1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/elf.h> 45 #include <sys/eventhandler.h> 46 #include <sys/exec.h> 47 #include <sys/jail.h> 48 #include <sys/kernel.h> 49 #include <sys/limits.h> 50 #include <sys/lock.h> 51 #include <sys/loginclass.h> 52 #include <sys/malloc.h> 53 #include <sys/mman.h> 54 #include <sys/mount.h> 55 #include <sys/mutex.h> 56 #include <sys/proc.h> 57 #include <sys/ptrace.h> 58 #include <sys/refcount.h> 59 #include <sys/resourcevar.h> 60 #include <sys/rwlock.h> 61 #include <sys/sbuf.h> 62 #include <sys/sysent.h> 63 #include <sys/sched.h> 64 #include <sys/smp.h> 65 #include <sys/stack.h> 66 #include <sys/stat.h> 67 #include <sys/sysctl.h> 68 #include <sys/filedesc.h> 69 #include <sys/tty.h> 70 #include <sys/signalvar.h> 71 #include <sys/sdt.h> 72 #include <sys/sx.h> 73 #include <sys/user.h> 74 #include <sys/vnode.h> 75 #include <sys/wait.h> 76 77 #ifdef DDB 78 #include <ddb/ddb.h> 79 #endif 80 81 #include <vm/vm.h> 82 #include <vm/vm_param.h> 83 #include <vm/vm_extern.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/uma.h> 89 90 #ifdef COMPAT_FREEBSD32 91 #include <compat/freebsd32/freebsd32.h> 92 #include <compat/freebsd32/freebsd32_util.h> 93 #endif 94 95 SDT_PROVIDER_DEFINE(proc); 96 97 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 98 MALLOC_DEFINE(M_SESSION, "session", "session header"); 99 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 100 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 101 102 static void doenterpgrp(struct proc *, struct pgrp *); 103 static void orphanpg(struct pgrp *pg); 104 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 105 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 106 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 107 int preferthread); 108 static void pgadjustjobc(struct pgrp *pgrp, int entering); 109 static void pgdelete(struct pgrp *); 110 static int proc_ctor(void *mem, int size, void *arg, int flags); 111 static void proc_dtor(void *mem, int size, void *arg); 112 static int proc_init(void *mem, int size, int flags); 113 static void proc_fini(void *mem, int size); 114 static void pargs_free(struct pargs *pa); 115 static struct proc *zpfind_locked(pid_t pid); 116 117 /* 118 * Other process lists 119 */ 120 struct pidhashhead *pidhashtbl; 121 u_long pidhash; 122 struct pgrphashhead *pgrphashtbl; 123 u_long pgrphash; 124 struct proclist allproc; 125 struct proclist zombproc; 126 struct sx __exclusive_cache_line allproc_lock; 127 struct sx __exclusive_cache_line proctree_lock; 128 struct mtx __exclusive_cache_line ppeers_lock; 129 uma_zone_t proc_zone; 130 131 /* 132 * The offset of various fields in struct proc and struct thread. 133 * These are used by kernel debuggers to enumerate kernel threads and 134 * processes. 135 */ 136 const int proc_off_p_pid = offsetof(struct proc, p_pid); 137 const int proc_off_p_comm = offsetof(struct proc, p_comm); 138 const int proc_off_p_list = offsetof(struct proc, p_list); 139 const int proc_off_p_threads = offsetof(struct proc, p_threads); 140 const int thread_off_td_tid = offsetof(struct thread, td_tid); 141 const int thread_off_td_name = offsetof(struct thread, td_name); 142 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 143 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 144 const int thread_off_td_plist = offsetof(struct thread, td_plist); 145 146 EVENTHANDLER_LIST_DEFINE(process_ctor); 147 EVENTHANDLER_LIST_DEFINE(process_dtor); 148 EVENTHANDLER_LIST_DEFINE(process_init); 149 EVENTHANDLER_LIST_DEFINE(process_fini); 150 EVENTHANDLER_LIST_DEFINE(process_exit); 151 EVENTHANDLER_LIST_DEFINE(process_fork); 152 EVENTHANDLER_LIST_DEFINE(process_exec); 153 154 EVENTHANDLER_LIST_DECLARE(thread_ctor); 155 EVENTHANDLER_LIST_DECLARE(thread_dtor); 156 157 int kstack_pages = KSTACK_PAGES; 158 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 159 "Kernel stack size in pages"); 160 static int vmmap_skip_res_cnt = 0; 161 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 162 &vmmap_skip_res_cnt, 0, 163 "Skip calculation of the pages resident count in kern.proc.vmmap"); 164 165 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 166 #ifdef COMPAT_FREEBSD32 167 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 168 #endif 169 170 /* 171 * Initialize global process hashing structures. 172 */ 173 void 174 procinit(void) 175 { 176 177 sx_init(&allproc_lock, "allproc"); 178 sx_init(&proctree_lock, "proctree"); 179 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 180 LIST_INIT(&allproc); 181 LIST_INIT(&zombproc); 182 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 183 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 184 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 185 proc_ctor, proc_dtor, proc_init, proc_fini, 186 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 187 uihashinit(); 188 } 189 190 /* 191 * Prepare a proc for use. 192 */ 193 static int 194 proc_ctor(void *mem, int size, void *arg, int flags) 195 { 196 struct proc *p; 197 struct thread *td; 198 199 p = (struct proc *)mem; 200 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 201 td = FIRST_THREAD_IN_PROC(p); 202 if (td != NULL) { 203 /* Make sure all thread constructors are executed */ 204 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 205 } 206 return (0); 207 } 208 209 /* 210 * Reclaim a proc after use. 211 */ 212 static void 213 proc_dtor(void *mem, int size, void *arg) 214 { 215 struct proc *p; 216 struct thread *td; 217 218 /* INVARIANTS checks go here */ 219 p = (struct proc *)mem; 220 td = FIRST_THREAD_IN_PROC(p); 221 if (td != NULL) { 222 #ifdef INVARIANTS 223 KASSERT((p->p_numthreads == 1), 224 ("bad number of threads in exiting process")); 225 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 226 #endif 227 /* Free all OSD associated to this thread. */ 228 osd_thread_exit(td); 229 td_softdep_cleanup(td); 230 MPASS(td->td_su == NULL); 231 232 /* Make sure all thread destructors are executed */ 233 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 234 } 235 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 236 if (p->p_ksi != NULL) 237 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 238 } 239 240 /* 241 * Initialize type-stable parts of a proc (when newly created). 242 */ 243 static int 244 proc_init(void *mem, int size, int flags) 245 { 246 struct proc *p; 247 248 p = (struct proc *)mem; 249 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 250 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 251 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 252 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 253 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 254 cv_init(&p->p_pwait, "ppwait"); 255 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 256 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 257 p->p_stats = pstats_alloc(); 258 p->p_pgrp = NULL; 259 return (0); 260 } 261 262 /* 263 * UMA should ensure that this function is never called. 264 * Freeing a proc structure would violate type stability. 265 */ 266 static void 267 proc_fini(void *mem, int size) 268 { 269 #ifdef notnow 270 struct proc *p; 271 272 p = (struct proc *)mem; 273 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 274 pstats_free(p->p_stats); 275 thread_free(FIRST_THREAD_IN_PROC(p)); 276 mtx_destroy(&p->p_mtx); 277 if (p->p_ksi != NULL) 278 ksiginfo_free(p->p_ksi); 279 #else 280 panic("proc reclaimed"); 281 #endif 282 } 283 284 /* 285 * Is p an inferior of the current process? 