xref: /freebsd/sys/kern/kern_procctl.c (revision 4d846d260e2b9a3d4d0a701462568268cbfe7a5b)
1 /*-
2  * Copyright (c) 2014 John Baldwin
3  * Copyright (c) 2014, 2016 The FreeBSD Foundation
4  *
5  * Portions of this software were developed by Konstantin Belousov
6  * under sponsorship from the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/_unrhdr.h>
35 #include <sys/systm.h>
36 #include <sys/capsicum.h>
37 #include <sys/lock.h>
38 #include <sys/mman.h>
39 #include <sys/mutex.h>
40 #include <sys/priv.h>
41 #include <sys/proc.h>
42 #include <sys/procctl.h>
43 #include <sys/sx.h>
44 #include <sys/syscallsubr.h>
45 #include <sys/sysproto.h>
46 #include <sys/taskqueue.h>
47 #include <sys/wait.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 #include <vm/vm_map.h>
52 #include <vm/vm_extern.h>
53 
54 static int
55 protect_setchild(struct thread *td, struct proc *p, int flags)
56 {
57 
58 	PROC_LOCK_ASSERT(p, MA_OWNED);
59 	if (p->p_flag & P_SYSTEM || p_cansched(td, p) != 0)
60 		return (0);
61 	if (flags & PPROT_SET) {
62 		p->p_flag |= P_PROTECTED;
63 		if (flags & PPROT_INHERIT)
64 			p->p_flag2 |= P2_INHERIT_PROTECTED;
65 	} else {
66 		p->p_flag &= ~P_PROTECTED;
67 		p->p_flag2 &= ~P2_INHERIT_PROTECTED;
68 	}
69 	return (1);
70 }
71 
72 static int
73 protect_setchildren(struct thread *td, struct proc *top, int flags)
74 {
75 	struct proc *p;
76 	int ret;
77 
78 	p = top;
79 	ret = 0;
80 	sx_assert(&proctree_lock, SX_LOCKED);
81 	for (;;) {
82 		ret |= protect_setchild(td, p, flags);
83 		PROC_UNLOCK(p);
84 		/*
85 		 * If this process has children, descend to them next,
86 		 * otherwise do any siblings, and if done with this level,
87 		 * follow back up the tree (but not past top).
88 		 */
89 		if (!LIST_EMPTY(&p->p_children))
90 			p = LIST_FIRST(&p->p_children);
91 		else for (;;) {
92 			if (p == top) {
93 				PROC_LOCK(p);
94 				return (ret);
95 			}
96 			if (LIST_NEXT(p, p_sibling)) {
97 				p = LIST_NEXT(p, p_sibling);
98 				break;
99 			}
100 			p = p->p_pptr;
101 		}
102 		PROC_LOCK(p);
103 	}
104 }
105 
106 static int
107 protect_set(struct thread *td, struct proc *p, void *data)
108 {
109 	int error, flags, ret;
110 
111 	flags = *(int *)data;
112 	switch (PPROT_OP(flags)) {
113 	case PPROT_SET:
114 	case PPROT_CLEAR:
115 		break;
116 	default:
117 		return (EINVAL);
118 	}
119 
120 	if ((PPROT_FLAGS(flags) & ~(PPROT_DESCEND | PPROT_INHERIT)) != 0)
121 		return (EINVAL);
122 
123 	error = priv_check(td, PRIV_VM_MADV_PROTECT);
124 	if (error)
125 		return (error);
126 
127 	if (flags & PPROT_DESCEND)
128 		ret = protect_setchildren(td, p, flags);
129 	else
130 		ret = protect_setchild(td, p, flags);
131 	if (ret == 0)
132 		return (EPERM);
133 	return (0);
134 }
135 
136 static int
137 reap_acquire(struct thread *td, struct proc *p, void *data __unused)
138 {
139 
140 	sx_assert(&proctree_lock, SX_XLOCKED);
141 	if (p != td->td_proc)
142 		return (EPERM);
143 	if ((p->p_treeflag & P_TREE_REAPER) != 0)
144 		return (EBUSY);
145 	p->p_treeflag |= P_TREE_REAPER;
146 	/*
147 	 * We do not reattach existing children and the whole tree
148 	 * under them to us, since p->p_reaper already seen them.
149 	 */
150 	return (0);
151 }
152 
153 static int
154 reap_release(struct thread *td, struct proc *p, void *data __unused)
155 {
156 
157 	sx_assert(&proctree_lock, SX_XLOCKED);
158 	if (p != td->td_proc)
159 		return (EPERM);
160 	if (p == initproc)
161 		return (EINVAL);
162 	if ((p->p_treeflag & P_TREE_REAPER) == 0)
163 		return (EINVAL);
164 	reaper_abandon_children(p, false);
165 	return (0);
166 }
167 
168 static int
169 reap_status(struct thread *td, struct proc *p, void *data)
170 {
171 	struct proc *reap, *p2, *first_p;
172 	struct procctl_reaper_status *rs;
173 
174 	rs = data;
175 	sx_assert(&proctree_lock, SX_LOCKED);
176 	if ((p->p_treeflag & P_TREE_REAPER) == 0) {
177 		reap = p->p_reaper;
178 	} else {
179 		reap = p;
180 		rs->rs_flags |= REAPER_STATUS_OWNED;
181 	}
182 	if (reap == initproc)
183 		rs->rs_flags |= REAPER_STATUS_REALINIT;
184 	rs->rs_reaper = reap->p_pid;
185 	rs->rs_descendants = 0;
186 	rs->rs_children = 0;
187 	if (!LIST_EMPTY(&reap->p_reaplist)) {
188 		first_p = LIST_FIRST(&reap->p_children);
189 		if (first_p == NULL)
190 			first_p = LIST_FIRST(&reap->p_reaplist);
191 		rs->rs_pid = first_p->p_pid;
192 		LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) {
193 			if (proc_realparent(p2) == reap)
194 				rs->rs_children++;
195 			rs->rs_descendants++;
196 		}
197 	} else {
198 		rs->rs_pid = -1;
199 	}
200 	return (0);
201 }
202 
203 static int
204 reap_getpids(struct thread *td, struct proc *p, void *data)
205 {
206 	struct proc *reap, *p2;
207 	struct procctl_reaper_pidinfo *pi, *pip;
