xref: /freebsd/sys/kern/kern_prot.c (revision 1eb3f15c149b9a2e5b6f5e10aed454fc85945bbd)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
5  *	The Regents of the University of California.
6  * (c) UNIX System Laboratories, Inc.
7  * Copyright (c) 2000-2001 Robert N. M. Watson.
8  * All rights reserved.
9  *
10  * All or some portions of this file are derived from material licensed
11  * to the University of California by American Telephone and Telegraph
12  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
13  * the permission of UNIX System Laboratories, Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  */
39 
40 /*
41  * System calls related to processes and protection
42  */
43 
44 #include <sys/cdefs.h>
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/acct.h>
51 #include <sys/kdb.h>
52 #include <sys/kernel.h>
53 #include <sys/libkern.h>
54 #include <sys/lock.h>
55 #include <sys/loginclass.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/ptrace.h>
59 #include <sys/refcount.h>
60 #include <sys/sx.h>
61 #include <sys/priv.h>
62 #include <sys/proc.h>
63 #ifdef COMPAT_43
64 #include <sys/sysent.h>
65 #endif
66 #include <sys/sysproto.h>
67 #include <sys/jail.h>
68 #include <sys/racct.h>
69 #include <sys/rctl.h>
70 #include <sys/resourcevar.h>
71 #include <sys/socket.h>
72 #include <sys/socketvar.h>
73 #include <sys/syscallsubr.h>
74 #include <sys/sysctl.h>
75 
76 #include <vm/uma.h>
77 
78 #ifdef REGRESSION
79 FEATURE(regression,
80     "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
81 #endif
82 
83 #include <security/audit/audit.h>
84 #include <security/mac/mac_framework.h>
85 
86 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
87 
88 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
89     "BSD security policy");
90 
91 static void crfree_final(struct ucred *cr);
92 
93 static inline void
94 groups_check_positive_len(int ngrp)
95 {
96 	MPASS2(ngrp >= 0, "negative number of groups");
97 	MPASS2(ngrp != 0, "at least one group expected (effective GID)");
98 }
99 static inline void
100 groups_check_max_len(int ngrp)
101 {
102 	MPASS2(ngrp <= ngroups_max + 1, "too many groups");
103 }
104 
105 static void groups_normalize(int *ngrp, gid_t *groups);
106 static void crsetgroups_internal(struct ucred *cr, int ngrp,
107     const gid_t *groups);
108 
109 static int cr_canseeotheruids(struct ucred *u1, struct ucred *u2);
110 static int cr_canseeothergids(struct ucred *u1, struct ucred *u2);
111 static int cr_canseejailproc(struct ucred *u1, struct ucred *u2);
112 
113 #ifndef _SYS_SYSPROTO_H_
114 struct getpid_args {
115 	int	dummy;
116 };
117 #endif
118 /* ARGSUSED */
119 int
120 sys_getpid(struct thread *td, struct getpid_args *uap)
121 {
122 	struct proc *p = td->td_proc;
123 
124 	td->td_retval[0] = p->p_pid;
125 #if defined(COMPAT_43)
126 	if (SV_PROC_FLAG(p, SV_AOUT))
127 		td->td_retval[1] = kern_getppid(td);
128 #endif
129 	return (0);
130 }
131 
132 #ifndef _SYS_SYSPROTO_H_
133 struct getppid_args {
134         int     dummy;
135 };
136 #endif
137 /* ARGSUSED */
138 int
139 sys_getppid(struct thread *td, struct getppid_args *uap)
140 {
141 
142 	td->td_retval[0] = kern_getppid(td);
143 	return (0);
144 }
145 
146 int
147 kern_getppid(struct thread *td)
148 {
149 	struct proc *p = td->td_proc;
150 
151 	return (p->p_oppid);
152 }
153 
154 /*
155  * Get process group ID; note that POSIX getpgrp takes no parameter.
156  */
157 #ifndef _SYS_SYSPROTO_H_
158 struct getpgrp_args {
159         int     dummy;
160 };
161 #endif
162 int
163 sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
164 {
165 	struct proc *p = td->td_proc;
166 
167 	PROC_LOCK(p);
168 	td->td_retval[0] = p->p_pgrp->pg_id;
169 	PROC_UNLOCK(p);
170 	return (0);
171 }
172 
173 /* Get an arbitrary pid's process group id */
174 #ifndef _SYS_SYSPROTO_H_
175 struct getpgid_args {
176 	pid_t	pid;
177 };
178 #endif
179 int
180 sys_getpgid(struct thread *td, struct getpgid_args *uap)
181 {
182 	struct proc *p;
183 	int error;
184 
185 	if (uap->pid == 0) {
186 		p = td->td_proc;
187 		PROC_LOCK(p);
188 	} else {
189 		p = pfind(uap->pid);
190 		if (p == NULL)
191 			return (ESRCH);
192 		error = p_cansee(td, p);
193 		if (error) {
194 			PROC_UNLOCK(p);
195 			return (error);
196 		}
197 	}
198 	td->td_retval[0] = p->p_pgrp->pg_id;
199 	PROC_UNLOCK(p);
200 	return (0);
201 }
202 
203 /*
204  * Get an arbitrary pid's session id.
205  */
206 #ifndef _SYS_SYSPROTO_H_
207 struct getsid_args {
208 	pid_t	pid;
209 };
210 #endif
211 int
212 sys_getsid(struct thread *td, struct getsid_args *uap)
213 {
214 
215 	return (kern_getsid(td, uap->pid));
216 }
217 
218 int
219 kern_getsid(struct thread *td, pid_t pid)
220 {
221 	struct proc *p;
222 	int error;
223 
224 	if (pid == 0) {
225 		p = td->td_proc;
226 		PROC_LOCK(p);
227 	} else {
228 		p = pfind(pid);
229 		if (p == NULL)
230 			return (ESRCH);
231 		error = p_cansee(td, p);
232 		if (error) {
233 			PROC_UNLOCK(p);
234 			return (error);
235 		}
236 	}
237 	td->td_retval[0] = p->p_session->s_sid;
238 	PROC_UNLOCK(p);
239 	return (0);
240 }
241 
242 #ifndef _SYS_SYSPROTO_H_
243 struct getuid_args {
244         int     dummy;
245 };
246 #endif
247 /* ARGSUSED */
248 int
249 sys_getuid(struct thread *td, struct getuid_args *uap)
250 {
251 
252 	td->td_retval[0] = td->td_ucred->cr_ruid;
253 #if defined(COMPAT_43)
254 	td->td_retval[1] = td->td_ucred->cr_uid;
255 #endif
256 	return (0);
257 }
258 
259 #ifndef _SYS_SYSPROTO_H_
260 struct geteuid_args {
261         int     dummy;
262 };
263 #endif
264 /* ARGSUSED */
265 int
266 sys_geteuid(struct thread *td, struct geteuid_args *uap)
267 {
268 
269 	td->td_retval[0] = td->td_ucred->cr_uid;
270 	return (0);
271 }
272 
273 #ifndef _SYS_SYSPROTO_H_
274 struct getgid_args {
275         int     dummy;
276 };
277 #endif
278 /* ARGSUSED */
279 int
280 sys_getgid(struct thread *td, struct getgid_args *uap)
281 {
282 
283 	td->td_retval[0] = td->td_ucred->cr_rgid;
284 #if defined(COMPAT_43)
285 	td->td_retval[1] = td->td_ucred->cr_groups[0];
286 #endif
287 	return (0);
288 }
289 
290 /*
291  * Get effective group ID.  The "egid" is groups[0], and could be obtained
292  * via getgroups.  This syscall exists because it is somewhat painful to do
293  * correctly in a library function.
294  */
295 #ifndef _SYS_SYSPROTO_H_
296 struct getegid_args {
297         int     dummy;
298 };
299 #endif
300 /* ARGSUSED */
301 int
302 sys_getegid(struct thread *td, struct getegid_args *uap)
303 {
304 
305 	td->td_retval[0] = td->td_ucred->cr_groups[0];
306 	return (0);
307 }
308 
309 #ifndef _SYS_SYSPROTO_H_
310 struct getgroups_args {
311 	int	gidsetsize;
312 	gid_t	*gidset;
313 };
314 #endif
315 int
316 sys_getgroups(struct thread *td, struct getgroups_args *uap)
317 {
318 	struct ucred *cred;
319 	int ngrp, error;
320 
321 	cred = td->td_ucred;
322 	ngrp = cred->cr_ngroups;
323 
324 	if (uap->gidsetsize == 0) {
325 		error = 0;
326 		goto out;
327 	}
328 	if (uap->gidsetsize < ngrp)
329 		return (EINVAL);
330 
331 	error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
332 out:
333 	td->td_retval[0] = ngrp;
334 	return (error);
335 }
336 
337 #ifndef _SYS_SYSPROTO_H_
338 struct setsid_args {
339         int     dummy;
340 };
341 #endif
342 /* ARGSUSED */
343 int
344 sys_setsid(struct thread *td, struct setsid_args *uap)
345 {
346 	struct pgrp *pgrp;
347 	int error;
348 	struct proc *p = td->td_proc;
349 	struct pgrp *newpgrp;
350 	struct session *newsess;
351 
352 	pgrp = NULL;
353 
354 	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
355 	newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
356 
357 again:
358 	error = 0;
359 	sx_xlock(&proctree_lock);
360 
361 	if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
362 		if (pgrp != NULL)
363 			PGRP_UNLOCK(pgrp);
364 		error = EPERM;
365 	} else {
366 		error = enterpgrp(p, p->p_pid, newpgrp, newsess);
367 		if (error == ERESTART)
368 			goto again;
369 		MPASS(error == 0);
370 		td->td_retval[0] = p->p_pid;
371 		newpgrp = NULL;
372 		newsess = NULL;
373 	}
374 
375 	sx_xunlock(&proctree_lock);
376 
377 	uma_zfree(pgrp_zone, newpgrp);
378 	free(newsess, M_SESSION);
379 
380 	return (error);
381 }
382 
383 /*
384  * set process group (setpgid/old setpgrp)
385  *
386  * caller does setpgid(targpid, targpgid)
387  *
388  * pid must be caller or child of caller (ESRCH)
389  * if a child
390  *	pid must be in same session (EPERM)
391  *	pid can't have done an exec (EACCES)
392  * if pgid != pid
393  * 	there must exist some pid in same session having pgid (EPERM)
394  * pid must not be session leader (EPERM)
395  */
396 #ifndef _SYS_SYSPROTO_H_
397 struct setpgid_args {
398 	int	pid;		/* target process id */
399 	int	pgid;		/* target pgrp id */
400 };
401 #endif
402 /* ARGSUSED */
403 int
404 sys_setpgid(struct thread *td, struct setpgid_args *uap)
405 {
406 	struct proc *curp = td->td_proc;
407 	struct proc *targp;	/* target process */
408 	struct pgrp *pgrp;	/* target pgrp */
409 	int error;
410 	struct pgrp *newpgrp;
411 
412 	if (uap->pgid < 0)
413 		return (EINVAL);
414 
415 	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
416 
417 again:
418 	error = 0;
419 