286 */ 287 int 288 inferior(struct proc *p) 289 { 290 291 sx_assert(&proctree_lock, SX_LOCKED); 292 PROC_LOCK_ASSERT(p, MA_OWNED); 293 for (; p != curproc; p = proc_realparent(p)) { 294 if (p->p_pid == 0) 295 return (0); 296 } 297 return (1); 298 } 299 300 struct proc * 301 pfind_locked(pid_t pid) 302 { 303 struct proc *p; 304 305 sx_assert(&allproc_lock, SX_LOCKED); 306 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 307 if (p->p_pid == pid) { 308 PROC_LOCK(p); 309 if (p->p_state == PRS_NEW) { 310 PROC_UNLOCK(p); 311 p = NULL; 312 } 313 break; 314 } 315 } 316 return (p); 317 } 318 319 /* 320 * Locate a process by number; return only "live" processes -- i.e., neither 321 * zombies nor newly born but incompletely initialized processes. By not 322 * returning processes in the PRS_NEW state, we allow callers to avoid 323 * testing for that condition to avoid dereferencing p_ucred, et al. 324 */ 325 struct proc * 326 pfind(pid_t pid) 327 { 328 struct proc *p; 329 330 p = curproc; 331 if (p->p_pid == pid) { 332 PROC_LOCK(p); 333 return (p); 334 } 335 sx_slock(&allproc_lock); 336 p = pfind_locked(pid); 337 sx_sunlock(&allproc_lock); 338 return (p); 339 } 340 341 /* 342 * Same as pfind but allow zombies. 343 */ 344 struct proc * 345 pfind_any(pid_t pid) 346 { 347 struct proc *p; 348 349 sx_slock(&allproc_lock); 350 p = pfind_locked(pid); 351 if (p == NULL) 352 p = zpfind_locked(pid); 353 sx_sunlock(&allproc_lock); 354 355 return (p); 356 } 357 358 static struct proc * 359 pfind_tid_locked(pid_t tid) 360 { 361 struct proc *p; 362 struct thread *td; 363 364 sx_assert(&allproc_lock, SX_LOCKED); 365 FOREACH_PROC_IN_SYSTEM(p) { 366 PROC_LOCK(p); 367 if (p->p_state == PRS_NEW) { 368 PROC_UNLOCK(p); 369 continue; 370 } 371 FOREACH_THREAD_IN_PROC(p, td) { 372 if (td->td_tid == tid) 373 goto found; 374 } 375 PROC_UNLOCK(p); 376 } 377 found: 378 return (p); 379 } 380 381 /* 382 * Locate a process group by number. 383 * The caller must hold proctree_lock. 384 */ 385 struct pgrp * 386 pgfind(pid_t pgid) 387 { 388 struct pgrp *pgrp; 389 390 sx_assert(&proctree_lock, SX_LOCKED); 391 392 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 393 if (pgrp->pg_id == pgid) { 394 PGRP_LOCK(pgrp); 395 return (pgrp); 396 } 397 } 398 return (NULL); 399 } 400 401 /* 402 * Locate process and do additional manipulations, depending on flags. 403 */ 404 int 405 pget(pid_t pid, int flags, struct proc **pp) 406 { 407 struct proc *p; 408 int error; 409 410 p = curproc; 411 if (p->p_pid == pid) { 412 PROC_LOCK(p); 413 } else { 414 sx_slock(&allproc_lock); 415 if (pid <= PID_MAX) { 416 p = pfind_locked(pid); 417 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 418 p = zpfind_locked(pid); 419 } else if ((flags & PGET_NOTID) == 0) { 420 p = pfind_tid_locked(pid); 421 } else { 422 p = NULL; 423 } 424 sx_sunlock(&allproc_lock); 425 if (p == NULL) 426 return (ESRCH); 427 if ((flags & PGET_CANSEE) != 0) { 428 error = p_cansee(curthread, p); 429 if (error != 0) 430 goto errout; 431 } 432 } 433 if ((flags & PGET_CANDEBUG) != 0) { 434 error = p_candebug(curthread, p); 435 if (error != 0) 436 goto errout; 437 } 438 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 439 error = EPERM; 440 goto errout; 441 } 442 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 443 error = ESRCH; 444 goto errout; 445 } 446 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 447 /* 448 * XXXRW: Not clear ESRCH is the right error during proc 449 * execve(). 450 */ 451 error = ESRCH; 452 goto errout; 453 } 454 if ((flags & PGET_HOLD) != 0) { 455 _PHOLD(p); 456 PROC_UNLOCK(p); 457 } 458 *pp = p; 459 return (0); 460 errout: 461 PROC_UNLOCK(p); 462 return (error); 463 } 464 465 /* 466 * Create a new process group. 467 * pgid must be equal to the pid of p. 468 * Begin a new session if required. 469 */ 470 int 471 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 472 { 473 474 sx_assert(&proctree_lock, SX_XLOCKED); 475 476 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 477 KASSERT(p->p_pid == pgid, 478 ("enterpgrp: new pgrp and pid != pgid")); 479 KASSERT(pgfind(pgid) == NULL, 480 ("enterpgrp: pgrp with pgid exists")); 481 KASSERT(!SESS_LEADER(p), 482 ("enterpgrp: session leader attempted setpgrp")); 483 484 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 485 486 if (sess != NULL) { 487 /* 488 * new session 489 */ 490 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 491 PROC_LOCK(p); 492 p->p_flag &= ~P_CONTROLT; 493 PROC_UNLOCK(p); 494 PGRP_LOCK(pgrp); 495 sess->s_leader = p; 496 sess->s_sid = p->p_pid; 497 refcount_init(&sess->s_count, 1); 498 sess->s_ttyvp = NULL; 499 sess->s_ttydp = NULL; 500 sess->s_ttyp = NULL; 501 bcopy(p->p_session->s_login, sess->s_login, 502 sizeof(sess->s_login)); 503 pgrp->pg_session = sess; 504 KASSERT(p == curproc, 505 ("enterpgrp: mksession and p != curproc")); 506 } else { 507 pgrp->pg_session = p->p_session; 508 sess_hold(pgrp->pg_session); 509 PGRP_LOCK(pgrp); 510 } 511 pgrp->pg_id = pgid; 512 LIST_INIT(&pgrp->pg_members); 513 514 /* 515 * As we have an exclusive lock of proctree_lock, 516 * this should not deadlock. 517 */ 518 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 519 pgrp->pg_jobc = 0; 520 SLIST_INIT(&pgrp->pg_sigiolst); 521 PGRP_UNLOCK(pgrp); 522 523 doenterpgrp(p, pgrp); 524 525 return (0); 526 } 527 528 /* 529 * Move p to an existing process group 530 */ 531 int 532 enterthispgrp(struct proc *p, struct pgrp *pgrp) 533 { 534 535 sx_assert(&proctree_lock, SX_XLOCKED); 536 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 537 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 538 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 539 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 540 KASSERT(pgrp->pg_session == p->p_session, 541 ("%s: pgrp's session %p, p->p_session %p.\n", 542 __func__, 543 pgrp->pg_session, 544 p->p_session)); 545 KASSERT(pgrp != p->p_pgrp, 546 ("%s: p belongs to pgrp.", __func__)); 547 548 doenterpgrp(p, pgrp); 549 550 return (0); 551 } 552 553 /* 554 * Move p to a process group 555 */ 556 static void 557 doenterpgrp(struct proc *p, struct pgrp *pgrp) 558 { 559 struct pgrp *savepgrp; 560 561 sx_assert(&proctree_lock, SX_XLOCKED); 562 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 563 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 564 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 565 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 566 567 savepgrp = p->p_pgrp; 568 569 /* 570 * Adjust eligibility of affected pgrps to participate in job control. 571 * Increment eligibility counts before decrementing, otherwise we 572 * could reach 0 spuriously during the first call. 573 */ 574 fixjobc(p, pgrp, 1); 575 fixjobc(p, p->p_pgrp, 0); 576 577 PGRP_LOCK(pgrp); 578 PGRP_LOCK(savepgrp); 579 PROC_LOCK(p); 580 LIST_REMOVE(p, p_pglist); 581 p->p_pgrp = pgrp; 582 PROC_UNLOCK(p); 583 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 584 PGRP_UNLOCK(savepgrp); 585 PGRP_UNLOCK(pgrp); 586 if (LIST_EMPTY(&savepgrp->pg_members)) 587 pgdelete(savepgrp); 588 } 589 590 /* 591 * remove process from process group 592 */ 593 int 594 leavepgrp(struct proc *p) 595 { 596 struct pgrp *savepgrp; 597 598 sx_assert(&proctree_lock, SX_XLOCKED); 599 savepgrp = p->p_pgrp; 600 PGRP_LOCK(savepgrp); 601 PROC_LOCK(p); 602 LIST_REMOVE(p, p_pglist); 603 p->p_pgrp = NULL; 604 PROC_UNLOCK(p); 605 PGRP_UNLOCK(savepgrp); 606 if (LIST_EMPTY(&savepgrp->pg_members)) 607 pgdelete(savepgrp); 608 return (0); 609 } 610 611 /* 612 * delete a process group 613 */ 614 static void 615 pgdelete(struct pgrp *pgrp) 616 { 617 struct session *savesess; 618 struct tty *tp; 619 620 sx_assert(&proctree_lock, SX_XLOCKED); 621 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 622 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 623 624 /* 625 * Reset any sigio structures pointing to us as a result of 626 * F_SETOWN with our pgid. 627 */ 628 funsetownlst(&pgrp->pg_sigiolst); 629 630 PGRP_LOCK(pgrp); 631 tp = pgrp->pg_session->s_ttyp; 632 LIST_REMOVE(pgrp, pg_hash); 633 savesess = pgrp->pg_session; 634 PGRP_UNLOCK(pgrp); 635 636 /* Remove the reference to the pgrp before deallocating it. */ 637 if (tp != NULL) { 638 tty_lock(tp); 639 tty_rel_pgrp(tp, pgrp); 640 } 641 642 mtx_destroy(&pgrp->pg_mtx); 643 free(pgrp, M_PGRP); 644 sess_release(savesess); 645 } 646 647 static void 648 pgadjustjobc(struct pgrp *pgrp, int entering) 649 { 650 651 PGRP_LOCK(pgrp); 652 if (entering) 653 pgrp->pg_jobc++; 654 else { 655 --pgrp->pg_jobc; 656 if (pgrp->pg_jobc == 0) 657 orphanpg(pgrp); 658 } 659 PGRP_UNLOCK(pgrp); 660 } 661 662 /* 663 * Adjust pgrp jobc counters when specified process changes process group. 