208 	struct procctl_reaper_pids *rp;
209 	u_int i, n;
210 	int error;
211 
212 	rp = data;
213 	sx_assert(&proctree_lock, SX_LOCKED);
214 	PROC_UNLOCK(p);
215 	reap = (p->p_treeflag & P_TREE_REAPER) == 0 ? p->p_reaper : p;
216 	n = i = 0;
217 	error = 0;
218 	LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling)
219 		n++;
220 	sx_unlock(&proctree_lock);
221 	if (rp->rp_count < n)
222 		n = rp->rp_count;
223 	pi = malloc(n * sizeof(*pi), M_TEMP, M_WAITOK);
224 	sx_slock(&proctree_lock);
225 	LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) {
226 		if (i == n)
227 			break;
228 		pip = &pi[i];
229 		bzero(pip, sizeof(*pip));
230 		pip->pi_pid = p2->p_pid;
231 		pip->pi_subtree = p2->p_reapsubtree;
232 		pip->pi_flags = REAPER_PIDINFO_VALID;
233 		if (proc_realparent(p2) == reap)
234 			pip->pi_flags |= REAPER_PIDINFO_CHILD;
235 		if ((p2->p_treeflag & P_TREE_REAPER) != 0)
236 			pip->pi_flags |= REAPER_PIDINFO_REAPER;
237 		if ((p2->p_flag & P_STOPPED) != 0)
238 			pip->pi_flags |= REAPER_PIDINFO_STOPPED;
239 		if (p2->p_state == PRS_ZOMBIE)
240 			pip->pi_flags |= REAPER_PIDINFO_ZOMBIE;
241 		else if ((p2->p_flag & P_WEXIT) != 0)
242 			pip->pi_flags |= REAPER_PIDINFO_EXITING;
243 		i++;
244 	}
245 	sx_sunlock(&proctree_lock);
246 	error = copyout(pi, rp->rp_pids, i * sizeof(*pi));
247 	free(pi, M_TEMP);
248 	sx_slock(&proctree_lock);
249 	PROC_LOCK(p);
250 	return (error);
251 }
252 
253 struct reap_kill_proc_work {
254 	struct ucred *cr;
255 	struct proc *target;
256 	ksiginfo_t *ksi;
257 	struct procctl_reaper_kill *rk;
258 	int *error;
259 	struct task t;
260 };
261 
262 static void
263 reap_kill_proc_locked(struct reap_kill_proc_work *w)
264 {
265 	int error1;
266 	bool need_stop;
267 
268 	PROC_LOCK_ASSERT(w->target, MA_OWNED);
269 	PROC_ASSERT_HELD(w->target);
270 
271 	error1 = cr_cansignal(w->cr, w->target, w->rk->rk_sig);
272 	if (error1 != 0) {
273 		if (*w->error == ESRCH) {
274 			w->rk->rk_fpid = w->target->p_pid;
275 			*w->error = error1;
276 		}
277 		return;
278 	}
279 
280 	/*
281 	 * The need_stop indicates if the target process needs to be
282 	 * suspended before being signalled.  This is needed when we
283 	 * guarantee that all processes in subtree are signalled,
284 	 * avoiding the race with some process not yet fully linked
285 	 * into all structures during fork, ignored by iterator, and
286 	 * then escaping signalling.
287 	 *
288 	 * The thread cannot usefully stop itself anyway, and if other
289 	 * thread of the current process forks while the current
290 	 * thread signals the whole subtree, it is an application
291 	 * race.
292 	 */
293 	if ((w->target->p_flag & (P_KPROC | P_SYSTEM | P_STOPPED)) == 0)
294 		need_stop = thread_single(w->target, SINGLE_ALLPROC) == 0;
295 	else
296 		need_stop = false;
297 
298 	(void)pksignal(w->target, w->rk->rk_sig, w->ksi);
299 	w->rk->rk_killed++;
300 	*w->error = error1;
301 
302 	if (need_stop)
303 		thread_single_end(w->target, SINGLE_ALLPROC);
304 }
305 
306 static void
307 reap_kill_proc_work(void *arg, int pending __unused)
308 {
309 	struct reap_kill_proc_work *w;
310 
311 	w = arg;
312 	PROC_LOCK(w->target);
313 	if ((w->target->p_flag2 & P2_WEXIT) == 0)
314 		reap_kill_proc_locked(w);
315 	PROC_UNLOCK(w->target);
316 
317 	sx_xlock(&proctree_lock);
318 	w->target = NULL;
319 	wakeup(&w->target);
320 	sx_xunlock(&proctree_lock);
321 }
322 
323 struct reap_kill_tracker {
324 	struct proc *parent;
325 	TAILQ_ENTRY(reap_kill_tracker) link;
326 };
327 
328 TAILQ_HEAD(reap_kill_tracker_head, reap_kill_tracker);
329 
330 static void
331 reap_kill_sched(struct reap_kill_tracker_head *tracker, struct proc *p2)
332 {
333 	struct reap_kill_tracker *t;
334 
335 	PROC_LOCK(p2);
336 	if ((p2->p_flag2 & P2_WEXIT) != 0) {
337 		PROC_UNLOCK(p2);
338 		return;
339 	}
340 	_PHOLD_LITE(p2);
341 	PROC_UNLOCK(p2);
342 	t = malloc(sizeof(struct reap_kill_tracker), M_TEMP, M_WAITOK);
343 	t->parent = p2;
344 	TAILQ_INSERT_TAIL(tracker, t, link);
345 }
346 
347 static void
348 reap_kill_sched_free(struct reap_kill_tracker *t)
349 {
350 	PRELE(t->parent);
351 	free(t, M_TEMP);
352 }
353 
354 static void
355 reap_kill_children(struct thread *td, struct proc *reaper,
356     struct procctl_reaper_kill *rk, ksiginfo_t *ksi, int *error)
357 {
358 	struct proc *p2;
359 	int error1;
360 
361 	LIST_FOREACH(p2, &reaper->p_children, p_sibling) {
362 		PROC_LOCK(p2);
363 		if ((p2->p_flag2 & P2_WEXIT) == 0) {
364 			error1 = p_cansignal(td, p2, rk->rk_sig);
365 			if (error1 != 0) {
366 				if (*error == ESRCH) {
367 					rk->rk_fpid = p2->p_pid;
368 					*error = error1;
369 				}
370 
371 				/*
372 				 * Do not end the loop on error,
373 				 * signal everything we can.
