 584 #ifdef RACCT 585 racct_proc_ucred_changed(p, oldcred, newcred); 586 #endif 587 uifree(uip); 588 crfree(oldcred); 589 return (0); 590 591 fail: 592 PROC_UNLOCK(p); 593 uifree(uip); 594 crfree(newcred); 595 return (error); 596 } 597 598 #ifndef _SYS_SYSPROTO_H_ 599 struct seteuid_args { 600 uid_t euid; 601 }; 602 #endif 603 /* ARGSUSED */ 604 int 605 sys_seteuid(struct thread *td, struct seteuid_args *uap) 606 { 607 struct proc *p = td->td_proc; 608 struct ucred *newcred, *oldcred; 609 uid_t euid; 610 struct uidinfo *euip; 611 int error; 612 613 euid = uap->euid; 614 AUDIT_ARG_EUID(euid); 615 newcred = crget(); 616 euip = uifind(euid); 617 PROC_LOCK(p); 618 /* 619 * Copy credentials so other references do not see our changes. 620 */ 621 oldcred = crcopysafe(p, newcred); 622 623 #ifdef MAC 624 error = mac_cred_check_seteuid(oldcred, euid); 625 if (error) 626 goto fail; 627 #endif 628 629 if (euid != oldcred->cr_ruid && /* allow seteuid(getuid()) */ 630 euid != oldcred->cr_svuid && /* allow seteuid(saved uid) */ 631 (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID, 0)) != 0) 632 goto fail; 633 634 /* 635 * Everything's okay, do it. 636 */ 637 if (oldcred->cr_uid != euid) { 638 change_euid(newcred, euip); 639 setsugid(p); 640 } 641 p->p_ucred = newcred; 642 PROC_UNLOCK(p); 643 uifree(euip); 644 crfree(oldcred); 645 return (0); 646 647 fail: 648 PROC_UNLOCK(p); 649 uifree(euip); 650 crfree(newcred); 651 return (error); 652 } 653 654 #ifndef _SYS_SYSPROTO_H_ 655 struct setgid_args { 656 gid_t gid; 657 }; 658 #endif 659 /* ARGSUSED */ 660 int 661 sys_setgid(struct thread *td, struct setgid_args *uap) 662 { 663 struct proc *p = td->td_proc; 664 struct ucred *newcred, *oldcred; 665 gid_t gid; 666 int error; 667 668 gid = uap->gid; 669 AUDIT_ARG_GID(gid); 670 newcred = crget(); 671 PROC_LOCK(p); 672 oldcred = crcopysafe(p, newcred); 673 674 #ifdef MAC 675 error = mac_cred_check_setgid(oldcred, gid); 676 if (error) 677 goto fail; 678 #endif 679 680 /* 681 * See if we have "permission" by POSIX 1003.1 rules. 682 * 683 * Note that setgid(getegid()) is a special case of 684 * "appropriate privileges" in appendix B.4.2.2. We need 685 * to use this clause to be compatible with traditional BSD 686 * semantics. Basically, it means that "setgid(xx)" sets all 687 * three id's (assuming you have privs). 688 * 689 * For notes on the logic here, see setuid() above. 690 */ 691 if (gid != oldcred->cr_rgid && /* allow setgid(getgid()) */ 692 #ifdef _POSIX_SAVED_IDS 693 gid != oldcred->cr_svgid && /* allow setgid(saved gid) */ 694 #endif 695 #ifdef POSIX_APPENDIX_B_4_2_2 /* Use BSD-compat clause from B.4.2.2 */ 696 gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */ 697 #endif 698 (error = priv_check_cred(oldcred, PRIV_CRED_SETGID, 0)) != 0) 699 goto fail; 700 701 #ifdef _POSIX_SAVED_IDS 702 /* 703 * Do we have "appropriate privileges" (are we root or gid == egid) 704 * If so, we are changing the real uid and saved gid. 705 */ 706 if ( 707 #ifdef POSIX_APPENDIX_B_4_2_2 /* use the clause from B.4.2.2 */ 708 gid == oldcred->cr_groups[0] || 709 #endif 710 /* We are using privs. */ 711 priv_check_cred(oldcred, PRIV_CRED_SETGID, 0) == 0) 712 #endif 713 { 714 /* 715 * Set real gid 716 */ 717 if (oldcred->cr_rgid != gid) { 718 change_rgid(newcred, gid); 719 setsugid(p); 720 } 721 /* 722 * Set saved gid 723 * 724 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as 725 * the security of setegid() depends on it. B.4.2.2 says it 726 * is important that we should do this. 727 */ 728 if (oldcred->cr_svgid != gid) { 729 change_svgid(newcred, gid); 730 setsugid(p); 731 } 732 } 733 /* 734 * In all cases permitted cases, we are changing the egid. 735 * Copy credentials so other references do not see our changes. 736 */ 737 if (oldcred->cr_groups[0] != gid) { 738 change_egid(newcred, gid); 739 setsugid(p); 740 } 741 p->p_ucred = newcred; 742 PROC_UNLOCK(p); 743 crfree(oldcred); 744 return (0); 745 746 fail: 747 PROC_UNLOCK(p); 748 crfree(newcred); 749 return (error); 750 } 751 752 #ifndef _SYS_SYSPROTO_H_ 753 struct setegid_args { 754 gid_t egid; 755 }; 756 #endif 757 /* ARGSUSED */ 758 int 759 sys_setegid(struct thread *td, struct setegid_args *uap) 760 { 761 struct proc *p = td->td_proc; 762 struct ucred *newcred, *oldcred; 763 gid_t egid; 764 int error; 765 766 egid = uap->egid; 767 AUDIT_ARG_EGID(egid); 768 newcred = crget(); 769 PROC_LOCK(p); 770 oldcred = crcopysafe(p, newcred); 771 772 #ifdef MAC 773 error = mac_cred_check_setegid(oldcred, egid); 774 if (error) 775 goto fail; 776 #endif 777 778 if (egid != oldcred->cr_rgid && /* allow setegid(getgid()) */ 779 egid != oldcred->cr_svgid && /* allow setegid(saved gid) */ 780 (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID, 0)) != 0) 781 goto fail; 782 783 if (oldcred->cr_groups[0] != egid) { 784 change_egid(newcred, egid); 785 setsugid(p); 786 } 787 p->p_ucred = newcred; 788 PROC_UNLOCK(p); 789 crfree(oldcred); 790 return (0); 791 792 fail: 793 PROC_UNLOCK(p); 794 crfree(newcred); 795 return (error); 796 } 797 798 #ifndef _SYS_SYSPROTO_H_ 799 struct setgroups_args { 800 u_int gidsetsize; 801 gid_t *gidset; 802 }; 803 #endif 804 /* ARGSUSED */ 805 int 806 sys_setgroups(struct thread *td, struct setgroups_args *uap) 807 { 808 gid_t *groups = NULL; 809 int error; 810 811 if (uap->gidsetsize > ngroups_max + 1) 812 return (EINVAL); 813 groups = malloc(uap->gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK); 814 error = copyin(uap->gidset, groups, uap->gidsetsize * sizeof(gid_t)); 815 if (error) 