xref: /freebsd/sys/kern/kern_prot.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
5  *	The Regents of the University of California.
6  * (c) UNIX System Laboratories, Inc.
7  * Copyright (c) 2000-2001 Robert N. M. Watson.
8  * All rights reserved.
9  *
10  * All or some portions of this file are derived from material licensed
11  * to the University of California by American Telephone and Telegraph
12  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
13  * the permission of UNIX System Laboratories, Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	@(#)kern_prot.c	8.6 (Berkeley) 1/21/94
40  */
41 
42 /*
43  * System calls related to processes and protection
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include "opt_inet.h"
50 #include "opt_inet6.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/acct.h>
55 #include <sys/kdb.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/loginclass.h>
59 #include <sys/malloc.h>
60 #include <sys/mutex.h>
61 #include <sys/ptrace.h>
62 #include <sys/refcount.h>
63 #include <sys/sx.h>
64 #include <sys/priv.h>
65 #include <sys/proc.h>
66 #include <sys/sysent.h>
67 #include <sys/sysproto.h>
68 #include <sys/jail.h>
69 #include <sys/racct.h>
70 #include <sys/rctl.h>
71 #include <sys/resourcevar.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
74 #include <sys/syscallsubr.h>
75 #include <sys/sysctl.h>
76 
77 #ifdef REGRESSION
78 FEATURE(regression,
79     "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
80 #endif
81 
82 #include <security/audit/audit.h>
83 #include <security/mac/mac_framework.h>
84 
85 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
86 
87 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
88     "BSD security policy");
89 
90 static void crfree_final(struct ucred *cr);
91 static void crsetgroups_locked(struct ucred *cr, int ngrp,
92     gid_t *groups);
93 
94 #ifndef _SYS_SYSPROTO_H_
95 struct getpid_args {
96 	int	dummy;
97 };
98 #endif
99 /* ARGSUSED */
100 int
101 sys_getpid(struct thread *td, struct getpid_args *uap)
102 {
103 	struct proc *p = td->td_proc;
104 
105 	td->td_retval[0] = p->p_pid;
106 #if defined(COMPAT_43)
107 	if (SV_PROC_FLAG(p, SV_AOUT))
108 		td->td_retval[1] = kern_getppid(td);
109 #endif
110 	return (0);
111 }
112 
113 #ifndef _SYS_SYSPROTO_H_
114 struct getppid_args {
115         int     dummy;
116 };
117 #endif
118 /* ARGSUSED */
119 int
120 sys_getppid(struct thread *td, struct getppid_args *uap)
121 {
122 
123 	td->td_retval[0] = kern_getppid(td);
124 	return (0);
125 }
126 
127 int
128 kern_getppid(struct thread *td)
129 {
130 	struct proc *p = td->td_proc;
131 
132 	return (p->p_oppid);
133 }
134 
135 /*
136  * Get process group ID; note that POSIX getpgrp takes no parameter.
137  */
138 #ifndef _SYS_SYSPROTO_H_
139 struct getpgrp_args {
140         int     dummy;
141 };
142 #endif
143 int
144 sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
145 {
146 	struct proc *p = td->td_proc;
147 
148 	PROC_LOCK(p);
149 	td->td_retval[0] = p->p_pgrp->pg_id;
150 	PROC_UNLOCK(p);
151 	return (0);
152 }
153 
154 /* Get an arbitrary pid's process group id */
155 #ifndef _SYS_SYSPROTO_H_
156 struct getpgid_args {
157 	pid_t	pid;
158 };
159 #endif
160 int
161 sys_getpgid(struct thread *td, struct getpgid_args *uap)
162 {
163 	struct proc *p;
164 	int error;
165 
166 	if (uap->pid == 0) {
167 		p = td->td_proc;
168 		PROC_LOCK(p);
169 	} else {
170 		p = pfind(uap->pid);
171 		if (p == NULL)
172 			return (ESRCH);
173 		error = p_cansee(td, p);
174 		if (error) {
175 			PROC_UNLOCK(p);
176 			return (error);
177 		}
178 	}
179 	td->td_retval[0] = p->p_pgrp->pg_id;
180 	PROC_UNLOCK(p);
181 	return (0);
182 }
183 
184 /*
185  * Get an arbitrary pid's session id.
186  */
187 #ifndef _SYS_SYSPROTO_H_
188 struct getsid_args {
189 	pid_t	pid;
190 };
191 #endif
192 int
193 sys_getsid(struct thread *td, struct getsid_args *uap)
194 {
195 
196 	return (kern_getsid(td, uap->pid));
197 }
198 
199 int
200 kern_getsid(struct thread *td, pid_t pid)
201 {
202 	struct proc *p;
203 	int error;
204 
205 	if (pid == 0) {
206 		p = td->td_proc;
207 		PROC_LOCK(p);
208 	} else {
209 		p = pfind(pid);
210 		if (p == NULL)
211 			return (ESRCH);
212 		error = p_cansee(td, p);
213 		if (error) {
214 			PROC_UNLOCK(p);
215 			return (error);
216 		}
217 	}
218 	td->td_retval[0] = p->p_session->s_sid;
219 	PROC_UNLOCK(p);
220 	return (0);
221 }
222 
223 #ifndef _SYS_SYSPROTO_H_
224 struct getuid_args {
225         int     dummy;
226 };
227 #endif
228 /* ARGSUSED */
229 int
230 sys_getuid(struct thread *td, struct getuid_args *uap)
231 {
232 
233 	td->td_retval[0] = td->td_ucred->cr_ruid;
234 #if defined(COMPAT_43)
235 	td->td_retval[1] = td->td_ucred->cr_uid;
236 #endif
237 	return (0);
238 }
239 
240 #ifndef _SYS_SYSPROTO_H_
241 struct geteuid_args {
242         int     dummy;
243 };
244 #endif
245 /* ARGSUSED */
246 int
247 sys_geteuid(struct thread *td, struct geteuid_args *uap)
248 {
249 
250 	td->td_retval[0] = td->td_ucred->cr_uid;
251 	return (0);
252 }
253 
254 #ifndef _SYS_SYSPROTO_H_
255 struct getgid_args {
256         int     dummy;
257 };
258 #endif
259 /* ARGSUSED */
260 int
261 sys_getgid(struct thread *td, struct getgid_args *uap)
262 {
263 
264 	td->td_retval[0] = td->td_ucred->cr_rgid;
265 #if defined(COMPAT_43)
266 	td->td_retval[1] = td->td_ucred->cr_groups[0];
267 #endif
268 	return (0);
269 }
270 
271 /*
272  * Get effective group ID.  The "egid" is groups[0], and could be obtained
273  * via getgroups.  This syscall exists because it is somewhat painful to do
274  * correctly in a library function.
275  */
276 #ifndef _SYS_SYSPROTO_H_
277 struct getegid_args {
278         int     dummy;
279 };
280 #endif
281 /* ARGSUSED */
282 int
283 sys_getegid(struct thread *td, struct getegid_args *uap)
284 {
285 
286 	td->td_retval[0] = td->td_ucred->cr_groups[0];
287 	return (0);
288 }
289 
290 #ifndef _SYS_SYSPROTO_H_
291 struct getgroups_args {
292 	int	gidsetsize;
293 	gid_t	*gidset;
294 };
295 #endif
296 int
297 sys_getgroups(struct thread *td, struct getgroups_args *uap)
298 {
299 	struct ucred *cred;
300 	int ngrp, error;
301 
302 	cred = td->td_ucred;
303 	ngrp = cred->cr_ngroups;
304 
305 	if (uap->gidsetsize == 0) {
306 		error = 0;
307 		goto out;
308 	}
309 	if (uap->gidsetsize < ngrp)
310 		return (EINVAL);
311 
312 	error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
313 out:
314 	td->td_retval[0] = ngrp;
315 	return (error);
316 }
317 
318 #ifndef _SYS_SYSPROTO_H_
319 struct setsid_args {
320         int     dummy;
321 };
322 #endif
323 /* ARGSUSED */
324 int
325 sys_setsid(struct thread *td, struct setsid_args *uap)
326 {
327 	struct pgrp *pgrp;
328 	int error;
329 	struct proc *p = td->td_proc;
330 	struct pgrp *newpgrp;
331 	struct session *newsess;
332 
333 	error = 0;
334 	pgrp = NULL;
335 
336 	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
337 	newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
338 
339 	sx_xlock(&proctree_lock);
340 
341 	if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
342 		if (pgrp != NULL)
343 			PGRP_UNLOCK(pgrp);
344 		error = EPERM;
345 	} else {
346 		(void)enterpgrp(p, p->p_pid, newpgrp, newsess);
347 		td->td_retval[0] = p->p_pid;
348 		newpgrp = NULL;
349 		newsess = NULL;
350 	}
351 
352 	sx_xunlock(&proctree_lock);
353 
354 	uma_zfree(pgrp_zone, newpgrp);
355 	free(newsess, M_SESSION);
356 
357 	return (error);
358 }
359 
360 /*
361  * set process group (setpgid/old setpgrp)
362  *
363  * caller does setpgid(targpid, targpgid)
364  *
365  * pid must be caller or child of caller (ESRCH)
366  * if a child
367  *	pid must be in same session (EPERM)
368  *	pid can't have done an exec (EACCES)
369  * if pgid != pid
370  * 	there must exist some pid in same session having pgid (EPERM)
371  * pid must not be session leader (EPERM)
372  */
373 #ifndef _SYS_SYSPROTO_H_
374 struct setpgid_args {
375 	int	pid;		/* target process id */
376 	int	pgid;		/* target pgrp id */
377 };
378 #endif
379 /* ARGSUSED */
380 int
381 sys_setpgid(struct thread *td, struct setpgid_args *uap)
382 {
383 	struct proc *curp = td->td_proc;
384 	struct proc *targp;	/* target process */
385 	struct pgrp *pgrp;	/* target pgrp */
386 	int error;
387 	struct pgrp *newpgrp;
388 
389 	if (uap->pgid < 0)
390 		return (EINVAL);
391 
392 	error = 0;
393 
394 	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
395 
396 	sx_xlock(&proctree_lock);