420 	sx_xlock(&proctree_lock);
421 	if (uap->pid != 0 && uap->pid != curp->p_pid) {
422 		if ((targp = pfind(uap->pid)) == NULL) {
423 			error = ESRCH;
424 			goto done;
425 		}
426 		if (!inferior(targp)) {
427 			PROC_UNLOCK(targp);
428 			error = ESRCH;
429 			goto done;
430 		}
431 		if ((error = p_cansee(td, targp))) {
432 			PROC_UNLOCK(targp);
433 			goto done;
434 		}
435 		if (targp->p_pgrp == NULL ||
436 		    targp->p_session != curp->p_session) {
437 			PROC_UNLOCK(targp);
438 			error = EPERM;
439 			goto done;
440 		}
441 		if (targp->p_flag & P_EXEC) {
442 			PROC_UNLOCK(targp);
443 			error = EACCES;
444 			goto done;
445 		}
446 		PROC_UNLOCK(targp);
447 	} else
448 		targp = curp;
449 	if (SESS_LEADER(targp)) {
450 		error = EPERM;
451 		goto done;
452 	}
453 	if (uap->pgid == 0)
454 		uap->pgid = targp->p_pid;
455 	if ((pgrp = pgfind(uap->pgid)) == NULL) {
456 		if (uap->pgid == targp->p_pid) {
457 			error = enterpgrp(targp, uap->pgid, newpgrp,
458 			    NULL);
459 			if (error == 0)
460 				newpgrp = NULL;
461 		} else
462 			error = EPERM;
463 	} else {
464 		if (pgrp == targp->p_pgrp) {
465 			PGRP_UNLOCK(pgrp);
466 			goto done;
467 		}
468 		if (pgrp->pg_id != targp->p_pid &&
469 		    pgrp->pg_session != curp->p_session) {
470 			PGRP_UNLOCK(pgrp);
471 			error = EPERM;
472 			goto done;
473 		}
474 		PGRP_UNLOCK(pgrp);
475 		error = enterthispgrp(targp, pgrp);
476 	}
477 done:
478 	KASSERT(error == 0 || newpgrp != NULL,
479 	    ("setpgid failed and newpgrp is NULL"));
480 	if (error == ERESTART)
481 		goto again;
482 	sx_xunlock(&proctree_lock);
483 	uma_zfree(pgrp_zone, newpgrp);
484 	return (error);
485 }
486 
487 /*
488  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
489  * compatible.  It says that setting the uid/gid to euid/egid is a special
490  * case of "appropriate privilege".  Once the rules are expanded out, this
491  * basically means that setuid(nnn) sets all three id's, in all permitted
492  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
493  * does not set the saved id - this is dangerous for traditional BSD
494  * programs.  For this reason, we *really* do not want to set
495  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
496  */
497 #define POSIX_APPENDIX_B_4_2_2
498 
499 #ifndef _SYS_SYSPROTO_H_
500 struct setuid_args {
501 	uid_t	uid;
502 };
503 #endif
504 /* ARGSUSED */
505 int
506 sys_setuid(struct thread *td, struct setuid_args *uap)
507 {
508 	struct proc *p = td->td_proc;
509 	struct ucred *newcred, *oldcred;
510 	uid_t uid;
511 	struct uidinfo *uip;
512 	int error;
513 
514 	uid = uap->uid;
515 	AUDIT_ARG_UID(uid);
516 	newcred = crget();
517 	uip = uifind(uid);
518 	PROC_LOCK(p);
519 	/*
520 	 * Copy credentials so other references do not see our changes.
521 	 */
522 	oldcred = crcopysafe(p, newcred);
523 
524 #ifdef MAC
525 	error = mac_cred_check_setuid(oldcred, uid);
526 	if (error)
527 		goto fail;
528 #endif
529 
530 	/*
531 	 * See if we have "permission" by POSIX 1003.1 rules.
532 	 *
533 	 * Note that setuid(geteuid()) is a special case of
534 	 * "appropriate privileges" in appendix B.4.2.2.  We need
535 	 * to use this clause to be compatible with traditional BSD
536 	 * semantics.  Basically, it means that "setuid(xx)" sets all
537 	 * three id's (assuming you have privs).
538 	 *
539 	 * Notes on the logic.  We do things in three steps.
540 	 * 1: We determine if the euid is going to change, and do EPERM
541 	 *    right away.  We unconditionally change the euid later if this
542 	 *    test is satisfied, simplifying that part of the logic.
543 	 * 2: We determine if the real and/or saved uids are going to
544 	 *    change.  Determined by compile options.
545 	 * 3: Change euid last. (after tests in #2 for "appropriate privs")
546 	 */
547 	if (uid != oldcred->cr_ruid &&		/* allow setuid(getuid()) */
548 #ifdef _POSIX_SAVED_IDS
549 	    uid != oldcred->cr_svuid &&		/* allow setuid(saved gid) */
550 #endif
551 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
552 	    uid != oldcred->cr_uid &&		/* allow setuid(geteuid()) */
553 #endif
554 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETUID)) != 0)
555 		goto fail;
556 
557 #ifdef _POSIX_SAVED_IDS
558 	/*
559 	 * Do we have "appropriate privileges" (are we root or uid == euid)
560 	 * If so, we are changing the real uid and/or saved uid.
561 	 */
562 	if (
563 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use the clause from B.4.2.2 */
564 	    uid == oldcred->cr_uid ||
565 #endif
566 	    /* We are using privs. */
567 	    priv_check_cred(oldcred, PRIV_CRED_SETUID) == 0)
568 #endif
569 	{
570 		/*
571 		 * Set the real uid and transfer proc count to new user.
572 		 */
573 		if (uid != oldcred->cr_ruid) {
574 			change_ruid(newcred, uip);
575 			setsugid(p);
576 		}
577 		/*
578 		 * Set saved uid
579 		 *
580 		 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
581 		 * the security of seteuid() depends on it.  B.4.2.2 says it
582 		 * is important that we should do this.
583 		 */
584 		if (uid != oldcred->cr_svuid) {
585 			change_svuid(newcred, uid);
586 			setsugid(p);
587 		}
588 	}
589 
590 	/*
591 	 * In all permitted cases, we are changing the euid.
592 	 */
593 	if (uid != oldcred->cr_uid) {
594 		change_euid(newcred, uip);
595 		setsugid(p);
596 	}
597 	proc_set_cred(p, newcred);
598 #ifdef RACCT
599 	racct_proc_ucred_changed(p, oldcred, newcred);
600 	crhold(newcred);
601 #endif
602 	PROC_UNLOCK(p);
603 #ifdef RCTL
604 	rctl_proc_ucred_changed(p, newcred);
605 	crfree(newcred);
606 #endif
607 	uifree(uip);
608 	crfree(oldcred);
609 	return (0);
610 
611 fail:
612 	PROC_UNLOCK(p);
613 	uifree(uip);
614 	crfree(newcred);
615 	return (error);
616 }
617 
618 #ifndef _SYS_SYSPROTO_H_
619 struct seteuid_args {
620 	uid_t	euid;
621 };
622 #endif
623 /* ARGSUSED */
624 int
625 sys_seteuid(struct thread *td, struct seteuid_args *uap)
626 {
627 	struct proc *p = td->td_proc;
628 	struct ucred *newcred, *oldcred;
629 	uid_t euid;
630 	struct uidinfo *euip;
631 	int error;
632 
633 	euid = uap->euid;
634 	AUDIT_ARG_EUID(euid);
635 	newcred = crget();
636 	euip = uifind(euid);
637 	PROC_LOCK(p);
638 	/*
639 	 * Copy credentials so other references do not see our changes.
640 	 */
641 	oldcred = crcopysafe(p, newcred);
642 
643 #ifdef MAC
644 	error = mac_cred_check_seteuid(oldcred, euid);
645 	if (error)
646 		goto fail;
647 #endif
648 
649 	if (euid != oldcred->cr_ruid &&		/* allow seteuid(getuid()) */
650 	    euid != oldcred->cr_svuid &&	/* allow seteuid(saved uid) */
651 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID)) != 0)
652 		goto fail;
653 
654 	/*
655 	 * Everything's okay, do it.
656 	 */
657 	if (oldcred->cr_uid != euid) {
658 		change_euid(newcred, euip);
659 		setsugid(p);
660 	}
661 	proc_set_cred(p, newcred);
662 	PROC_UNLOCK(p);
663 	uifree(euip);
664 	crfree(oldcred);
665 	return (0);
666 
667 fail:
668 	PROC_UNLOCK(p);
669 	uifree(euip);
670 	crfree(newcred);
671 	return (error);
672 }
673 
674 #ifndef _SYS_SYSPROTO_H_
675 struct setgid_args {
676 	gid_t	gid;
677 };
678 #endif
679 /* ARGSUSED */
680 int
681 sys_setgid(struct thread *td, struct setgid_args *uap)
682 {
683 	struct proc *p = td->td_proc;
684 	struct ucred *newcred, *oldcred;
685 	gid_t gid;
686 	int error;
687 
688 	gid = uap->gid;
689 	AUDIT_ARG_GID(gid);
690 	newcred = crget();
691 	PROC_LOCK(p);
692 	oldcred = crcopysafe(p, newcred);
693 
694 #ifdef MAC
695 	error = mac_cred_check_setgid(oldcred, gid);
696 	if (error)
697 		goto fail;
698 #endif
699 
700 	/*
701 	 * See if we have "permission" by POSIX 1003.1 rules.
702 	 *
703 	 * Note that setgid(getegid()) is a special case of
704 	 * "appropriate privileges" in appendix B.4.2.2.  We need
705 	 * to use this clause to be compatible with traditional BSD
706 	 * semantics.  Basically, it means that "setgid(xx)" sets all
707 	 * three id's (assuming you have privs).
708 	 *
709 	 * For notes on the logic here, see setuid() above.
710 	 */
711 	if (gid != oldcred->cr_rgid &&		/* allow setgid(getgid()) */
712 #ifdef _POSIX_SAVED_IDS
713 	    gid != oldcred->cr_svgid &&		/* allow setgid(saved gid) */
714 #endif
715 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
716 	    gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
717 #endif
718 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETGID)) != 0)
719 		goto fail;
720 
721 #ifdef _POSIX_SAVED_IDS
722 	/*
723 	 * Do we have "appropriate privileges" (are we root or gid == egid)
724 	 * If so, we are changing the real uid and saved gid.
725 	 */
726 	if (
727 #ifdef POSIX_APPENDIX_B_4_2_2	/* use the clause from B.4.2.2 */
728 	    gid == oldcred->cr_groups[0] ||
729 #endif
730 	    /* We are using privs. */
731 	    priv_check_cred(oldcred, PRIV_CRED_SETGID) == 0)
732 #endif
733 	{
734 		/*
735 		 * Set real gid
736 		 */
737 		if (oldcred->cr_rgid != gid) {
738 			change_rgid(newcred, gid);
739 			setsugid(p);
740 		}
741 		/*
742 		 * Set saved gid
743 		 *
744 		 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
745 		 * the security of setegid() depends on it.  B.4.2.2 says it
746 		 * is important that we should do this.