816 goto out; 817 error = kern_setgroups(td, uap->gidsetsize, groups); 818 out: 819 free(groups, M_TEMP); 820 return (error); 821 } 822 823 int 824 kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups) 825 { 826 struct proc *p = td->td_proc; 827 struct ucred *newcred, *oldcred; 828 int error; 829 830 if (ngrp > ngroups_max + 1) 831 return (EINVAL); 832 AUDIT_ARG_GROUPSET(groups, ngrp); 833 newcred = crget(); 834 crextend(newcred, ngrp); 835 PROC_LOCK(p); 836 oldcred = crcopysafe(p, newcred); 837 838 #ifdef MAC 839 error = mac_cred_check_setgroups(oldcred, ngrp, groups); 840 if (error) 841 goto fail; 842 #endif 843 844 error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS, 0); 845 if (error) 846 goto fail; 847 848 if (ngrp < 1) { 849 /* 850 * setgroups(0, NULL) is a legitimate way of clearing the 851 * groups vector on non-BSD systems (which generally do not 852 * have the egid in the groups[0]). We risk security holes 853 * when running non-BSD software if we do not do the same. 854 */ 855 newcred->cr_ngroups = 1; 856 } else { 857 crsetgroups_locked(newcred, ngrp, groups); 858 } 859 setsugid(p); 860 p->p_ucred = newcred; 861 PROC_UNLOCK(p); 862 crfree(oldcred); 863 return (0); 864 865 fail: 866 PROC_UNLOCK(p); 867 crfree(newcred); 868 return (error); 869 } 870 871 #ifndef _SYS_SYSPROTO_H_ 872 struct setreuid_args { 873 uid_t ruid; 874 uid_t euid; 875 }; 876 #endif 877 /* ARGSUSED */ 878 int 879 sys_setreuid(register struct thread *td, struct setreuid_args *uap) 880 { 881 struct proc *p = td->td_proc; 882 struct ucred *newcred, *oldcred; 883 uid_t euid, ruid; 884 struct uidinfo *euip, *ruip; 885 int error; 886 887 euid = uap->euid; 888 ruid = uap->ruid; 889 AUDIT_ARG_EUID(euid); 890 AUDIT_ARG_RUID(ruid); 891 newcred = crget(); 892 euip = uifind(euid); 893 ruip = uifind(ruid); 894 PROC_LOCK(p); 895 oldcred = crcopysafe(p, newcred); 896 897 #ifdef MAC 898 error = mac_cred_check_setreuid(oldcred, ruid, euid); 899 if (error) 900 goto fail; 901 #endif 902 903 if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid && 904 ruid != oldcred->cr_svuid) || 905 (euid != (uid_t)-1 && euid != oldcred->cr_uid && 906 euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) && 907 (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID, 0)) != 0) 908 goto fail; 909 910 if (euid != (uid_t)-1 && oldcred->cr_uid != euid) { 911 change_euid(newcred, euip); 912 setsugid(p); 913 } 914 if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) { 915 change_ruid(newcred, ruip); 916 setsugid(p); 917 } 918 if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) && 919 newcred->cr_svuid != newcred->cr_uid) { 920 change_svuid(newcred, newcred->cr_uid); 921 setsugid(p); 922 } 923 p->p_ucred = newcred; 924 PROC_UNLOCK(p); 925 #ifdef RACCT 926 racct_proc_ucred_changed(p, oldcred, newcred); 927 #endif 928 uifree(ruip); 929 uifree(euip); 930 crfree(oldcred); 931 return (0); 932 933 fail: 934 PROC_UNLOCK(p); 935 uifree(ruip); 936 uifree(euip); 937 crfree(newcred); 938 return (error); 939 } 940 941 #ifndef _SYS_SYSPROTO_H_ 942 struct setregid_args { 943 gid_t rgid; 944 gid_t egid; 945 }; 946 #endif 947 /* ARGSUSED */ 948 int 949 sys_setregid(register struct thread *td, struct setregid_args *uap) 950 { 951 struct proc *p = td->td_proc; 952 struct ucred *newcred, *oldcred; 953 gid_t egid, rgid; 954 int error; 955 956 egid = uap->egid; 957 rgid = uap->rgid; 958 AUDIT_ARG_EGID(egid); 959 AUDIT_ARG_RGID(rgid); 960 newcred = crget(); 961 PROC_LOCK(p); 962 oldcred = crcopysafe(p, newcred); 963 964 #ifdef MAC 965 error = mac_cred_check_setregid(oldcred, rgid, egid); 966 if (error) 967 goto fail; 968 #endif 969 970 if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid && 971 rgid != oldcred->cr_svgid) || 972 (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] && 973 egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) && 974 (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID, 0)) != 0) 975 goto fail; 976 977 if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) { 978 change_egid(newcred, egid); 979 setsugid(p); 980 } 981 if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) { 982 change_rgid(newcred, rgid); 983 setsugid(p); 984 } 985 if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) && 986 newcred->cr_svgid != newcred->cr_groups[0]) { 987 change_svgid(newcred, newcred->cr_groups[0]); 988 setsugid(p); 989 } 990 p->p_ucred = newcred; 991 PROC_UNLOCK(p); 992 crfree(oldcred); 993 return (0); 994 995 fail: 996 PROC_UNLOCK(p); 997 crfree(newcred); 998 return (error); 999 } 1000 1001 /* 1002 * setresuid(ruid, euid, suid) is like setreuid except control over the saved 1003 * uid is explicit. 1004 */ 1005 #ifndef _SYS_SYSPROTO_H_ 1006 struct setresuid_args { 1007 uid_t ruid; 1008 uid_t euid; 1009 uid_t suid; 1010 }; 1011 #endif 1012 /* ARGSUSED */ 1013 int 1014 sys_setresuid(register struct thread *td, struct setresuid_args *uap) 1015 { 1016 struct proc *p = td->td_proc; 1017 struct ucred *newcred, *oldcred; 1018 uid_t euid, ruid, suid; 1019 struct uidinfo *euip, *ruip; 1020 int error; 1021 1022 euid = uap->euid; 1023 ruid = uap->ruid; 1024 suid = uap->suid; 1025 AUDIT_ARG_EUID(euid); 1026 AUDIT_ARG_RUID(ruid); 1027 AUDIT_ARG_SUID(suid); 1028 newcred = crget(); 1029 euip = uifind(euid); 1030 ruip = uifind(ruid); 1031 PROC_LOCK(p); 1032 oldcred = crcopysafe(p, newcred); 1033 1034 #ifdef MAC 1035 error = mac_cred_check_setresuid(oldcred, ruid, euid, suid); 1036 if (error) 1037 goto fail; 1038 #endif 1039 1040 if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid && 1041 ruid != oldcred->cr_svuid && 1042 ruid != oldcred->cr_uid) || 1043 (euid != (uid_t)-1 && euid != oldcred->cr_ruid && 1044 euid != oldcred->cr_svuid && 1045 euid != oldcred->cr_uid) || 1046 (suid != (uid_t)-1 && suid != oldcred->cr_ruid && 1047 suid != oldcred->cr_svuid && 1048 suid != oldcred->cr_uid)) && 1049 (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID, 0)) != 0) 1050 goto fail; 1051 1052 if (euid != (uid_t)-1 && oldcred->cr_uid != euid) { 1053 change_euid(newcred, euip); 1054 setsugid(p); 1055 } 1056 if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) { 1057 change_ruid(newcred, ruip); 1058 setsugid(p); 1059 } 1060 if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) { 1061 change_svuid(newcred, suid); 1062 setsugid(p); 1063 } 1064 p->p_ucred = newcred; 1065 PROC_UNLOCK(p); 1066 #ifdef RACCT 1067 racct_proc_ucred_changed(p, oldcred, newcred); 1068 #endif 1069 uifree(ruip); 1070 uifree(euip); 1071 crfree(oldcred); 1072 return (0); 1073 1074 fail: 1075 PROC_UNLOCK(p); 1076 uifree(ruip); 1077 uifree(euip); 1078 crfree(newcred); 1079 return (error); 1080 1081 } 1082 1083 /* 1084 * setresgid(rgid, egid, sgid) is like setregid except control over the saved 1085 * gid is explicit. 1086 */ 1087 #ifndef _SYS_SYSPROTO_H_ 1088 struct setresgid_args { 1089 gid_t rgid; 1090 gid_t egid; 1091 gid_t sgid; 1092 }; 1093 #endif 1094 /* ARGSUSED */ 1095 int 1096 sys_setresgid(register struct thread *td, struct setresgid_args *uap) 1097 { 1098 struct proc *p = td->td_proc; 1099 struct ucred *newcred, *oldcred; 1100 gid_t egid, rgid, sgid; 1101 int error; 1102 1103 egid = uap->egid; 1104 rgid = uap->rgid; 1105 sgid = uap->sgid; 1106 AUDIT_ARG_EGID(egid); 1107 AUDIT_ARG_RGID(rgid); 1108 AUDIT_ARG_SGID(sgid); 1109 newcred = crget(); 1110 PROC_LOCK(p); 1111 oldcred = crcopysafe(p, newcred); 1112 1113 #ifdef MAC 1114 error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid); 1115 if (error) 1116 goto fail; 1117 #endif 1118 1119 if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid && 1120 rgid != oldcred->cr_svgid && 1121 rgid != oldcred->cr_groups[0]) || 1122 (egid != (gid_t)-1 && egid != oldcred->cr_rgid && 1123 egid != oldcred->cr_svgid && 1124 egid != oldcred->cr_groups[0]) || 1125 (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid && 1126 sgid != oldcred->cr_svgid && 1127 sgid != oldcred->cr_groups[0])) && 1128 (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID, 0)) != 0) 1129 goto fail; 1130 1131 if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) { 1132 change_egid(newcred, egid); 1133 setsugid(p); 1134 } 1135 if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) { 1136 change_rgid(newcred, rgid); 1137 setsugid(p); 1138 } 1139 if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) { 1140 change_svgid(newcred, sgid); 1141 setsugid(p); 1142 } 1143 p->p_ucred = newcred; 1144 PROC_UNLOCK(p); 1145 crfree(oldcred); 1146 return (0); 1147 1148 fail: 1149 PROC_UNLOCK(p); 1150 crfree(newcred); 1151 return (error); 1152 } 1153 1154 #ifndef _SYS_SYSPROTO_H_ 1155 struct getresuid_args { 1156 uid_t *ruid; 1157 uid_t *euid; 1158 uid_t *suid; 1159 }; 1160 #endif 1161 /* ARGSUSED */ 1162 int 1163 sys_getresuid(register struct thread *td, struct getresuid_args *uap) 1164 { 1165 struct ucred *cred; 1166 int error1 = 0, error2 = 0, error3 = 0; 1167 1168 cred = td->td_ucred; 1169 if (uap->ruid) 1170 error1 = copyout(&cred->cr_ruid, 1171 uap->ruid, sizeof(cred->cr_ruid)); 1172 if (uap->euid) 1173 error2 = copyout(&cred->cr_uid, 1174 uap->euid, sizeof(cred->cr_uid)); 1175 if (uap->suid) 1176 error3 = copyout(&cred->cr_svuid, 1177 uap->suid, sizeof(cred->cr_svuid)); 1178 return (error1 ? error1 : error2 ? error2 : error3); 1179 } 1180 1181 #ifndef _SYS_SYSPROTO_H_ 1182 struct getresgid_args { 1183 gid_t *rgid; 1184 gid_t *egid; 1185 gid_t *sgid; 1186 }; 1187 #endif 1188 /* ARGSUSED */ 1189 int 1190 sys_getresgid(register struct thread *td, struct getresgid_args *uap) 1191 { 1192 struct ucred *cred; 1193 int error1 = 0, error2 = 0, error3 = 0; 1194 1195 cred = td->td_ucred; 1196 if (uap->rgid) 1197 error1 = copyout(&cred->cr_rgid, 1198 uap->rgid, sizeof(cred->cr_rgid)); 1199 if (uap->egid) 1200 error2 = copyout(&cred->cr_groups[0], 1201 uap->egid, sizeof(cred->cr_groups[0])); 1202 if (uap->sgid) 1203 error3 = copyout(&cred->cr_svgid, 1204 uap->sgid, sizeof(cred->cr_svgid)); 1205 return (error1 ? error1 : error2 ? error2 : error3); 1206 } 1207 1208 #ifndef _SYS_SYSPROTO_H_ 1209 struct issetugid_args { 1210 int dummy; 1211 }; 1212 #endif 1213 /* ARGSUSED */ 1214 int 1215 sys_issetugid(register struct thread *td, struct issetugid_args *uap) 1216 { 1217 struct proc *p = td->td_proc; 1218 1219 /* 1220 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time, 1221 * we use P_SUGID because we consider changing the owners as 1222 * "tainting" as well. 1223 * This is significant for procs that start as root and "become" 1224 * a user without an exec - programs cannot know *everything* 1225 * that libc *might* have put in their data segment. 