664 * We count the number of processes in each process group that "qualify" 665 * the group for terminal job control (those with a parent in a different 666 * process group of the same session). If that count reaches zero, the 667 * process group becomes orphaned. Check both the specified process' 668 * process group and that of its children. 669 * entering == 0 => p is leaving specified group. 670 * entering == 1 => p is entering specified group. 671 */ 672 void 673 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 674 { 675 struct pgrp *hispgrp; 676 struct session *mysession; 677 struct proc *q; 678 679 sx_assert(&proctree_lock, SX_LOCKED); 680 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 681 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 682 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 683 684 /* 685 * Check p's parent to see whether p qualifies its own process 686 * group; if so, adjust count for p's process group. 687 */ 688 mysession = pgrp->pg_session; 689 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 690 hispgrp->pg_session == mysession) 691 pgadjustjobc(pgrp, entering); 692 693 /* 694 * Check this process' children to see whether they qualify 695 * their process groups; if so, adjust counts for children's 696 * process groups. 697 */ 698 LIST_FOREACH(q, &p->p_children, p_sibling) { 699 hispgrp = q->p_pgrp; 700 if (hispgrp == pgrp || 701 hispgrp->pg_session != mysession) 702 continue; 703 if (q->p_state == PRS_ZOMBIE) 704 continue; 705 pgadjustjobc(hispgrp, entering); 706 } 707 } 708 709 void 710 killjobc(void) 711 { 712 struct session *sp; 713 struct tty *tp; 714 struct proc *p; 715 struct vnode *ttyvp; 716 717 p = curproc; 718 MPASS(p->p_flag & P_WEXIT); 719 /* 720 * Do a quick check to see if there is anything to do with the 721 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). 722 */ 723 PROC_LOCK(p); 724 if (!SESS_LEADER(p) && 725 (p->p_pgrp == p->p_pptr->p_pgrp) && 726 LIST_EMPTY(&p->p_children)) { 727 PROC_UNLOCK(p); 728 return; 729 } 730 PROC_UNLOCK(p); 731 732 sx_xlock(&proctree_lock); 733 if (SESS_LEADER(p)) { 734 sp = p->p_session; 735 736 /* 737 * s_ttyp is not zero'd; we use this to indicate that 738 * the session once had a controlling terminal. (for 739 * logging and informational purposes) 740 */ 741 SESS_LOCK(sp); 742 ttyvp = sp->s_ttyvp; 743 tp = sp->s_ttyp; 744 sp->s_ttyvp = NULL; 745 sp->s_ttydp = NULL; 746 sp->s_leader = NULL; 747 SESS_UNLOCK(sp); 748 749 /* 750 * Signal foreground pgrp and revoke access to 751 * controlling terminal if it has not been revoked 752 * already. 753 * 754 * Because the TTY may have been revoked in the mean 755 * time and could already have a new session associated 756 * with it, make sure we don't send a SIGHUP to a 757 * foreground process group that does not belong to this 758 * session. 759 */ 760 761 if (tp != NULL) { 762 tty_lock(tp); 763 if (tp->t_session == sp) 764 tty_signal_pgrp(tp, SIGHUP); 765 tty_unlock(tp); 766 } 767 768 if (ttyvp != NULL) { 769 sx_xunlock(&proctree_lock); 770 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 771 VOP_REVOKE(ttyvp, REVOKEALL); 772 VOP_UNLOCK(ttyvp, 0); 773 } 774 vrele(ttyvp); 775 sx_xlock(&proctree_lock); 776 } 777 } 778 fixjobc(p, p->p_pgrp, 0); 779 sx_xunlock(&proctree_lock); 780 } 781 782 /* 783 * A process group has become orphaned; 784 * if there are any stopped processes in the group, 785 * hang-up all process in that group. 786 */ 787 static void 788 orphanpg(struct pgrp *pg) 789 { 790 struct proc *p; 791 792 PGRP_LOCK_ASSERT(pg, MA_OWNED); 793 794 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 795 PROC_LOCK(p); 796 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 797 PROC_UNLOCK(p); 798 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 799 PROC_LOCK(p); 800 kern_psignal(p, SIGHUP); 801 kern_psignal(p, SIGCONT); 802 PROC_UNLOCK(p); 803 } 804 return; 805 } 806 PROC_UNLOCK(p); 807 } 808 } 809 810 void 811 sess_hold(struct session *s) 812 { 813 814 refcount_acquire(&s->s_count); 815 } 816 817 void 818 sess_release(struct session *s) 819 { 820 821 if (refcount_release(&s->s_count)) { 822 if (s->s_ttyp != NULL) { 823 tty_lock(s->s_ttyp); 824 tty_rel_sess(s->s_ttyp, s); 825 } 826 mtx_destroy(&s->s_mtx); 827 free(s, M_SESSION); 828 } 829 } 830 831 #ifdef DDB 832 833 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 834 { 835 struct pgrp *pgrp; 836 struct proc *p; 837 int i; 838 839 for (i = 0; i <= pgrphash; i++) { 840 if (!LIST_EMPTY(&pgrphashtbl[i])) { 841 printf("\tindx %d\n", i); 842 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 843 printf( 844 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 845 (void *)pgrp, (long)pgrp->pg_id, 846 (void *)pgrp->pg_session, 847 pgrp->pg_session->s_count, 848 (void *)LIST_FIRST(&pgrp->pg_members)); 849 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 850 printf("\t\tpid %ld addr %p pgrp %p\n", 851 (long)p->p_pid, (void *)p, 852 (void *)p->p_pgrp); 853 } 854 } 855 } 856 } 857 } 858 #endif /* DDB */ 859 860 /* 861 * Calculate the kinfo_proc members which contain process-wide 862 * informations. 863 * Must be called with the target process locked. 864 */ 865 static void 866 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 867 { 868 struct thread *td; 869 870 PROC_LOCK_ASSERT(p, MA_OWNED); 871 872 kp->ki_estcpu = 0; 873 kp->ki_pctcpu = 0; 874 FOREACH_THREAD_IN_PROC(p, td) { 875 thread_lock(td); 876 kp->ki_pctcpu += sched_pctcpu(td); 877 kp->ki_estcpu += sched_estcpu(td); 878 thread_unlock(td); 879 } 880 } 881 882 /* 883 * Clear kinfo_proc and fill in any information that is common 884 * to all threads in the process. 885 * Must be called with the target process locked. 886 */ 887 static void 888 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 889 { 890 struct thread *td0; 891 struct tty *tp; 892 struct session *sp; 893 struct ucred *cred; 894 struct sigacts *ps; 895 struct timeval boottime; 896 897 PROC_LOCK_ASSERT(p, MA_OWNED); 898 bzero(kp, sizeof(*kp)); 899 900 kp->ki_structsize = sizeof(*kp); 901 kp->ki_paddr = p; 902 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 903 kp->ki_args = p->p_args; 904 kp->ki_textvp = p->p_textvp; 905 #ifdef KTRACE 906 kp->ki_tracep = p->p_tracevp; 907 kp->ki_traceflag = p->p_traceflag; 908 #endif 909 kp->ki_fd = p->p_fd; 910 kp->ki_vmspace = p->p_vmspace; 911 kp->ki_flag = p->p_flag; 912 kp->ki_flag2 = p->p_flag2; 913 cred = p->p_ucred; 914 if (cred) { 915 kp->ki_uid = cred->cr_uid; 916 kp->ki_ruid = cred->cr_ruid; 917 kp->ki_svuid = cred->cr_svuid; 918 kp->ki_cr_flags = 0; 919 if (cred->cr_flags & CRED_FLAG_CAPMODE) 920 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 921 /* XXX bde doesn't like KI_NGROUPS */ 922 if (cred->cr_ngroups > KI_NGROUPS) { 923 kp->ki_ngroups = KI_NGROUPS; 924 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 925 } else 926 kp->ki_ngroups = cred->cr_ngroups; 927 bcopy(cred->cr_groups, kp->ki_groups, 928 kp->ki_ngroups * sizeof(gid_t)); 929 kp->ki_rgid = cred->cr_rgid; 930 kp->ki_svgid = cred->cr_svgid; 931 /* If jailed(cred), emulate the old P_JAILED flag. */ 932 if (jailed(cred)) { 933 kp->ki_flag |= P_JAILED; 934 /* If inside the jail, use 0 as a jail ID. */ 935 if (cred->cr_prison != curthread->td_ucred->cr_prison) 936 kp->ki_jid = cred->cr_prison->pr_id; 