1 /*- 2 * Copyright (c) 2014 John Baldwin 3 * Copyright (c) 2014 The FreeBSD Foundation 4 * 5 * Portions of this software were developed by Konstantin Belousov 6 * under sponsorship from the FreeBSD Foundation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/capsicum.h> 36 #include <sys/lock.h> 37 #include <sys/mutex.h> 38 #include <sys/priv.h> 39 #include <sys/proc.h> 40 #include <sys/procctl.h> 41 #include <sys/sx.h> 42 #include <sys/syscallsubr.h> 43 #include <sys/sysproto.h> 44 #include <sys/wait.h> 45 46 static int 47 protect_setchild(struct thread *td, struct proc *p, int flags) 48 { 49 50 PROC_LOCK_ASSERT(p, MA_OWNED); 51 if (p->p_flag & P_SYSTEM || p_cansched(td, p) != 0) 52 return (0); 53 if (flags & PPROT_SET) { 54 p->p_flag |= P_PROTECTED; 55 if (flags & PPROT_INHERIT) 56 p->p_flag2 |= P2_INHERIT_PROTECTED; 57 } else { 58 p->p_flag &= ~P_PROTECTED; 59 p->p_flag2 &= ~P2_INHERIT_PROTECTED; 60 } 61 return (1); 62 } 63 64 static int 65 protect_setchildren(struct thread *td, struct proc *top, int flags) 66 { 67 struct proc *p; 68 int ret; 69 70 p = top; 71 ret = 0; 72 sx_assert(&proctree_lock, SX_LOCKED); 73 for (;;) { 74 ret |= protect_setchild(td, p, flags); 75 PROC_UNLOCK(p); 76 /* 77 * If this process has children, descend to them next, 78 * otherwise do any siblings, and if done with this level, 79 * follow back up the tree (but not past top). 80 */ 81 if (!LIST_EMPTY(&p->p_children)) 82 p = LIST_FIRST(&p->p_children); 83 else for (;;) { 84 if (p == top) { 85 PROC_LOCK(p); 86 return (ret); 87 } 88 if (LIST_NEXT(p, p_sibling)) { 89 p = LIST_NEXT(p, p_sibling); 90 break; 91 } 92 p = p->p_pptr; 93 } 94 PROC_LOCK(p); 95 } 96 } 97 98 static int 99 protect_set(struct thread *td, struct proc *p, int flags) 100 { 101 int error, ret; 102 103 switch (PPROT_OP(flags)) { 104 case PPROT_SET: 105 case PPROT_CLEAR: 106 break; 107 default: 108 return (EINVAL); 109 } 110 111 if ((PPROT_FLAGS(flags) & ~(PPROT_DESCEND | PPROT_INHERIT)) != 0) 112 return (EINVAL); 113 114 error = priv_check(td, PRIV_VM_MADV_PROTECT); 115 if (error) 116 return (error); 117 118 if (flags & PPROT_DESCEND) 119 ret = protect_setchildren(td, p, flags); 120 else 121 ret = protect_setchild(td, p, flags); 122 if (ret == 0) 123 return (EPERM); 124 return (0); 125 } 126 127 static int 128 reap_acquire(struct thread *td, struct proc *p) 129 { 130 131 sx_assert(&proctree_lock, SX_XLOCKED); 132 if (p != curproc) 133 return (EPERM); 134 if ((p->p_treeflag & P_TREE_REAPER) != 0) 135 return (EBUSY); 136 p->p_treeflag |= P_TREE_REAPER; 137 /* 138 * We do not reattach existing children and the whole tree 139 * under them to us, since p->p_reaper already seen them. 140 */ 141 return (0); 142 } 143 144 static int 145 reap_release(struct thread *td, struct proc *p) 146 { 147 148 sx_assert(&proctree_lock, SX_XLOCKED); 149 if (p != curproc) 150 return (EPERM); 151 if (p == initproc) 152 return (EINVAL); 153 if ((p->p_treeflag & P_TREE_REAPER) == 0) 154 return (EINVAL); 155 reaper_abandon_children(p, false); 156 return (0); 157 } 158 159 static int 160 reap_status(struct thread *td, struct proc *p, 161 struct procctl_reaper_status *rs) 162 { 163 struct proc *reap, *p2; 164 165 sx_assert(&proctree_lock, SX_LOCKED); 166 bzero(rs, sizeof(*rs)); 167 if ((p->p_treeflag & P_TREE_REAPER) == 0) { 168 reap = p->p_reaper; 169 } else { 170 reap = p; 171 rs->rs_flags |= REAPER_STATUS_OWNED; 172 } 173 if (reap == initproc) 174 rs->rs_flags |= REAPER_STATUS_REALINIT; 175 rs->rs_reaper = reap->p_pid; 176 rs->rs_descendants = 0; 177 rs->rs_children = 0; 178 if (!LIST_EMPTY(&reap->p_reaplist)) { 