1226 */ 1227 PROC_LOCK(p); 1228 td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0; 1229 PROC_UNLOCK(p); 1230 return (0); 1231 } 1232 1233 int 1234 sys___setugid(struct thread *td, struct __setugid_args *uap) 1235 { 1236 #ifdef REGRESSION 1237 struct proc *p; 1238 1239 p = td->td_proc; 1240 switch (uap->flag) { 1241 case 0: 1242 PROC_LOCK(p); 1243 p->p_flag &= ~P_SUGID; 1244 PROC_UNLOCK(p); 1245 return (0); 1246 case 1: 1247 PROC_LOCK(p); 1248 p->p_flag |= P_SUGID; 1249 PROC_UNLOCK(p); 1250 return (0); 1251 default: 1252 return (EINVAL); 1253 } 1254 #else /* !REGRESSION */ 1255 1256 return (ENOSYS); 1257 #endif /* REGRESSION */ 1258 } 1259 1260 /* 1261 * Check if gid is a member of the group set. 1262 */ 1263 int 1264 groupmember(gid_t gid, struct ucred *cred) 1265 { 1266 int l; 1267 int h; 1268 int m; 1269 1270 if (cred->cr_groups[0] == gid) 1271 return(1); 1272 1273 /* 1274 * If gid was not our primary group, perform a binary search 1275 * of the supplemental groups. This is possible because we 1276 * sort the groups in crsetgroups(). 1277 */ 1278 l = 1; 1279 h = cred->cr_ngroups; 1280 while (l < h) { 1281 m = l + ((h - l) / 2); 1282 if (cred->cr_groups[m] < gid) 1283 l = m + 1; 1284 else 1285 h = m; 1286 } 1287 if ((l < cred->cr_ngroups) && (cred->cr_groups[l] == gid)) 1288 return (1); 1289 1290 return (0); 1291 } 1292 1293 /* 1294 * Test the active securelevel against a given level. securelevel_gt() 1295 * implements (securelevel > level). securelevel_ge() implements 1296 * (securelevel >= level). Note that the logic is inverted -- these 1297 * functions return EPERM on "success" and 0 on "failure". 1298 * 1299 * Due to care taken when setting the securelevel, we know that no jail will 1300 * be less secure that its parent (or the physical system), so it is sufficient 1301 * to test the current jail only. 1302 * 1303 * XXXRW: Possibly since this has to do with privilege, it should move to 1304 * kern_priv.c. 1305 */ 1306 int 1307 securelevel_gt(struct ucred *cr, int level) 1308 { 1309 1310 return (cr->cr_prison->pr_securelevel > level ? EPERM : 0); 1311 } 1312 1313 int 1314 securelevel_ge(struct ucred *cr, int level) 1315 { 1316 1317 return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0); 1318 } 1319 1320 /* 1321 * 'see_other_uids' determines whether or not visibility of processes 1322 * and sockets with credentials holding different real uids is possible 1323 * using a variety of system MIBs. 1324 * XXX: data declarations should be together near the beginning of the file. 1325 */ 1326 static int see_other_uids = 1; 1327 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW, 1328 &see_other_uids, 0, 1329 "Unprivileged processes may see subjects/objects with different real uid"); 1330 1331 /*- 1332 * Determine if u1 "can see" the subject specified by u2, according to the 1333 * 'see_other_uids' policy. 1334 * Returns: 0 for permitted, ESRCH otherwise 1335 * Locks: none 1336 * References: *u1 and *u2 must not change during the call 1337 * u1 may equal u2, in which case only one reference is required 1338 */ 1339 static int 1340 cr_seeotheruids(struct ucred *u1, struct ucred *u2) 1341 { 1342 1343 if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) { 1344 if (priv_check_cred(u1, PRIV_SEEOTHERUIDS, 0) != 0) 1345 return (ESRCH); 1346 } 1347 return (0); 1348 } 1349 1350 /* 1351 * 'see_other_gids' determines whether or not visibility of processes 1352 * and sockets with credentials holding different real gids is possible 1353 * using a variety of system MIBs. 1354 * XXX: data declarations should be together near the beginning of the file. 1355 */ 1356 static int see_other_gids = 1; 1357 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW, 1358 &see_other_gids, 0, 1359 "Unprivileged processes may see subjects/objects with different real gid"); 1360 1361 /* 1362 * Determine if u1 can "see" the subject specified by u2, according to the 1363 * 'see_other_gids' policy. 1364 * Returns: 0 for permitted, ESRCH otherwise 1365 * Locks: none 1366 * References: *u1 and *u2 must not change during the call 1367 * u1 may equal u2, in which case only one reference is required 1368 */ 1369 static int 1370 cr_seeothergids(struct ucred *u1, struct ucred *u2) 1371 { 1372 int i, match; 1373 1374 if (!see_other_gids) { 1375 match = 0; 1376 for (i = 0; i < u1->cr_ngroups; i++) { 1377 if (groupmember(u1->cr_groups[i], u2)) 1378 match = 1; 1379 if (match) 1380 break; 1381 } 1382 if (!match) { 1383 if (priv_check_cred(u1, PRIV_SEEOTHERGIDS, 0) != 0) 1384 return (ESRCH); 1385 } 1386 } 1387 return (0); 1388 } 1389 1390 /*- 1391 * Determine if u1 "can see" the subject specified by u2. 1392 * Returns: 0 for permitted, an errno value otherwise 1393 * Locks: none 1394 * References: *u1 and *u2 must not change during the call 1395 * u1 may equal u2, in which case only one reference is required 1396 */ 1397 int 1398 cr_cansee(struct ucred *u1, struct ucred *u2) 1399 { 1400 int error; 1401 1402 if ((error = prison_check(u1, u2))) 1403 return (error); 1404 #ifdef MAC 1405 if ((error = mac_cred_check_visible(u1, u2))) 1406 return (error); 1407 #endif 1408 if ((error = cr_seeotheruids(u1, u2))) 1409 return (error); 1410 if ((error = cr_seeothergids(u1, u2))) 1411 return (error); 1412 return (0); 1413 } 1414 1415 /*- 1416 * Determine if td "can see" the subject specified by p. 1417 * Returns: 0 for permitted, an errno value otherwise 1418 * Locks: Sufficient locks to protect p->p_ucred must be held. td really 1419 * should be curthread. 1420 * References: td and p must be valid for the lifetime of the call 1421 */ 1422 int 1423 p_cansee(struct thread *td, struct proc *p) 1424 { 1425 1426 /* Wrap cr_cansee() for all functionality. */ 1427 KASSERT(td == curthread, ("%s: td not curthread", __func__)); 1428 PROC_LOCK_ASSERT(p, MA_OWNED); 1429 return (cr_cansee(td->td_ucred, p->p_ucred)); 1430 } 1431 1432 /* 1433 * 'conservative_signals' prevents the delivery of a broad class of 1434 * signals by unprivileged processes to processes that have changed their 1435 * credentials since the last invocation of execve(). This can prevent 1436 * the leakage of cached information or retained privileges as a result 1437 * of a common class of signal-related vulnerabilities. However, this 1438 * may interfere with some applications that expect to be able to 1439 * deliver these signals to peer processes after having given up 1440 * privilege. 