747 		 */
748 		if (oldcred->cr_svgid != gid) {
749 			change_svgid(newcred, gid);
750 			setsugid(p);
751 		}
752 	}
753 	/*
754 	 * In all cases permitted cases, we are changing the egid.
755 	 * Copy credentials so other references do not see our changes.
756 	 */
757 	if (oldcred->cr_groups[0] != gid) {
758 		change_egid(newcred, gid);
759 		setsugid(p);
760 	}
761 	proc_set_cred(p, newcred);
762 	PROC_UNLOCK(p);
763 	crfree(oldcred);
764 	return (0);
765 
766 fail:
767 	PROC_UNLOCK(p);
768 	crfree(newcred);
769 	return (error);
770 }
771 
772 #ifndef _SYS_SYSPROTO_H_
773 struct setegid_args {
774 	gid_t	egid;
775 };
776 #endif
777 /* ARGSUSED */
778 int
779 sys_setegid(struct thread *td, struct setegid_args *uap)
780 {
781 	struct proc *p = td->td_proc;
782 	struct ucred *newcred, *oldcred;
783 	gid_t egid;
784 	int error;
785 
786 	egid = uap->egid;
787 	AUDIT_ARG_EGID(egid);
788 	newcred = crget();
789 	PROC_LOCK(p);
790 	oldcred = crcopysafe(p, newcred);
791 
792 #ifdef MAC
793 	error = mac_cred_check_setegid(oldcred, egid);
794 	if (error)
795 		goto fail;
796 #endif
797 
798 	if (egid != oldcred->cr_rgid &&		/* allow setegid(getgid()) */
799 	    egid != oldcred->cr_svgid &&	/* allow setegid(saved gid) */
800 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID)) != 0)
801 		goto fail;
802 
803 	if (oldcred->cr_groups[0] != egid) {
804 		change_egid(newcred, egid);
805 		setsugid(p);
806 	}
807 	proc_set_cred(p, newcred);
808 	PROC_UNLOCK(p);
809 	crfree(oldcred);
810 	return (0);
811 
812 fail:
813 	PROC_UNLOCK(p);
814 	crfree(newcred);
815 	return (error);
816 }
817 
818 #ifndef _SYS_SYSPROTO_H_
819 struct setgroups_args {
820 	int	gidsetsize;
821 	gid_t	*gidset;
822 };
823 #endif
824 /* ARGSUSED */
825 int
826 sys_setgroups(struct thread *td, struct setgroups_args *uap)
827 {
828 	gid_t smallgroups[CRED_SMALLGROUPS_NB];
829 	gid_t *groups;
830 	int gidsetsize, error;
831 
832 	/*
833 	 * Sanity check size now to avoid passing too big a value to copyin(),
834 	 * even if kern_setgroups() will do it again.
835 	 *
836 	 * Ideally, the 'gidsetsize' argument should have been a 'u_int' (and it
837 	 * was, in this implementation, for a long time), but POSIX standardized
838 	 * getgroups() to take an 'int' and it would be quite entrapping to have
839 	 * setgroups() differ.
840 	 */
841 	gidsetsize = uap->gidsetsize;
842 	if (gidsetsize > ngroups_max + 1 || gidsetsize < 0)
843 		return (EINVAL);
844 
845 	if (gidsetsize > CRED_SMALLGROUPS_NB)
846 		groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
847 	else
848 		groups = smallgroups;
849 
850 	error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
851 	if (error == 0)
852 		error = kern_setgroups(td, &gidsetsize, groups);
853 
854 	if (groups != smallgroups)
855 		free(groups, M_TEMP);
856 	return (error);
857 }
858 
859 static int
860 gidp_cmp(const void *p1, const void *p2)
861 {
862 	const gid_t g1 = *(const gid_t *)p1;
863 	const gid_t g2 = *(const gid_t *)p2;
864 
865 	return ((g1 > g2) - (g1 < g2));
866 }
867 
868 /*
869  * CAUTION: This function normalizes 'groups', possibly also changing the value
870  * of '*ngrpp' as a consequence.
871  */
872 int
873 kern_setgroups(struct thread *td, int *ngrpp, gid_t *groups)
874 {
875 	struct proc *p = td->td_proc;
876 	struct ucred *newcred, *oldcred;
877 	int ngrp, error;
878 
879 	ngrp = *ngrpp;
880 	/* Sanity check size. */
881 	if (ngrp < 0 || ngrp > ngroups_max + 1)
882 		return (EINVAL);
883 
884 	AUDIT_ARG_GROUPSET(groups, ngrp);
885 	if (ngrp != 0) {
886 		/* We allow and treat 0 specially below. */
887 		groups_normalize(ngrpp, groups);
888 		ngrp = *ngrpp;
889 	}
890 	newcred = crget();
891 	if (ngrp != 0)
892 		crextend(newcred, ngrp);
893 	PROC_LOCK(p);
894 	oldcred = crcopysafe(p, newcred);
895 
896 #ifdef MAC
897 	error = ngrp == 0 ?
898 	    /* If 'ngrp' is 0, we'll keep just the current effective GID. */
899 	    mac_cred_check_setgroups(oldcred, 1, oldcred->cr_groups) :
900 	    mac_cred_check_setgroups(oldcred, ngrp, groups);
901 	if (error)
902 		goto fail;
903 #endif
904 
905 	error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS);
906 	if (error)
907 		goto fail;
908 
909 	if (ngrp == 0) {
910 		/*
911 		 * setgroups(0, NULL) is a legitimate way of clearing the
912 		 * groups vector on non-BSD systems (which generally do not
913 		 * have the egid in the groups[0]).  We risk security holes
914 		 * when running non-BSD software if we do not do the same.
915 		 */
916 		newcred->cr_ngroups = 1;
917 	} else
918 		crsetgroups_internal(newcred, ngrp, groups);
919 
920 	setsugid(p);
921 	proc_set_cred(p, newcred);
922 	PROC_UNLOCK(p);
923 	crfree(oldcred);
924 	return (0);
925 
926 fail:
927 	PROC_UNLOCK(p);
928 	crfree(newcred);
929 	return (error);
930 }
931 
932 #ifndef _SYS_SYSPROTO_H_
933 struct setreuid_args {
934 	uid_t	ruid;
935 	uid_t	euid;
936 };
937 #endif
938 /* ARGSUSED */
939 int
940 sys_setreuid(struct thread *td, struct setreuid_args *uap)
941 {
942 	struct proc *p = td->td_proc;
943 	struct ucred *newcred, *oldcred;
944 	uid_t euid, ruid;
945 	struct uidinfo *euip, *ruip;
946 	int error;
947 
948 	euid = uap->euid;
949 	ruid = uap->ruid;
950 	AUDIT_ARG_EUID(euid);
951 	AUDIT_ARG_RUID(ruid);
952 	newcred = crget();
953 	euip = uifind(euid);
954 	ruip = uifind(ruid);
955 	PROC_LOCK(p);
956 	oldcred = crcopysafe(p, newcred);
957 
958 #ifdef MAC
959 	error = mac_cred_check_setreuid(oldcred, ruid, euid);
960 	if (error)
961 		goto fail;
962 #endif
963 
964 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
965 	      ruid != oldcred->cr_svuid) ||
966 	     (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
967 	      euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
968 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID)) != 0)
969 		goto fail;
970 
971 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
972 		change_euid(newcred, euip);
973 		setsugid(p);
974 	}
975 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
976 		change_ruid(newcred, ruip);
977 		setsugid(p);
978 	}
979 	if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
980 	    newcred->cr_svuid != newcred->cr_uid) {
981 		change_svuid(newcred, newcred->cr_uid);
982 		setsugid(p);
983 	}
984 	proc_set_cred(p, newcred);
985 #ifdef RACCT
986 	racct_proc_ucred_changed(p, oldcred, newcred);
987 	crhold(newcred);
988 #endif
989 	PROC_UNLOCK(p);
990 #ifdef RCTL
991 	rctl_proc_ucred_changed(p, newcred);
992 	crfree(newcred);
993 #endif
994 	uifree(ruip);
995 	uifree(euip);
996 	crfree(oldcred);
997 	return (0);
998 
999 fail:
1000 	PROC_UNLOCK(p);
1001 	uifree(ruip);
1002 	uifree(euip);
1003 	crfree(newcred);
1004 	return (error);
1005 }
1006 
1007 #ifndef _SYS_SYSPROTO_H_
1008 struct setregid_args {
1009 	gid_t	rgid;
1010 	gid_t	egid;
1011 };
1012 #endif
1013 /* ARGSUSED */
1014 int
1015 sys_setregid(struct thread *td, struct setregid_args *uap)
1016 {
1017 	struct proc *p = td->td_proc;
1018 	struct ucred *newcred, *oldcred;
1019 	gid_t egid, rgid;
1020 	int error;
1021 
1022 	egid = uap->egid;
1023 	rgid = uap->rgid;
1024 	AUDIT_ARG_EGID(egid);
1025 	AUDIT_ARG_RGID(rgid);
1026 	newcred = crget();
1027 	PROC_LOCK(p);
1028 	oldcred = crcopysafe(p, newcred);
1029 
1030 #ifdef MAC
1031 	error = mac_cred_check_setregid(oldcred, rgid, egid);
1032 	if (error)
1033 		goto fail;
1034 #endif
1035 
1036 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1037 	    rgid != oldcred->cr_svgid) ||
1038 	     (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
1039 	     egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
1040 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID)) != 0)
1041 		goto fail;
1042 
1043 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
1044 		change_egid(newcred, egid);
1045 		setsugid(p);
1046 	}
1047 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1048 		change_rgid(newcred, rgid);
1049 		setsugid(p);
1050 	}
1051 	if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
1052 	    newcred->cr_svgid != newcred->cr_groups[0]) {
1053 		change_svgid(newcred, newcred->cr_groups[0]);
1054 		setsugid(p);
1055 	}
1056 	proc_set_cred(p, newcred);
1057 	PROC_UNLOCK(p);
1058 	crfree(oldcred);
1059 	return (0);
1060 
1061 fail:
1062 	PROC_UNLOCK(p);
1063 	crfree(newcred);
1064 	return (error);
1065 }
1066 
1067 /*
1068  * setresuid(ruid, euid, suid) is like setreuid except control over the saved
1069  * uid is explicit.