397 	if (uap->pid != 0 && uap->pid != curp->p_pid) {
398 		if ((targp = pfind(uap->pid)) == NULL) {
399 			error = ESRCH;
400 			goto done;
401 		}
402 		if (!inferior(targp)) {
403 			PROC_UNLOCK(targp);
404 			error = ESRCH;
405 			goto done;
406 		}
407 		if ((error = p_cansee(td, targp))) {
408 			PROC_UNLOCK(targp);
409 			goto done;
410 		}
411 		if (targp->p_pgrp == NULL ||
412 		    targp->p_session != curp->p_session) {
413 			PROC_UNLOCK(targp);
414 			error = EPERM;
415 			goto done;
416 		}
417 		if (targp->p_flag & P_EXEC) {
418 			PROC_UNLOCK(targp);
419 			error = EACCES;
420 			goto done;
421 		}
422 		PROC_UNLOCK(targp);
423 	} else
424 		targp = curp;
425 	if (SESS_LEADER(targp)) {
426 		error = EPERM;
427 		goto done;
428 	}
429 	if (uap->pgid == 0)
430 		uap->pgid = targp->p_pid;
431 	if ((pgrp = pgfind(uap->pgid)) == NULL) {
432 		if (uap->pgid == targp->p_pid) {
433 			error = enterpgrp(targp, uap->pgid, newpgrp,
434 			    NULL);
435 			if (error == 0)
436 				newpgrp = NULL;
437 		} else
438 			error = EPERM;
439 	} else {
440 		if (pgrp == targp->p_pgrp) {
441 			PGRP_UNLOCK(pgrp);
442 			goto done;
443 		}
444 		if (pgrp->pg_id != targp->p_pid &&
445 		    pgrp->pg_session != curp->p_session) {
446 			PGRP_UNLOCK(pgrp);
447 			error = EPERM;
448 			goto done;
449 		}
450 		PGRP_UNLOCK(pgrp);
451 		error = enterthispgrp(targp, pgrp);
452 	}
453 done:
454 	sx_xunlock(&proctree_lock);
455 	KASSERT((error == 0) || (newpgrp != NULL),
456 	    ("setpgid failed and newpgrp is NULL"));
457 	uma_zfree(pgrp_zone, newpgrp);
458 	return (error);
459 }
460 
461 /*
462  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
463  * compatible.  It says that setting the uid/gid to euid/egid is a special
464  * case of "appropriate privilege".  Once the rules are expanded out, this
465  * basically means that setuid(nnn) sets all three id's, in all permitted
466  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
467  * does not set the saved id - this is dangerous for traditional BSD
468  * programs.  For this reason, we *really* do not want to set
469  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
470  */
471 #define POSIX_APPENDIX_B_4_2_2
472 
473 #ifndef _SYS_SYSPROTO_H_
474 struct setuid_args {
475 	uid_t	uid;
476 };
477 #endif
478 /* ARGSUSED */
479 int
480 sys_setuid(struct thread *td, struct setuid_args *uap)
481 {
482 	struct proc *p = td->td_proc;
483 	struct ucred *newcred, *oldcred;
484 	uid_t uid;
485 	struct uidinfo *uip;
486 	int error;
487 
488 	uid = uap->uid;
489 	AUDIT_ARG_UID(uid);
490 	newcred = crget();
491 	uip = uifind(uid);
492 	PROC_LOCK(p);
493 	/*
494 	 * Copy credentials so other references do not see our changes.
495 	 */
496 	oldcred = crcopysafe(p, newcred);
497 
498 #ifdef MAC
499 	error = mac_cred_check_setuid(oldcred, uid);
500 	if (error)
501 		goto fail;
502 #endif
503 
504 	/*
505 	 * See if we have "permission" by POSIX 1003.1 rules.
506 	 *
507 	 * Note that setuid(geteuid()) is a special case of
508 	 * "appropriate privileges" in appendix B.4.2.2.  We need
509 	 * to use this clause to be compatible with traditional BSD
510 	 * semantics.  Basically, it means that "setuid(xx)" sets all
511 	 * three id's (assuming you have privs).
512 	 *
513 	 * Notes on the logic.  We do things in three steps.
514 	 * 1: We determine if the euid is going to change, and do EPERM
515 	 *    right away.  We unconditionally change the euid later if this
516 	 *    test is satisfied, simplifying that part of the logic.
517 	 * 2: We determine if the real and/or saved uids are going to
518 	 *    change.  Determined by compile options.
519 	 * 3: Change euid last. (after tests in #2 for "appropriate privs")
520 	 */
521 	if (uid != oldcred->cr_ruid &&		/* allow setuid(getuid()) */
522 #ifdef _POSIX_SAVED_IDS
523 	    uid != oldcred->cr_svuid &&		/* allow setuid(saved gid) */
524 #endif
525 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
526 	    uid != oldcred->cr_uid &&		/* allow setuid(geteuid()) */
527 #endif
528 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETUID)) != 0)
529 		goto fail;
530 
531 #ifdef _POSIX_SAVED_IDS
532 	/*
533 	 * Do we have "appropriate privileges" (are we root or uid == euid)
534 	 * If so, we are changing the real uid and/or saved uid.
535 	 */
536 	if (
537 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use the clause from B.4.2.2 */
538 	    uid == oldcred->cr_uid ||
539 #endif
540 	    /* We are using privs. */
541 	    priv_check_cred(oldcred, PRIV_CRED_SETUID) == 0)
542 #endif
543 	{
544 		/*
545 		 * Set the real uid and transfer proc count to new user.
546 		 */
547 		if (uid != oldcred->cr_ruid) {
548 			change_ruid(newcred, uip);
549 			setsugid(p);
550 		}
551 		/*
552 		 * Set saved uid
553 		 *
554 		 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
555 		 * the security of seteuid() depends on it.  B.4.2.2 says it
556 		 * is important that we should do this.
557 		 */
558 		if (uid != oldcred->cr_svuid) {
559 			change_svuid(newcred, uid);
560 			setsugid(p);
561 		}
562 	}
563 
564 	/*
565 	 * In all permitted cases, we are changing the euid.
566 	 */
567 	if (uid != oldcred->cr_uid) {
568 		change_euid(newcred, uip);
569 		setsugid(p);
570 	}
571 	proc_set_cred(p, newcred);
572 #ifdef RACCT
573 	racct_proc_ucred_changed(p, oldcred, newcred);
574 	crhold(newcred);
575 #endif
576 	PROC_UNLOCK(p);
577 #ifdef RCTL
578 	rctl_proc_ucred_changed(p, newcred);
579 	crfree(newcred);
580 #endif
581 	uifree(uip);
582 	crfree(oldcred);
583 	return (0);
584 
585 fail:
586 	PROC_UNLOCK(p);
587 	uifree(uip);
588 	crfree(newcred);
589 	return (error);
590 }
591 
592 #ifndef _SYS_SYSPROTO_H_
593 struct seteuid_args {
594 	uid_t	euid;
595 };
596 #endif
597 /* ARGSUSED */
598 int
599 sys_seteuid(struct thread *td, struct seteuid_args *uap)
600 {
601 	struct proc *p = td->td_proc;
602 	struct ucred *newcred, *oldcred;
603 	uid_t euid;
604 	struct uidinfo *euip;
605 	int error;
606 
607 	euid = uap->euid;
608 	AUDIT_ARG_EUID(euid);
609 	newcred = crget();
610 	euip = uifind(euid);
611 	PROC_LOCK(p);
612 	/*
613 	 * Copy credentials so other references do not see our changes.
614 	 */
615 	oldcred = crcopysafe(p, newcred);
616 
617 #ifdef MAC
618 	error = mac_cred_check_seteuid(oldcred, euid);
619 	if (error)
620 		goto fail;
621 #endif
622 
623 	if (euid != oldcred->cr_ruid &&		/* allow seteuid(getuid()) */
624 	    euid != oldcred->cr_svuid &&	/* allow seteuid(saved uid) */
625 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID)) != 0)
626 		goto fail;
627 
628 	/*
629 	 * Everything's okay, do it.
630 	 */
631 	if (oldcred->cr_uid != euid) {
632 		change_euid(newcred, euip);
633 		setsugid(p);
634 	}
635 	proc_set_cred(p, newcred);
636 	PROC_UNLOCK(p);
637 	uifree(euip);
638 	crfree(oldcred);
639 	return (0);
640 
641 fail:
642 	PROC_UNLOCK(p);
643 	uifree(euip);
644 	crfree(newcred);
645 	return (error);
646 }
647 
648 #ifndef _SYS_SYSPROTO_H_
649 struct setgid_args {
650 	gid_t	gid;
651 };
652 #endif
653 /* ARGSUSED */
654 int
655 sys_setgid(struct thread *td, struct setgid_args *uap)
656 {
657 	struct proc *p = td->td_proc;
658 	struct ucred *newcred, *oldcred;
659 	gid_t gid;
660 	int error;
661 
662 	gid = uap->gid;
663 	AUDIT_ARG_GID(gid);
664 	newcred = crget();
665 	PROC_LOCK(p);
666 	oldcred = crcopysafe(p, newcred);
667 
668 #ifdef MAC
669 	error = mac_cred_check_setgid(oldcred, gid);
670 	if (error)
671 		goto fail;
672 #endif
673 
674 	/*
675 	 * See if we have "permission" by POSIX 1003.1 rules.
676 	 *
677 	 * Note that setgid(getegid()) is a special case of
678 	 * "appropriate privileges" in appendix B.4.2.2.  We need
679 	 * to use this clause to be compatible with traditional BSD
680 	 * semantics.  Basically, it means that "setgid(xx)" sets all
681 	 * three id's (assuming you have privs).
682 	 *
683 	 * For notes on the logic here, see setuid() above.
684 	 */
685 	if (gid != oldcred->cr_rgid &&		/* allow setgid(getgid()) */
686 #ifdef _POSIX_SAVED_IDS
687 	    gid != oldcred->cr_svgid &&		/* allow setgid(saved gid) */
688 #endif
689 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
690 	    gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
691 #endif
692 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETGID)) != 0)
693 		goto fail;
694 
695 #ifdef _POSIX_SAVED_IDS
696 	/*
697 	 * Do we have "appropriate privileges" (are we root or gid == egid)
698 	 * If so, we are changing the real uid and saved gid.