1441 */ 1442 static int conservative_signals = 1; 1443 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW, 1444 &conservative_signals, 0, "Unprivileged processes prevented from " 1445 "sending certain signals to processes whose credentials have changed"); 1446 /*- 1447 * Determine whether cred may deliver the specified signal to proc. 1448 * Returns: 0 for permitted, an errno value otherwise. 1449 * Locks: A lock must be held for proc. 1450 * References: cred and proc must be valid for the lifetime of the call. 1451 */ 1452 int 1453 cr_cansignal(struct ucred *cred, struct proc *proc, int signum) 1454 { 1455 int error; 1456 1457 PROC_LOCK_ASSERT(proc, MA_OWNED); 1458 /* 1459 * Jail semantics limit the scope of signalling to proc in the 1460 * same jail as cred, if cred is in jail. 1461 */ 1462 error = prison_check(cred, proc->p_ucred); 1463 if (error) 1464 return (error); 1465 #ifdef MAC 1466 if ((error = mac_proc_check_signal(cred, proc, signum))) 1467 return (error); 1468 #endif 1469 if ((error = cr_seeotheruids(cred, proc->p_ucred))) 1470 return (error); 1471 if ((error = cr_seeothergids(cred, proc->p_ucred))) 1472 return (error); 1473 1474 /* 1475 * UNIX signal semantics depend on the status of the P_SUGID 1476 * bit on the target process. If the bit is set, then additional 1477 * restrictions are placed on the set of available signals. 1478 */ 1479 if (conservative_signals && (proc->p_flag & P_SUGID)) { 1480 switch (signum) { 1481 case 0: 1482 case SIGKILL: 1483 case SIGINT: 1484 case SIGTERM: 1485 case SIGALRM: 1486 case SIGSTOP: 1487 case SIGTTIN: 1488 case SIGTTOU: 1489 case SIGTSTP: 1490 case SIGHUP: 1491 case SIGUSR1: 1492 case SIGUSR2: 1493 /* 1494 * Generally, permit job and terminal control 1495 * signals. 1496 */ 1497 break; 1498 default: 1499 /* Not permitted without privilege. */ 1500 error = priv_check_cred(cred, PRIV_SIGNAL_SUGID, 0); 1501 if (error) 1502 return (error); 1503 } 1504 } 1505 1506 /* 1507 * Generally, the target credential's ruid or svuid must match the 1508 * subject credential's ruid or euid. 1509 */ 1510 if (cred->cr_ruid != proc->p_ucred->cr_ruid && 1511 cred->cr_ruid != proc->p_ucred->cr_svuid && 1512 cred->cr_uid != proc->p_ucred->cr_ruid && 1513 cred->cr_uid != proc->p_ucred->cr_svuid) { 1514 error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED, 0); 1515 if (error) 1516 return (error); 1517 } 1518 1519 return (0); 1520 } 1521 1522 /*- 1523 * Determine whether td may deliver the specified signal to p. 1524 * Returns: 0 for permitted, an errno value otherwise 1525 * Locks: Sufficient locks to protect various components of td and p 1526 * must be held. td must be curthread, and a lock must be 1527 * held for p. 1528 * References: td and p must be valid for the lifetime of the call 1529 */ 1530 int 1531 p_cansignal(struct thread *td, struct proc *p, int signum) 1532 { 1533 1534 KASSERT(td == curthread, ("%s: td not curthread", __func__)); 1535 PROC_LOCK_ASSERT(p, MA_OWNED); 1536 if (td->td_proc == p) 1537 return (0); 1538 1539 /* 1540 * UNIX signalling semantics require that processes in the same 1541 * session always be able to deliver SIGCONT to one another, 1542 * overriding the remaining protections. 1543 */ 1544 /* XXX: This will require an additional lock of some sort. */ 1545 if (signum == SIGCONT && td->td_proc->p_session == p->p_session) 1546 return (0); 1547 /* 1548 * Some compat layers use SIGTHR and higher signals for 1549 * communication between different kernel threads of the same 1550 * process, so that they expect that it's always possible to 1551 * deliver them, even for suid applications where cr_cansignal() can 1552 * deny such ability for security consideration. It should be 1553 * pretty safe to do since the only way to create two processes 1554 * with the same p_leader is via rfork(2). 1555 */ 1556 if (td->td_proc->p_leader != NULL && signum >= SIGTHR && 1557 signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader) 1558 return (0); 1559 1560 return (cr_cansignal(td->td_ucred, p, signum)); 1561 } 1562 1563 /*- 1564 * Determine whether td may reschedule p. 1565 * Returns: 0 for permitted, an errno value otherwise 1566 * Locks: Sufficient locks to protect various components of td and p 1567 * must be held. td must be curthread, and a lock must 1568 * be held for p. 1569 * References: td and p must be valid for the lifetime of the call 1570 */ 1571 int 1572 p_cansched(struct thread *td, struct proc *p) 1573 { 1574 int error; 1575 1576 KASSERT(td == curthread, ("%s: td not curthread", __func__)); 1577 PROC_LOCK_ASSERT(p, MA_OWNED); 1578 if (td->td_proc == p) 1579 return (0); 1580 if ((error = prison_check(td->td_ucred, p->p_ucred))) 1581 return (error); 1582 #ifdef MAC 1583 if ((error = mac_proc_check_sched(td->td_ucred, p))) 1584 return (error); 1585 #endif 1586 if ((error = cr_seeotheruids(td->td_ucred, p->p_ucred))) 1587 return (error); 1588 if ((error = cr_seeothergids(td->td_ucred, p->p_ucred))) 1589 return (error); 1590 if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid && 1591 td->td_ucred->cr_uid != p->p_ucred->cr_ruid) { 1592 error = priv_check(td, PRIV_SCHED_DIFFCRED); 1593 if (error) 1594 return (error); 1595 } 1596 return (0); 1597 } 1598 1599 /* 1600 * The 'unprivileged_proc_debug' flag may be used to disable a variety of 1601 * unprivileged inter-process debugging services, including some procfs 1602 * functionality, ptrace(), and ktrace(). In the past, inter-process 1603 * debugging has been involved in a variety of security problems, and sites 1604 * not requiring the service might choose to disable it when hardening 1605 * systems. 