1070  */
1071 #ifndef _SYS_SYSPROTO_H_
1072 struct setresuid_args {
1073 	uid_t	ruid;
1074 	uid_t	euid;
1075 	uid_t	suid;
1076 };
1077 #endif
1078 /* ARGSUSED */
1079 int
1080 sys_setresuid(struct thread *td, struct setresuid_args *uap)
1081 {
1082 	struct proc *p = td->td_proc;
1083 	struct ucred *newcred, *oldcred;
1084 	uid_t euid, ruid, suid;
1085 	struct uidinfo *euip, *ruip;
1086 	int error;
1087 
1088 	euid = uap->euid;
1089 	ruid = uap->ruid;
1090 	suid = uap->suid;
1091 	AUDIT_ARG_EUID(euid);
1092 	AUDIT_ARG_RUID(ruid);
1093 	AUDIT_ARG_SUID(suid);
1094 	newcred = crget();
1095 	euip = uifind(euid);
1096 	ruip = uifind(ruid);
1097 	PROC_LOCK(p);
1098 	oldcred = crcopysafe(p, newcred);
1099 
1100 #ifdef MAC
1101 	error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
1102 	if (error)
1103 		goto fail;
1104 #endif
1105 
1106 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1107 	     ruid != oldcred->cr_svuid &&
1108 	      ruid != oldcred->cr_uid) ||
1109 	     (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
1110 	    euid != oldcred->cr_svuid &&
1111 	      euid != oldcred->cr_uid) ||
1112 	     (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
1113 	    suid != oldcred->cr_svuid &&
1114 	      suid != oldcred->cr_uid)) &&
1115 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID)) != 0)
1116 		goto fail;
1117 
1118 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1119 		change_euid(newcred, euip);
1120 		setsugid(p);
1121 	}
1122 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1123 		change_ruid(newcred, ruip);
1124 		setsugid(p);
1125 	}
1126 	if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
1127 		change_svuid(newcred, suid);
1128 		setsugid(p);
1129 	}
1130 	proc_set_cred(p, newcred);
1131 #ifdef RACCT
1132 	racct_proc_ucred_changed(p, oldcred, newcred);
1133 	crhold(newcred);
1134 #endif
1135 	PROC_UNLOCK(p);
1136 #ifdef RCTL
1137 	rctl_proc_ucred_changed(p, newcred);
1138 	crfree(newcred);
1139 #endif
1140 	uifree(ruip);
1141 	uifree(euip);
1142 	crfree(oldcred);
1143 	return (0);
1144 
1145 fail:
1146 	PROC_UNLOCK(p);
1147 	uifree(ruip);
1148 	uifree(euip);
1149 	crfree(newcred);
1150 	return (error);
1151 
1152 }
1153 
1154 /*
1155  * setresgid(rgid, egid, sgid) is like setregid except control over the saved
1156  * gid is explicit.
1157  */
1158 #ifndef _SYS_SYSPROTO_H_
1159 struct setresgid_args {
1160 	gid_t	rgid;
1161 	gid_t	egid;
1162 	gid_t	sgid;
1163 };
1164 #endif
1165 /* ARGSUSED */
1166 int
1167 sys_setresgid(struct thread *td, struct setresgid_args *uap)
1168 {
1169 	struct proc *p = td->td_proc;
1170 	struct ucred *newcred, *oldcred;
1171 	gid_t egid, rgid, sgid;
1172 	int error;
1173 
1174 	egid = uap->egid;
1175 	rgid = uap->rgid;
1176 	sgid = uap->sgid;
1177 	AUDIT_ARG_EGID(egid);
1178 	AUDIT_ARG_RGID(rgid);
1179 	AUDIT_ARG_SGID(sgid);
1180 	newcred = crget();
1181 	PROC_LOCK(p);
1182 	oldcred = crcopysafe(p, newcred);
1183 
1184 #ifdef MAC
1185 	error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
1186 	if (error)
1187 		goto fail;
1188 #endif
1189 
1190 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1191 	      rgid != oldcred->cr_svgid &&
1192 	      rgid != oldcred->cr_groups[0]) ||
1193 	     (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
1194 	      egid != oldcred->cr_svgid &&
1195 	      egid != oldcred->cr_groups[0]) ||
1196 	     (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
1197 	      sgid != oldcred->cr_svgid &&
1198 	      sgid != oldcred->cr_groups[0])) &&
1199 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID)) != 0)
1200 		goto fail;
1201 
1202 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
1203 		change_egid(newcred, egid);
1204 		setsugid(p);
1205 	}
1206 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1207 		change_rgid(newcred, rgid);
1208 		setsugid(p);
1209 	}
1210 	if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
1211 		change_svgid(newcred, sgid);
1212 		setsugid(p);
1213 	}
1214 	proc_set_cred(p, newcred);
1215 	PROC_UNLOCK(p);
1216 	crfree(oldcred);
1217 	return (0);
1218 
1219 fail:
1220 	PROC_UNLOCK(p);
1221 	crfree(newcred);
1222 	return (error);
1223 }
1224 
1225 #ifndef _SYS_SYSPROTO_H_
1226 struct getresuid_args {
1227 	uid_t	*ruid;
1228 	uid_t	*euid;
1229 	uid_t	*suid;
1230 };
1231 #endif
1232 /* ARGSUSED */
1233 int
1234 sys_getresuid(struct thread *td, struct getresuid_args *uap)
1235 {
1236 	struct ucred *cred;
1237 	int error1 = 0, error2 = 0, error3 = 0;
1238 
1239 	cred = td->td_ucred;
1240 	if (uap->ruid)
1241 		error1 = copyout(&cred->cr_ruid,
1242 		    uap->ruid, sizeof(cred->cr_ruid));
1243 	if (uap->euid)
1244 		error2 = copyout(&cred->cr_uid,
1245 		    uap->euid, sizeof(cred->cr_uid));
1246 	if (uap->suid)
1247 		error3 = copyout(&cred->cr_svuid,
1248 		    uap->suid, sizeof(cred->cr_svuid));
1249 	return (error1 ? error1 : error2 ? error2 : error3);
1250 }
1251 
1252 #ifndef _SYS_SYSPROTO_H_
1253 struct getresgid_args {
1254 	gid_t	*rgid;
1255 	gid_t	*egid;
1256 	gid_t	*sgid;
1257 };
1258 #endif
1259 /* ARGSUSED */
1260 int
1261 sys_getresgid(struct thread *td, struct getresgid_args *uap)
1262 {
1263 	struct ucred *cred;
1264 	int error1 = 0, error2 = 0, error3 = 0;
1265 
1266 	cred = td->td_ucred;
1267 	if (uap->rgid)
1268 		error1 = copyout(&cred->cr_rgid,
1269 		    uap->rgid, sizeof(cred->cr_rgid));
1270 	if (uap->egid)
1271 		error2 = copyout(&cred->cr_groups[0],
1272 		    uap->egid, sizeof(cred->cr_groups[0]));
1273 	if (uap->sgid)
1274 		error3 = copyout(&cred->cr_svgid,
1275 		    uap->sgid, sizeof(cred->cr_svgid));
1276 	return (error1 ? error1 : error2 ? error2 : error3);
1277 }
1278 
1279 #ifndef _SYS_SYSPROTO_H_
1280 struct issetugid_args {
1281 	int dummy;
1282 };
1283 #endif
1284 /* ARGSUSED */
1285 int
1286 sys_issetugid(struct thread *td, struct issetugid_args *uap)
1287 {
1288 	struct proc *p = td->td_proc;
1289 
1290 	/*
1291 	 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
1292 	 * we use P_SUGID because we consider changing the owners as
1293 	 * "tainting" as well.
1294 	 * This is significant for procs that start as root and "become"
1295 	 * a user without an exec - programs cannot know *everything*
1296 	 * that libc *might* have put in their data segment.
1297 	 */
1298 	td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
1299 	return (0);
1300 }
1301 
1302 int
1303 sys___setugid(struct thread *td, struct __setugid_args *uap)
1304 {
1305 #ifdef REGRESSION
1306 	struct proc *p;
1307 
1308 	p = td->td_proc;
1309 	switch (uap->flag) {
1310 	case 0:
1311 		PROC_LOCK(p);
1312 		p->p_flag &= ~P_SUGID;
1313 		PROC_UNLOCK(p);
1314 		return (0);
1315 	case 1:
1316 		PROC_LOCK(p);
1317 		p->p_flag |= P_SUGID;
1318 		PROC_UNLOCK(p);
1319 		return (0);
1320 	default:
1321 		return (EINVAL);
1322 	}
1323 #else /* !REGRESSION */
1324 
1325 	return (ENOSYS);
1326 #endif /* REGRESSION */
1327 }
1328 
1329 #ifdef INVARIANTS
1330 static void
1331 groups_check_normalized(int ngrp, const gid_t *groups)
1332 {
1333 	gid_t prev_g;
1334 
1335 	groups_check_positive_len(ngrp);
1336 	groups_check_max_len(ngrp);
1337 
1338 	if (ngrp == 1)
1339 		return;
1340 
1341 	prev_g = groups[1];
1342 	for (int i = 2; i < ngrp; ++i) {
1343 		const gid_t g = groups[i];
1344 
1345 		if (prev_g >= g)
1346 			panic("%s: groups[%d] (%u) >= groups[%d] (%u)",
1347 			    __func__, i - 1, prev_g, i, g);
1348 		prev_g = g;
1349 	}
1350 }
1351 #else
1352 #define groups_check_normalized(...)
1353 #endif
1354 
1355 /*
1356  * Returns whether gid designates a supplementary group in cred.
1357  */
1358 bool
1359 group_is_supplementary(const gid_t gid, const struct ucred *const cred)
1360 {
1361 
1362 	groups_check_normalized(cred->cr_ngroups, cred->cr_groups);
1363 
1364 	/*
1365 	 * Perform a binary search of the supplementary groups.  This is
1366 	 * possible because we sort the groups in crsetgroups().
1367 	 */
1368 	return (bsearch(&gid, cred->cr_groups + 1, cred->cr_ngroups - 1,
1369 	    sizeof(gid), gidp_cmp) != NULL);
1370 }
1371 
1372 /*
1373  * Check if gid is a member of the (effective) group set (i.e., effective and
1374  * supplementary groups).
1375  */
1376 bool
1377 groupmember(gid_t gid, const struct ucred *cred)
1378 {
1379 
1380 	groups_check_positive_len(cred->cr_ngroups);
1381 
1382 	if (gid == cred->cr_groups[0])
1383 		return (true);
1384 
1385 	return (group_is_supplementary(gid, cred));
1386 }
1387 
1388 /*
1389  * Check if gid is a member of the real group set (i.e., real and supplementary
1390  * groups).
1391  */
1392 bool
1393 realgroupmember(gid_t gid, const struct ucred *cred)
1394 {
1395 	/*
1396 	 * Although the equality test on 'cr_rgid' below doesn't access
1397 	 * 'cr_groups', we check for the latter's length here as we assume that,
1398 	 * if 'cr_ngroups' is 0, the passed 'struct ucred' is invalid, and
1399 	 * 'cr_rgid' may not have been filled.
1400 	 */
1401 	groups_check_positive_len(cred->cr_ngroups);
1402 
1403 	if (gid == cred->cr_rgid)
1404 		return (true);
1405 
1406 	return (group_is_supplementary(gid, cred));
1407 }
1408 
1409 /*
1410  * Test the active securelevel against a given level.  securelevel_gt()
1411  * implements (securelevel > level).  securelevel_ge() implements
1412  * (securelevel >= level).  Note that the logic is inverted -- these
1413  * functions return EPERM on "success" and 0 on "failure".
1414  *
1415  * Due to care taken when setting the securelevel, we know that no jail will
1416  * be less secure that its parent (or the physical system), so it is sufficient
1417  * to test the current jail only.