937 } 938 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 939 sizeof(kp->ki_loginclass)); 940 } 941 ps = p->p_sigacts; 942 if (ps) { 943 mtx_lock(&ps->ps_mtx); 944 kp->ki_sigignore = ps->ps_sigignore; 945 kp->ki_sigcatch = ps->ps_sigcatch; 946 mtx_unlock(&ps->ps_mtx); 947 } 948 if (p->p_state != PRS_NEW && 949 p->p_state != PRS_ZOMBIE && 950 p->p_vmspace != NULL) { 951 struct vmspace *vm = p->p_vmspace; 952 953 kp->ki_size = vm->vm_map.size; 954 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 955 FOREACH_THREAD_IN_PROC(p, td0) { 956 if (!TD_IS_SWAPPED(td0)) 957 kp->ki_rssize += td0->td_kstack_pages; 958 } 959 kp->ki_swrss = vm->vm_swrss; 960 kp->ki_tsize = vm->vm_tsize; 961 kp->ki_dsize = vm->vm_dsize; 962 kp->ki_ssize = vm->vm_ssize; 963 } else if (p->p_state == PRS_ZOMBIE) 964 kp->ki_stat = SZOMB; 965 if (kp->ki_flag & P_INMEM) 966 kp->ki_sflag = PS_INMEM; 967 else 968 kp->ki_sflag = 0; 969 /* Calculate legacy swtime as seconds since 'swtick'. */ 970 kp->ki_swtime = (ticks - p->p_swtick) / hz; 971 kp->ki_pid = p->p_pid; 972 kp->ki_nice = p->p_nice; 973 kp->ki_fibnum = p->p_fibnum; 974 kp->ki_start = p->p_stats->p_start; 975 getboottime(&boottime); 976 timevaladd(&kp->ki_start, &boottime); 977 PROC_STATLOCK(p); 978 rufetch(p, &kp->ki_rusage); 979 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 980 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 981 PROC_STATUNLOCK(p); 982 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 983 /* Some callers want child times in a single value. */ 984 kp->ki_childtime = kp->ki_childstime; 985 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 986 987 FOREACH_THREAD_IN_PROC(p, td0) 988 kp->ki_cow += td0->td_cow; 989 990 tp = NULL; 991 if (p->p_pgrp) { 992 kp->ki_pgid = p->p_pgrp->pg_id; 993 kp->ki_jobc = p->p_pgrp->pg_jobc; 994 sp = p->p_pgrp->pg_session; 995 996 if (sp != NULL) { 997 kp->ki_sid = sp->s_sid; 998 SESS_LOCK(sp); 999 strlcpy(kp->ki_login, sp->s_login, 1000 sizeof(kp->ki_login)); 1001 if (sp->s_ttyvp) 1002 kp->ki_kiflag |= KI_CTTY; 1003 if (SESS_LEADER(p)) 1004 kp->ki_kiflag |= KI_SLEADER; 1005 /* XXX proctree_lock */ 1006 tp = sp->s_ttyp; 1007 SESS_UNLOCK(sp); 1008 } 1009 } 1010 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1011 kp->ki_tdev = tty_udev(tp); 1012 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1013 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1014 if (tp->t_session) 1015 kp->ki_tsid = tp->t_session->s_sid; 1016 } else { 1017 kp->ki_tdev = NODEV; 1018 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1019 } 1020 if (p->p_comm[0] != '\0') 1021 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1022 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1023 p->p_sysent->sv_name[0] != '\0') 1024 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1025 kp->ki_siglist = p->p_siglist; 1026 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1027 kp->ki_acflag = p->p_acflag; 1028 kp->ki_lock = p->p_lock; 1029 if (p->p_pptr) { 1030 kp->ki_ppid = p->p_oppid; 1031 if (p->p_flag & P_TRACED) 1032 kp->ki_tracer = p->p_pptr->p_pid; 1033 } 1034 } 1035 1036 /* 1037 * Fill in information that is thread specific. Must be called with 1038 * target process locked. If 'preferthread' is set, overwrite certain 1039 * process-related fields that are maintained for both threads and 1040 * processes. 1041 */ 1042 static void 1043 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1044 { 1045 struct proc *p; 1046 1047 p = td->td_proc; 1048 kp->ki_tdaddr = td; 1049 PROC_LOCK_ASSERT(p, MA_OWNED); 1050 1051 if (preferthread) 1052 PROC_STATLOCK(p); 1053 thread_lock(td); 1054 if (td->td_wmesg != NULL) 1055 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1056 else 1057 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1058 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1059 sizeof(kp->ki_tdname)) { 1060 strlcpy(kp->ki_moretdname, 1061 td->td_name + sizeof(kp->ki_tdname) - 1, 1062 sizeof(kp->ki_moretdname)); 1063 } else { 1064 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1065 } 1066 if (TD_ON_LOCK(td)) { 1067 kp->ki_kiflag |= KI_LOCKBLOCK; 1068 strlcpy(kp->ki_lockname, td->td_lockname, 1069 sizeof(kp->ki_lockname)); 1070 } else { 1071 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1072 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1073 } 1074 1075 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1076 if (TD_ON_RUNQ(td) || 1077 TD_CAN_RUN(td) || 1078 TD_IS_RUNNING(td)) { 1079 kp->ki_stat = SRUN; 1080 } else if (P_SHOULDSTOP(p)) { 1081 kp->ki_stat = SSTOP; 1082 } else if (TD_IS_SLEEPING(td)) { 1083 kp->ki_stat = SSLEEP; 1084 } else if (TD_ON_LOCK(td)) { 1085 kp->ki_stat = SLOCK; 1086 } else { 1087 kp->ki_stat = SWAIT; 1088 } 1089 } else if (p->p_state == PRS_ZOMBIE) { 1090 kp->ki_stat = SZOMB; 1091 } else { 1092 kp->ki_stat = SIDL; 1093 } 1094 1095 /* Things in the thread */ 1096 kp->ki_wchan = td->td_wchan; 1097 kp->ki_pri.pri_level = td->td_priority; 1098 kp->ki_pri.pri_native = td->td_base_pri; 1099 1100 /* 1101 * Note: legacy fields; clamp at the old NOCPU value and/or 1102 * the maximum u_char CPU value. 1103 */ 1104 if (td->td_lastcpu == NOCPU) 1105 kp->ki_lastcpu_old = NOCPU_OLD; 1106 else if (td->td_lastcpu > MAXCPU_OLD) 1107 kp->ki_lastcpu_old = MAXCPU_OLD; 1108 else 1109 kp->ki_lastcpu_old = td->td_lastcpu; 1110 1111 if (td->td_oncpu == NOCPU) 1112 kp->ki_oncpu_old = NOCPU_OLD; 1113 else if (td->td_oncpu > MAXCPU_OLD) 1114 kp->ki_oncpu_old = MAXCPU_OLD; 1115 else 1116 kp->ki_oncpu_old = td->td_oncpu; 1117 1118 kp->ki_lastcpu = td->td_lastcpu; 1119 kp->ki_oncpu = td->td_oncpu; 1120 kp->ki_tdflags = td->td_flags; 1121 kp->ki_tid = td->td_tid; 1122 kp->ki_numthreads = p->p_numthreads; 1123 kp->ki_pcb = td->td_pcb; 1124 kp->ki_kstack = (void *)td->td_kstack; 1125 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1126 kp->ki_pri.pri_class = td->td_pri_class; 1127 kp->ki_pri.pri_user = td->td_user_pri; 1128 1129 if (preferthread) { 1130 rufetchtd(td, &kp->ki_rusage); 1131 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1132 kp->ki_pctcpu = sched_pctcpu(td); 1133 kp->ki_estcpu = sched_estcpu(td); 1134 kp->ki_cow = td->td_cow; 1135 } 1136 1137 /* We can't get this anymore but ps etc never used it anyway. */ 1138 kp->ki_rqindex = 0; 1139 1140 if (preferthread) 1141 kp->ki_siglist = td->td_siglist; 1142 kp->ki_sigmask = td->td_sigmask; 1143 thread_unlock(td); 1144 if (preferthread) 1145 PROC_STATUNLOCK(p); 1146 } 1147 1148 /* 1149 * Fill in a kinfo_proc structure for the specified process. 1150 * Must be called with the target process locked. 1151 */ 1152 void 1153 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1154 { 1155 1156 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1157 1158 fill_kinfo_proc_only(p, kp); 1159 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1160 fill_kinfo_aggregate(p, kp); 1161 } 1162 1163 struct pstats * 1164 pstats_alloc(void) 1165 { 1166 1167 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1168 } 1169 1170 /* 1171 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1172 */ 1173 void 1174 pstats_fork(struct pstats *src, struct pstats *dst) 1175 { 1176 1177 bzero(&dst->pstat_startzero, 1178 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1179 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1180 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1181 } 1182 1183 void 1184 pstats_free(struct pstats *ps) 1185 { 1186 1187 free(ps, M_SUBPROC); 1188 } 1189 1190 static struct proc * 1191 zpfind_locked(pid_t pid) 1192 { 1193 struct proc *p; 1194 1195 sx_assert(&allproc_lock, SX_LOCKED); 1196 LIST_FOREACH(p, &zombproc, p_list) { 1197 if (p->p_pid == pid) { 1198 PROC_LOCK(p); 1199 break; 1200 } 1201 } 1202 return (p); 1203 } 1204 1205 /* 1206 * Locate a zombie process by number 1207 */ 1208 struct proc * 1209 zpfind(pid_t pid) 1210 { 1211 struct proc *p; 1212 1213 sx_slock(&allproc_lock); 1214 p = zpfind_locked(pid); 1215 sx_sunlock(&allproc_lock); 1216 return (p); 1217 } 1218 1219 #ifdef COMPAT_FREEBSD32 1220 1221 /* 1222 * This function is typically used to copy out the kernel address, so 1223 * it can be replaced by assignment of zero. 1224 */ 1225 static inline uint32_t 1226 ptr32_trim(void *ptr) 1227 { 1228 uintptr_t uptr; 1229 1230 uptr = (uintptr_t)ptr; 1231 return ((uptr > UINT_MAX) ? 