374 				 */
375 			} else {
376 				(void)pksignal(p2, rk->rk_sig, ksi);
377 				rk->rk_killed++;
378 			}
379 		}
380 		PROC_UNLOCK(p2);
381 	}
382 }
383 
384 static bool
385 reap_kill_subtree_once(struct thread *td, struct proc *p, struct proc *reaper,
386     struct unrhdr *pids, struct reap_kill_proc_work *w)
387 {
388 	struct reap_kill_tracker_head tracker;
389 	struct reap_kill_tracker *t;
390 	struct proc *p2;
391 	int r, xlocked;
392 	bool res, st;
393 
394 	res = false;
395 	TAILQ_INIT(&tracker);
396 	reap_kill_sched(&tracker, reaper);
397 	while ((t = TAILQ_FIRST(&tracker)) != NULL) {
398 		TAILQ_REMOVE(&tracker, t, link);
399 
400 		/*
401 		 * Since reap_kill_proc() drops proctree_lock sx, it
402 		 * is possible that the tracked reaper is no longer.
403 		 * In this case the subtree is reparented to the new
404 		 * reaper, which should handle it.
405 		 */
406 		if ((t->parent->p_treeflag & P_TREE_REAPER) == 0) {
407 			reap_kill_sched_free(t);
408 			res = true;
409 			continue;
410 		}
411 
412 		LIST_FOREACH(p2, &t->parent->p_reaplist, p_reapsibling) {
413 			if (t->parent == reaper &&
414 			    (w->rk->rk_flags & REAPER_KILL_SUBTREE) != 0 &&
415 			    p2->p_reapsubtree != w->rk->rk_subtree)
416 				continue;
417 			if ((p2->p_treeflag & P_TREE_REAPER) != 0)
418 				reap_kill_sched(&tracker, p2);
419 			if (alloc_unr_specific(pids, p2->p_pid) != p2->p_pid)
420 				continue;
421 			if (p2 == td->td_proc) {
422 				if ((p2->p_flag & P_HADTHREADS) != 0 &&
423 				    (p2->p_flag2 & P2_WEXIT) == 0) {
424 					xlocked = sx_xlocked(&proctree_lock);
425 					sx_unlock(&proctree_lock);
426 					st = true;
427 				} else {
428 					st = false;
429 				}
430 				PROC_LOCK(p2);
431 				if (st)
432 					r = thread_single(p2, SINGLE_NO_EXIT);
433 				(void)pksignal(p2, w->rk->rk_sig, w->ksi);
434 				w->rk->rk_killed++;
435 				if (st && r == 0)
436 					thread_single_end(p2, SINGLE_NO_EXIT);
437 				PROC_UNLOCK(p2);
438 				if (st) {
439 					if (xlocked)
440 						sx_xlock(&proctree_lock);
441 					else
442 						sx_slock(&proctree_lock);
443 				}
444 			} else {
445 				PROC_LOCK(p2);
446 				if ((p2->p_flag2 & P2_WEXIT) == 0) {
447 					_PHOLD_LITE(p2);
448 					PROC_UNLOCK(p2);
449 					w->target = p2;
450 					taskqueue_enqueue(taskqueue_thread,
451 					    &w->t);
452 					while (w->target != NULL) {
453 						sx_sleep(&w->target,
454 						    &proctree_lock, PWAIT,
455 						    "reapst", 0);
456 					}
457 					PROC_LOCK(p2);
458 					_PRELE(p2);
459 				}
460 				PROC_UNLOCK(p2);
461 			}
462 			res = true;
463 		}
464 		reap_kill_sched_free(t);
465 	}
466 	return (res);
467 }
468 
469 static void
470 reap_kill_subtree(struct thread *td, struct proc *p, struct proc *reaper,
471     struct reap_kill_proc_work *w)
472 {
473 	struct unrhdr pids;
474 
475 	/*
476 	 * pids records processes which were already signalled, to
477 	 * avoid doubling signals to them if iteration needs to be
478 	 * repeated.
479 	 */
480 	init_unrhdr(&pids, 1, PID_MAX, UNR_NO_MTX);
481 	PROC_LOCK(td->td_proc);
482 	if ((td->td_proc->p_flag2 & P2_WEXIT) != 0) {
483 		PROC_UNLOCK(td->td_proc);
484 		goto out;
485 	}
486 	PROC_UNLOCK(td->td_proc);
487 	while (reap_kill_subtree_once(td, p, reaper, &pids, w))
488 	       ;
489 out:
490 	clean_unrhdr(&pids);
491 	clear_unrhdr(&pids);
492 }
493 
494 static bool
495 reap_kill_sapblk(struct thread *td __unused, void *data)
496 {
497 	struct procctl_reaper_kill *rk;
498 
499 	rk = data;
500 	return ((rk->rk_flags & REAPER_KILL_CHILDREN) == 0);
501 }
502 
503 static int
504 reap_kill(struct thread *td, struct proc *p, void *data)
505 {
506 	struct reap_kill_proc_work w;
507 	struct proc *reaper;
508 	ksiginfo_t ksi;
509 	struct procctl_reaper_kill *rk;
510 	int error;
511 
512 	rk = data;
513 	sx_assert(&proctree_lock, SX_LOCKED);
514 	if (IN_CAPABILITY_MODE(td))
515 		return (ECAPMODE);
516 	if (rk->rk_sig <= 0 || rk->rk_sig > _SIG_MAXSIG ||
517 	    (rk->rk_flags & ~(REAPER_KILL_CHILDREN |
518 	    REAPER_KILL_SUBTREE)) != 0 || (rk->rk_flags &
519 	    (REAPER_KILL_CHILDREN | REAPER_KILL_SUBTREE)) ==
520 	    (REAPER_KILL_CHILDREN | REAPER_KILL_SUBTREE))
521 		return (EINVAL);
522 	PROC_UNLOCK(p);
523 	reaper = (p->p_treeflag & P_TREE_REAPER) == 0 ? p->p_reaper : p;
524 	ksiginfo_init(&ksi);
525 	ksi.ksi_signo = rk->rk_sig;
526 	ksi.ksi_code = SI_USER;
527 	ksi.ksi_pid = td->td_proc->p_pid;
528 	ksi.ksi_uid = td->td_ucred->cr_ruid;
529 	error = ESRCH;
530 	rk->rk_killed = 0;
531 	rk->rk_fpid = -1;
532 	if ((rk->rk_flags & REAPER_KILL_CHILDREN) != 0) {
533 		reap_kill_children(td, reaper, rk, &ksi, &error);
534 	} else {
535 		w.cr = crhold(td->td_ucred);
536 		w.ksi = &ksi;
537 		w.rk = rk;
538 		w.error = &error;
539 		TASK_INIT(&w.t, 0, reap_kill_proc_work, &w);
540 
541 		/*
542 		 * Prevent swapout, since w, ksi, and possibly rk, are
543 		 * allocated on the stack.  We sleep in
544 		 * reap_kill_subtree_once() waiting for task to
545 		 * complete single-threading.