1418  *
1419  * XXXRW: Possibly since this has to do with privilege, it should move to
1420  * kern_priv.c.
1421  */
1422 int
1423 securelevel_gt(struct ucred *cr, int level)
1424 {
1425 
1426 	return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
1427 }
1428 
1429 int
1430 securelevel_ge(struct ucred *cr, int level)
1431 {
1432 
1433 	return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
1434 }
1435 
1436 /*
1437  * 'see_other_uids' determines whether or not visibility of processes
1438  * and sockets with credentials holding different real uids is possible
1439  * using a variety of system MIBs.
1440  * XXX: data declarations should be together near the beginning of the file.
1441  */
1442 static int	see_other_uids = 1;
1443 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
1444     &see_other_uids, 0,
1445     "Unprivileged processes may see subjects/objects with different real uid");
1446 
1447 /*-
1448  * Determine if u1 "can see" the subject specified by u2, according to the
1449  * 'see_other_uids' policy.
1450  * Returns: 0 for permitted, ESRCH otherwise
1451  * Locks: none
1452  * References: *u1 and *u2 must not change during the call
1453  *             u1 may equal u2, in which case only one reference is required
1454  */
1455 static int
1456 cr_canseeotheruids(struct ucred *u1, struct ucred *u2)
1457 {
1458 
1459 	if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
1460 		if (priv_check_cred(u1, PRIV_SEEOTHERUIDS) != 0)
1461 			return (ESRCH);
1462 	}
1463 	return (0);
1464 }
1465 
1466 /*
1467  * 'see_other_gids' determines whether or not visibility of processes
1468  * and sockets with credentials holding different real gids is possible
1469  * using a variety of system MIBs.
1470  * XXX: data declarations should be together near the beginning of the file.
1471  */
1472 static int	see_other_gids = 1;
1473 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
1474     &see_other_gids, 0,
1475     "Unprivileged processes may see subjects/objects with different real gid");
1476 
1477 /*
1478  * Determine if u1 can "see" the subject specified by u2, according to the
1479  * 'see_other_gids' policy.
1480  * Returns: 0 for permitted, ESRCH otherwise
1481  * Locks: none
1482  * References: *u1 and *u2 must not change during the call
1483  *             u1 may equal u2, in which case only one reference is required
1484  */
1485 static int
1486 cr_canseeothergids(struct ucred *u1, struct ucred *u2)
1487 {
1488 	if (!see_other_gids) {
1489 		if (realgroupmember(u1->cr_rgid, u2))
1490 			return (0);
1491 
1492 		for (int i = 1; i < u1->cr_ngroups; i++)
1493 			if (realgroupmember(u1->cr_groups[i], u2))
1494 				return (0);
1495 
1496 		if (priv_check_cred(u1, PRIV_SEEOTHERGIDS) != 0)
1497 			return (ESRCH);
1498 	}
1499 
1500 	return (0);
1501 }
1502 
1503 /*
1504  * 'see_jail_proc' determines whether or not visibility of processes and
1505  * sockets with credentials holding different jail ids is possible using a
1506  * variety of system MIBs.
1507  *
1508  * XXX: data declarations should be together near the beginning of the file.
1509  */
1510 
1511 static int	see_jail_proc = 1;
1512 SYSCTL_INT(_security_bsd, OID_AUTO, see_jail_proc, CTLFLAG_RW,
1513     &see_jail_proc, 0,
1514     "Unprivileged processes may see subjects/objects with different jail ids");
1515 
1516 /*-
1517  * Determine if u1 "can see" the subject specified by u2, according to the
1518  * 'see_jail_proc' policy.
1519  * Returns: 0 for permitted, ESRCH otherwise
1520  * Locks: none
1521  * References: *u1 and *u2 must not change during the call
1522  *             u1 may equal u2, in which case only one reference is required
1523  */
1524 static int
1525 cr_canseejailproc(struct ucred *u1, struct ucred *u2)
1526 {
1527 	if (see_jail_proc || /* Policy deactivated. */
1528 	    u1->cr_prison == u2->cr_prison || /* Same jail. */
1529 	    priv_check_cred(u1, PRIV_SEEJAILPROC) == 0) /* Privileged. */
1530 		return (0);
1531 
1532 	return (ESRCH);
1533 }
1534 
1535 /*
1536  * Helper for cr_cansee*() functions to abide by system-wide security.bsd.see_*
1537  * policies.  Determines if u1 "can see" u2 according to these policies.
1538  * Returns: 0 for permitted, ESRCH otherwise
1539  */
1540 int
1541 cr_bsd_visible(struct ucred *u1, struct ucred *u2)
1542 {
1543 	int error;
1544 
1545 	error = cr_canseeotheruids(u1, u2);
1546 	if (error != 0)
1547 		return (error);
1548 	error = cr_canseeothergids(u1, u2);
1549 	if (error != 0)
1550 		return (error);
1551 	error = cr_canseejailproc(u1, u2);
1552 	if (error != 0)
1553 		return (error);
1554 	return (0);
1555 }
1556 
1557 /*-
1558  * Determine if u1 "can see" the subject specified by u2.
1559  * Returns: 0 for permitted, an errno value otherwise
1560  * Locks: none
1561  * References: *u1 and *u2 must not change during the call
1562  *             u1 may equal u2, in which case only one reference is required
1563  */
1564 int
1565 cr_cansee(struct ucred *u1, struct ucred *u2)
1566 {
1567 	int error;
1568 
1569 	if ((error = prison_check(u1, u2)))
1570 		return (error);
1571 #ifdef MAC
1572 	if ((error = mac_cred_check_visible(u1, u2)))
1573 		return (error);
1574 #endif
1575 	if ((error = cr_bsd_visible(u1, u2)))
1576 		return (error);
1577 	return (0);
1578 }
1579 
1580 /*-
1581  * Determine if td "can see" the subject specified by p.
1582  * Returns: 0 for permitted, an errno value otherwise
1583  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
1584  *        should be curthread.
1585  * References: td and p must be valid for the lifetime of the call
1586  */
1587 int
1588 p_cansee(struct thread *td, struct proc *p)
1589 {
1590 	/* Wrap cr_cansee() for all functionality. */
1591 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1592 	PROC_LOCK_ASSERT(p, MA_OWNED);
1593 
1594 	if (td->td_proc == p)
1595 		return (0);
1596 	return (cr_cansee(td->td_ucred, p->p_ucred));
1597 }
1598 
1599 /*
1600  * 'conservative_signals' prevents the delivery of a broad class of
1601  * signals by unprivileged processes to processes that have changed their
1602  * credentials since the last invocation of execve().  This can prevent
1603  * the leakage of cached information or retained privileges as a result
1604  * of a common class of signal-related vulnerabilities.  However, this
1605  * may interfere with some applications that expect to be able to
1606  * deliver these signals to peer processes after having given up
1607  * privilege.
1608  */
1609 static int	conservative_signals = 1;
1610 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
1611     &conservative_signals, 0, "Unprivileged processes prevented from "
1612     "sending certain signals to processes whose credentials have changed");
1613 /*-
1614  * Determine whether cred may deliver the specified signal to proc.
1615  * Returns: 0 for permitted, an errno value otherwise.
1616  * Locks: A lock must be held for proc.
1617  * References: cred and proc must be valid for the lifetime of the call.
1618  */
1619 int
1620 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
1621 {
1622 	int error;
1623 
1624 	PROC_LOCK_ASSERT(proc, MA_OWNED);
1625 	/*
1626 	 * Jail semantics limit the scope of signalling to proc in the
1627 	 * same jail as cred, if cred is in jail.
1628 	 */
1629 	error = prison_check(cred, proc->p_ucred);
1630 	if (error)
1631 		return (error);
1632 #ifdef MAC
1633 	if ((error = mac_proc_check_signal(cred, proc, signum)))
1634 		return (error);
1635 #endif
1636 	if ((error = cr_bsd_visible(cred, proc->p_ucred)))
1637 		return (error);
1638 
1639 	/*
1640 	 * UNIX signal semantics depend on the status of the P_SUGID
1641 	 * bit on the target process.  If the bit is set, then additional
1642 	 * restrictions are placed on the set of available signals.
1643 	 */
1644 	if (conservative_signals && (proc->p_flag & P_SUGID)) {
1645 		switch (signum) {
1646 		case 0:
1647 		case SIGKILL:
1648 		case SIGINT:
1649 		case SIGTERM:
1650 		case SIGALRM:
1651 		case SIGSTOP:
1652 		case SIGTTIN:
1653 		case SIGTTOU:
1654 		case SIGTSTP:
1655 		case SIGHUP:
1656 		case SIGUSR1:
1657 		case SIGUSR2:
1658 			/*
1659 			 * Generally, permit job and terminal control
1660 			 * signals.
1661 			 */
1662 			break;
1663 		default:
1664 			/* Not permitted without privilege. */
1665 			error = priv_check_cred(cred, PRIV_SIGNAL_SUGID);
1666 			if (error)
1667 				return (error);
1668 		}
1669 	}
1670 
1671 	/*
1672 	 * Generally, the target credential's ruid or svuid must match the
1673 	 * subject credential's ruid or euid.
1674 	 */
1675 	if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
1676 	    cred->cr_ruid != proc->p_ucred->cr_svuid &&
1677 	    cred->cr_uid != proc->p_ucred->cr_ruid &&
1678 	    cred->cr_uid != proc->p_ucred->cr_svuid) {
1679 		error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED);
1680 		if (error)
1681 			return (error);
1682 	}
1683 
1684 	return (0);
1685 }
1686 
1687 /*-
1688  * Determine whether td may deliver the specified signal to p.
1689  * Returns: 0 for permitted, an errno value otherwise
1690  * Locks: Sufficient locks to protect various components of td and p
1691  *        must be held.  td must be curthread, and a lock must be
1692  *        held for p.
1693  * References: td and p must be valid for the lifetime of the call
1694  */
1695 int
1696 p_cansignal(struct thread *td, struct proc *p, int signum)
1697 {
1698 
1699 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1700 	PROC_LOCK_ASSERT(p, MA_OWNED);
1701 	if (td->td_proc == p)
1702 		return (0);
1703 
1704 	/*
1705 	 * UNIX signalling semantics require that processes in the same
1706 	 * session always be able to deliver SIGCONT to one another,
1707 	 * overriding the remaining protections.
1708 	 */
1709 	/* XXX: This will require an additional lock of some sort. */
1710 	if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
1711 		return (0);
1712 	/*
1713 	 * Some compat layers use SIGTHR and higher signals for
1714 	 * communication between different kernel threads of the same
1715 	 * process, so that they expect that it's always possible to
1716 	 * deliver them, even for suid applications where cr_cansignal() can
1717 	 * deny such ability for security consideration.  It should be
1718 	 * pretty safe to do since the only way to create two processes
1719 	 * with the same p_leader is via rfork(2).
1720 	 */
1721 	if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
1722 	    signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
1723 		return (0);
1724 
1725 	return (cr_cansignal(td->td_ucred, p, signum));
1726 }
1727 
1728 /*-
1729  * Determine whether td may reschedule p.