179 KASSERT(!LIST_EMPTY(&reap->p_children), ("no children")); 180 rs->rs_pid = LIST_FIRST(&reap->p_children)->p_pid; 181 LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) { 182 if (proc_realparent(p2) == reap) 183 rs->rs_children++; 184 rs->rs_descendants++; 185 } 186 } else { 187 rs->rs_pid = -1; 188 KASSERT(LIST_EMPTY(&reap->p_reaplist), ("reap children list")); 189 KASSERT(LIST_EMPTY(&reap->p_children), ("children list")); 190 } 191 return (0); 192 } 193 194 static int 195 reap_getpids(struct thread *td, struct proc *p, struct procctl_reaper_pids *rp) 196 { 197 struct proc *reap, *p2; 198 struct procctl_reaper_pidinfo *pi, *pip; 199 u_int i, n; 200 int error; 201 202 sx_assert(&proctree_lock, SX_LOCKED); 203 PROC_UNLOCK(p); 204 reap = (p->p_treeflag & P_TREE_REAPER) == 0 ? p->p_reaper : p; 205 n = i = 0; 206 error = 0; 207 LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) 208 n++; 209 sx_unlock(&proctree_lock); 210 if (rp->rp_count < n) 211 n = rp->rp_count; 212 pi = malloc(n * sizeof(*pi), M_TEMP, M_WAITOK); 213 sx_slock(&proctree_lock); 214 LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) { 215 if (i == n) 216 break; 217 pip = &pi[i]; 218 bzero(pip, sizeof(*pip)); 219 pip->pi_pid = p2->p_pid; 220 pip->pi_subtree = p2->p_reapsubtree; 221 pip->pi_flags = REAPER_PIDINFO_VALID; 222 if (proc_realparent(p2) == reap) 223 pip->pi_flags |= REAPER_PIDINFO_CHILD; 224 i++; 225 } 226 sx_sunlock(&proctree_lock); 227 error = copyout(pi, rp->rp_pids, i * sizeof(*pi)); 228 free(pi, M_TEMP); 229 sx_slock(&proctree_lock); 230 PROC_LOCK(p); 231 return (error); 232 } 233 234 static int 235 reap_kill(struct thread *td, struct proc *p, struct procctl_reaper_kill *rk) 236 { 237 struct proc *reap, *p2; 238 ksiginfo_t ksi; 239 int error, error1; 240 241 sx_assert(&proctree_lock, SX_LOCKED); 242 PROC_UNLOCK(p); 243 if (IN_CAPABILITY_MODE(td)) 244 return (ECAPMODE); 245 if (rk->rk_sig <= 0 || rk->rk_sig > _SIG_MAXSIG) 246 return (EINVAL); 247 if ((rk->rk_flags & ~REAPER_KILL_CHILDREN) != 0) 248 return (EINVAL); 249 reap = (p->p_treeflag & P_TREE_REAPER) == 0 ? p->p_reaper : p; 250 ksiginfo_init(&ksi); 251 ksi.ksi_signo = rk->rk_sig; 252 ksi.ksi_code = SI_USER; 253 ksi.ksi_pid = td->td_proc->p_pid; 254 ksi.ksi_uid = td->td_ucred->cr_ruid; 255 error = ESRCH; 256 rk->rk_killed = 0; 257 rk->rk_fpid = -1; 258 for (p2 = (rk->rk_flags & REAPER_KILL_CHILDREN) != 0 ? 259 LIST_FIRST(&reap->p_children) : LIST_FIRST(&reap->p_reaplist); 260 p2 != NULL; 261 p2 = (rk->rk_flags & REAPER_KILL_CHILDREN) != 0 ? 262 LIST_NEXT(p2, p_sibling) : LIST_NEXT(p2, p_reapsibling)) { 263 if ((rk->rk_flags & REAPER_KILL_SUBTREE) != 0 && 264 p2->p_reapsubtree != rk->rk_subtree) 265 continue; 266 PROC_LOCK(p2); 267 error1 = p_cansignal(td, p2, rk->rk_sig); 268 if (error1 == 0) { 269 pksignal(p2, rk->rk_sig, &ksi); 270 rk->rk_killed++; 271 error = error1; 272 } else if (error == ESRCH) { 273 error = error1; 274 rk->rk_fpid = p2->p_pid; 275 } 276 PROC_UNLOCK(p2); 277 /* Do not end the loop on error, signal everything we can. */ 278 } 279 PROC_LOCK(p); 280 return (error); 281 } 282 283 #ifndef _SYS_SYSPROTO_H_ 284 struct procctl_args { 285 idtype_t idtype; 286 id_t id; 287 int com; 288 void *data; 289 }; 290 #endif 291 /* ARGSUSED */ 292 int 293 sys_procctl(struct thread *td, struct procctl_args *uap) 294 { 295 void *data; 296 union { 297 struct procctl_reaper_status rs; 298 struct procctl_reaper_pids rp; 299 struct procctl_reaper_kill rk; 300 } x; 301 int error, error1, flags; 302 303 switch (uap->com) { 304 case PROC_SPROTECT: 305 error = copyin(uap->data, &flags, sizeof(flags)); 306 if (error != 0) 307 return (error); 308 data = &flags; 309 break; 310 case PROC_REAP_ACQUIRE: 311 case PROC_REAP_RELEASE: 312 if (uap->data != NULL) 313 return (EINVAL); 314 data = NULL; 315 break; 316 case PROC_REAP_STATUS: 317 data = &x.rs; 318 break; 319 case PROC_REAP_GETPIDS: 320 error = copyin(uap->data, &x.rp, sizeof(x.rp)); 321 if (error != 0) 322 return (error); 323 data = &x.rp; 324 break; 325 case PROC_REAP_KILL: 326 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 327 if (error != 0) 328 return (error); 329 data = &x.rk; 330 break; 331 default: 332 return (EINVAL); 333 } 334 error = kern_procctl(td, uap->idtype, uap->id, uap->com, data); 335 switch (uap->com) { 336 case PROC_REAP_STATUS: 337 if (error == 0) 338 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 339 break; 340 case PROC_REAP_KILL: 341 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 342 if (error == 0) 343 error = error1; 344 break; 345 } 346 return (error); 347 } 348 349 static int 350 kern_procctl_single(struct thread *td, struct proc *p, int com, void *data) 351 { 352 353 PROC_LOCK_ASSERT(p, MA_OWNED); 354 switch (com) { 355 case PROC_SPROTECT: 356 return (protect_set(td, p, *(int *)data)); 357 case PROC_REAP_ACQUIRE: 358 return (reap_acquire(td, p)); 359 case PROC_REAP_RELEASE: 360 return (reap_release(td, p)); 361 case PROC_REAP_STATUS: 362 return (reap_status(td, p, data)); 363 case PROC_REAP_GETPIDS: 364 return (reap_getpids(td, p, data)); 365 case PROC_REAP_KILL: 366 return (reap_kill(td, p, data)); 367 default: 368 return (EINVAL); 369 } 370 } 371 372 int 373 kern_procctl(struct thread *td, idtype_t idtype, id_t id, int com, void *data) 374 { 375 struct pgrp *pg; 376 struct proc *p; 377 int error, first_error, ok; 378 379 switch (com) { 380 case PROC_REAP_ACQUIRE: 381 case PROC_REAP_RELEASE: 382 case PROC_REAP_STATUS: 383 case PROC_REAP_GETPIDS: 384 case PROC_REAP_KILL: 385 if (idtype != P_PID) 386 return (EINVAL); 387 } 388 389 switch (com) { 390 case PROC_SPROTECT: 391 case PROC_REAP_STATUS: 392 case PROC_REAP_GETPIDS: 393 case PROC_REAP_KILL: 394 sx_slock(&proctree_lock); 395 break; 396 case PROC_REAP_ACQUIRE: 397 case PROC_REAP_RELEASE: 398 sx_xlock(&proctree_lock); 399 break; 400 default: 401 return (EINVAL); 402 } 403 404 switch (idtype) { 405 case P_PID: 406 p = pfind(id); 407 if (p == NULL) { 408 error = ESRCH; 409 break; 410 } 411 error = p_cansee(td, p); 412 if (error == 0) 413 error = kern_procctl_single(td, p, com, data); 414 PROC_UNLOCK(p); 415 break; 416 case P_PGID: 417 /* 418 * Attempt to apply the operation to all members of the 419 * group. Ignore processes in the group that can't be 420 * seen. Ignore errors so long as at least one process is 421 * able to complete the request successfully. 422 */ 423 pg = pgfind(id); 424 if (pg == NULL) { 425 error = ESRCH; 426 break; 427 } 428 PGRP_UNLOCK(pg); 429 ok = 0; 430 first_error = 0; 431 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 432 PROC_LOCK(p); 433 if (p->p_state == PRS_NEW || p_cansee(td, p) != 0) { 434 PROC_UNLOCK(p); 435 continue; 436 } 437 error = kern_procctl_single(td, p, com, data); 438 PROC_UNLOCK(p); 439 if (error == 0) 440 ok = 1; 441 else if (first_error == 0) 442 first_error = error; 443 } 444 if (ok) 445 error = 0; 446 else if (first_error != 0) 447 error = first_error; 448 else 449 /* 450 * Was not able to see any processes in the 451 * process group. 452 */ 453 error = ESRCH; 454 break; 455 default: 456 error = EINVAL; 457 break; 458 } 459 sx_unlock(&proctree_lock); 460 return (error); 461 } 462