546 		 */
547 		PHOLD(td->td_proc);
548 
549 		reap_kill_subtree(td, p, reaper, &w);
550 		PRELE(td->td_proc);
551 		crfree(w.cr);
552 	}
553 	PROC_LOCK(p);
554 	return (error);
555 }
556 
557 static int
558 trace_ctl(struct thread *td, struct proc *p, void *data)
559 {
560 	int state;
561 
562 	PROC_LOCK_ASSERT(p, MA_OWNED);
563 	state = *(int *)data;
564 
565 	/*
566 	 * Ktrace changes p_traceflag from or to zero under the
567 	 * process lock, so the test does not need to acquire ktrace
568 	 * mutex.
569 	 */
570 	if ((p->p_flag & P_TRACED) != 0 || p->p_traceflag != 0)
571 		return (EBUSY);
572 
573 	switch (state) {
574 	case PROC_TRACE_CTL_ENABLE:
575 		if (td->td_proc != p)
576 			return (EPERM);
577 		p->p_flag2 &= ~(P2_NOTRACE | P2_NOTRACE_EXEC);
578 		break;
579 	case PROC_TRACE_CTL_DISABLE_EXEC:
580 		p->p_flag2 |= P2_NOTRACE_EXEC | P2_NOTRACE;
581 		break;
582 	case PROC_TRACE_CTL_DISABLE:
583 		if ((p->p_flag2 & P2_NOTRACE_EXEC) != 0) {
584 			KASSERT((p->p_flag2 & P2_NOTRACE) != 0,
585 			    ("dandling P2_NOTRACE_EXEC"));
586 			if (td->td_proc != p)
587 				return (EPERM);
588 			p->p_flag2 &= ~P2_NOTRACE_EXEC;
589 		} else {
590 			p->p_flag2 |= P2_NOTRACE;
591 		}
592 		break;
593 	default:
594 		return (EINVAL);
595 	}
596 	return (0);
597 }
598 
599 static int
600 trace_status(struct thread *td, struct proc *p, void *data)
601 {
602 	int *status;
603 
604 	status = data;
605 	if ((p->p_flag2 & P2_NOTRACE) != 0) {
606 		KASSERT((p->p_flag & P_TRACED) == 0,
607 		    ("%d traced but tracing disabled", p->p_pid));
608 		*status = -1;
609 	} else if ((p->p_flag & P_TRACED) != 0) {
610 		*status = p->p_pptr->p_pid;
611 	} else {
612 		*status = 0;
613 	}
614 	return (0);
615 }
616 
617 static int
618 trapcap_ctl(struct thread *td, struct proc *p, void *data)
619 {
620 	int state;
621 
622 	PROC_LOCK_ASSERT(p, MA_OWNED);
623 	state = *(int *)data;
624 
625 	switch (state) {
626 	case PROC_TRAPCAP_CTL_ENABLE:
627 		p->p_flag2 |= P2_TRAPCAP;
628 		break;
629 	case PROC_TRAPCAP_CTL_DISABLE:
630 		p->p_flag2 &= ~P2_TRAPCAP;
631 		break;
632 	default:
633 		return (EINVAL);
634 	}
635 	return (0);
636 }
637 
638 static int
639 trapcap_status(struct thread *td, struct proc *p, void *data)
640 {
641 	int *status;
642 
643 	status = data;
644 	*status = (p->p_flag2 & P2_TRAPCAP) != 0 ? PROC_TRAPCAP_CTL_ENABLE :
645 	    PROC_TRAPCAP_CTL_DISABLE;
646 	return (0);
647 }
648 
649 static int
650 no_new_privs_ctl(struct thread *td, struct proc *p, void *data)
651 {
652 	int state;
653 
654 	PROC_LOCK_ASSERT(p, MA_OWNED);
655 	state = *(int *)data;
656 
657 	if (state != PROC_NO_NEW_PRIVS_ENABLE)
658 		return (EINVAL);
659 	p->p_flag2 |= P2_NO_NEW_PRIVS;
660 	return (0);
661 }
662 
663 static int
664 no_new_privs_status(struct thread *td, struct proc *p, void *data)
665 {
666 
667 	*(int *)data = (p->p_flag2 & P2_NO_NEW_PRIVS) != 0 ?