699 	 */
700 	if (
701 #ifdef POSIX_APPENDIX_B_4_2_2	/* use the clause from B.4.2.2 */
702 	    gid == oldcred->cr_groups[0] ||
703 #endif
704 	    /* We are using privs. */
705 	    priv_check_cred(oldcred, PRIV_CRED_SETGID) == 0)
706 #endif
707 	{
708 		/*
709 		 * Set real gid
710 		 */
711 		if (oldcred->cr_rgid != gid) {
712 			change_rgid(newcred, gid);
713 			setsugid(p);
714 		}
715 		/*
716 		 * Set saved gid
717 		 *
718 		 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
719 		 * the security of setegid() depends on it.  B.4.2.2 says it
720 		 * is important that we should do this.
721 		 */
722 		if (oldcred->cr_svgid != gid) {
723 			change_svgid(newcred, gid);
724 			setsugid(p);
725 		}
726 	}
727 	/*
728 	 * In all cases permitted cases, we are changing the egid.
729 	 * Copy credentials so other references do not see our changes.
730 	 */
731 	if (oldcred->cr_groups[0] != gid) {
732 		change_egid(newcred, gid);
733 		setsugid(p);
734 	}
735 	proc_set_cred(p, newcred);
736 	PROC_UNLOCK(p);
737 	crfree(oldcred);
738 	return (0);
739 
740 fail:
741 	PROC_UNLOCK(p);
742 	crfree(newcred);
743 	return (error);
744 }
745 
746 #ifndef _SYS_SYSPROTO_H_
747 struct setegid_args {
748 	gid_t	egid;
749 };
750 #endif
751 /* ARGSUSED */
752 int
753 sys_setegid(struct thread *td, struct setegid_args *uap)
754 {
755 	struct proc *p = td->td_proc;
756 	struct ucred *newcred, *oldcred;
757 	gid_t egid;
758 	int error;
759 
760 	egid = uap->egid;
761 	AUDIT_ARG_EGID(egid);
762 	newcred = crget();
763 	PROC_LOCK(p);
764 	oldcred = crcopysafe(p, newcred);
765 
766 #ifdef MAC
767 	error = mac_cred_check_setegid(oldcred, egid);
768 	if (error)
769 		goto fail;
770 #endif
771 
772 	if (egid != oldcred->cr_rgid &&		/* allow setegid(getgid()) */
773 	    egid != oldcred->cr_svgid &&	/* allow setegid(saved gid) */
774 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID)) != 0)
775 		goto fail;
776 
777 	if (oldcred->cr_groups[0] != egid) {
778 		change_egid(newcred, egid);
779 		setsugid(p);
780 	}
781 	proc_set_cred(p, newcred);
782 	PROC_UNLOCK(p);
783 	crfree(oldcred);
784 	return (0);
785 
786 fail:
787 	PROC_UNLOCK(p);
788 	crfree(newcred);
789 	return (error);
790 }
791 
792 #ifndef _SYS_SYSPROTO_H_
793 struct setgroups_args {
794 	int	gidsetsize;
795 	gid_t	*gidset;
796 };
797 #endif
798 /* ARGSUSED */
799 int
800 sys_setgroups(struct thread *td, struct setgroups_args *uap)
801 {
802 	gid_t smallgroups[XU_NGROUPS];
803 	gid_t *groups;
804 	int gidsetsize, error;
805 
806 	gidsetsize = uap->gidsetsize;
807 	if (gidsetsize > ngroups_max + 1 || gidsetsize < 0)
808 		return (EINVAL);
809 
810 	if (gidsetsize > XU_NGROUPS)
811 		groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
812 	else
813 		groups = smallgroups;
814 
815 	error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
816 	if (error == 0)
817 		error = kern_setgroups(td, gidsetsize, groups);
818 
819 	if (gidsetsize > XU_NGROUPS)
820 		free(groups, M_TEMP);
821 	return (error);
822 }
823 
824 int
825 kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups)
826 {
827 	struct proc *p = td->td_proc;
828 	struct ucred *newcred, *oldcred;
829 	int error;
830 
831 	MPASS(ngrp <= ngroups_max + 1);
832 	AUDIT_ARG_GROUPSET(groups, ngrp);
833 	newcred = crget();
834 	crextend(newcred, ngrp);
835 	PROC_LOCK(p);
836 	oldcred = crcopysafe(p, newcred);
837 
838 #ifdef MAC
839 	error = mac_cred_check_setgroups(oldcred, ngrp, groups);
840 	if (error)
841 		goto fail;
842 #endif
843 
844 	error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS);
845 	if (error)
846 		goto fail;
847 
848 	if (ngrp == 0) {
849 		/*
850 		 * setgroups(0, NULL) is a legitimate way of clearing the
851 		 * groups vector on non-BSD systems (which generally do not
852 		 * have the egid in the groups[0]).  We risk security holes
853 		 * when running non-BSD software if we do not do the same.
854 		 */
855 		newcred->cr_ngroups = 1;
856 	} else {
857 		crsetgroups_locked(newcred, ngrp, groups);
858 	}
859 	setsugid(p);
860 	proc_set_cred(p, newcred);
861 	PROC_UNLOCK(p);
862 	crfree(oldcred);
863 	return (0);
864 
865 fail:
866 	PROC_UNLOCK(p);
867 	crfree(newcred);
868 	return (error);
869 }
870 
871 #ifndef _SYS_SYSPROTO_H_
872 struct setreuid_args {
873 	uid_t	ruid;
874 	uid_t	euid;
875 };
876 #endif
877 /* ARGSUSED */
878 int
879 sys_setreuid(struct thread *td, struct setreuid_args *uap)
880 {
881 	struct proc *p = td->td_proc;
882 	struct ucred *newcred, *oldcred;
883 	uid_t euid, ruid;
884 	struct uidinfo *euip, *ruip;
885 	int error;
886 
887 	euid = uap->euid;
888 	ruid = uap->ruid;
889 	AUDIT_ARG_EUID(euid);
890 	AUDIT_ARG_RUID(ruid);
891 	newcred = crget();
892 	euip = uifind(euid);
893 	ruip = uifind(ruid);
894 	PROC_LOCK(p);
895 	oldcred = crcopysafe(p, newcred);
896 
897 #ifdef MAC
898 	error = mac_cred_check_setreuid(oldcred, ruid, euid);
899 	if (error)
900 		goto fail;
901 #endif
902 
903 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
904 	      ruid != oldcred->cr_svuid) ||
905 	     (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
906 	      euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
907 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID)) != 0)
908 		goto fail;
909 
910 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
911 		change_euid(newcred, euip);
912 		setsugid(p);
913 	}
914 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
915 		change_ruid(newcred, ruip);
916 		setsugid(p);
917 	}
918 	if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
919 	    newcred->cr_svuid != newcred->cr_uid) {
920 		change_svuid(newcred, newcred->cr_uid);
921 		setsugid(p);
922 	}
923 	proc_set_cred(p, newcred);
924 #ifdef RACCT
925 	racct_proc_ucred_changed(p, oldcred, newcred);
926 	crhold(newcred);
927 #endif
928 	PROC_UNLOCK(p);
929 #ifdef RCTL
930 	rctl_proc_ucred_changed(p, newcred);
931 	crfree(newcred);
932 #endif
933 	uifree(ruip);
934 	uifree(euip);
935 	crfree(oldcred);
936 	return (0);
937 
938 fail:
939 	PROC_UNLOCK(p);
940 	uifree(ruip);
941 	uifree(euip);
942 	crfree(newcred);
943 	return (error);
944 }
945 
946 #ifndef _SYS_SYSPROTO_H_
947 struct setregid_args {
948 	gid_t	rgid;
949 	gid_t	egid;
950 };
951 #endif
952 /* ARGSUSED */
953 int
954 sys_setregid(struct thread *td, struct setregid_args *uap)
955 {
956 	struct proc *p = td->td_proc;
957 	struct ucred *newcred, *oldcred;
958 	gid_t egid, rgid;
959 	int error;
960 
961 	egid = uap->egid;
962 	rgid = uap->rgid;
963 	AUDIT_ARG_EGID(egid);
964 	AUDIT_ARG_RGID(rgid);
965 	newcred = crget();
966 	PROC_LOCK(p);
967 	oldcred = crcopysafe(p, newcred);
968 
969 #ifdef MAC
970 	error = mac_cred_check_setregid(oldcred, rgid, egid);
971 	if (error)
972 		goto fail;
973 #endif
974 
975 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
976 	    rgid != oldcred->cr_svgid) ||
977 	     (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
978 	     egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
979 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID)) != 0)
980 		goto fail;
981 
982 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
983 		change_egid(newcred, egid);
984 		setsugid(p);
985 	}
986 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
987 		change_rgid(newcred, rgid);
988 		setsugid(p);
989 	}
990 	if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
991 	    newcred->cr_svgid != newcred->cr_groups[0]) {
992 		change_svgid(newcred, newcred->cr_groups[0]);
993 		setsugid(p);
994 	}
995 	proc_set_cred(p, newcred);
996 	PROC_UNLOCK(p);
997 	crfree(oldcred);
998 	return (0);
999 
1000 fail:
1001 	PROC_UNLOCK(p);
1002 	crfree(newcred);
1003 	return (error);
1004 }
1005 
1006 /*
1007  * setresuid(ruid, euid, suid) is like setreuid except control over the saved
1008  * uid is explicit.