0 : uptr); 1232 } 1233 1234 #define PTRTRIM_CP(src,dst,fld) \ 1235 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1236 1237 static void 1238 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1239 { 1240 int i; 1241 1242 bzero(ki32, sizeof(struct kinfo_proc32)); 1243 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1244 CP(*ki, *ki32, ki_layout); 1245 PTRTRIM_CP(*ki, *ki32, ki_args); 1246 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1247 PTRTRIM_CP(*ki, *ki32, ki_addr); 1248 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1249 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1250 PTRTRIM_CP(*ki, *ki32, ki_fd); 1251 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1252 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1253 CP(*ki, *ki32, ki_pid); 1254 CP(*ki, *ki32, ki_ppid); 1255 CP(*ki, *ki32, ki_pgid); 1256 CP(*ki, *ki32, ki_tpgid); 1257 CP(*ki, *ki32, ki_sid); 1258 CP(*ki, *ki32, ki_tsid); 1259 CP(*ki, *ki32, ki_jobc); 1260 CP(*ki, *ki32, ki_tdev); 1261 CP(*ki, *ki32, ki_tdev_freebsd11); 1262 CP(*ki, *ki32, ki_siglist); 1263 CP(*ki, *ki32, ki_sigmask); 1264 CP(*ki, *ki32, ki_sigignore); 1265 CP(*ki, *ki32, ki_sigcatch); 1266 CP(*ki, *ki32, ki_uid); 1267 CP(*ki, *ki32, ki_ruid); 1268 CP(*ki, *ki32, ki_svuid); 1269 CP(*ki, *ki32, ki_rgid); 1270 CP(*ki, *ki32, ki_svgid); 1271 CP(*ki, *ki32, ki_ngroups); 1272 for (i = 0; i < KI_NGROUPS; i++) 1273 CP(*ki, *ki32, ki_groups[i]); 1274 CP(*ki, *ki32, ki_size); 1275 CP(*ki, *ki32, ki_rssize); 1276 CP(*ki, *ki32, ki_swrss); 1277 CP(*ki, *ki32, ki_tsize); 1278 CP(*ki, *ki32, ki_dsize); 1279 CP(*ki, *ki32, ki_ssize); 1280 CP(*ki, *ki32, ki_xstat); 1281 CP(*ki, *ki32, ki_acflag); 1282 CP(*ki, *ki32, ki_pctcpu); 1283 CP(*ki, *ki32, ki_estcpu); 1284 CP(*ki, *ki32, ki_slptime); 1285 CP(*ki, *ki32, ki_swtime); 1286 CP(*ki, *ki32, ki_cow); 1287 CP(*ki, *ki32, ki_runtime); 1288 TV_CP(*ki, *ki32, ki_start); 1289 TV_CP(*ki, *ki32, ki_childtime); 1290 CP(*ki, *ki32, ki_flag); 1291 CP(*ki, *ki32, ki_kiflag); 1292 CP(*ki, *ki32, ki_traceflag); 1293 CP(*ki, *ki32, ki_stat); 1294 CP(*ki, *ki32, ki_nice); 1295 CP(*ki, *ki32, ki_lock); 1296 CP(*ki, *ki32, ki_rqindex); 1297 CP(*ki, *ki32, ki_oncpu); 1298 CP(*ki, *ki32, ki_lastcpu); 1299 1300 /* XXX TODO: wrap cpu value as appropriate */ 1301 CP(*ki, *ki32, ki_oncpu_old); 1302 CP(*ki, *ki32, ki_lastcpu_old); 1303 1304 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1305 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1306 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1307 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1308 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1309 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1310 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1311 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1312 CP(*ki, *ki32, ki_tracer); 1313 CP(*ki, *ki32, ki_flag2); 1314 CP(*ki, *ki32, ki_fibnum); 1315 CP(*ki, *ki32, ki_cr_flags); 1316 CP(*ki, *ki32, ki_jid); 1317 CP(*ki, *ki32, ki_numthreads); 1318 CP(*ki, *ki32, ki_tid); 1319 CP(*ki, *ki32, ki_pri); 1320 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1321 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1322 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1323 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1324 PTRTRIM_CP(*ki, *ki32, ki_udata); 1325 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1326 CP(*ki, *ki32, ki_sflag); 1327 CP(*ki, *ki32, ki_tdflags); 1328 } 1329 #endif 1330 1331 static ssize_t 1332 kern_proc_out_size(struct proc *p, int flags) 1333 { 1334 ssize_t size = 0; 1335 1336 PROC_LOCK_ASSERT(p, MA_OWNED); 1337 1338 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1339 #ifdef COMPAT_FREEBSD32 1340 if ((flags & KERN_PROC_MASK32) != 0) { 1341 size += sizeof(struct kinfo_proc32); 1342 } else 1343 #endif 1344 size += sizeof(struct kinfo_proc); 1345 } else { 1346 #ifdef COMPAT_FREEBSD32 1347 if ((flags & KERN_PROC_MASK32) != 0) 1348 size += sizeof(struct kinfo_proc32) * p->p_numthreads; 1349 else 1350 #endif 1351 size += sizeof(struct kinfo_proc) * p->p_numthreads; 1352 } 1353 PROC_UNLOCK(p); 1354 return (size); 1355 } 1356 1357 int 1358 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1359 { 1360 struct thread *td; 1361 struct kinfo_proc ki; 1362 #ifdef COMPAT_FREEBSD32 1363 struct kinfo_proc32 ki32; 1364 #endif 1365 int error; 1366 1367 PROC_LOCK_ASSERT(p, MA_OWNED); 1368 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1369 1370 error = 0; 1371 fill_kinfo_proc(p, &ki); 1372 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1373 #ifdef COMPAT_FREEBSD32 1374 if ((flags & KERN_PROC_MASK32) != 0) { 1375 freebsd32_kinfo_proc_out(&ki, &ki32); 1376 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1377 error = ENOMEM; 1378 } else 1379 #endif 1380 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1381 error = ENOMEM; 1382 } else { 1383 FOREACH_THREAD_IN_PROC(p, td) { 1384 fill_kinfo_thread(td, &ki, 1); 1385 #ifdef COMPAT_FREEBSD32 1386 if ((flags & KERN_PROC_MASK32) != 0) { 1387 freebsd32_kinfo_proc_out(&ki, &ki32); 1388 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1389 error = ENOMEM; 1390 } else 1391 #endif 1392 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1393 error = ENOMEM; 1394 if (error != 0) 1395 break; 1396 } 1397 } 1398 PROC_UNLOCK(p); 1399 return (error); 1400 } 1401 1402 static int 1403 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1404 { 1405 struct sbuf sb; 1406 struct kinfo_proc ki; 1407 int error, error2; 1408 1409 if (req->oldptr == NULL) 1410 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); 1411 1412 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1413 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1414 error = kern_proc_out(p, &sb, flags); 1415 error2 = sbuf_finish(&sb); 1416 sbuf_delete(&sb); 1417 if (error != 0) 1418 return (error); 1419 else if (error2 != 0) 1420 return (error2); 1421 return (0); 1422 } 1423 1424 static int 1425 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1426 { 1427 int *name = (int *)arg1; 1428 u_int namelen = arg2; 1429 struct proc *p; 1430 int flags, doingzomb, oid_number; 1431 int error = 0; 1432 1433 oid_number = oidp->oid_number; 1434 if (oid_number != KERN_PROC_ALL && 1435 (oid_number & KERN_PROC_INC_THREAD) == 0) 1436 flags = KERN_PROC_NOTHREADS; 1437 else { 1438 flags = 0; 1439 oid_number &= ~KERN_PROC_INC_THREAD; 1440 } 1441 #ifdef COMPAT_FREEBSD32 1442 if (req->flags & SCTL_MASK32) 1443 flags |= KERN_PROC_MASK32; 1444 #endif 1445 if (oid_number == KERN_PROC_PID) { 1446 if (namelen != 1) 1447 return (EINVAL); 1448 error = sysctl_wire_old_buffer(req, 0); 1449 if (error) 1450 return (error); 1451 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1452 if (error == 0) 1453 error = sysctl_out_proc(p, req, flags); 1454 return (error); 1455 } 1456 1457 switch (oid_number) { 1458 case KERN_PROC_ALL: 1459 if (namelen != 0) 1460 return (EINVAL); 1461 break; 1462 case KERN_PROC_PROC: 1463 if (namelen != 0 && namelen != 1) 1464 return (EINVAL); 1465 break; 1466 default: 1467 if (namelen != 1) 1468 return (EINVAL); 1469 break; 1470 } 1471 1472 if (req->oldptr == NULL) { 1473 /* overestimate by 5 procs */ 1474 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1475 if (error) 1476 return (error); 1477 } else { 1478 error = sysctl_wire_old_buffer(req, 0); 1479 if (error != 0) 1480 return (error); 1481 } 1482 sx_slock(&allproc_lock); 1483 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1484 if (!doingzomb) 1485 p = LIST_FIRST(&allproc); 1486 else 1487 p = LIST_FIRST(&zombproc); 1488 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 1489 /* 1490 * Skip embryonic processes. 