668 	    PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE;
669 	return (0);
670 }
671 
672 static int
673 protmax_ctl(struct thread *td, struct proc *p, void *data)
674 {
675 	int state;
676 
677 	PROC_LOCK_ASSERT(p, MA_OWNED);
678 	state = *(int *)data;
679 
680 	switch (state) {
681 	case PROC_PROTMAX_FORCE_ENABLE:
682 		p->p_flag2 &= ~P2_PROTMAX_DISABLE;
683 		p->p_flag2 |= P2_PROTMAX_ENABLE;
684 		break;
685 	case PROC_PROTMAX_FORCE_DISABLE:
686 		p->p_flag2 |= P2_PROTMAX_DISABLE;
687 		p->p_flag2 &= ~P2_PROTMAX_ENABLE;
688 		break;
689 	case PROC_PROTMAX_NOFORCE:
690 		p->p_flag2 &= ~(P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE);
691 		break;
692 	default:
693 		return (EINVAL);
694 	}
695 	return (0);
696 }
697 
698 static int
699 protmax_status(struct thread *td, struct proc *p, void *data)
700 {
701 	int d;
702 
703 	switch (p->p_flag2 & (P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE)) {
704 	case 0:
705 		d = PROC_PROTMAX_NOFORCE;
706 		break;
707 	case P2_PROTMAX_ENABLE:
708 		d = PROC_PROTMAX_FORCE_ENABLE;
709 		break;
710 	case P2_PROTMAX_DISABLE:
711 		d = PROC_PROTMAX_FORCE_DISABLE;
712 		break;
713 	}
714 	if (kern_mmap_maxprot(p, PROT_READ) == PROT_READ)
715 		d |= PROC_PROTMAX_ACTIVE;
716 	*(int *)data = d;
717 	return (0);
718 }
719 
720 static int
721 aslr_ctl(struct thread *td, struct proc *p, void *data)
722 {
723 	int state;
724 
725 	PROC_LOCK_ASSERT(p, MA_OWNED);
726 	state = *(int *)data;
727 
728 	switch (state) {
729 	case PROC_ASLR_FORCE_ENABLE:
730 		p->p_flag2 &= ~P2_ASLR_DISABLE;
731 		p->p_flag2 |= P2_ASLR_ENABLE;
732 		break;
733 	case PROC_ASLR_FORCE_DISABLE:
734 		p->p_flag2 |= P2_ASLR_DISABLE;
735 		p->p_flag2 &= ~P2_ASLR_ENABLE;
736 		break;
737 	case PROC_ASLR_NOFORCE:
738 		p->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE);
739 		break;
740 	default:
741 		return (EINVAL);
742 	}
743 	return (0);
744 }
745 
746 static int
747 aslr_status(struct thread *td, struct proc *p, void *data)
748 {
749 	struct vmspace *vm;
750 	int d;
751 
752 	switch (p->p_flag2 & (P2_ASLR_ENABLE | P2_ASLR_DISABLE)) {
753 	case 0:
754 		d = PROC_ASLR_NOFORCE;
755 		break;
756 	case P2_ASLR_ENABLE:
757 		d = PROC_ASLR_FORCE_ENABLE;
758 		break;
759 	case P2_ASLR_DISABLE:
760 		d = PROC_ASLR_FORCE_DISABLE;
761 		break;
762 	}
763 	if ((p->p_flag & P_WEXIT) == 0) {
764 		_PHOLD(p);
765 		PROC_UNLOCK(p);
766 		vm = vmspace_acquire_ref(p);
767 		if (vm != NULL) {
768 			if ((vm->vm_map.flags & MAP_ASLR) != 0)
769 				d |= PROC_ASLR_ACTIVE;
770 			vmspace_free(vm);
771 		}
772 		PROC_LOCK(p);
773 		_PRELE(p);
774 	}
775 	*(int *)data = d;
776 	return (0);
777 }
778 
779 static int
780 stackgap_ctl(struct thread *td, struct proc *p, void *data)
781 {
782 	int state;
783 
784 	PROC_LOCK_ASSERT(p, MA_OWNED);
785 	state = *(int *)data;
786 
787 	if ((state & ~(PROC_STACKGAP_ENABLE | PROC_STACKGAP_DISABLE |
788 	    PROC_STACKGAP_ENABLE_EXEC | PROC_STACKGAP_DISABLE_EXEC)) != 0)
789 		return (EINVAL);
790 	switch (state & (PROC_STACKGAP_ENABLE | PROC_STACKGAP_DISABLE)) {
791 	case PROC_STACKGAP_ENABLE:
792 		if ((p->p_flag2 & P2_STKGAP_DISABLE) != 0)
793 			return (EINVAL);
794 		break;
795 	case PROC_STACKGAP_DISABLE:
796 		p->p_flag2 |= P2_STKGAP_DISABLE;
797 		break;
798 	case 0:
799 		break;
800 	default:
801 		return (EINVAL);
802 	}
803 	switch (state & (PROC_STACKGAP_ENABLE_EXEC |
804 	    PROC_STACKGAP_DISABLE_EXEC)) {
805 	case PROC_STACKGAP_ENABLE_EXEC:
806 		p->p_flag2 &= ~P2_STKGAP_DISABLE_EXEC;
807 		break;
808 	case PROC_STACKGAP_DISABLE_EXEC:
809 		p->p_flag2 |= P2_STKGAP_DISABLE_EXEC;
810 		break;
811 	case 0:
812 		break;
813 	default:
814 		return (EINVAL);
815 	}
816 	return (0);
817 }
818 
819 static int
820 stackgap_status(struct thread *td, struct proc *p, void *data)
821 {
822 	int d;
823 
824 	PROC_LOCK_ASSERT(p, MA_OWNED);
825 
826 	d = (p->p_flag2 & P2_STKGAP_DISABLE) != 0 ? PROC_STACKGAP_DISABLE :
827 	    PROC_STACKGAP_ENABLE;
828 	d |= (p->p_flag2 & P2_STKGAP_DISABLE_EXEC) != 0 ?