1009  */
1010 #ifndef _SYS_SYSPROTO_H_
1011 struct setresuid_args {
1012 	uid_t	ruid;
1013 	uid_t	euid;
1014 	uid_t	suid;
1015 };
1016 #endif
1017 /* ARGSUSED */
1018 int
1019 sys_setresuid(struct thread *td, struct setresuid_args *uap)
1020 {
1021 	struct proc *p = td->td_proc;
1022 	struct ucred *newcred, *oldcred;
1023 	uid_t euid, ruid, suid;
1024 	struct uidinfo *euip, *ruip;
1025 	int error;
1026 
1027 	euid = uap->euid;
1028 	ruid = uap->ruid;
1029 	suid = uap->suid;
1030 	AUDIT_ARG_EUID(euid);
1031 	AUDIT_ARG_RUID(ruid);
1032 	AUDIT_ARG_SUID(suid);
1033 	newcred = crget();
1034 	euip = uifind(euid);
1035 	ruip = uifind(ruid);
1036 	PROC_LOCK(p);
1037 	oldcred = crcopysafe(p, newcred);
1038 
1039 #ifdef MAC
1040 	error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
1041 	if (error)
1042 		goto fail;
1043 #endif
1044 
1045 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
1046 	     ruid != oldcred->cr_svuid &&
1047 	      ruid != oldcred->cr_uid) ||
1048 	     (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
1049 	    euid != oldcred->cr_svuid &&
1050 	      euid != oldcred->cr_uid) ||
1051 	     (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
1052 	    suid != oldcred->cr_svuid &&
1053 	      suid != oldcred->cr_uid)) &&
1054 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID)) != 0)
1055 		goto fail;
1056 
1057 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
1058 		change_euid(newcred, euip);
1059 		setsugid(p);
1060 	}
1061 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
1062 		change_ruid(newcred, ruip);
1063 		setsugid(p);
1064 	}
1065 	if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
1066 		change_svuid(newcred, suid);
1067 		setsugid(p);
1068 	}
1069 	proc_set_cred(p, newcred);
1070 #ifdef RACCT
1071 	racct_proc_ucred_changed(p, oldcred, newcred);
1072 	crhold(newcred);
1073 #endif
1074 	PROC_UNLOCK(p);
1075 #ifdef RCTL
1076 	rctl_proc_ucred_changed(p, newcred);
1077 	crfree(newcred);
1078 #endif
1079 	uifree(ruip);
1080 	uifree(euip);
1081 	crfree(oldcred);
1082 	return (0);
1083 
1084 fail:
1085 	PROC_UNLOCK(p);
1086 	uifree(ruip);
1087 	uifree(euip);
1088 	crfree(newcred);
1089 	return (error);
1090 
1091 }
1092 
1093 /*
1094  * setresgid(rgid, egid, sgid) is like setregid except control over the saved
1095  * gid is explicit.
1096  */
1097 #ifndef _SYS_SYSPROTO_H_
1098 struct setresgid_args {
1099 	gid_t	rgid;
1100 	gid_t	egid;
1101 	gid_t	sgid;
1102 };
1103 #endif
1104 /* ARGSUSED */
1105 int
1106 sys_setresgid(struct thread *td, struct setresgid_args *uap)
1107 {
1108 	struct proc *p = td->td_proc;
1109 	struct ucred *newcred, *oldcred;
1110 	gid_t egid, rgid, sgid;
1111 	int error;
1112 
1113 	egid = uap->egid;
1114 	rgid = uap->rgid;
1115 	sgid = uap->sgid;
1116 	AUDIT_ARG_EGID(egid);
1117 	AUDIT_ARG_RGID(rgid);
1118 	AUDIT_ARG_SGID(sgid);
1119 	newcred = crget();
1120 	PROC_LOCK(p);
1121 	oldcred = crcopysafe(p, newcred);
1122 
1123 #ifdef MAC
1124 	error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
1125 	if (error)
1126 		goto fail;
1127 #endif
1128 
1129 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
1130 	      rgid != oldcred->cr_svgid &&
1131 	      rgid != oldcred->cr_groups[0]) ||
1132 	     (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
1133 	      egid != oldcred->cr_svgid &&
1134 	      egid != oldcred->cr_groups[0]) ||
1135 	     (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
1136 	      sgid != oldcred->cr_svgid &&
1137 	      sgid != oldcred->cr_groups[0])) &&
1138 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID)) != 0)
1139 		goto fail;
1140 
1141 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
1142 		change_egid(newcred, egid);
1143 		setsugid(p);
1144 	}
1145 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
1146 		change_rgid(newcred, rgid);
1147 		setsugid(p);
1148 	}
1149 	if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
1150 		change_svgid(newcred, sgid);
1151 		setsugid(p);
1152 	}
1153 	proc_set_cred(p, newcred);
1154 	PROC_UNLOCK(p);
1155 	crfree(oldcred);
1156 	return (0);
1157 
1158 fail:
1159 	PROC_UNLOCK(p);
1160 	crfree(newcred);
1161 	return (error);
1162 }
1163 
1164 #ifndef _SYS_SYSPROTO_H_
1165 struct getresuid_args {
1166 	uid_t	*ruid;
1167 	uid_t	*euid;
1168 	uid_t	*suid;
1169 };
1170 #endif
1171 /* ARGSUSED */
1172 int
1173 sys_getresuid(struct thread *td, struct getresuid_args *uap)
1174 {
1175 	struct ucred *cred;
1176 	int error1 = 0, error2 = 0, error3 = 0;
1177 
1178 	cred = td->td_ucred;
1179 	if (uap->ruid)
1180 		error1 = copyout(&cred->cr_ruid,
1181 		    uap->ruid, sizeof(cred->cr_ruid));
1182 	if (uap->euid)
1183 		error2 = copyout(&cred->cr_uid,
1184 		    uap->euid, sizeof(cred->cr_uid));
1185 	if (uap->suid)
1186 		error3 = copyout(&cred->cr_svuid,
1187 		    uap->suid, sizeof(cred->cr_svuid));
1188 	return (error1 ? error1 : error2 ? error2 : error3);
1189 }
1190 
1191 #ifndef _SYS_SYSPROTO_H_
1192 struct getresgid_args {
1193 	gid_t	*rgid;
1194 	gid_t	*egid;
1195 	gid_t	*sgid;
1196 };
1197 #endif
1198 /* ARGSUSED */
1199 int
1200 sys_getresgid(struct thread *td, struct getresgid_args *uap)
1201 {
1202 	struct ucred *cred;
1203 	int error1 = 0, error2 = 0, error3 = 0;
1204 
1205 	cred = td->td_ucred;
1206 	if (uap->rgid)
1207 		error1 = copyout(&cred->cr_rgid,
1208 		    uap->rgid, sizeof(cred->cr_rgid));
1209 	if (uap->egid)
1210 		error2 = copyout(&cred->cr_groups[0],
1211 		    uap->egid, sizeof(cred->cr_groups[0]));
1212 	if (uap->sgid)
1213 		error3 = copyout(&cred->cr_svgid,
1214 		    uap->sgid, sizeof(cred->cr_svgid));
1215 	return (error1 ? error1 : error2 ? error2 : error3);
1216 }
1217 
1218 #ifndef _SYS_SYSPROTO_H_
1219 struct issetugid_args {
1220 	int dummy;
1221 };
1222 #endif
1223 /* ARGSUSED */
1224 int
1225 sys_issetugid(struct thread *td, struct issetugid_args *uap)
1226 {
1227 	struct proc *p = td->td_proc;
1228 
1229 	/*
1230 	 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
1231 	 * we use P_SUGID because we consider changing the owners as
1232 	 * "tainting" as well.
1233 	 * This is significant for procs that start as root and "become"
1234 	 * a user without an exec - programs cannot know *everything*
1235 	 * that libc *might* have put in their data segment.
1236 	 */
1237 	td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
1238 	return (0);
1239 }
1240 
1241 int
1242 sys___setugid(struct thread *td, struct __setugid_args *uap)
1243 {
1244 #ifdef REGRESSION
1245 	struct proc *p;
1246 
1247 	p = td->td_proc;
1248 	switch (uap->flag) {
1249 	case 0:
1250 		PROC_LOCK(p);
1251 		p->p_flag &= ~P_SUGID;
1252 		PROC_UNLOCK(p);
1253 		return (0);
1254 	case 1:
1255 		PROC_LOCK(p);
1256 		p->p_flag |= P_SUGID;
1257 		PROC_UNLOCK(p);
1258 		return (0);
1259 	default:
1260 		return (EINVAL);
1261 	}
1262 #else /* !REGRESSION */
1263 
1264 	return (ENOSYS);
1265 #endif /* REGRESSION */
1266 }
1267 
1268 /*
1269  * Check if gid is a member of the group set.
1270  */
1271 int
1272 groupmember(gid_t gid, struct ucred *cred)
1273 {
1274 	int l;
1275 	int h;
1276 	int m;
1277 
1278 	if (cred->cr_groups[0] == gid)
1279 		return(1);
1280 
1281 	/*
1282 	 * If gid was not our primary group, perform a binary search
1283 	 * of the supplemental groups.  This is possible because we
1284 	 * sort the groups in crsetgroups().
1285 	 */
1286 	l = 1;
1287 	h = cred->cr_ngroups;
1288 	while (l < h) {
1289 		m = l + ((h - l) / 2);
1290 		if (cred->cr_groups[m] < gid)
1291 			l = m + 1;
1292 		else
1293 			h = m;
1294 	}
1295 	if ((l < cred->cr_ngroups) && (cred->cr_groups[l] == gid))
1296 		return (1);
1297 
1298 	return (0);
1299 }
1300 
1301 /*
1302  * Test the active securelevel against a given level.  securelevel_gt()
1303  * implements (securelevel > level).  securelevel_ge() implements
1304  * (securelevel >= level).  Note that the logic is inverted -- these
1305  * functions return EPERM on "success" and 0 on "failure".
1306  *
1307  * Due to care taken when setting the securelevel, we know that no jail will
1308  * be less secure that its parent (or the physical system), so it is sufficient
1309  * to test the current jail only.
1310  *
1311  * XXXRW: Possibly since this has to do with privilege, it should move to
1312  * kern_priv.c.
1313  */
1314 int
1315 securelevel_gt(struct ucred *cr, int level)
1316 {
1317 
1318 	return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
1319 }
1320 
1321 int
1322 securelevel_ge(struct ucred *cr, int level)
1323 {
1324 
1325 	return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
1326 }
1327 
1328 /*
1329  * 'see_other_uids' determines whether or not visibility of processes
1330  * and sockets with credentials holding different real uids is possible
1331  * using a variety of system MIBs.