1491 */ 1492 if (p->p_state == PRS_NEW) 1493 continue; 1494 PROC_LOCK(p); 1495 KASSERT(p->p_ucred != NULL, 1496 ("process credential is NULL for non-NEW proc")); 1497 /* 1498 * Show a user only appropriate processes. 1499 */ 1500 if (p_cansee(curthread, p)) { 1501 PROC_UNLOCK(p); 1502 continue; 1503 } 1504 /* 1505 * TODO - make more efficient (see notes below). 1506 * do by session. 1507 */ 1508 switch (oid_number) { 1509 1510 case KERN_PROC_GID: 1511 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1512 PROC_UNLOCK(p); 1513 continue; 1514 } 1515 break; 1516 1517 case KERN_PROC_PGRP: 1518 /* could do this by traversing pgrp */ 1519 if (p->p_pgrp == NULL || 1520 p->p_pgrp->pg_id != (pid_t)name[0]) { 1521 PROC_UNLOCK(p); 1522 continue; 1523 } 1524 break; 1525 1526 case KERN_PROC_RGID: 1527 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1528 PROC_UNLOCK(p); 1529 continue; 1530 } 1531 break; 1532 1533 case KERN_PROC_SESSION: 1534 if (p->p_session == NULL || 1535 p->p_session->s_sid != (pid_t)name[0]) { 1536 PROC_UNLOCK(p); 1537 continue; 1538 } 1539 break; 1540 1541 case KERN_PROC_TTY: 1542 if ((p->p_flag & P_CONTROLT) == 0 || 1543 p->p_session == NULL) { 1544 PROC_UNLOCK(p); 1545 continue; 1546 } 1547 /* XXX proctree_lock */ 1548 SESS_LOCK(p->p_session); 1549 if (p->p_session->s_ttyp == NULL || 1550 tty_udev(p->p_session->s_ttyp) != 1551 (dev_t)name[0]) { 1552 SESS_UNLOCK(p->p_session); 1553 PROC_UNLOCK(p); 1554 continue; 1555 } 1556 SESS_UNLOCK(p->p_session); 1557 break; 1558 1559 case KERN_PROC_UID: 1560 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1561 PROC_UNLOCK(p); 1562 continue; 1563 } 1564 break; 1565 1566 case KERN_PROC_RUID: 1567 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1568 PROC_UNLOCK(p); 1569 continue; 1570 } 1571 break; 1572 1573 case KERN_PROC_PROC: 1574 break; 1575 1576 default: 1577 break; 1578 1579 } 1580 1581 error = sysctl_out_proc(p, req, flags); 1582 if (error) 1583 goto out; 1584 } 1585 } 1586 out: 1587 sx_sunlock(&allproc_lock); 1588 return (error); 1589 } 1590 1591 struct pargs * 1592 pargs_alloc(int len) 1593 { 1594 struct pargs *pa; 1595 1596 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1597 M_WAITOK); 1598 refcount_init(&pa->ar_ref, 1); 1599 pa->ar_length = len; 1600 return (pa); 1601 } 1602 1603 static void 1604 pargs_free(struct pargs *pa) 1605 { 1606 1607 free(pa, M_PARGS); 1608 } 1609 1610 void 1611 pargs_hold(struct pargs *pa) 1612 { 1613 1614 if (pa == NULL) 1615 return; 1616 refcount_acquire(&pa->ar_ref); 1617 } 1618 1619 void 1620 pargs_drop(struct pargs *pa) 1621 { 1622 1623 if (pa == NULL) 1624 return; 1625 if (refcount_release(&pa->ar_ref)) 1626 pargs_free(pa); 1627 } 1628 1629 static int 1630 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1631 size_t len) 1632 { 1633 ssize_t n; 1634 1635 /* 1636 * This may return a short read if the string is shorter than the chunk 1637 * and is aligned at the end of the page, and the following page is not 1638 * mapped. 1639 */ 1640 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1641 if (n <= 0) 1642 return (ENOMEM); 1643 return (0); 1644 } 1645 1646 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1647 1648 enum proc_vector_type { 1649 PROC_ARG, 1650 PROC_ENV, 1651 PROC_AUX, 1652 }; 1653 1654 #ifdef COMPAT_FREEBSD32 1655 static int 1656 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1657 size_t *vsizep, enum proc_vector_type type) 1658 { 1659 struct freebsd32_ps_strings pss; 1660 Elf32_Auxinfo aux; 1661 vm_offset_t vptr, ptr; 1662 uint32_t *proc_vector32; 1663 char **proc_vector; 1664 size_t vsize, size; 1665 int i, error; 1666 1667 error = 0; 1668 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1669 sizeof(pss)) != sizeof(pss)) 1670 return (ENOMEM); 1671 switch (type) { 1672 case PROC_ARG: 1673 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1674 vsize = pss.ps_nargvstr; 1675 if (vsize > ARG_MAX) 1676 return (ENOEXEC); 1677 size = vsize * sizeof(int32_t); 1678 break; 1679 case PROC_ENV: 1680 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1681 vsize = pss.ps_nenvstr; 1682 if (vsize > ARG_MAX) 1683 return (ENOEXEC); 1684 size = vsize * sizeof(int32_t); 1685 break; 1686 case PROC_AUX: 1687 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1688 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1689 if (vptr % 4 != 0) 1690 return (ENOEXEC); 1691 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1692 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1693 sizeof(aux)) 1694 return (ENOMEM); 1695 if (aux.a_type == AT_NULL) 1696 break; 1697 ptr += sizeof(aux); 1698 } 1699 if (aux.a_type != AT_NULL) 1700 return (ENOEXEC); 1701 vsize = i + 1; 1702 size = vsize * sizeof(aux); 1703 break; 1704 default: 1705 KASSERT(0, ("Wrong proc vector type: %d", type)); 1706 return (EINVAL); 1707 } 1708 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1709 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1710 error = ENOMEM; 1711 goto done; 1712 } 1713 if (type == PROC_AUX) { 1714 *proc_vectorp = (char **)proc_vector32; 1715 *vsizep = vsize; 1716 return (0); 1717 } 1718 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1719 for (i = 0; i < (int)vsize; i++) 1720 proc_vector[i] = PTRIN(proc_vector32[i]); 1721 *proc_vectorp = proc_vector; 1722 *vsizep = vsize; 1723 done: 1724 free(proc_vector32, M_TEMP); 1725 return (error); 1726 } 1727 #endif 1728 1729 static int 1730 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1731 size_t *vsizep, enum proc_vector_type type) 1732 { 1733 struct ps_strings pss; 1734 Elf_Auxinfo aux; 1735 vm_offset_t vptr, ptr; 1736 char **proc_vector; 1737 size_t vsize, size; 1738 int i; 1739 1740 #ifdef COMPAT_FREEBSD32 1741 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1742 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1743 #endif 1744 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1745 sizeof(pss)) != sizeof(pss)) 1746 return (ENOMEM); 1747 switch (type) { 1748 case PROC_ARG: 1749 vptr = (vm_offset_t)pss.ps_argvstr; 1750 vsize = pss.ps_nargvstr; 1751 if (vsize > ARG_MAX) 1752 return (ENOEXEC); 1753 size = vsize * sizeof(char *); 1754 break; 1755 case PROC_ENV: 1756 vptr = (vm_offset_t)pss.ps_envstr; 1757 vsize = pss.ps_nenvstr; 1758 if (vsize > ARG_MAX) 1759 return (ENOEXEC); 1760 size = vsize * sizeof(char *); 1761 break; 1762 case PROC_AUX: 1763 /* 1764 * The aux array is just above env array on the stack. Check 1765 * that the address is naturally aligned. 1766 */ 1767 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1768 * sizeof(char *); 1769 #if __ELF_WORD_SIZE == 64 1770 if (vptr % sizeof(uint64_t) != 0) 1771 #else 1772 if (vptr % sizeof(uint32_t) != 0) 1773 #endif 1774 return (ENOEXEC); 1775 /* 1776 * We count the array size reading the aux vectors from the 1777 * stack until AT_NULL vector is returned. So (to keep the code 1778 * simple) we read the process stack twice: the first time here 1779 * to find the size and the second time when copying the vectors 1780 * to the allocated proc_vector. 