829 	    PROC_STACKGAP_DISABLE_EXEC : PROC_STACKGAP_ENABLE_EXEC;
830 	*(int *)data = d;
831 	return (0);
832 }
833 
834 static int
835 wxmap_ctl(struct thread *td, struct proc *p, void *data)
836 {
837 	struct vmspace *vm;
838 	vm_map_t map;
839 	int state;
840 
841 	PROC_LOCK_ASSERT(p, MA_OWNED);
842 	if ((p->p_flag & P_WEXIT) != 0)
843 		return (ESRCH);
844 	state = *(int *)data;
845 
846 	switch (state) {
847 	case PROC_WX_MAPPINGS_PERMIT:
848 		p->p_flag2 |= P2_WXORX_DISABLE;
849 		_PHOLD(p);
850 		PROC_UNLOCK(p);
851 		vm = vmspace_acquire_ref(p);
852 		if (vm != NULL) {
853 			map = &vm->vm_map;
854 			vm_map_lock(map);
855 			map->flags &= ~MAP_WXORX;
856 			vm_map_unlock(map);
857 			vmspace_free(vm);
858 		}
859 		PROC_LOCK(p);
860 		_PRELE(p);
861 		break;
862 	case PROC_WX_MAPPINGS_DISALLOW_EXEC:
863 		p->p_flag2 |= P2_WXORX_ENABLE_EXEC;
864 		break;
865 	default:
866 		return (EINVAL);
867 	}
868 
869 	return (0);
870 }
871 
872 static int
873 wxmap_status(struct thread *td, struct proc *p, void *data)
874 {
875 	struct vmspace *vm;
876 	int d;
877 
878 	PROC_LOCK_ASSERT(p, MA_OWNED);
879 	if ((p->p_flag & P_WEXIT) != 0)
880 		return (ESRCH);
881 
882 	d = 0;
883 	if ((p->p_flag2 & P2_WXORX_DISABLE) != 0)
884 		d |= PROC_WX_MAPPINGS_PERMIT;
885 	if ((p->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
886 		d |= PROC_WX_MAPPINGS_DISALLOW_EXEC;
887 	_PHOLD(p);
888 	PROC_UNLOCK(p);
889 	vm = vmspace_acquire_ref(p);
890 	if (vm != NULL) {
891 		if ((vm->vm_map.flags & MAP_WXORX) != 0)
892 			d |= PROC_WXORX_ENFORCE;
893 		vmspace_free(vm);
894 	}
895 	PROC_LOCK(p);
896 	_PRELE(p);
897 	*(int *)data = d;
898 	return (0);
899 }
900 
901 static int
902 pdeathsig_ctl(struct thread *td, struct proc *p, void *data)
903 {
904 	int signum;
905 
906 	signum = *(int *)data;
907 	if (p != td->td_proc || (signum != 0 && !_SIG_VALID(signum)))
908 		return (EINVAL);
909 	p->p_pdeathsig = signum;
910 	return (0);
911 }
912 
913 static int
914 pdeathsig_status(struct thread *td, struct proc *p, void *data)
915 {
916 	if (p != td->td_proc)
917 		return (EINVAL);
918 	*(int *)data = p->p_pdeathsig;
919 	return (0);
920 }
921 
922 enum {
923 	PCTL_SLOCKED,
924 	PCTL_XLOCKED,
925 	PCTL_UNLOCKED,
926 };
927 
928 struct procctl_cmd_info {
929 	int lock_tree;
930 	bool one_proc : 1;
931 	bool esrch_is_einval : 1;
932 	bool copyout_on_error : 1;
933 	bool no_nonnull_data : 1;
934 	bool need_candebug : 1;
935 	int copyin_sz;
936 	int copyout_sz;
937 	int (*exec)(struct thread *, struct proc *, void *);
938 	bool (*sapblk)(struct thread *, void *);
939 };
940 static const struct procctl_cmd_info procctl_cmds_info[] = {
941 	[PROC_SPROTECT] =
942 	    { .lock_tree = PCTL_SLOCKED, .one_proc = false,
943 	      .esrch_is_einval = false, .no_nonnull_data = false,
944 	      .need_candebug = false,
945 	      .copyin_sz = sizeof(int), .copyout_sz = 0,
946 	      .exec = protect_set, .copyout_on_error = false, },
947 	[PROC_REAP_ACQUIRE] =
948 	    { .lock_tree = PCTL_XLOCKED, .one_proc = true,
949 	      .esrch_is_einval = false, .no_nonnull_data = true,
950 	      .need_candebug = false,
951 	      .copyin_sz = 0, .copyout_sz = 0,
952 	      .exec = reap_acquire, .copyout_on_error = false, },
953 	[PROC_REAP_RELEASE] =
954 	    { .lock_tree = PCTL_XLOCKED, .one_proc = true,
955 	      .esrch_is_einval = false, .no_nonnull_data = true,
956 	      .need_candebug = false,
957 	      .copyin_sz = 0, .copyout_sz = 0,
958 	      .exec = reap_release, .copyout_on_error = false, },
959 	[PROC_REAP_STATUS] =
960 	    { .lock_tree = PCTL_SLOCKED, .one_proc = true,
961 	      .esrch_is_einval = false, .no_nonnull_data = false,
962 	      .need_candebug = false,
963 	      .copyin_sz = 0,
964 	      .copyout_sz = sizeof(struct procctl_reaper_status),
965 	      .exec = reap_status, .copyout_on_error = false, },
966 	[PROC_REAP_GETPIDS] =
967 	    { .lock_tree = PCTL_SLOCKED, .one_proc = true,
968 	      .esrch_is_einval = false, .no_nonnull_data = false,
969 	      .need_candebug = false,
970 	      .copyin_sz = sizeof(struct procctl_reaper_pids),
971 	      .copyout_sz = 0,
972 	      .exec = reap_getpids, .copyout_on_error = false, },
973 	[PROC_REAP_KILL] =
974 	    { .lock_tree = PCTL_SLOCKED, .one_proc = true,
975 	      .esrch_is_einval = false, .no_nonnull_data = false,
976 	      .need_candebug = false,
977 	      .copyin_sz = sizeof(struct procctl_reaper_kill),
978 	      .copyout_sz = sizeof(struct procctl_reaper_kill),
979 	      .exec = reap_kill, .copyout_on_error = true,
980 	      .sapblk = reap_kill_sapblk, },