1730  * Returns: 0 for permitted, an errno value otherwise
1731  * Locks: Sufficient locks to protect various components of td and p
1732  *        must be held.  td must be curthread, and a lock must
1733  *        be held for p.
1734  * References: td and p must be valid for the lifetime of the call
1735  */
1736 int
1737 p_cansched(struct thread *td, struct proc *p)
1738 {
1739 	int error;
1740 
1741 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1742 	PROC_LOCK_ASSERT(p, MA_OWNED);
1743 	if (td->td_proc == p)
1744 		return (0);
1745 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1746 		return (error);
1747 #ifdef MAC
1748 	if ((error = mac_proc_check_sched(td->td_ucred, p)))
1749 		return (error);
1750 #endif
1751 	if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
1752 		return (error);
1753 
1754 	if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
1755 	    td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
1756 		error = priv_check(td, PRIV_SCHED_DIFFCRED);
1757 		if (error)
1758 			return (error);
1759 	}
1760 	return (0);
1761 }
1762 
1763 /*
1764  * Handle getting or setting the prison's unprivileged_proc_debug
1765  * value.
1766  */
1767 static int
1768 sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS)
1769 {
1770 	int error, val;
1771 
1772 	val = prison_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG);
1773 	error = sysctl_handle_int(oidp, &val, 0, req);
1774 	if (error != 0 || req->newptr == NULL)
1775 		return (error);
1776 	if (val != 0 && val != 1)
1777 		return (EINVAL);
1778 	prison_set_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG, val);
1779 	return (0);
1780 }
1781 
1782 /*
1783  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
1784  * unprivileged inter-process debugging services, including some procfs
1785  * functionality, ptrace(), and ktrace().  In the past, inter-process
1786  * debugging has been involved in a variety of security problems, and sites
1787  * not requiring the service might choose to disable it when hardening
1788  * systems.
1789  */
1790 SYSCTL_PROC(_security_bsd, OID_AUTO, unprivileged_proc_debug,
1791     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_SECURE |
1792     CTLFLAG_MPSAFE, 0, 0, sysctl_unprivileged_proc_debug, "I",
1793     "Unprivileged processes may use process debugging facilities");
1794 
1795 /*-
1796  * Determine whether td may debug p.
1797  * Returns: 0 for permitted, an errno value otherwise
1798  * Locks: Sufficient locks to protect various components of td and p
1799  *        must be held.  td must be curthread, and a lock must
1800  *        be held for p.
1801  * References: td and p must be valid for the lifetime of the call
1802  */
1803 int
1804 p_candebug(struct thread *td, struct proc *p)
1805 {
1806 	int error, grpsubset, i, uidsubset;
1807 
1808 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1809 	PROC_LOCK_ASSERT(p, MA_OWNED);
1810 	if (td->td_proc == p)
1811 		return (0);
1812 	if ((error = priv_check(td, PRIV_DEBUG_UNPRIV)))
1813 		return (error);
1814 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1815 		return (error);
1816 #ifdef MAC
1817 	if ((error = mac_proc_check_debug(td->td_ucred, p)))
1818 		return (error);
1819 #endif
1820 	if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
1821 		return (error);
1822 
1823 	/*
1824 	 * Is p's group set a subset of td's effective group set?  This
1825 	 * includes p's egid, group access list, rgid, and svgid.
1826 	 */
1827 	grpsubset = 1;
1828 	for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
1829 		if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
1830 			grpsubset = 0;
1831 			break;
1832 		}
1833 	}
1834 	grpsubset = grpsubset &&
1835 	    groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
1836 	    groupmember(p->p_ucred->cr_svgid, td->td_ucred);
1837 
1838 	/*
1839 	 * Are the uids present in p's credential equal to td's
1840 	 * effective uid?  This includes p's euid, svuid, and ruid.
1841 	 */
1842 	uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
1843 	    td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
1844 	    td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
1845 
1846 	/*
1847 	 * If p's gids aren't a subset, or the uids aren't a subset,
1848 	 * or the credential has changed, require appropriate privilege
1849 	 * for td to debug p.
1850 	 */
1851 	if (!grpsubset || !uidsubset) {
1852 		error = priv_check(td, PRIV_DEBUG_DIFFCRED);
1853 		if (error)
1854 			return (error);
1855 	}
1856 
1857 	/*
1858 	 * Has the credential of the process changed since the last exec()?
1859 	 */
1860 	if ((p->p_flag & P_SUGID) != 0) {
1861 		error = priv_check(td, PRIV_DEBUG_SUGID);
1862 		if (error)
1863 			return (error);
1864 	}
1865 
1866 	/* Can't trace init when securelevel > 0. */
1867 	if (p == initproc) {
1868 		error = securelevel_gt(td->td_ucred, 0);
1869 		if (error)
1870 			return (error);
1871 	}
1872 
1873 	/*
1874 	 * Can't trace a process that's currently exec'ing.
1875 	 *
1876 	 * XXX: Note, this is not a security policy decision, it's a
1877 	 * basic correctness/functionality decision.  Therefore, this check
1878 	 * should be moved to the caller's of p_candebug().
1879 	 */
1880 	if ((p->p_flag & P_INEXEC) != 0)
1881 		return (EBUSY);
1882 
1883 	/* Denied explicitly */
1884 	if ((p->p_flag2 & P2_NOTRACE) != 0) {
1885 		error = priv_check(td, PRIV_DEBUG_DENIED);
1886 		if (error != 0)
1887 			return (error);
1888 	}
1889 
1890 	return (0);
1891 }
1892 
1893 /*-
1894  * Determine whether the subject represented by cred can "see" a socket.
1895  * Returns: 0 for permitted, ENOENT otherwise.
1896  */
1897 int
1898 cr_canseesocket(struct ucred *cred, struct socket *so)
1899 {
1900 	int error;
1901 
1902 	error = prison_check(cred, so->so_cred);
1903 	if (error)
1904 		return (ENOENT);
1905 #ifdef MAC
1906 	error = mac_socket_check_visible(cred, so);
1907 	if (error)
1908 		return (error);
1909 #endif
1910 	if (cr_bsd_visible(cred, so->so_cred))
1911 		return (ENOENT);
1912 
1913 	return (0);
1914 }
1915 
1916 /*-
1917  * Determine whether td can wait for the exit of p.
1918  * Returns: 0 for permitted, an errno value otherwise
1919  * Locks: Sufficient locks to protect various components of td and p
1920  *        must be held.  td must be curthread, and a lock must
1921  *        be held for p.
1922  * References: td and p must be valid for the lifetime of the call
1923 
1924  */
1925 int
1926 p_canwait(struct thread *td, struct proc *p)
1927 {
1928 	int error;
1929 
1930 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1931 	PROC_LOCK_ASSERT(p, MA_OWNED);
1932 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1933 		return (error);
1934 #ifdef MAC
1935 	if ((error = mac_proc_check_wait(td->td_ucred, p)))
1936 		return (error);
1937 #endif
1938 #if 0
1939 	/* XXXMAC: This could have odd effects on some shells. */
1940 	if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred)))
1941 		return (error);
1942 #endif
1943 
1944 	return (0);
1945 }
1946 
1947 /*
1948  * Credential management.
1949  *
1950  * struct ucred objects are rarely allocated but gain and lose references all
1951  * the time (e.g., on struct file alloc/dealloc) turning refcount updates into
1952  * a significant source of cache-line ping ponging. Common cases are worked
1953  * around by modifying thread-local counter instead if the cred to operate on
1954  * matches td_realucred.
1955  *
1956  * The counter is split into 2 parts:
1957  * - cr_users -- total count of all struct proc and struct thread objects
1958  *   which have given cred in p_ucred and td_ucred respectively
1959  * - cr_ref -- the actual ref count, only valid if cr_users == 0
1960  *
1961  * If users == 0 then cr_ref behaves similarly to refcount(9), in particular if
1962  * the count reaches 0 the object is freeable.
1963  * If users > 0 and curthread->td_realucred == cred, then updates are performed
1964  * against td_ucredref.
1965  * In other cases updates are performed against cr_ref.
1966  *
1967  * Changing td_realucred into something else decrements cr_users and transfers
1968  * accumulated updates.
1969  */
1970 struct ucred *
1971 crcowget(struct ucred *cr)
1972 {
1973 
1974 	mtx_lock(&cr->cr_mtx);
1975 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1976 	    __func__, cr->cr_users, cr));
1977 	cr->cr_users++;
1978 	cr->cr_ref++;
1979 	mtx_unlock(&cr->cr_mtx);
1980 	return (cr);
1981 }
1982 
1983 static struct ucred *
1984 crunuse(struct thread *td)
1985 {
1986 	struct ucred *cr, *crold;
1987 
1988 	MPASS(td->td_realucred == td->td_ucred);
1989 	cr = td->td_realucred;
1990 	mtx_lock(&cr->cr_mtx);
1991 	cr->cr_ref += td->td_ucredref;
1992 	td->td_ucredref = 0;
1993 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1994 	    __func__, cr->cr_users, cr));
1995 	cr->cr_users--;
1996 	if (cr->cr_users == 0) {
1997 		KASSERT(cr->cr_ref > 0, ("%s: ref %ld not > 0 on cred %p",
1998 		    __func__, cr->cr_ref, cr));
1999 		crold = cr;
2000 	} else {
2001 		cr->cr_ref--;
2002 		crold = NULL;
2003 	}
2004 	mtx_unlock(&cr->cr_mtx);
2005 	td->td_realucred = NULL;
2006 	return (crold);
2007 }
2008 
2009 static void
2010 crunusebatch(struct ucred *cr, int users, int ref)
2011 {
2012 
2013 	KASSERT(users > 0, ("%s: passed users %d not > 0 ; cred %p",
2014 	    __func__, users, cr));
2015 	mtx_lock(&cr->cr_mtx);
2016 	KASSERT(cr->cr_users >= users, ("%s: users %d not > %d on cred %p",
2017 	    __func__, cr->cr_users, users, cr));
2018 	cr->cr_users -= users;
2019 	cr->cr_ref += ref;
2020 	cr->cr_ref -= users;
2021 	if (cr->cr_users > 0) {
2022 		mtx_unlock(&cr->cr_mtx);
2023 		return;
2024 	}
2025 	KASSERT(cr->cr_ref >= 0, ("%s: ref %ld not >= 0 on cred %p",
2026 	    __func__, cr->cr_ref, cr));
2027 	if (cr->cr_ref > 0) {
2028 		mtx_unlock(&cr->cr_mtx);
2029 		return;
2030 	}
2031 	crfree_final(cr);
2032 }
2033 
2034 void
2035 crcowfree(struct thread *td)
2036 {
2037 	struct ucred *cr;
2038 
2039 	cr = crunuse(td);
2040 	if (cr != NULL)
2041 		crfree(cr);
2042 }
2043 
2044 struct ucred *
2045 crcowsync(void)
2046 {
2047 	struct thread *td;
2048 	struct proc *p;
2049 	struct ucred *crnew, *crold;
2050 
2051 	td = curthread;
2052 	p = td->td_proc;
2053 	PROC_LOCK_ASSERT(p, MA_OWNED);
2054 
2055 	MPASS(td->td_realucred == td->td_ucred);
2056 	if (td->td_realucred == p->p_ucred)
2057 		return (NULL);
2058 
2059 	crnew = crcowget(p->p_ucred);
2060 	crold = crunuse(td);
2061 	td->td_realucred = crnew;
2062 	td->td_ucred = td->td_realucred;
2063 	return (crold);
2064 }
2065 
2066 /*
2067  * Batching.