1332  * XXX: data declarations should be together near the beginning of the file.
1333  */
1334 static int	see_other_uids = 1;
1335 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
1336     &see_other_uids, 0,
1337     "Unprivileged processes may see subjects/objects with different real uid");
1338 
1339 /*-
1340  * Determine if u1 "can see" the subject specified by u2, according to the
1341  * 'see_other_uids' policy.
1342  * Returns: 0 for permitted, ESRCH otherwise
1343  * Locks: none
1344  * References: *u1 and *u2 must not change during the call
1345  *             u1 may equal u2, in which case only one reference is required
1346  */
1347 int
1348 cr_canseeotheruids(struct ucred *u1, struct ucred *u2)
1349 {
1350 
1351 	if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
1352 		if (priv_check_cred(u1, PRIV_SEEOTHERUIDS) != 0)
1353 			return (ESRCH);
1354 	}
1355 	return (0);
1356 }
1357 
1358 /*
1359  * 'see_other_gids' determines whether or not visibility of processes
1360  * and sockets with credentials holding different real gids is possible
1361  * using a variety of system MIBs.
1362  * XXX: data declarations should be together near the beginning of the file.
1363  */
1364 static int	see_other_gids = 1;
1365 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
1366     &see_other_gids, 0,
1367     "Unprivileged processes may see subjects/objects with different real gid");
1368 
1369 /*
1370  * Determine if u1 can "see" the subject specified by u2, according to the
1371  * 'see_other_gids' policy.
1372  * Returns: 0 for permitted, ESRCH otherwise
1373  * Locks: none
1374  * References: *u1 and *u2 must not change during the call
1375  *             u1 may equal u2, in which case only one reference is required
1376  */
1377 int
1378 cr_canseeothergids(struct ucred *u1, struct ucred *u2)
1379 {
1380 	int i, match;
1381 
1382 	if (!see_other_gids) {
1383 		match = 0;
1384 		for (i = 0; i < u1->cr_ngroups; i++) {
1385 			if (groupmember(u1->cr_groups[i], u2))
1386 				match = 1;
1387 			if (match)
1388 				break;
1389 		}
1390 		if (!match) {
1391 			if (priv_check_cred(u1, PRIV_SEEOTHERGIDS) != 0)
1392 				return (ESRCH);
1393 		}
1394 	}
1395 	return (0);
1396 }
1397 
1398 /*
1399  * 'see_jail_proc' determines whether or not visibility of processes and
1400  * sockets with credentials holding different jail ids is possible using a
1401  * variety of system MIBs.
1402  *
1403  * XXX: data declarations should be together near the beginning of the file.
1404  */
1405 
1406 static int	see_jail_proc = 1;
1407 SYSCTL_INT(_security_bsd, OID_AUTO, see_jail_proc, CTLFLAG_RW,
1408     &see_jail_proc, 0,
1409     "Unprivileged processes may see subjects/objects with different jail ids");
1410 
1411 /*-
1412  * Determine if u1 "can see" the subject specified by u2, according to the
1413  * 'see_jail_proc' policy.
1414  * Returns: 0 for permitted, ESRCH otherwise
1415  * Locks: none
1416  * References: *u1 and *u2 must not change during the call
1417  *             u1 may equal u2, in which case only one reference is required
1418  */
1419 int
1420 cr_canseejailproc(struct ucred *u1, struct ucred *u2)
1421 {
1422 	if (u1->cr_uid == 0)
1423 		return (0);
1424 	return (!see_jail_proc && u1->cr_prison != u2->cr_prison ? ESRCH : 0);
1425 }
1426 
1427 /*-
1428  * Determine if u1 "can see" the subject specified by u2.
1429  * Returns: 0 for permitted, an errno value otherwise
1430  * Locks: none
1431  * References: *u1 and *u2 must not change during the call
1432  *             u1 may equal u2, in which case only one reference is required
1433  */
1434 int
1435 cr_cansee(struct ucred *u1, struct ucred *u2)
1436 {
1437 	int error;
1438 
1439 	if ((error = prison_check(u1, u2)))
1440 		return (error);
1441 #ifdef MAC
1442 	if ((error = mac_cred_check_visible(u1, u2)))
1443 		return (error);
1444 #endif
1445 	if ((error = cr_canseeotheruids(u1, u2)))
1446 		return (error);
1447 	if ((error = cr_canseeothergids(u1, u2)))
1448 		return (error);
1449 	if ((error = cr_canseejailproc(u1, u2)))
1450 		return (error);
1451 	return (0);
1452 }
1453 
1454 /*-
1455  * Determine if td "can see" the subject specified by p.
1456  * Returns: 0 for permitted, an errno value otherwise
1457  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
1458  *        should be curthread.
1459  * References: td and p must be valid for the lifetime of the call
1460  */
1461 int
1462 p_cansee(struct thread *td, struct proc *p)
1463 {
1464 	/* Wrap cr_cansee() for all functionality. */
1465 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1466 	PROC_LOCK_ASSERT(p, MA_OWNED);
1467 
1468 	if (td->td_proc == p)
1469 		return (0);
1470 	return (cr_cansee(td->td_ucred, p->p_ucred));
1471 }
1472 
1473 /*
1474  * 'conservative_signals' prevents the delivery of a broad class of
1475  * signals by unprivileged processes to processes that have changed their
1476  * credentials since the last invocation of execve().  This can prevent
1477  * the leakage of cached information or retained privileges as a result
1478  * of a common class of signal-related vulnerabilities.  However, this
1479  * may interfere with some applications that expect to be able to
1480  * deliver these signals to peer processes after having given up
1481  * privilege.
1482  */
1483 static int	conservative_signals = 1;
1484 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
1485     &conservative_signals, 0, "Unprivileged processes prevented from "
1486     "sending certain signals to processes whose credentials have changed");
1487 /*-
1488  * Determine whether cred may deliver the specified signal to proc.
1489  * Returns: 0 for permitted, an errno value otherwise.
1490  * Locks: A lock must be held for proc.
1491  * References: cred and proc must be valid for the lifetime of the call.
1492  */
1493 int
1494 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
1495 {
1496 	int error;
1497 
1498 	PROC_LOCK_ASSERT(proc, MA_OWNED);
1499 	/*
1500 	 * Jail semantics limit the scope of signalling to proc in the
1501 	 * same jail as cred, if cred is in jail.
1502 	 */
1503 	error = prison_check(cred, proc->p_ucred);
1504 	if (error)
1505 		return (error);
1506 #ifdef MAC
1507 	if ((error = mac_proc_check_signal(cred, proc, signum)))
1508 		return (error);
1509 #endif
1510 	if ((error = cr_canseeotheruids(cred, proc->p_ucred)))
1511 		return (error);
1512 	if ((error = cr_canseeothergids(cred, proc->p_ucred)))
1513 		return (error);
1514 
1515 	/*
1516 	 * UNIX signal semantics depend on the status of the P_SUGID
1517 	 * bit on the target process.  If the bit is set, then additional
1518 	 * restrictions are placed on the set of available signals.
1519 	 */
1520 	if (conservative_signals && (proc->p_flag & P_SUGID)) {
1521 		switch (signum) {
1522 		case 0:
1523 		case SIGKILL:
1524 		case SIGINT:
1525 		case SIGTERM:
1526 		case SIGALRM:
1527 		case SIGSTOP:
1528 		case SIGTTIN:
1529 		case SIGTTOU:
1530 		case SIGTSTP:
1531 		case SIGHUP:
1532 		case SIGUSR1:
1533 		case SIGUSR2:
1534 			/*
1535 			 * Generally, permit job and terminal control
1536 			 * signals.
1537 			 */
1538 			break;
1539 		default:
1540 			/* Not permitted without privilege. */
1541 			error = priv_check_cred(cred, PRIV_SIGNAL_SUGID);
1542 			if (error)
1543 				return (error);
1544 		}
1545 	}
1546 
1547 	/*
1548 	 * Generally, the target credential's ruid or svuid must match the
1549 	 * subject credential's ruid or euid.
1550 	 */
1551 	if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
1552 	    cred->cr_ruid != proc->p_ucred->cr_svuid &&
1553 	    cred->cr_uid != proc->p_ucred->cr_ruid &&
1554 	    cred->cr_uid != proc->p_ucred->cr_svuid) {
1555 		error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED);
1556 		if (error)
1557 			return (error);
1558 	}
1559 
1560 	return (0);
1561 }
1562 
1563 /*-
1564  * Determine whether td may deliver the specified signal to p.
1565  * Returns: 0 for permitted, an errno value otherwise
1566  * Locks: Sufficient locks to protect various components of td and p
1567  *        must be held.  td must be curthread, and a lock must be
1568  *        held for p.
1569  * References: td and p must be valid for the lifetime of the call
1570  */
1571 int
1572 p_cansignal(struct thread *td, struct proc *p, int signum)
1573 {
1574 
1575 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1576 	PROC_LOCK_ASSERT(p, MA_OWNED);
1577 	if (td->td_proc == p)
1578 		return (0);
1579 
1580 	/*
1581 	 * UNIX signalling semantics require that processes in the same
1582 	 * session always be able to deliver SIGCONT to one another,
1583 	 * overriding the remaining protections.
1584 	 */
1585 	/* XXX: This will require an additional lock of some sort. */
1586 	if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
1587 		return (0);
1588 	/*
1589 	 * Some compat layers use SIGTHR and higher signals for
1590 	 * communication between different kernel threads of the same
1591 	 * process, so that they expect that it's always possible to
1592 	 * deliver them, even for suid applications where cr_cansignal() can
1593 	 * deny such ability for security consideration.  It should be
1594 	 * pretty safe to do since the only way to create two processes
1595 	 * with the same p_leader is via rfork(2).
1596 	 */
1597 	if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
1598 	    signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
1599 		return (0);
1600 
1601 	return (cr_cansignal(td->td_ucred, p, signum));
1602 }
1603 
1604 /*-
1605  * Determine whether td may reschedule p.
1606  * Returns: 0 for permitted, an errno value otherwise
1607  * Locks: Sufficient locks to protect various components of td and p
1608  *        must be held.  td must be curthread, and a lock must
1609  *        be held for p.