1606 * 1607 * XXX: Should modifying and reading this variable require locking? 1608 * XXX: data declarations should be together near the beginning of the file. 1609 */ 1610 static int unprivileged_proc_debug = 1; 1611 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_proc_debug, CTLFLAG_RW, 1612 &unprivileged_proc_debug, 0, 1613 "Unprivileged processes may use process debugging facilities"); 1614 1615 /*- 1616 * Determine whether td may debug p. 1617 * Returns: 0 for permitted, an errno value otherwise 1618 * Locks: Sufficient locks to protect various components of td and p 1619 * must be held. td must be curthread, and a lock must 1620 * be held for p. 1621 * References: td and p must be valid for the lifetime of the call 1622 */ 1623 int 1624 p_candebug(struct thread *td, struct proc *p) 1625 { 1626 int credentialchanged, error, grpsubset, i, uidsubset; 1627 1628 KASSERT(td == curthread, ("%s: td not curthread", __func__)); 1629 PROC_LOCK_ASSERT(p, MA_OWNED); 1630 if (!unprivileged_proc_debug) { 1631 error = priv_check(td, PRIV_DEBUG_UNPRIV); 1632 if (error) 1633 return (error); 1634 } 1635 if (td->td_proc == p) 1636 return (0); 1637 if ((error = prison_check(td->td_ucred, p->p_ucred))) 1638 return (error); 1639 #ifdef MAC 1640 if ((error = mac_proc_check_debug(td->td_ucred, p))) 1641 return (error); 1642 #endif 1643 if ((error = cr_seeotheruids(td->td_ucred, p->p_ucred))) 1644 return (error); 1645 if ((error = cr_seeothergids(td->td_ucred, p->p_ucred))) 1646 return (error); 1647 1648 /* 1649 * Is p's group set a subset of td's effective group set? This 1650 * includes p's egid, group access list, rgid, and svgid. 1651 */ 1652 grpsubset = 1; 1653 for (i = 0; i < p->p_ucred->cr_ngroups; i++) { 1654 if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) { 1655 grpsubset = 0; 1656 break; 1657 } 1658 } 1659 grpsubset = grpsubset && 1660 groupmember(p->p_ucred->cr_rgid, td->td_ucred) && 1661 groupmember(p->p_ucred->cr_svgid, td->td_ucred); 1662 1663 /* 1664 * Are the uids present in p's credential equal to td's 1665 * effective uid? This includes p's euid, svuid, and ruid. 1666 */ 1667 uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid && 1668 td->td_ucred->cr_uid == p->p_ucred->cr_svuid && 1669 td->td_ucred->cr_uid == p->p_ucred->cr_ruid); 1670 1671 /* 1672 * Has the credential of the process changed since the last exec()? 1673 */ 1674 credentialchanged = (p->p_flag & P_SUGID); 1675 1676 /* 1677 * If p's gids aren't a subset, or the uids aren't a subset, 1678 * or the credential has changed, require appropriate privilege 1679 * for td to debug p. 1680 */ 1681 if (!grpsubset || !uidsubset) { 1682 error = priv_check(td, PRIV_DEBUG_DIFFCRED); 1683 if (error) 1684 return (error); 1685 } 1686 1687 if (credentialchanged) { 1688 error = priv_check(td, PRIV_DEBUG_SUGID); 1689 if (error) 1690 return (error); 1691 } 1692 1693 /* Can't trace init when securelevel > 0. */ 1694 if (p == initproc) { 1695 error = securelevel_gt(td->td_ucred, 0); 1696 if (error) 1697 return (error); 1698 } 1699 1700 /* 1701 * Can't trace a process that's currently exec'ing. 1702 * 1703 * XXX: Note, this is not a security policy decision, it's a 1704 * basic correctness/functionality decision. Therefore, this check 1705 * should be moved to the caller's of p_candebug(). 1706 */ 1707 if ((p->p_flag & P_INEXEC) != 0) 1708 return (EBUSY); 1709 1710 return (0); 1711 } 1712 1713 /*- 1714 * Determine whether the subject represented by cred can "see" a socket. 1715 * Returns: 0 for permitted, ENOENT otherwise. 1716 */ 1717 int 1718 cr_canseesocket(struct ucred *cred, struct socket *so) 1719 { 1720 int error; 1721 1722 error = prison_check(cred, so->so_cred); 1723 if (error) 1724 return (ENOENT); 1725 #ifdef MAC 1726 error = mac_socket_check_visible(cred, so); 1727 if (error) 1728 return (error); 1729 #endif 1730 if (cr_seeotheruids(cred, so->so_cred)) 1731 return (ENOENT); 1732 if (cr_seeothergids(cred, so->so_cred)) 1733 return (ENOENT); 1734 1735 return (0); 1736 } 1737 1738 #if defined(INET) || defined(INET6) 1739 /*- 1740 * Determine whether the subject represented by cred can "see" a socket. 1741 * Returns: 0 for permitted, ENOENT otherwise. 1742 */ 1743 int 1744 cr_canseeinpcb(struct ucred *cred, struct inpcb *inp) 1745 { 1746 int error; 1747 1748 error = prison_check(cred, inp->inp_cred); 1749 if (error) 1750 return (ENOENT); 1751 #ifdef MAC 1752 INP_LOCK_ASSERT(inp); 1753 error = mac_inpcb_check_visible(cred, inp); 1754 if (error) 1755 return (error); 1756 #endif 1757 if (cr_seeotheruids(cred, inp->inp_cred)) 1758 return (ENOENT); 1759 if (cr_seeothergids(cred, inp->inp_cred)) 1760 return (ENOENT); 1761 1762 return (0); 1763 } 1764 #endif 1765 1766 /*- 1767 * Determine whether td can wait for the exit of p. 1768 * Returns: 0 for permitted, an errno value otherwise 1769 * Locks: Sufficient locks to protect various components of td and p 1770 * must be held. td must be curthread, and a lock must 1771 * be held for p. 1772 * References: td and p must be valid for the lifetime of the call 1773 1774 */ 1775 int 1776 p_canwait(struct thread *td, struct proc *p) 1777 { 1778 int error; 1779 1780 KASSERT(td == curthread, ("%s: td not curthread", __func__)); 1781 PROC_LOCK_ASSERT(p, MA_OWNED); 1782 if ((error = prison_check(td->td_ucred, p->p_ucred))) 1783 return (error); 1784 #ifdef MAC 1785 if ((error = mac_proc_check_wait(td->td_ucred, p))) 1786 return (error); 1787 #endif 1788 #if 0 1789 /* XXXMAC: This could have odd effects on some shells. */ 1790 if ((error = cr_seeotheruids(td->td_ucred, p->p_ucred))) 1791 return (error); 1792 #endif 1793 1794 return (0); 1795 } 1796 1797 /* 1798 * Allocate a zeroed cred structure. 