1781 */ 1782 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1783 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1784 sizeof(aux)) 1785 return (ENOMEM); 1786 if (aux.a_type == AT_NULL) 1787 break; 1788 ptr += sizeof(aux); 1789 } 1790 /* 1791 * If the PROC_AUXV_MAX entries are iterated over, and we have 1792 * not reached AT_NULL, it is most likely we are reading wrong 1793 * data: either the process doesn't have auxv array or data has 1794 * been modified. Return the error in this case. 1795 */ 1796 if (aux.a_type != AT_NULL) 1797 return (ENOEXEC); 1798 vsize = i + 1; 1799 size = vsize * sizeof(aux); 1800 break; 1801 default: 1802 KASSERT(0, ("Wrong proc vector type: %d", type)); 1803 return (EINVAL); /* In case we are built without INVARIANTS. */ 1804 } 1805 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1806 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1807 free(proc_vector, M_TEMP); 1808 return (ENOMEM); 1809 } 1810 *proc_vectorp = proc_vector; 1811 *vsizep = vsize; 1812 1813 return (0); 1814 } 1815 1816 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1817 1818 static int 1819 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1820 enum proc_vector_type type) 1821 { 1822 size_t done, len, nchr, vsize; 1823 int error, i; 1824 char **proc_vector, *sptr; 1825 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1826 1827 PROC_ASSERT_HELD(p); 1828 1829 /* 1830 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1831 */ 1832 nchr = 2 * (PATH_MAX + ARG_MAX); 1833 1834 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1835 if (error != 0) 1836 return (error); 1837 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1838 /* 1839 * The program may have scribbled into its argv array, e.g. to 1840 * remove some arguments. If that has happened, break out 1841 * before trying to read from NULL. 1842 */ 1843 if (proc_vector[i] == NULL) 1844 break; 1845 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1846 error = proc_read_string(td, p, sptr, pss_string, 1847 sizeof(pss_string)); 1848 if (error != 0) 1849 goto done; 1850 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1851 if (done + len >= nchr) 1852 len = nchr - done - 1; 1853 sbuf_bcat(sb, pss_string, len); 1854 if (len != GET_PS_STRINGS_CHUNK_SZ) 1855 break; 1856 done += GET_PS_STRINGS_CHUNK_SZ; 1857 } 1858 sbuf_bcat(sb, "", 1); 1859 done += len + 1; 1860 } 1861 done: 1862 free(proc_vector, M_TEMP); 1863 return (error); 1864 } 1865 1866 int 1867 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1868 { 1869 1870 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1871 } 1872 1873 int 1874 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1875 { 1876 1877 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1878 } 1879 1880 int 1881 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1882 { 1883 size_t vsize, size; 1884 char **auxv; 1885 int error; 1886 1887 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1888 if (error == 0) { 1889 #ifdef COMPAT_FREEBSD32 1890 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1891 size = vsize * sizeof(Elf32_Auxinfo); 1892 else 1893 #endif 1894 size = vsize * sizeof(Elf_Auxinfo); 1895 if (sbuf_bcat(sb, auxv, size) != 0) 1896 error = ENOMEM; 1897 free(auxv, M_TEMP); 1898 } 1899 return (error); 1900 } 1901 1902 /* 1903 * This sysctl allows a process to retrieve the argument list or process 1904 * title for another process without groping around in the address space 1905 * of the other process. It also allow a process to set its own "process 1906 * title to a string of its own choice. 1907 */ 1908 static int 1909 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1910 { 1911 int *name = (int *)arg1; 1912 u_int namelen = arg2; 1913 struct pargs *newpa, *pa; 1914 struct proc *p; 1915 struct sbuf sb; 1916 int flags, error = 0, error2; 1917 pid_t pid; 1918 1919 if (namelen != 1) 1920 return (EINVAL); 1921 1922 pid = (pid_t)name[0]; 1923 /* 1924 * If the query is for this process and it is single-threaded, there 1925 * is nobody to modify pargs, thus we can just read. 1926 */ 1927 p = curproc; 1928 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && 1929 (pa = p->p_args) != NULL) 1930 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); 1931 1932 flags = PGET_CANSEE; 1933 if (req->newptr != NULL) 1934 flags |= PGET_ISCURRENT; 1935 error = pget(pid, flags, &p); 1936 if (error) 1937 return (error); 1938 1939 pa = p->p_args; 1940 if (pa != NULL) { 1941 pargs_hold(pa); 1942 PROC_UNLOCK(p); 1943 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1944 pargs_drop(pa); 1945 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1946 _PHOLD(p); 1947 PROC_UNLOCK(p); 1948 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1949 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1950 error = proc_getargv(curthread, p, &sb); 1951 error2 = sbuf_finish(&sb); 1952 PRELE(p); 1953 sbuf_delete(&sb); 1954 if (error == 0 && error2 != 0) 1955 error = error2; 1956 } else { 1957 PROC_UNLOCK(p); 1958 } 1959 if (error != 0 || req->newptr == NULL) 1960 return (error); 1961 1962 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 1963 return (ENOMEM); 1964 1965 if (req->newlen == 0) { 1966 /* 1967 * Clear the argument pointer, so that we'll fetch arguments 1968 * with proc_getargv() until further notice. 1969 */ 1970 newpa = NULL; 1971 } else { 1972 newpa = pargs_alloc(req->newlen); 1973 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1974 if (error != 0) { 1975 pargs_free(newpa); 1976 return (error); 1977 } 1978 } 1979 PROC_LOCK(p); 1980 pa = p->p_args; 1981 p->p_args = newpa; 1982 PROC_UNLOCK(p); 1983 pargs_drop(pa); 1984 return (0); 1985 } 1986 1987 /* 1988 * This sysctl allows a process to retrieve environment of another process. 1989 */ 1990 static int 1991 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1992 { 1993 int *name = (int *)arg1; 1994 u_int namelen = arg2; 1995 struct proc *p; 1996 struct sbuf sb; 1997 int error, error2; 1998 1999 if (namelen != 1) 2000 return (EINVAL); 2001 2002 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2003 if (error != 0) 2004 return (error); 2005 if ((p->p_flag & P_SYSTEM) != 0) { 2006 PRELE(p); 2007 return (0); 2008 } 2009 2010 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2011 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2012 error = proc_getenvv(curthread, p, &sb); 2013 error2 = sbuf_finish(&sb); 2014 PRELE(p); 2015 sbuf_delete(&sb); 2016 return (error != 0 ? error : error2); 2017 } 2018 2019 /* 2020 * This sysctl allows a process to retrieve ELF auxiliary vector of 2021 * another process. 2022 */ 2023 static int 2024 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2025 { 2026 int *name = (int *)arg1; 2027 u_int namelen = arg2; 2028 struct proc *p; 2029 struct sbuf sb; 2030 int error, error2; 2031 2032 if (namelen != 1) 2033 return (EINVAL); 2034 2035 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2036 if (error != 0) 2037 return (error); 2038 if ((p->p_flag & P_SYSTEM) != 0) { 2039 PRELE(p); 2040 return (0); 2041 } 2042 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2043 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2044 error = proc_getauxv(curthread, p, &sb); 2045 error2 = sbuf_finish(&sb); 2046 PRELE(p); 2047 sbuf_delete(&sb); 2048 return (error != 0 ? error : error2); 2049 } 2050 2051 /* 2052 * This sysctl allows a process to retrieve the path of the executable for 2053 * itself or another process. 