981 	[PROC_TRACE_CTL] =
982 	    { .lock_tree = PCTL_SLOCKED, .one_proc = false,
983 	      .esrch_is_einval = false, .no_nonnull_data = false,
984 	      .need_candebug = true,
985 	      .copyin_sz = sizeof(int), .copyout_sz = 0,
986 	      .exec = trace_ctl, .copyout_on_error = false, },
987 	[PROC_TRACE_STATUS] =
988 	    { .lock_tree = PCTL_UNLOCKED, .one_proc = true,
989 	      .esrch_is_einval = false, .no_nonnull_data = false,
990 	      .need_candebug = false,
991 	      .copyin_sz = 0, .copyout_sz = sizeof(int),
992 	      .exec = trace_status, .copyout_on_error = false, },
993 	[PROC_TRAPCAP_CTL] =
994 	    { .lock_tree = PCTL_SLOCKED, .one_proc = false,
995 	      .esrch_is_einval = false, .no_nonnull_data = false,
996 	      .need_candebug = true,
997 	      .copyin_sz = sizeof(int), .copyout_sz = 0,
998 	      .exec = trapcap_ctl, .copyout_on_error = false, },
999 	[PROC_TRAPCAP_STATUS] =
1000 	    { .lock_tree = PCTL_UNLOCKED, .one_proc = true,
1001 	      .esrch_is_einval = false, .no_nonnull_data = false,
1002 	      .need_candebug = false,
1003 	      .copyin_sz = 0, .copyout_sz = sizeof(int),
1004 	      .exec = trapcap_status, .copyout_on_error = false, },
1005 	[PROC_PDEATHSIG_CTL] =
1006 	    { .lock_tree = PCTL_UNLOCKED, .one_proc = true,
1007 	      .esrch_is_einval = true, .no_nonnull_data = false,
1008 	      .need_candebug = false,
1009 	      .copyin_sz = sizeof(int), .copyout_sz = 0,
1010 	      .exec = pdeathsig_ctl, .copyout_on_error = false, },
1011 	[PROC_PDEATHSIG_STATUS] =
1012 	    { .lock_tree = PCTL_UNLOCKED, .one_proc = true,
1013 	      .esrch_is_einval = true, .no_nonnull_data = false,
1014 	      .need_candebug = false,
1015 	      .copyin_sz = 0, .copyout_sz = sizeof(int),
1016 	      .exec = pdeathsig_status, .copyout_on_error = false, },
1017 	[PROC_ASLR_CTL] =
1018 	    { .lock_tree = PCTL_UNLOCKED, .one_proc = true,
1019 	      .esrch_is_einval = false, .no_nonnull_data = false,
1020 	      .need_candebug = true,
1021 	      .copyin_sz = sizeof(int), .copyout_sz = 0,
1022 	      .exec = aslr_ctl, .copyout_on_error = false, },
1023 	[PROC_ASLR_STATUS] =
1024 	    { .lock_tree = PCTL_UNLOCKED, .one_proc = true,
1025 	      .esrch_is_einval = false, .no_nonnull_data = false,
1026 	      .need_candebug = false,
1027 	      .copyin_sz = 0, .copyout_sz = sizeof(int),
1028 	      .exec = aslr_status, .copyout_on_error = false, },
1029 	[PROC_PROTMAX_CTL] =
1030 	    { .lock_tree = PCTL_UNLOCKED, .one_proc = true,
1031 	      .esrch_is_einval = false, .no_nonnull_data = false,
1032 	      .need_candebug = true,
1033 	      .copyin_sz = sizeof(int), .copyout_sz = 0,
1034 	      .exec = protmax_ctl, .copyout_on_error = false, },
1035 	[PROC_PROTMAX_STATUS] =
1036 	    { .lock_tree = PCTL_UNLOCKED, .one_proc = true,
1037 	      .esrch_is_einval = false, .no_nonnull_data = false,
1038 	      .need_candebug = false,
1039 	      .copyin_sz = 0, .copyout_sz = sizeof(int),
1040 	      .exec = protmax_status, .copyout_on_error = false, },
1041 	[PROC_STACKGAP_CTL] =
1042 	    { .lock_tree = PCTL_UNLOCKED, .one_proc = true,
1043 	      .esrch_is_einval = false, .no_nonnull_data = false,
1044 	      .need_candebug = true,
1045 	      .copyin_sz = sizeof(int), .copyout_sz = 0,
1046 	      .exec = stackgap_ctl, .copyout_on_error = false, },
1047 	[PROC_STACKGAP_STATUS] =
1048 	    { .lock_tree = PCTL_UNLOCKED, .one_proc = true,
1049 	      .esrch_is_einval = false, .no_nonnull_data = false,
1050 	      .need_candebug = false,
1051 	      .copyin_sz = 0, .copyout_sz = sizeof(int),
1052 	      .exec = stackgap_status, .copyout_on_error = false, },
1053 	[PROC_NO_NEW_PRIVS_CTL] =
1054 	    { .lock_tree = PCTL_SLOCKED, .one_proc = true,
1055 	      .esrch_is_einval = false, .no_nonnull_data = false,
1056 	      .need_candebug = true,
1057 	      .copyin_sz = sizeof(int), .copyout_sz = 0,
1058 	      .exec = no_new_privs_ctl, .copyout_on_error = false, },
1059 	[PROC_NO_NEW_PRIVS_STATUS] =
1060 	    { .lock_tree = PCTL_UNLOCKED, .one_proc = true,
1061 	      .esrch_is_einval = false, .no_nonnull_data = false,
1062 	      .need_candebug = false,
1063 	      .copyin_sz = 0, .copyout_sz = sizeof(int),
1064 	      .exec = no_new_privs_status, .copyout_on_error = false, },
1065 	[PROC_WXMAP_CTL] =
1066 	    { .lock_tree = PCTL_UNLOCKED, .one_proc = true,
1067 	      .esrch_is_einval = false, .no_nonnull_data = false,
1068 	      .need_candebug = true,
1069 	      .copyin_sz = sizeof(int), .copyout_sz = 0,
1070 	      .exec = wxmap_ctl, .copyout_on_error = false, },
1071 	[PROC_WXMAP_STATUS] =