1610  * References: td and p must be valid for the lifetime of the call
1611  */
1612 int
1613 p_cansched(struct thread *td, struct proc *p)
1614 {
1615 	int error;
1616 
1617 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1618 	PROC_LOCK_ASSERT(p, MA_OWNED);
1619 	if (td->td_proc == p)
1620 		return (0);
1621 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1622 		return (error);
1623 #ifdef MAC
1624 	if ((error = mac_proc_check_sched(td->td_ucred, p)))
1625 		return (error);
1626 #endif
1627 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1628 		return (error);
1629 	if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
1630 		return (error);
1631 	if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
1632 	    td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
1633 		error = priv_check(td, PRIV_SCHED_DIFFCRED);
1634 		if (error)
1635 			return (error);
1636 	}
1637 	return (0);
1638 }
1639 
1640 /*
1641  * Handle getting or setting the prison's unprivileged_proc_debug
1642  * value.
1643  */
1644 static int
1645 sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS)
1646 {
1647 	int error, val;
1648 
1649 	val = prison_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG);
1650 	error = sysctl_handle_int(oidp, &val, 0, req);
1651 	if (error != 0 || req->newptr == NULL)
1652 		return (error);
1653 	if (val != 0 && val != 1)
1654 		return (EINVAL);
1655 	prison_set_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG, val);
1656 	return (0);
1657 }
1658 
1659 /*
1660  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
1661  * unprivileged inter-process debugging services, including some procfs
1662  * functionality, ptrace(), and ktrace().  In the past, inter-process
1663  * debugging has been involved in a variety of security problems, and sites
1664  * not requiring the service might choose to disable it when hardening
1665  * systems.
1666  */
1667 SYSCTL_PROC(_security_bsd, OID_AUTO, unprivileged_proc_debug,
1668     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_SECURE |
1669     CTLFLAG_MPSAFE, 0, 0, sysctl_unprivileged_proc_debug, "I",
1670     "Unprivileged processes may use process debugging facilities");
1671 
1672 /*-
1673  * Determine whether td may debug p.
1674  * Returns: 0 for permitted, an errno value otherwise
1675  * Locks: Sufficient locks to protect various components of td and p
1676  *        must be held.  td must be curthread, and a lock must
1677  *        be held for p.
1678  * References: td and p must be valid for the lifetime of the call
1679  */
1680 int
1681 p_candebug(struct thread *td, struct proc *p)
1682 {
1683 	int credentialchanged, error, grpsubset, i, uidsubset;
1684 
1685 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1686 	PROC_LOCK_ASSERT(p, MA_OWNED);
1687 	if (td->td_proc == p)
1688 		return (0);
1689 	if ((error = priv_check(td, PRIV_DEBUG_UNPRIV)))
1690 		return (error);
1691 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1692 		return (error);
1693 #ifdef MAC
1694 	if ((error = mac_proc_check_debug(td->td_ucred, p)))
1695 		return (error);
1696 #endif
1697 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1698 		return (error);
1699 	if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
1700 		return (error);
1701 
1702 	/*
1703 	 * Is p's group set a subset of td's effective group set?  This
1704 	 * includes p's egid, group access list, rgid, and svgid.
1705 	 */
1706 	grpsubset = 1;
1707 	for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
1708 		if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
1709 			grpsubset = 0;
1710 			break;
1711 		}
1712 	}
1713 	grpsubset = grpsubset &&
1714 	    groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
1715 	    groupmember(p->p_ucred->cr_svgid, td->td_ucred);
1716 
1717 	/*
1718 	 * Are the uids present in p's credential equal to td's
1719 	 * effective uid?  This includes p's euid, svuid, and ruid.
1720 	 */
1721 	uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
1722 	    td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
1723 	    td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
1724 
1725 	/*
1726 	 * Has the credential of the process changed since the last exec()?
1727 	 */
1728 	credentialchanged = (p->p_flag & P_SUGID);
1729 
1730 	/*
1731 	 * If p's gids aren't a subset, or the uids aren't a subset,
1732 	 * or the credential has changed, require appropriate privilege
1733 	 * for td to debug p.
1734 	 */
1735 	if (!grpsubset || !uidsubset) {
1736 		error = priv_check(td, PRIV_DEBUG_DIFFCRED);
1737 		if (error)
1738 			return (error);
1739 	}
1740 
1741 	if (credentialchanged) {
1742 		error = priv_check(td, PRIV_DEBUG_SUGID);
1743 		if (error)
1744 			return (error);
1745 	}
1746 
1747 	/* Can't trace init when securelevel > 0. */
1748 	if (p == initproc) {
1749 		error = securelevel_gt(td->td_ucred, 0);
1750 		if (error)
1751 			return (error);
1752 	}
1753 
1754 	/*
1755 	 * Can't trace a process that's currently exec'ing.
1756 	 *
1757 	 * XXX: Note, this is not a security policy decision, it's a
1758 	 * basic correctness/functionality decision.  Therefore, this check
1759 	 * should be moved to the caller's of p_candebug().
1760 	 */
1761 	if ((p->p_flag & P_INEXEC) != 0)
1762 		return (EBUSY);
1763 
1764 	/* Denied explicitely */
1765 	if ((p->p_flag2 & P2_NOTRACE) != 0) {
1766 		error = priv_check(td, PRIV_DEBUG_DENIED);
1767 		if (error != 0)
1768 			return (error);
1769 	}
1770 
1771 	return (0);
1772 }
1773 
1774 /*-
1775  * Determine whether the subject represented by cred can "see" a socket.
1776  * Returns: 0 for permitted, ENOENT otherwise.
1777  */
1778 int
1779 cr_canseesocket(struct ucred *cred, struct socket *so)
1780 {
1781 	int error;
1782 
1783 	error = prison_check(cred, so->so_cred);
1784 	if (error)
1785 		return (ENOENT);
1786 #ifdef MAC
1787 	error = mac_socket_check_visible(cred, so);
1788 	if (error)
1789 		return (error);
1790 #endif
1791 	if (cr_canseeotheruids(cred, so->so_cred))
1792 		return (ENOENT);
1793 	if (cr_canseeothergids(cred, so->so_cred))
1794 		return (ENOENT);
1795 
1796 	return (0);
1797 }
1798 
1799 /*-
1800  * Determine whether td can wait for the exit of p.
1801  * Returns: 0 for permitted, an errno value otherwise
1802  * Locks: Sufficient locks to protect various components of td and p
1803  *        must be held.  td must be curthread, and a lock must
1804  *        be held for p.
1805  * References: td and p must be valid for the lifetime of the call
1806 
1807  */
1808 int
1809 p_canwait(struct thread *td, struct proc *p)
1810 {
1811 	int error;
1812 
1813 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
1814 	PROC_LOCK_ASSERT(p, MA_OWNED);
1815 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
1816 		return (error);
1817 #ifdef MAC
1818 	if ((error = mac_proc_check_wait(td->td_ucred, p)))
1819 		return (error);
1820 #endif
1821 #if 0
1822 	/* XXXMAC: This could have odd effects on some shells. */
1823 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
1824 		return (error);
1825 #endif
1826 
1827 	return (0);
1828 }
1829 
1830 /*
1831  * Credential management.
1832  *
1833  * struct ucred objects are rarely allocated but gain and lose references all
1834  * the time (e.g., on struct file alloc/dealloc) turning refcount updates into
1835  * a significant source of cache-line ping ponging. Common cases are worked
1836  * around by modifying thread-local counter instead if the cred to operate on
1837  * matches td_realucred.
1838  *
1839  * The counter is split into 2 parts:
1840  * - cr_users -- total count of all struct proc and struct thread objects
1841  *   which have given cred in p_ucred and td_ucred respectively
1842  * - cr_ref -- the actual ref count, only valid if cr_users == 0
1843  *
1844  * If users == 0 then cr_ref behaves similarly to refcount(9), in particular if
1845  * the count reaches 0 the object is freeable.
1846  * If users > 0 and curthread->td_realucred == cred, then updates are performed
1847  * against td_ucredref.
1848  * In other cases updates are performed against cr_ref.
1849  *
1850  * Changing td_realucred into something else decrements cr_users and transfers
1851  * accumulated updates.
1852  */
1853 struct ucred *
1854 crcowget(struct ucred *cr)
1855 {
1856 
1857 	mtx_lock(&cr->cr_mtx);
1858 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1859 	    __func__, cr->cr_users, cr));
1860 	cr->cr_users++;
1861 	cr->cr_ref++;
1862 	mtx_unlock(&cr->cr_mtx);
1863 	return (cr);
1864 }
1865 
1866 static struct ucred *
1867 crunuse(struct thread *td)
1868 {
1869 	struct ucred *cr, *crold;
1870 
1871 	MPASS(td->td_realucred == td->td_ucred);
1872 	cr = td->td_realucred;
1873 	mtx_lock(&cr->cr_mtx);
1874 	cr->cr_ref += td->td_ucredref;
1875 	td->td_ucredref = 0;
1876 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1877 	    __func__, cr->cr_users, cr));
1878 	cr->cr_users--;
1879 	if (cr->cr_users == 0) {
1880 		KASSERT(cr->cr_ref > 0, ("%s: ref %d not > 0 on cred %p",
1881 		    __func__, cr->cr_ref, cr));
1882 		crold = cr;
1883 	} else {
1884 		cr->cr_ref--;
1885 		crold = NULL;
1886 	}
1887 	mtx_unlock(&cr->cr_mtx);
1888 	td->td_realucred = NULL;
1889 	return (crold);
1890 }
1891 
1892 static void
1893 crunusebatch(struct ucred *cr, int users, int ref)
1894 {
1895 
1896 	KASSERT(users > 0, ("%s: passed users %d not > 0 ; cred %p",
1897 	    __func__, users, cr));
1898 	mtx_lock(&cr->cr_mtx);
1899 	KASSERT(cr->cr_users >= users, ("%s: users %d not > %d on cred %p",
1900 	    __func__, cr->cr_users, users, cr));
1901 	cr->cr_users -= users;
1902 	cr->cr_ref += ref;
1903 	cr->cr_ref -= users;
1904 	if (cr->cr_users > 0) {
1905 		mtx_unlock(&cr->cr_mtx);
1906 		return;
1907 	}
1908 	KASSERT(cr->cr_ref >= 0, ("%s: ref %d not >= 0 on cred %p",
1909 	    __func__, cr->cr_ref, cr));
1910 	if (cr->cr_ref > 0) {
1911 		mtx_unlock(&cr->cr_mtx);
1912 		return;
1913 	}
1914 	crfree_final(cr);
1915 }
1916 
1917 void
1918 crcowfree(struct thread *td)
1919 {
1920 	struct ucred *cr;
1921 
1922 	cr = crunuse(td);
1923 	if (cr != NULL)
1924 		crfree(cr);
1925 }
1926 
1927 struct ucred *
1928 crcowsync(void)
1929 {
1930 	struct thread *td;
1931 	struct proc *p;
1932 	struct ucred *crnew, *crold;
1933 
1934 	td = curthread;
1935 	p = td->td_proc;
1936 	PROC_LOCK_ASSERT(p, MA_OWNED);
1937 
1938 	MPASS(td->td_realucred == td->td_ucred);
1939 	if (td->td_realucred == p->p_ucred)
1940 		return (NULL);
1941 
1942 	crnew = crcowget(p->p_ucred);
1943 	crold = crunuse(td);
1944 	td->td_realucred = crnew;
1945 	td->td_ucred = td->td_realucred;
1946 	return (crold);
1947 }
1948 
1949 /*
1950  * Batching.