1799 */ 1800 struct ucred * 1801 crget(void) 1802 { 1803 register struct ucred *cr; 1804 1805 cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO); 1806 refcount_init(&cr->cr_ref, 1); 1807 #ifdef AUDIT 1808 audit_cred_init(cr); 1809 #endif 1810 #ifdef MAC 1811 mac_cred_init(cr); 1812 #endif 1813 crextend(cr, XU_NGROUPS); 1814 return (cr); 1815 } 1816 1817 /* 1818 * Claim another reference to a ucred structure. 1819 */ 1820 struct ucred * 1821 crhold(struct ucred *cr) 1822 { 1823 1824 refcount_acquire(&cr->cr_ref); 1825 return (cr); 1826 } 1827 1828 /* 1829 * Free a cred structure. Throws away space when ref count gets to 0. 1830 */ 1831 void 1832 crfree(struct ucred *cr) 1833 { 1834 1835 KASSERT(cr->cr_ref > 0, ("bad ucred refcount: %d", cr->cr_ref)); 1836 KASSERT(cr->cr_ref != 0xdeadc0de, ("dangling reference to ucred")); 1837 if (refcount_release(&cr->cr_ref)) { 1838 /* 1839 * Some callers of crget(), such as nfs_statfs(), 1840 * allocate a temporary credential, but don't 1841 * allocate a uidinfo structure. 1842 */ 1843 if (cr->cr_uidinfo != NULL) 1844 uifree(cr->cr_uidinfo); 1845 if (cr->cr_ruidinfo != NULL) 1846 uifree(cr->cr_ruidinfo); 1847 /* 1848 * Free a prison, if any. 1849 */ 1850 if (cr->cr_prison != NULL) 1851 prison_free(cr->cr_prison); 1852 if (cr->cr_loginclass != NULL) 1853 loginclass_free(cr->cr_loginclass); 1854 #ifdef AUDIT 1855 audit_cred_destroy(cr); 1856 #endif 1857 #ifdef MAC 1858 mac_cred_destroy(cr); 1859 #endif 1860 free(cr->cr_groups, M_CRED); 1861 free(cr, M_CRED); 1862 } 1863 } 1864 1865 /* 1866 * Copy a ucred's contents from a template. Does not block. 1867 */ 1868 void 1869 crcopy(struct ucred *dest, struct ucred *src) 1870 { 1871 1872 KASSERT(dest->cr_ref == 1, ("crcopy of shared ucred")); 1873 bcopy(&src->cr_startcopy, &dest->cr_startcopy, 1874 (unsigned)((caddr_t)&src->cr_endcopy - 1875 (caddr_t)&src->cr_startcopy)); 1876 crsetgroups(dest, src->cr_ngroups, src->cr_groups); 1877 uihold(dest->cr_uidinfo); 1878 uihold(dest->cr_ruidinfo); 1879 prison_hold(dest->cr_prison); 1880 loginclass_hold(dest->cr_loginclass); 1881 #ifdef AUDIT 1882 audit_cred_copy(src, dest); 1883 #endif 1884 #ifdef MAC 1885 mac_cred_copy(src, dest); 1886 #endif 1887 } 1888 1889 /* 1890 * Dup cred struct to a new held one. 1891 */ 1892 struct ucred * 1893 crdup(struct ucred *cr) 1894 { 1895 struct ucred *newcr; 1896 1897 newcr = crget(); 1898 crcopy(newcr, cr); 1899 return (newcr); 1900 } 1901 1902 /* 1903 * Fill in a struct xucred based on a struct ucred. 1904 */ 1905 void 1906 cru2x(struct ucred *cr, struct xucred *xcr) 1907 { 1908 int ngroups; 1909 1910 bzero(xcr, sizeof(*xcr)); 1911 xcr->cr_version = XUCRED_VERSION; 1912 xcr->cr_uid = cr->cr_uid; 1913 1914 ngroups = MIN(cr->cr_ngroups, XU_NGROUPS); 1915 xcr->cr_ngroups = ngroups; 1916 bcopy(cr->cr_groups, xcr->cr_groups, 1917 ngroups * sizeof(*cr->cr_groups)); 1918 } 1919 1920 /* 1921 * small routine to swap a thread's current ucred for the correct one taken 1922 * from the process. 1923 */ 1924 void 1925 cred_update_thread(struct thread *td) 1926 { 1927 struct proc *p; 1928 struct ucred *cred; 1929 1930 p = td->td_proc; 1931 cred = td->td_ucred; 1932 PROC_LOCK(p); 1933 td->td_ucred = crhold(p->p_ucred); 1934 PROC_UNLOCK(p); 1935 if (cred != NULL) 1936 crfree(cred); 1937 } 1938 1939 struct ucred * 1940 crcopysafe(struct proc *p, struct ucred *cr) 1941 { 1942 struct ucred *oldcred; 1943 int groups; 1944 1945 PROC_LOCK_ASSERT(p, MA_OWNED); 1946 1947 oldcred = p->p_ucred; 1948 while (cr->cr_agroups < oldcred->cr_agroups) { 1949 groups = oldcred->cr_agroups; 1950 PROC_UNLOCK(p); 1951 crextend(cr, groups); 1952 PROC_LOCK(p); 1953 oldcred = p->p_ucred; 1954 } 1955 crcopy(cr, oldcred); 1956 1957 return (oldcred); 1958 } 1959 1960 /* 1961 * Extend the passed in credential to hold n items. 1962 */ 1963 static void 1964 crextend(struct ucred *cr, int n) 1965 { 1966 int cnt; 1967 1968 /* Truncate? */ 1969 if (n <= cr->cr_agroups) 1970 return; 1971 1972 /* 1973 * We extend by 2 each time since we're using a power of two 1974 * allocator until we need enough groups to fill a page. 1975 * Once we're allocating multiple pages, only allocate as many 1976 * as we actually need. The case of processes needing a 1977 * non-power of two number of pages seems more likely than 1978 * a real world process that adds thousands of groups one at a 1979 * time. 1980 */ 1981 if ( n < PAGE_SIZE / sizeof(gid_t) ) { 1982 if (cr->cr_agroups == 0) 1983 cnt = MINALLOCSIZE / sizeof(gid_t); 1984 else 1985 cnt = cr->cr_agroups * 2; 1986 1987 while (cnt < n) 1988 cnt *= 2; 1989 } else 1990 cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t)); 1991 1992 /* Free the old array. */ 1993 if (cr->cr_groups) 1994 free(cr->cr_groups, M_CRED); 1995 1996 cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO); 1997 cr->cr_agroups = cnt; 1998 } 1999 2000 /* 2001 * Copy groups in to a credential, preserving any necessary invariants. 