2068  */
2069 void
2070 credbatch_add(struct credbatch *crb, struct thread *td)
2071 {
2072 	struct ucred *cr;
2073 
2074 	MPASS(td->td_realucred != NULL);
2075 	MPASS(td->td_realucred == td->td_ucred);
2076 	MPASS(TD_GET_STATE(td) == TDS_INACTIVE);
2077 	cr = td->td_realucred;
2078 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2079 	    __func__, cr->cr_users, cr));
2080 	if (crb->cred != cr) {
2081 		if (crb->users > 0) {
2082 			MPASS(crb->cred != NULL);
2083 			crunusebatch(crb->cred, crb->users, crb->ref);
2084 			crb->users = 0;
2085 			crb->ref = 0;
2086 		}
2087 	}
2088 	crb->cred = cr;
2089 	crb->users++;
2090 	crb->ref += td->td_ucredref;
2091 	td->td_ucredref = 0;
2092 	td->td_realucred = NULL;
2093 }
2094 
2095 void
2096 credbatch_final(struct credbatch *crb)
2097 {
2098 
2099 	MPASS(crb->cred != NULL);
2100 	MPASS(crb->users > 0);
2101 	crunusebatch(crb->cred, crb->users, crb->ref);
2102 }
2103 
2104 /*
2105  * Allocate a zeroed cred structure.
2106  */
2107 struct ucred *
2108 crget(void)
2109 {
2110 	struct ucred *cr;
2111 
2112 	cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
2113 	mtx_init(&cr->cr_mtx, "cred", NULL, MTX_DEF);
2114 	cr->cr_ref = 1;
2115 #ifdef AUDIT
2116 	audit_cred_init(cr);
2117 #endif
2118 #ifdef MAC
2119 	mac_cred_init(cr);
2120 #endif
2121 	cr->cr_groups = cr->cr_smallgroups;
2122 	cr->cr_agroups =
2123 	    sizeof(cr->cr_smallgroups) / sizeof(cr->cr_smallgroups[0]);
2124 	return (cr);
2125 }
2126 
2127 /*
2128  * Claim another reference to a ucred structure.
2129  */
2130 struct ucred *
2131 crhold(struct ucred *cr)
2132 {
2133 	struct thread *td;
2134 
2135 	td = curthread;
2136 	if (__predict_true(td->td_realucred == cr)) {
2137 		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2138 		    __func__, cr->cr_users, cr));
2139 		td->td_ucredref++;
2140 		return (cr);
2141 	}
2142 	mtx_lock(&cr->cr_mtx);
2143 	cr->cr_ref++;
2144 	mtx_unlock(&cr->cr_mtx);
2145 	return (cr);
2146 }
2147 
2148 /*
2149  * Free a cred structure.  Throws away space when ref count gets to 0.
2150  */
2151 void
2152 crfree(struct ucred *cr)
2153 {
2154 	struct thread *td;
2155 
2156 	td = curthread;
2157 	if (__predict_true(td->td_realucred == cr)) {
2158 		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2159 		    __func__, cr->cr_users, cr));
2160 		td->td_ucredref--;
2161 		return;
2162 	}
2163 	mtx_lock(&cr->cr_mtx);
2164 	KASSERT(cr->cr_users >= 0, ("%s: users %d not >= 0 on cred %p",
2165 	    __func__, cr->cr_users, cr));
2166 	cr->cr_ref--;
2167 	if (cr->cr_users > 0) {
2168 		mtx_unlock(&cr->cr_mtx);
2169 		return;
2170 	}
2171 	KASSERT(cr->cr_ref >= 0, ("%s: ref %ld not >= 0 on cred %p",
2172 	    __func__, cr->cr_ref, cr));
2173 	if (cr->cr_ref > 0) {
2174 		mtx_unlock(&cr->cr_mtx);
2175 		return;
2176 	}
2177 	crfree_final(cr);
2178 }
2179 
2180 static void
2181 crfree_final(struct ucred *cr)
2182 {
2183 
2184 	KASSERT(cr->cr_users == 0, ("%s: users %d not == 0 on cred %p",
2185 	    __func__, cr->cr_users, cr));
2186 	KASSERT(cr->cr_ref == 0, ("%s: ref %ld not == 0 on cred %p",
2187 	    __func__, cr->cr_ref, cr));
2188 
2189 	/*
2190 	 * Some callers of crget(), such as nfs_statfs(), allocate a temporary
2191 	 * credential, but don't allocate a uidinfo structure.
2192 	 */
2193 	if (cr->cr_uidinfo != NULL)
2194 		uifree(cr->cr_uidinfo);
2195 	if (cr->cr_ruidinfo != NULL)
2196 		uifree(cr->cr_ruidinfo);
2197 	if (cr->cr_prison != NULL)
2198 		prison_free(cr->cr_prison);
2199 	if (cr->cr_loginclass != NULL)
2200 		loginclass_free(cr->cr_loginclass);
2201 #ifdef AUDIT
2202 	audit_cred_destroy(cr);
2203 #endif
2204 #ifdef MAC
2205 	mac_cred_destroy(cr);
2206 #endif
2207 	mtx_destroy(&cr->cr_mtx);
2208 	if (cr->cr_groups != cr->cr_smallgroups)
2209 		free(cr->cr_groups, M_CRED);
2210 	free(cr, M_CRED);
2211 }
2212 
2213 /*
2214  * Copy a ucred's contents from a template.  Does not block.
2215  */
2216 void
2217 crcopy(struct ucred *dest, struct ucred *src)
2218 {
2219 
2220 	/*
2221 	 * Ideally, 'cr_ngroups' should be moved out of 'struct ucred''s bcopied
2222 	 * area, but this would break the ABI, so is deferred until there is
2223 	 * a compelling need to change it.
2224 	 */
2225 	bcopy(&src->cr_startcopy, &dest->cr_startcopy,
2226 	    (unsigned)((caddr_t)&src->cr_endcopy -
2227 		(caddr_t)&src->cr_startcopy));
2228 	dest->cr_flags = src->cr_flags;
2229 	crsetgroups(dest, src->cr_ngroups, src->cr_groups);
2230 	uihold(dest->cr_uidinfo);
2231 	uihold(dest->cr_ruidinfo);
2232 	prison_hold(dest->cr_prison);
2233 	loginclass_hold(dest->cr_loginclass);
2234 #ifdef AUDIT
2235 	audit_cred_copy(src, dest);
2236 #endif
2237 #ifdef MAC
2238 	mac_cred_copy(src, dest);
2239 #endif
2240 }
2241 
2242 /*
2243  * Dup cred struct to a new held one.
2244  */
2245 struct ucred *
2246 crdup(struct ucred *cr)
2247 {
2248 	struct ucred *newcr;
2249 
2250 	newcr = crget();
2251 	crcopy(newcr, cr);
2252 	return (newcr);
2253 }
2254 
2255 /*
2256  * Fill in a struct xucred based on a struct ucred.
2257  */
2258 void
2259 cru2x(struct ucred *cr, struct xucred *xcr)
2260 {
2261 	int ngroups;
2262 
2263 	bzero(xcr, sizeof(*xcr));
2264 	xcr->cr_version = XUCRED_VERSION;
2265 	xcr->cr_uid = cr->cr_uid;
2266 
2267 	ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
2268 	xcr->cr_ngroups = ngroups;
2269 	bcopy(cr->cr_groups, xcr->cr_groups,
2270 	    ngroups * sizeof(*cr->cr_groups));
2271 }
2272 
2273 void
2274 cru2xt(struct thread *td, struct xucred *xcr)
2275 {
2276 
2277 	cru2x(td->td_ucred, xcr);
2278 	xcr->cr_pid = td->td_proc->p_pid;
2279 }
2280 
2281 /*
2282  * Change process credentials.
2283  * Callers are responsible for providing the reference for passed credentials
2284  * and for freeing old ones.
2285  *
2286  * Process has to be locked except when it does not have credentials (as it
2287  * should not be visible just yet) or when newcred is NULL (as this can be
2288  * only used when the process is about to be freed, at which point it should
2289  * not be visible anymore).
2290  */
2291 void
2292 proc_set_cred(struct proc *p, struct ucred *newcred)
2293 {
2294 	struct ucred *cr;
2295 
2296 	cr = p->p_ucred;
2297 	MPASS(cr != NULL);
2298 	PROC_LOCK_ASSERT(p, MA_OWNED);
2299 	KASSERT(newcred->cr_users == 0, ("%s: users %d not 0 on cred %p",
2300 	    __func__, newcred->cr_users, newcred));
2301 	mtx_lock(&cr->cr_mtx);
2302 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2303 	    __func__, cr->cr_users, cr));
2304 	cr->cr_users--;
2305 	mtx_unlock(&cr->cr_mtx);
2306 	p->p_ucred = newcred;
2307 	newcred->cr_users = 1;
2308 	PROC_UPDATE_COW(p);
2309 }
2310 
2311 void
2312 proc_unset_cred(struct proc *p)
2313 {
2314 	struct ucred *cr;
2315 
2316 	MPASS(p->p_state == PRS_ZOMBIE || p->p_state == PRS_NEW);
2317 	cr = p->p_ucred;
2318 	p->p_ucred = NULL;
2319 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2320 	    __func__, cr->cr_users, cr));
2321 	mtx_lock(&cr->cr_mtx);
2322 	cr->cr_users--;
2323 	if (cr->cr_users == 0)
2324 		KASSERT(cr->cr_ref > 0, ("%s: ref %ld not > 0 on cred %p",
2325 		    __func__, cr->cr_ref, cr));
2326 	mtx_unlock(&cr->cr_mtx);
2327 	crfree(cr);
2328 }
2329 
2330 struct ucred *
2331 crcopysafe(struct proc *p, struct ucred *cr)
2332 {
2333 	struct ucred *oldcred;
2334 	int groups;
2335 
2336 	PROC_LOCK_ASSERT(p, MA_OWNED);
2337 
2338 	oldcred = p->p_ucred;
2339 	while (cr->cr_agroups < oldcred->cr_agroups) {
2340 		groups = oldcred->cr_agroups;
2341 		PROC_UNLOCK(p);
2342 		crextend(cr, groups);
2343 		PROC_LOCK(p);
2344 		oldcred = p->p_ucred;
2345 	}
2346 	crcopy(cr, oldcred);
2347 
2348 	return (oldcred);
2349 }
2350 
2351 /*
2352  * Extend the passed-in credentials to hold n groups.
2353  *
2354  * Must not be called after groups have been set.