1951  */
1952 void
1953 credbatch_add(struct credbatch *crb, struct thread *td)
1954 {
1955 	struct ucred *cr;
1956 
1957 	MPASS(td->td_realucred != NULL);
1958 	MPASS(td->td_realucred == td->td_ucred);
1959 	MPASS(TD_GET_STATE(td) == TDS_INACTIVE);
1960 	cr = td->td_realucred;
1961 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
1962 	    __func__, cr->cr_users, cr));
1963 	if (crb->cred != cr) {
1964 		if (crb->users > 0) {
1965 			MPASS(crb->cred != NULL);
1966 			crunusebatch(crb->cred, crb->users, crb->ref);
1967 			crb->users = 0;
1968 			crb->ref = 0;
1969 		}
1970 	}
1971 	crb->cred = cr;
1972 	crb->users++;
1973 	crb->ref += td->td_ucredref;
1974 	td->td_ucredref = 0;
1975 	td->td_realucred = NULL;
1976 }
1977 
1978 void
1979 credbatch_final(struct credbatch *crb)
1980 {
1981 
1982 	MPASS(crb->cred != NULL);
1983 	MPASS(crb->users > 0);
1984 	crunusebatch(crb->cred, crb->users, crb->ref);
1985 }
1986 
1987 /*
1988  * Allocate a zeroed cred structure.
1989  */
1990 struct ucred *
1991 crget(void)
1992 {
1993 	struct ucred *cr;
1994 
1995 	cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
1996 	mtx_init(&cr->cr_mtx, "cred", NULL, MTX_DEF);
1997 	cr->cr_ref = 1;
1998 #ifdef AUDIT
1999 	audit_cred_init(cr);
2000 #endif
2001 #ifdef MAC
2002 	mac_cred_init(cr);
2003 #endif
2004 	cr->cr_groups = cr->cr_smallgroups;
2005 	cr->cr_agroups =
2006 	    sizeof(cr->cr_smallgroups) / sizeof(cr->cr_smallgroups[0]);
2007 	return (cr);
2008 }
2009 
2010 /*
2011  * Claim another reference to a ucred structure.
2012  */
2013 struct ucred *
2014 crhold(struct ucred *cr)
2015 {
2016 	struct thread *td;
2017 
2018 	td = curthread;
2019 	if (__predict_true(td->td_realucred == cr)) {
2020 		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2021 		    __func__, cr->cr_users, cr));
2022 		td->td_ucredref++;
2023 		return (cr);
2024 	}
2025 	mtx_lock(&cr->cr_mtx);
2026 	cr->cr_ref++;
2027 	mtx_unlock(&cr->cr_mtx);
2028 	return (cr);
2029 }
2030 
2031 /*
2032  * Free a cred structure.  Throws away space when ref count gets to 0.
2033  */
2034 void
2035 crfree(struct ucred *cr)
2036 {
2037 	struct thread *td;
2038 
2039 	td = curthread;
2040 	if (__predict_true(td->td_realucred == cr)) {
2041 		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2042 		    __func__, cr->cr_users, cr));
2043 		td->td_ucredref--;
2044 		return;
2045 	}
2046 	mtx_lock(&cr->cr_mtx);
2047 	KASSERT(cr->cr_users >= 0, ("%s: users %d not >= 0 on cred %p",
2048 	    __func__, cr->cr_users, cr));
2049 	cr->cr_ref--;
2050 	if (cr->cr_users > 0) {
2051 		mtx_unlock(&cr->cr_mtx);
2052 		return;
2053 	}
2054 	KASSERT(cr->cr_ref >= 0, ("%s: ref %d not >= 0 on cred %p",
2055 	    __func__, cr->cr_ref, cr));
2056 	if (cr->cr_ref > 0) {
2057 		mtx_unlock(&cr->cr_mtx);
2058 		return;
2059 	}
2060 	crfree_final(cr);
2061 }
2062 
2063 static void
2064 crfree_final(struct ucred *cr)
2065 {
2066 
2067 	KASSERT(cr->cr_users == 0, ("%s: users %d not == 0 on cred %p",
2068 	    __func__, cr->cr_users, cr));
2069 	KASSERT(cr->cr_ref == 0, ("%s: ref %d not == 0 on cred %p",
2070 	    __func__, cr->cr_ref, cr));
2071 
2072 	/*
2073 	 * Some callers of crget(), such as nfs_statfs(), allocate a temporary
2074 	 * credential, but don't allocate a uidinfo structure.
2075 	 */
2076 	if (cr->cr_uidinfo != NULL)
2077 		uifree(cr->cr_uidinfo);
2078 	if (cr->cr_ruidinfo != NULL)
2079 		uifree(cr->cr_ruidinfo);
2080 	if (cr->cr_prison != NULL)
2081 		prison_free(cr->cr_prison);
2082 	if (cr->cr_loginclass != NULL)
2083 		loginclass_free(cr->cr_loginclass);
2084 #ifdef AUDIT
2085 	audit_cred_destroy(cr);
2086 #endif
2087 #ifdef MAC
2088 	mac_cred_destroy(cr);
2089 #endif
2090 	mtx_destroy(&cr->cr_mtx);
2091 	if (cr->cr_groups != cr->cr_smallgroups)
2092 		free(cr->cr_groups, M_CRED);
2093 	free(cr, M_CRED);
2094 }
2095 
2096 /*
2097  * Copy a ucred's contents from a template.  Does not block.
2098  */
2099 void
2100 crcopy(struct ucred *dest, struct ucred *src)
2101 {
2102 
2103 	KASSERT(dest->cr_ref == 1, ("crcopy of shared ucred"));
2104 	bcopy(&src->cr_startcopy, &dest->cr_startcopy,
2105 	    (unsigned)((caddr_t)&src->cr_endcopy -
2106 		(caddr_t)&src->cr_startcopy));
2107 	crsetgroups(dest, src->cr_ngroups, src->cr_groups);
2108 	uihold(dest->cr_uidinfo);
2109 	uihold(dest->cr_ruidinfo);
2110 	prison_hold(dest->cr_prison);
2111 	loginclass_hold(dest->cr_loginclass);
2112 #ifdef AUDIT
2113 	audit_cred_copy(src, dest);
2114 #endif
2115 #ifdef MAC
2116 	mac_cred_copy(src, dest);
2117 #endif
2118 }
2119 
2120 /*
2121  * Dup cred struct to a new held one.
2122  */
2123 struct ucred *
2124 crdup(struct ucred *cr)
2125 {
2126 	struct ucred *newcr;
2127 
2128 	newcr = crget();
2129 	crcopy(newcr, cr);
2130 	return (newcr);
2131 }
2132 
2133 /*
2134  * Fill in a struct xucred based on a struct ucred.
2135  */
2136 void
2137 cru2x(struct ucred *cr, struct xucred *xcr)
2138 {
2139 	int ngroups;
2140 
2141 	bzero(xcr, sizeof(*xcr));
2142 	xcr->cr_version = XUCRED_VERSION;
2143 	xcr->cr_uid = cr->cr_uid;
2144 
2145 	ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
2146 	xcr->cr_ngroups = ngroups;
2147 	bcopy(cr->cr_groups, xcr->cr_groups,
2148 	    ngroups * sizeof(*cr->cr_groups));
2149 }
2150 
2151 void
2152 cru2xt(struct thread *td, struct xucred *xcr)
2153 {
2154 
2155 	cru2x(td->td_ucred, xcr);
2156 	xcr->cr_pid = td->td_proc->p_pid;
2157 }
2158 
2159 /*
2160  * Set initial process credentials.
2161  * Callers are responsible for providing the reference for provided credentials.
2162  */
2163 void
2164 proc_set_cred_init(struct proc *p, struct ucred *newcred)
2165 {
2166 
2167 	p->p_ucred = crcowget(newcred);
2168 }
2169 
2170 /*
2171  * Change process credentials.
2172  * Callers are responsible for providing the reference for passed credentials
2173  * and for freeing old ones.
2174  *
2175  * Process has to be locked except when it does not have credentials (as it
2176  * should not be visible just yet) or when newcred is NULL (as this can be
2177  * only used when the process is about to be freed, at which point it should
2178  * not be visible anymore).