1072 	    { .lock_tree = PCTL_UNLOCKED, .one_proc = true,
1073 	      .esrch_is_einval = false, .no_nonnull_data = false,
1074 	      .need_candebug = false,
1075 	      .copyin_sz = 0, .copyout_sz = sizeof(int),
1076 	      .exec = wxmap_status, .copyout_on_error = false, },
1077 };
1078 
1079 int
1080 sys_procctl(struct thread *td, struct procctl_args *uap)
1081 {
1082 	union {
1083 		struct procctl_reaper_status rs;
1084 		struct procctl_reaper_pids rp;
1085 		struct procctl_reaper_kill rk;
1086 		int flags;
1087 	} x;
1088 	const struct procctl_cmd_info *cmd_info;
1089 	int error, error1;
1090 
1091 	if (uap->com >= PROC_PROCCTL_MD_MIN)
1092 		return (cpu_procctl(td, uap->idtype, uap->id,
1093 		    uap->com, uap->data));
1094 	if (uap->com == 0 || uap->com >= nitems(procctl_cmds_info))
1095 		return (EINVAL);
1096 	cmd_info = &procctl_cmds_info[uap->com];
1097 	bzero(&x, sizeof(x));
1098 
1099 	if (cmd_info->copyin_sz > 0) {
1100 		error = copyin(uap->data, &x, cmd_info->copyin_sz);
1101 		if (error != 0)
1102 			return (error);
1103 	} else if (cmd_info->no_nonnull_data && uap->data != NULL) {
1104 		return (EINVAL);
1105 	}
1106 
1107 	error = kern_procctl(td, uap->idtype, uap->id, uap->com, &x);
1108 
1109 	if (cmd_info->copyout_sz > 0 && (error == 0 ||
1110 	    cmd_info->copyout_on_error)) {
1111 		error1 = copyout(&x, uap->data, cmd_info->copyout_sz);
1112 		if (error == 0)
1113 			error = error1;
1114 	}
1115 	return (error);
1116 }
1117 
1118 static int
1119 kern_procctl_single(struct thread *td, struct proc *p, int com, void *data)
1120 {
1121 
1122 	PROC_LOCK_ASSERT(p, MA_OWNED);
1123 	return (procctl_cmds_info[com].exec(td, p, data));
1124 }
1125 
1126 int
1127 kern_procctl(struct thread *td, idtype_t idtype, id_t id, int com, void *data)
1128 {
1129 	struct pgrp *pg;
1130 	struct proc *p;
1131 	const struct procctl_cmd_info *cmd_info;
1132 	int error, first_error, ok;
1133 	bool sapblk;
1134 
1135 	MPASS(com > 0 && com < nitems(procctl_cmds_info));
1136 	cmd_info = &procctl_cmds_info[com];
1137 	if (idtype != P_PID && cmd_info->one_proc)
1138 		return (EINVAL);
1139 
1140 	sapblk = false;
1141 	if (cmd_info->sapblk != NULL) {
1142 		sapblk = cmd_info->sapblk(td, data);
1143 		if (sapblk && !stop_all_proc_block())
1144 			return (ERESTART);
1145 	}
1146 
1147 	switch (cmd_info->lock_tree) {
1148 	case PCTL_XLOCKED:
1149 		sx_xlock(&proctree_lock);
1150 		break;
1151 	case PCTL_SLOCKED:
1152 		sx_slock(&proctree_lock);
1153 		break;
1154 	default:
1155 		break;
1156 	}
1157 
1158 	switch (idtype) {
1159 	case P_PID:
1160 		if (id == 0) {
1161 			p = td->td_proc;
1162 			error = 0;
1163 			PROC_LOCK(p);
1164 		} else {
1165 			p = pfind(id);
1166 			if (p == NULL) {
1167 				error = cmd_info->esrch_is_einval ?
1168 				    EINVAL : ESRCH;
1169 				break;
1170 			}
1171 			error = cmd_info->need_candebug ? p_candebug(td, p) :
1172 			    p_cansee(td, p);
1173 		}
1174 		if (error == 0)
1175 			error = kern_procctl_single(td, p, com, data);
1176 		PROC_UNLOCK(p);
1177 		break;
1178 	case P_PGID:
1179 		/*
1180 		 * Attempt to apply the operation to all members of the
1181 		 * group.  Ignore processes in the group that can't be
1182 		 * seen.  Ignore errors so long as at least one process is
1183 		 * able to complete the request successfully.
1184 		 */
1185 		pg = pgfind(id);
1186 		if (pg == NULL) {
1187 			error = ESRCH;
1188 			break;
1189 		}
1190 		PGRP_UNLOCK(pg);
1191 		ok = 0;
1192 		first_error = 0;
1193 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1194 			PROC_LOCK(p);
1195 			if (p->p_state == PRS_NEW ||
1196 			    p->p_state == PRS_ZOMBIE ||
1197 			    (cmd_info->need_candebug ? p_candebug(td, p) :
1198 			    p_cansee(td, p)) != 0) {
1199 				PROC_UNLOCK(p);
1200 				continue;
1201 			}
1202 			error = kern_procctl_single(td, p, com, data);
1203 			PROC_UNLOCK(p);
1204 			if (error == 0)
1205 				ok = 1;
1206 			else if (first_error == 0)
1207 				first_error = error;
1208 		}
1209 		if (ok)
1210 			error = 0;
1211 		else if (first_error != 0)
1212 			error = first_error;
1213 		else
1214 			/*
1215 			 * Was not able to see any processes in the
1216 			 * process group.
1217 			 */
1218 			error = ESRCH;
1219 		break;
1220 	default:
1221 		error = EINVAL;
1222 		break;
1223 	}
1224 
1225 	switch (cmd_info->lock_tree) {
1226 	case PCTL_XLOCKED:
1227 		sx_xunlock(&proctree_lock);
1228 		break;
1229 	case PCTL_SLOCKED:
1230 		sx_sunlock(&proctree_lock);
1231 		break;
1232 	default:
1233 		break;
1234 	}
1235 	if (sapblk)
1236 		stop_all_proc_unblock();
1237 	return (error);
1238 }
1239