2355  */
2356 void
2357 crextend(struct ucred *cr, int n)
2358 {
2359 	size_t nbytes;
2360 
2361 	MPASS2(cr->cr_ref == 1, "'cr_ref' must be 1 (referenced, unshared)");
2362 	MPASS2(cr->cr_ngroups == 0, "groups on 'cr' already set!");
2363 	groups_check_positive_len(n);
2364 	groups_check_max_len(n);
2365 
2366 	if (n <= cr->cr_agroups)
2367 		return;
2368 
2369 	nbytes = n * sizeof(gid_t);
2370 	if (nbytes < n)
2371 		panic("Too many groups (memory size overflow)! "
2372 		    "Computation of 'kern.ngroups' should have prevented this, "
2373 		    "please fix it. In the meantime, reduce 'kern.ngroups'.");
2374 
2375 	/*
2376 	 * We allocate a power of 2 larger than 'nbytes', except when that
2377 	 * exceeds PAGE_SIZE, in which case we allocate the right multiple of
2378 	 * pages.  We assume PAGE_SIZE is a power of 2 (the call to roundup2()
2379 	 * below) but do not need to for sizeof(gid_t).
2380 	 */
2381 	if (nbytes < PAGE_SIZE) {
2382 		if (!powerof2(nbytes))
2383 			/* fls*() return a bit index starting at 1. */
2384 			nbytes = 1 << flsl(nbytes);
2385 	} else
2386 		nbytes = roundup2(nbytes, PAGE_SIZE);
2387 
2388 	/* Free the old array. */
2389 	if (cr->cr_groups != cr->cr_smallgroups)
2390 		free(cr->cr_groups, M_CRED);
2391 
2392 	cr->cr_groups = malloc(nbytes, M_CRED, M_WAITOK | M_ZERO);
2393 	cr->cr_agroups = nbytes / sizeof(gid_t);
2394 }
2395 
2396 /*
2397  * Normalizes a set of groups to be applied to a 'struct ucred'.
2398  *
2399  * The set of groups is an array that must comprise the effective GID as its
2400  * first element (so its length cannot be 0).
2401  *
2402  * Normalization ensures that elements after the first, which stand for the
2403  * supplementary groups, are sorted in ascending order and do not contain
2404  * duplicates.
2405  */
2406 static void
2407 groups_normalize(int *ngrp, gid_t *groups)
2408 {
2409 	gid_t prev_g;
2410 	int ins_idx;
2411 
2412 	groups_check_positive_len(*ngrp);
2413 	groups_check_max_len(*ngrp);
2414 
2415 	if (*ngrp == 1)
2416 		return;
2417 
2418 	qsort(groups + 1, *ngrp - 1, sizeof(*groups), gidp_cmp);
2419 
2420 	/* Remove duplicates. */
2421 	prev_g = groups[1];
2422 	ins_idx = 2;
2423 	for (int i = 2; i < *ngrp; ++i) {
2424 		const gid_t g = groups[i];
2425 
2426 		if (g != prev_g) {
2427 			if (i != ins_idx)
2428 				groups[ins_idx] = g;
2429 			++ins_idx;
2430 			prev_g = g;
2431 		}
2432 	}
2433 	*ngrp = ins_idx;
2434 
2435 	groups_check_normalized(*ngrp, groups);
2436 }
2437 
2438 /*
2439  * Internal function copying groups into a credential.
2440  *
2441  * 'ngrp' must be strictly positive.  Either the passed 'groups' array must have
2442  * been normalized in advance (see groups_normalize()), else it must be so
2443  * before the structure is to be used again.
2444  *
2445  * This function is suitable to be used under any lock (it doesn't take any lock
2446  * itself nor sleep, and in particular doesn't allocate memory).  crextend()
2447  * must have been called beforehand to ensure sufficient space is available.
2448  * See also crsetgroups(), which handles that.
2449  */
2450 static void
2451 crsetgroups_internal(struct ucred *cr, int ngrp, const gid_t *groups)
2452 {
2453 
2454 	MPASS2(cr->cr_ref == 1, "'cr_ref' must be 1 (referenced, unshared)");
2455 	MPASS2(cr->cr_agroups >= ngrp, "'cr_agroups' too small");
2456 	groups_check_positive_len(ngrp);
2457 
2458 	bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
2459 	cr->cr_ngroups = ngrp;
2460 }
2461 
2462 /*
2463  * Copy groups in to a credential after expanding it if required.
2464  *
2465  * May sleep in order to allocate memory (except if, e.g., crextend() was called
2466  * before with 'ngrp' or greater).  Truncates the list to (ngroups_max + 1) if
2467  * it is too large.  Array 'groups' doesn't need to be sorted.  'ngrp' must be
2468  * strictly positive.
2469  */
2470 void
2471 crsetgroups(struct ucred *cr, int ngrp, const gid_t *groups)
2472 {
2473 
2474 	if (ngrp > ngroups_max + 1)
2475 		ngrp = ngroups_max + 1;
2476 	/*
2477 	 * crextend() asserts that groups are not set, as it may allocate a new
2478 	 * backing storage without copying the content of the old one.  Since we
2479 	 * are going to install a completely new set anyway, signal that we
2480 	 * consider the old ones thrown away.
2481 	 */
2482 	cr->cr_ngroups = 0;
2483 	crextend(cr, ngrp);
2484 	crsetgroups_internal(cr, ngrp, groups);
2485 	groups_normalize(&cr->cr_ngroups, cr->cr_groups);
2486 }
2487 
2488 /*
2489  * Same as crsetgroups() but accepts an empty groups array.
2490  *
2491  * This function ensures that an effective GID is always present in credentials.
2492  * An empty array is treated as a one-size one holding the passed effective GID
2493  * fallback.
2494  */
2495 void
2496 crsetgroups_fallback(struct ucred *cr, int ngrp, const gid_t *groups,
2497     const gid_t fallback)
2498 {
2499 	if (ngrp == 0)
2500 		/* Shortcut. */
2501 		crsetgroups_internal(cr, 1, &fallback);
2502 	else
2503 		crsetgroups(cr, ngrp, groups);
2504 }
2505 
2506 /*
2507  * Get login name, if available.
2508  */
2509 #ifndef _SYS_SYSPROTO_H_
2510 struct getlogin_args {
2511 	char	*namebuf;
2512 	u_int	namelen;
2513 };
2514 #endif
2515 /* ARGSUSED */
2516 int
2517 sys_getlogin(struct thread *td, struct getlogin_args *uap)
2518 {
2519 	char login[MAXLOGNAME];
2520 	struct proc *p = td->td_proc;
2521 	size_t len;
2522 
2523 	if (uap->namelen > MAXLOGNAME)
2524 		uap->namelen = MAXLOGNAME;
2525 	PROC_LOCK(p);
2526 	SESS_LOCK(p->p_session);
2527 	len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1;
2528 	SESS_UNLOCK(p->p_session);
2529 	PROC_UNLOCK(p);
2530 	if (len > uap->namelen)
2531 		return (ERANGE);
2532 	return (copyout(login, uap->namebuf, len));
2533 }
2534 
2535 /*
2536  * Set login name.
2537  */
2538 #ifndef _SYS_SYSPROTO_H_
2539 struct setlogin_args {
2540 	char	*namebuf;
2541 };
2542 #endif
2543 /* ARGSUSED */
2544 int
2545 sys_setlogin(struct thread *td, struct setlogin_args *uap)
2546 {
2547 	struct proc *p = td->td_proc;
2548 	int error;
2549 	char logintmp[MAXLOGNAME];
2550 
2551 	CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp));
2552 
2553 	error = priv_check(td, PRIV_PROC_SETLOGIN);
2554 	if (error)
2555 		return (error);
2556 	error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
2557 	if (error != 0) {
2558 		if (error == ENAMETOOLONG)
2559 			error = EINVAL;
2560 		return (error);
2561 	}
2562 	AUDIT_ARG_LOGIN(logintmp);
2563 	PROC_LOCK(p);
2564 	SESS_LOCK(p->p_session);
2565 	strcpy(p->p_session->s_login, logintmp);
2566 	SESS_UNLOCK(p->p_session);
2567 	PROC_UNLOCK(p);
2568 	return (0);
2569 }
2570 
2571 void
2572 setsugid(struct proc *p)
2573 {
2574 
2575 	PROC_LOCK_ASSERT(p, MA_OWNED);
2576 	p->p_flag |= P_SUGID;
2577 }
2578 
2579 /*-
2580  * Change a process's effective uid.
2581  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
2582  * References: newcred must be an exclusive credential reference for the
2583  *             duration of the call.
2584  */
2585 void
2586 change_euid(struct ucred *newcred, struct uidinfo *euip)
2587 {
2588 
2589 	newcred->cr_uid = euip->ui_uid;
2590 	uihold(euip);
2591 	uifree(newcred->cr_uidinfo);
2592 	newcred->cr_uidinfo = euip;
2593 }
2594 
2595 /*-
2596  * Change a process's effective gid.
2597  * Side effects: newcred->cr_gid will be modified.
2598  * References: newcred must be an exclusive credential reference for the
2599  *             duration of the call.
2600  */
2601 void
2602 change_egid(struct ucred *newcred, gid_t egid)
2603 {
2604 
2605 	newcred->cr_groups[0] = egid;
2606 }
2607 
2608 /*-
2609  * Change a process's real uid.
2610  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
2611  *               will be updated, and the old and new cr_ruidinfo proc
2612  *               counts will be updated.
2613  * References: newcred must be an exclusive credential reference for the
2614  *             duration of the call.
2615  */
2616 void
2617 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
2618 {
2619 
2620 	(void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
2621 	newcred->cr_ruid = ruip->ui_uid;
2622 	uihold(ruip);
2623 	uifree(newcred->cr_ruidinfo);
2624 	newcred->cr_ruidinfo = ruip;
2625 	(void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
2626 }
2627 
2628 /*-
2629  * Change a process's real gid.
2630  * Side effects: newcred->cr_rgid will be updated.
2631  * References: newcred must be an exclusive credential reference for the
2632  *             duration of the call.
2633  */
2634 void
2635 change_rgid(struct ucred *newcred, gid_t rgid)
2636 {
2637 
2638 	newcred->cr_rgid = rgid;
2639 }
2640 
2641 /*-
2642  * Change a process's saved uid.
2643  * Side effects: newcred->cr_svuid will be updated.
2644  * References: newcred must be an exclusive credential reference for the
2645  *             duration of the call.
2646  */
2647 void
2648 change_svuid(struct ucred *newcred, uid_t svuid)
2649 {
2650 
2651 	newcred->cr_svuid = svuid;
2652 }
2653 
2654 /*-
2655  * Change a process's saved gid.
2656  * Side effects: newcred->cr_svgid will be updated.
2657  * References: newcred must be an exclusive credential reference for the
2658  *             duration of the call.
2659  */
2660 void
2661 change_svgid(struct ucred *newcred, gid_t svgid)
2662 {
2663 
2664 	newcred->cr_svgid = svgid;
2665 }
2666 
2667 bool allow_ptrace = true;
2668 SYSCTL_BOOL(_security_bsd, OID_AUTO, allow_ptrace, CTLFLAG_RWTUN,
2669     &allow_ptrace, 0,
2670     "Deny ptrace(2) use by returning ENOSYS");
2671