2179  */
2180 void
2181 proc_set_cred(struct proc *p, struct ucred *newcred)
2182 {
2183 	struct ucred *cr;
2184 
2185 	cr = p->p_ucred;
2186 	MPASS(cr != NULL);
2187 	PROC_LOCK_ASSERT(p, MA_OWNED);
2188 	KASSERT(newcred->cr_users == 0, ("%s: users %d not 0 on cred %p",
2189 	    __func__, newcred->cr_users, newcred));
2190 	mtx_lock(&cr->cr_mtx);
2191 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2192 	    __func__, cr->cr_users, cr));
2193 	cr->cr_users--;
2194 	mtx_unlock(&cr->cr_mtx);
2195 	p->p_ucred = newcred;
2196 	newcred->cr_users = 1;
2197 	PROC_UPDATE_COW(p);
2198 }
2199 
2200 void
2201 proc_unset_cred(struct proc *p)
2202 {
2203 	struct ucred *cr;
2204 
2205 	MPASS(p->p_state == PRS_ZOMBIE || p->p_state == PRS_NEW);
2206 	cr = p->p_ucred;
2207 	p->p_ucred = NULL;
2208 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
2209 	    __func__, cr->cr_users, cr));
2210 	mtx_lock(&cr->cr_mtx);
2211 	cr->cr_users--;
2212 	if (cr->cr_users == 0)
2213 		KASSERT(cr->cr_ref > 0, ("%s: ref %d not > 0 on cred %p",
2214 		    __func__, cr->cr_ref, cr));
2215 	mtx_unlock(&cr->cr_mtx);
2216 	crfree(cr);
2217 }
2218 
2219 struct ucred *
2220 crcopysafe(struct proc *p, struct ucred *cr)
2221 {
2222 	struct ucred *oldcred;
2223 	int groups;
2224 
2225 	PROC_LOCK_ASSERT(p, MA_OWNED);
2226 
2227 	oldcred = p->p_ucred;
2228 	while (cr->cr_agroups < oldcred->cr_agroups) {
2229 		groups = oldcred->cr_agroups;
2230 		PROC_UNLOCK(p);
2231 		crextend(cr, groups);
2232 		PROC_LOCK(p);
2233 		oldcred = p->p_ucred;
2234 	}
2235 	crcopy(cr, oldcred);
2236 
2237 	return (oldcred);
2238 }
2239 
2240 /*
2241  * Extend the passed in credential to hold n items.
2242  */
2243 void
2244 crextend(struct ucred *cr, int n)
2245 {
2246 	int cnt;
2247 
2248 	/* Truncate? */
2249 	if (n <= cr->cr_agroups)
2250 		return;
2251 
2252 	/*
2253 	 * We extend by 2 each time since we're using a power of two
2254 	 * allocator until we need enough groups to fill a page.
2255 	 * Once we're allocating multiple pages, only allocate as many
2256 	 * as we actually need.  The case of processes needing a
2257 	 * non-power of two number of pages seems more likely than
2258 	 * a real world process that adds thousands of groups one at a
2259 	 * time.
2260 	 */
2261 	if ( n < PAGE_SIZE / sizeof(gid_t) ) {
2262 		if (cr->cr_agroups == 0)
2263 			cnt = MAX(1, MINALLOCSIZE / sizeof(gid_t));
2264 		else
2265 			cnt = cr->cr_agroups * 2;
2266 
2267 		while (cnt < n)
2268 			cnt *= 2;
2269 	} else
2270 		cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t));
2271 
2272 	/* Free the old array. */
2273 	if (cr->cr_groups != cr->cr_smallgroups)
2274 		free(cr->cr_groups, M_CRED);
2275 
2276 	cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO);
2277 	cr->cr_agroups = cnt;
2278 }
2279 
2280 /*
2281  * Copy groups in to a credential, preserving any necessary invariants.
2282  * Currently this includes the sorting of all supplemental gids.
2283  * crextend() must have been called before hand to ensure sufficient
2284  * space is available.
2285  */
2286 static void
2287 crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups)
2288 {
2289 	int i;
2290 	int j;
2291 	gid_t g;
2292 
2293 	KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small"));
2294 
2295 	bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
2296 	cr->cr_ngroups = ngrp;
2297 
2298 	/*
2299 	 * Sort all groups except cr_groups[0] to allow groupmember to
2300 	 * perform a binary search.
2301 	 *
2302 	 * XXX: If large numbers of groups become common this should
2303 	 * be replaced with shell sort like linux uses or possibly
2304 	 * heap sort.
2305 	 */
2306 	for (i = 2; i < ngrp; i++) {
2307 		g = cr->cr_groups[i];
2308 		for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--)
2309 			cr->cr_groups[j + 1] = cr->cr_groups[j];
2310 		cr->cr_groups[j + 1] = g;
2311 	}
2312 }
2313 
2314 /*
2315  * Copy groups in to a credential after expanding it if required.
2316  * Truncate the list to (ngroups_max + 1) if it is too large.
2317  */
2318 void
2319 crsetgroups(struct ucred *cr, int ngrp, gid_t *groups)
2320 {
2321 
2322 	if (ngrp > ngroups_max + 1)
2323 		ngrp = ngroups_max + 1;
2324 
2325 	crextend(cr, ngrp);
2326 	crsetgroups_locked(cr, ngrp, groups);
2327 }
2328 
2329 /*
2330  * Get login name, if available.
2331  */
2332 #ifndef _SYS_SYSPROTO_H_
2333 struct getlogin_args {
2334 	char	*namebuf;
2335 	u_int	namelen;
2336 };
2337 #endif
2338 /* ARGSUSED */
2339 int
2340 sys_getlogin(struct thread *td, struct getlogin_args *uap)
2341 {
2342 	char login[MAXLOGNAME];
2343 	struct proc *p = td->td_proc;
2344 	size_t len;
2345 
2346 	if (uap->namelen > MAXLOGNAME)
2347 		uap->namelen = MAXLOGNAME;
2348 	PROC_LOCK(p);
2349 	SESS_LOCK(p->p_session);
2350 	len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1;
2351 	SESS_UNLOCK(p->p_session);
2352 	PROC_UNLOCK(p);
2353 	if (len > uap->namelen)
2354 		return (ERANGE);
2355 	return (copyout(login, uap->namebuf, len));
2356 }
2357 
2358 /*
2359  * Set login name.
2360  */
2361 #ifndef _SYS_SYSPROTO_H_
2362 struct setlogin_args {
2363 	char	*namebuf;
2364 };
2365 #endif
2366 /* ARGSUSED */
2367 int
2368 sys_setlogin(struct thread *td, struct setlogin_args *uap)
2369 {
2370 	struct proc *p = td->td_proc;
2371 	int error;
2372 	char logintmp[MAXLOGNAME];
2373 
2374 	CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp));
2375 
2376 	error = priv_check(td, PRIV_PROC_SETLOGIN);
2377 	if (error)
2378 		return (error);
2379 	error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
2380 	if (error != 0) {
2381 		if (error == ENAMETOOLONG)
2382 			error = EINVAL;
2383 		return (error);
2384 	}
2385 	AUDIT_ARG_LOGIN(logintmp);
2386 	PROC_LOCK(p);
2387 	SESS_LOCK(p->p_session);
2388 	strcpy(p->p_session->s_login, logintmp);
2389 	SESS_UNLOCK(p->p_session);
2390 	PROC_UNLOCK(p);
2391 	return (0);
2392 }
2393 
2394 void
2395 setsugid(struct proc *p)
2396 {
2397 
2398 	PROC_LOCK_ASSERT(p, MA_OWNED);
2399 	p->p_flag |= P_SUGID;
2400 }
2401 
2402 /*-
2403  * Change a process's effective uid.
2404  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
2405  * References: newcred must be an exclusive credential reference for the
2406  *             duration of the call.
2407  */
2408 void
2409 change_euid(struct ucred *newcred, struct uidinfo *euip)
2410 {
2411 
2412 	newcred->cr_uid = euip->ui_uid;
2413 	uihold(euip);
2414 	uifree(newcred->cr_uidinfo);
2415 	newcred->cr_uidinfo = euip;
2416 }
2417 
2418 /*-
2419  * Change a process's effective gid.
2420  * Side effects: newcred->cr_gid will be modified.
2421  * References: newcred must be an exclusive credential reference for the
2422  *             duration of the call.
2423  */
2424 void
2425 change_egid(struct ucred *newcred, gid_t egid)
2426 {
2427 
2428 	newcred->cr_groups[0] = egid;
2429 }
2430 
2431 /*-
2432  * Change a process's real uid.
2433  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
2434  *               will be updated, and the old and new cr_ruidinfo proc
2435  *               counts will be updated.
2436  * References: newcred must be an exclusive credential reference for the
2437  *             duration of the call.
2438  */
2439 void
2440 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
2441 {
2442 
2443 	(void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
2444 	newcred->cr_ruid = ruip->ui_uid;
2445 	uihold(ruip);
2446 	uifree(newcred->cr_ruidinfo);
2447 	newcred->cr_ruidinfo = ruip;
2448 	(void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
2449 }
2450 
2451 /*-
2452  * Change a process's real gid.
2453  * Side effects: newcred->cr_rgid will be updated.
2454  * References: newcred must be an exclusive credential reference for the
2455  *             duration of the call.
2456  */
2457 void
2458 change_rgid(struct ucred *newcred, gid_t rgid)
2459 {
2460 
2461 	newcred->cr_rgid = rgid;
2462 }
2463 
2464 /*-
2465  * Change a process's saved uid.
2466  * Side effects: newcred->cr_svuid will be updated.
2467  * References: newcred must be an exclusive credential reference for the
2468  *             duration of the call.
2469  */
2470 void
2471 change_svuid(struct ucred *newcred, uid_t svuid)
2472 {
2473 
2474 	newcred->cr_svuid = svuid;
2475 }
2476 
2477 /*-
2478  * Change a process's saved gid.
2479  * Side effects: newcred->cr_svgid will be updated.
2480  * References: newcred must be an exclusive credential reference for the
2481  *             duration of the call.
2482  */
2483 void
2484 change_svgid(struct ucred *newcred, gid_t svgid)
2485 {
2486 
2487 	newcred->cr_svgid = svgid;
2488 }
2489 
2490 bool allow_ptrace = true;
2491 SYSCTL_BOOL(_security_bsd, OID_AUTO, allow_ptrace, CTLFLAG_RWTUN,
2492     &allow_ptrace, 0,
2493     "Deny ptrace(2) use by returning ENOSYS");
2494