2002 * Currently this includes the sorting of all supplemental gids. 2003 * crextend() must have been called before hand to ensure sufficient 2004 * space is available. 2005 */ 2006 static void 2007 crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups) 2008 { 2009 int i; 2010 int j; 2011 gid_t g; 2012 2013 KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small")); 2014 2015 bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t)); 2016 cr->cr_ngroups = ngrp; 2017 2018 /* 2019 * Sort all groups except cr_groups[0] to allow groupmember to 2020 * perform a binary search. 2021 * 2022 * XXX: If large numbers of groups become common this should 2023 * be replaced with shell sort like linux uses or possibly 2024 * heap sort. 2025 */ 2026 for (i = 2; i < ngrp; i++) { 2027 g = cr->cr_groups[i]; 2028 for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--) 2029 cr->cr_groups[j + 1] = cr->cr_groups[j]; 2030 cr->cr_groups[j + 1] = g; 2031 } 2032 } 2033 2034 /* 2035 * Copy groups in to a credential after expanding it if required. 2036 * Truncate the list to (ngroups_max + 1) if it is too large. 2037 */ 2038 void 2039 crsetgroups(struct ucred *cr, int ngrp, gid_t *groups) 2040 { 2041 2042 if (ngrp > ngroups_max + 1) 2043 ngrp = ngroups_max + 1; 2044 2045 crextend(cr, ngrp); 2046 crsetgroups_locked(cr, ngrp, groups); 2047 } 2048 2049 /* 2050 * Get login name, if available. 2051 */ 2052 #ifndef _SYS_SYSPROTO_H_ 2053 struct getlogin_args { 2054 char *namebuf; 2055 u_int namelen; 2056 }; 2057 #endif 2058 /* ARGSUSED */ 2059 int 2060 sys_getlogin(struct thread *td, struct getlogin_args *uap) 2061 { 2062 int error; 2063 char login[MAXLOGNAME]; 2064 struct proc *p = td->td_proc; 2065 2066 if (uap->namelen > MAXLOGNAME) 2067 uap->namelen = MAXLOGNAME; 2068 PROC_LOCK(p); 2069 SESS_LOCK(p->p_session); 2070 bcopy(p->p_session->s_login, login, uap->namelen); 2071 SESS_UNLOCK(p->p_session); 2072 PROC_UNLOCK(p); 2073 if (strlen(login) + 1 > uap->namelen) 2074 return (ERANGE); 2075 error = copyout(login, uap->namebuf, uap->namelen); 2076 return (error); 2077 } 2078 2079 /* 2080 * Set login name. 2081 */ 2082 #ifndef _SYS_SYSPROTO_H_ 2083 struct setlogin_args { 2084 char *namebuf; 2085 }; 2086 #endif 2087 /* ARGSUSED */ 2088 int 2089 sys_setlogin(struct thread *td, struct setlogin_args *uap) 2090 { 2091 struct proc *p = td->td_proc; 2092 int error; 2093 char logintmp[MAXLOGNAME]; 2094 2095 error = priv_check(td, PRIV_PROC_SETLOGIN); 2096 if (error) 2097 return (error); 2098 error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL); 2099 if (error == ENAMETOOLONG) 2100 error = EINVAL; 2101 else if (!error) { 2102 PROC_LOCK(p); 2103 SESS_LOCK(p->p_session); 2104 (void) memcpy(p->p_session->s_login, logintmp, 2105 sizeof(logintmp)); 2106 SESS_UNLOCK(p->p_session); 2107 PROC_UNLOCK(p); 2108 } 2109 return (error); 2110 } 2111 2112 void 2113 setsugid(struct proc *p) 2114 { 2115 2116 PROC_LOCK_ASSERT(p, MA_OWNED); 2117 p->p_flag |= P_SUGID; 2118 if (!(p->p_pfsflags & PF_ISUGID)) 2119 p->p_stops = 0; 2120 } 2121 2122 /*- 2123 * Change a process's effective uid. 2124 * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified. 2125 * References: newcred must be an exclusive credential reference for the 2126 * duration of the call. 2127 */ 2128 void 2129 change_euid(struct ucred *newcred, struct uidinfo *euip) 2130 { 2131 2132 newcred->cr_uid = euip->ui_uid; 2133 uihold(euip); 2134 uifree(newcred->cr_uidinfo); 2135 newcred->cr_uidinfo = euip; 2136 } 2137 2138 /*- 2139 * Change a process's effective gid. 2140 * Side effects: newcred->cr_gid will be modified. 2141 * References: newcred must be an exclusive credential reference for the 2142 * duration of the call. 2143 */ 2144 void 2145 change_egid(struct ucred *newcred, gid_t egid) 2146 { 2147 2148 newcred->cr_groups[0] = egid; 2149 } 2150 2151 /*- 2152 * Change a process's real uid. 2153 * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo 2154 * will be updated, and the old and new cr_ruidinfo proc 2155 * counts will be updated. 2156 * References: newcred must be an exclusive credential reference for the 2157 * duration of the call. 2158 */ 2159 void 2160 change_ruid(struct ucred *newcred, struct uidinfo *ruip) 2161 { 2162 2163 (void)chgproccnt(newcred->cr_ruidinfo, -1, 0); 2164 newcred->cr_ruid = ruip->ui_uid; 2165 uihold(ruip); 2166 uifree(newcred->cr_ruidinfo); 2167 newcred->cr_ruidinfo = ruip; 2168 (void)chgproccnt(newcred->cr_ruidinfo, 1, 0); 2169 } 2170 2171 /*- 2172 * Change a process's real gid. 2173 * Side effects: newcred->cr_rgid will be updated. 2174 * References: newcred must be an exclusive credential reference for the 2175 * duration of the call. 2176 */ 2177 void 2178 change_rgid(struct ucred *newcred, gid_t rgid) 2179 { 2180 2181 newcred->cr_rgid = rgid; 2182 } 2183 2184 /*- 2185 * Change a process's saved uid. 2186 * Side effects: newcred->cr_svuid will be updated. 2187 * References: newcred must be an exclusive credential reference for the 2188 * duration of the call. 2189 */ 2190 void 2191 change_svuid(struct ucred *newcred, uid_t svuid) 2192 { 2193 2194 newcred->cr_svuid = svuid; 2195 } 2196 2197 /*- 2198 * Change a process's saved gid. 2199 * Side effects: newcred->cr_svgid will be updated. 2200 * References: newcred must be an exclusive credential reference for the 2201 * duration of the call. 2202 */ 2203 void 2204 change_svgid(struct ucred *newcred, gid_t svgid) 2205 { 2206 2207 newcred->cr_svgid = svgid; 2208 } 2209