2054 */ 2055 static int 2056 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2057 { 2058 pid_t *pidp = (pid_t *)arg1; 2059 unsigned int arglen = arg2; 2060 struct proc *p; 2061 struct vnode *vp; 2062 char *retbuf, *freebuf; 2063 int error; 2064 2065 if (arglen != 1) 2066 return (EINVAL); 2067 if (*pidp == -1) { /* -1 means this process */ 2068 p = req->td->td_proc; 2069 } else { 2070 error = pget(*pidp, PGET_CANSEE, &p); 2071 if (error != 0) 2072 return (error); 2073 } 2074 2075 vp = p->p_textvp; 2076 if (vp == NULL) { 2077 if (*pidp != -1) 2078 PROC_UNLOCK(p); 2079 return (0); 2080 } 2081 vref(vp); 2082 if (*pidp != -1) 2083 PROC_UNLOCK(p); 2084 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 2085 vrele(vp); 2086 if (error) 2087 return (error); 2088 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2089 free(freebuf, M_TEMP); 2090 return (error); 2091 } 2092 2093 static int 2094 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2095 { 2096 struct proc *p; 2097 char *sv_name; 2098 int *name; 2099 int namelen; 2100 int error; 2101 2102 namelen = arg2; 2103 if (namelen != 1) 2104 return (EINVAL); 2105 2106 name = (int *)arg1; 2107 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2108 if (error != 0) 2109 return (error); 2110 sv_name = p->p_sysent->sv_name; 2111 PROC_UNLOCK(p); 2112 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2113 } 2114 2115 #ifdef KINFO_OVMENTRY_SIZE 2116 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2117 #endif 2118 2119 #ifdef COMPAT_FREEBSD7 2120 static int 2121 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2122 { 2123 vm_map_entry_t entry, tmp_entry; 2124 unsigned int last_timestamp; 2125 char *fullpath, *freepath; 2126 struct kinfo_ovmentry *kve; 2127 struct vattr va; 2128 struct ucred *cred; 2129 int error, *name; 2130 struct vnode *vp; 2131 struct proc *p; 2132 vm_map_t map; 2133 struct vmspace *vm; 2134 2135 name = (int *)arg1; 2136 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2137 if (error != 0) 2138 return (error); 2139 vm = vmspace_acquire_ref(p); 2140 if (vm == NULL) { 2141 PRELE(p); 2142 return (ESRCH); 2143 } 2144 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2145 2146 map = &vm->vm_map; 2147 vm_map_lock_read(map); 2148 for (entry = map->header.next; entry != &map->header; 2149 entry = entry->next) { 2150 vm_object_t obj, tobj, lobj; 2151 vm_offset_t addr; 2152 2153 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2154 continue; 2155 2156 bzero(kve, sizeof(*kve)); 2157 kve->kve_structsize = sizeof(*kve); 2158 2159 kve->kve_private_resident = 0; 2160 obj = entry->object.vm_object; 2161 if (obj != NULL) { 2162 VM_OBJECT_RLOCK(obj); 2163 if (obj->shadow_count == 1) 2164 kve->kve_private_resident = 2165 obj->resident_page_count; 2166 } 2167 kve->kve_resident = 0; 2168 addr = entry->start; 2169 while (addr < entry->end) { 2170 if (pmap_extract(map->pmap, addr)) 2171 kve->kve_resident++; 2172 addr += PAGE_SIZE; 2173 } 2174 2175 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2176 if (tobj != obj) { 2177 VM_OBJECT_RLOCK(tobj); 2178 kve->kve_offset += tobj->backing_object_offset; 2179 } 2180 if (lobj != obj) 2181 VM_OBJECT_RUNLOCK(lobj); 2182 lobj = tobj; 2183 } 2184 2185 kve->kve_start = (void*)entry->start; 2186 kve->kve_end = (void*)entry->end; 2187 kve->kve_offset += (off_t)entry->offset; 2188 2189 if (entry->protection & VM_PROT_READ) 2190 kve->kve_protection |= KVME_PROT_READ; 2191 if (entry->protection & VM_PROT_WRITE) 2192 kve->kve_protection |= KVME_PROT_WRITE; 2193 if (entry->protection & VM_PROT_EXECUTE) 2194 kve->kve_protection |= KVME_PROT_EXEC; 2195 2196 if (entry->eflags & MAP_ENTRY_COW) 2197 kve->kve_flags |= KVME_FLAG_COW; 2198 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2199 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2200 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2201 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2202 2203 last_timestamp = map->timestamp; 2204 vm_map_unlock_read(map); 2205 2206 kve->kve_fileid = 0; 2207 kve->kve_fsid = 0; 2208 freepath = NULL; 2209 fullpath = ""; 2210 if (lobj) { 2211 vp = NULL; 2212 switch (lobj->type) { 2213 case OBJT_DEFAULT: 2214 kve->kve_type = KVME_TYPE_DEFAULT; 2215 break; 2216 case OBJT_VNODE: 2217 kve->kve_type = KVME_TYPE_VNODE; 2218 vp = lobj->handle; 2219 vref(vp); 2220 break; 2221 case OBJT_SWAP: 2222 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2223 kve->kve_type = KVME_TYPE_VNODE; 2224 if ((lobj->flags & OBJ_TMPFS) != 0) { 2225 vp = lobj->un_pager.swp.swp_tmpfs; 2226 vref(vp); 2227 } 2228 } else { 2229 kve->kve_type = KVME_TYPE_SWAP; 2230 } 2231 break; 2232 case OBJT_DEVICE: 2233 kve->kve_type = KVME_TYPE_DEVICE; 2234 break; 2235 case OBJT_PHYS: 2236 kve->kve_type = KVME_TYPE_PHYS; 2237 break; 2238 case OBJT_DEAD: 2239 kve->kve_type = KVME_TYPE_DEAD; 2240 break; 2241 case OBJT_SG: 2242 kve->kve_type = KVME_TYPE_SG; 2243 break; 2244 default: 2245 kve->kve_type = KVME_TYPE_UNKNOWN; 2246 break; 2247 } 2248 if (lobj != obj) 2249 VM_OBJECT_RUNLOCK(lobj); 2250 2251 kve->kve_ref_count = obj->ref_count; 2252 kve->kve_shadow_count = obj->shadow_count; 2253 VM_OBJECT_RUNLOCK(obj); 2254 if (vp != NULL) { 2255 vn_fullpath(curthread, vp, &fullpath, 2256 &freepath); 2257 cred = curthread->td_ucred; 2258 vn_lock(vp, LK_SHARED | LK_RETRY); 2259 if (VOP_GETATTR(vp, &va, cred) == 0) { 2260 kve->kve_fileid = va.va_fileid; 2261 /* truncate */ 2262 kve->kve_fsid = va.va_fsid; 2263 } 2264 vput(vp); 2265 } 2266 } else { 2267 kve->kve_type = KVME_TYPE_NONE; 2268 kve->kve_ref_count = 0; 2269 kve->kve_shadow_count = 0; 2270 } 2271 2272 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2273 if (freepath != NULL) 2274 free(freepath, M_TEMP); 2275 2276 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2277 vm_map_lock_read(map); 2278 if (error) 2279 break; 2280 if (last_timestamp != map->timestamp) { 2281 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2282 entry = tmp_entry; 2283 } 2284 } 2285 vm_map_unlock_read(map); 2286 vmspace_free(vm); 2287 PRELE(p); 2288 free(kve, M_TEMP); 2289 return (error); 2290 } 2291 #endif /* COMPAT_FREEBSD7 */ 2292 2293 #ifdef KINFO_VMENTRY_SIZE 2294 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2295 #endif 2296 2297 void 2298 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2299 int *resident_count, bool *super) 2300 { 2301 vm_object_t obj, tobj; 2302 vm_page_t m, m_adv; 2303 vm_offset_t addr; 2304 vm_paddr_t locked_pa; 2305 vm_pindex_t pi, pi_adv, pindex; 2306 2307 *super = false; 2308 *resident_count = 0; 2309 if (vmmap_skip_res_cnt) 2310 return; 2311 2312 locked_pa = 0; 2313 obj = entry->object.vm_object; 2314 addr = entry->start; 2315 m_adv = NULL; 2316 pi = OFF_TO_IDX(entry->offset); 2317 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2318 if (m_adv != NULL) { 2319 m = m_adv; 2320 } else { 2321 pi_adv = atop(entry->end - addr); 2322 pindex = pi; 2323 for (tobj = obj;; tobj = tobj->backing_object) { 2324 m = vm_page_find_least(tobj, pindex); 2325 if (m != NULL) { 2326 if (m->pindex == pindex) 2327 break; 2328 if (pi_adv > m->pindex - pindex) { 2329 pi_adv = m->pindex - pindex; 2330 m_adv = m; 2331 } 2332 } 2333 if (tobj->backing_object == NULL) 2334 goto next; 2335 pindex += OFF_TO_IDX(tobj-> 2336 backing_object_offset); 2337 } 2338 } 2339 m_adv = NULL; 2340 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2341 (addr & (pagesizes[1] - 1)) == 0 && 2342 (pmap_mincore(map->pmap, addr, &locked_pa) & 2343 MINCORE_SUPER) != 0) { 2344 *super = true; 2345 pi_adv = atop(pagesizes[1]); 2346 } else { 2347 /* 2348 * We do not test the found page on validity. 2349 * Either the page is busy and being paged in, 2350 * or it was invalidated. The first case 2351 * should be counted as resident, the second 2352 * is not so clear; we do account both. 2353 */ 2354 pi_adv = 1; 2355 } 2356 *resident_count += pi_adv; 2357 next:; 2358 } 2359 PA_UNLOCK_COND(locked_pa); 2360 } 2361 2362 /* 2363 * Must be called with the process locked and will return unlocked. 2364 */ 2365 int 2366 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2367 { 2368 vm_map_entry_t entry, tmp_entry; 2369 struct vattr va; 2370 vm_map_t map; 2371 vm_object_t obj, tobj, lobj; 2372 char *fullpath, *freepath; 2373 struct kinfo_vmentry *kve; 2374 struct ucred *cred; 2375 struct vnode *vp; 2376 struct vmspace *vm; 2377 vm_offset_t addr; 2378 unsigned int last_timestamp; 2379 int error; 2380 bool super; 2381 2382 PROC_LOCK_ASSERT(p, MA_OWNED); 2383 2384 _PHOLD(p); 2385 PROC_UNLOCK(p); 2386 vm = vmspace_acquire_ref(p); 2387 if (vm == NULL) { 2388 PRELE(p); 2389 return (ESRCH); 2390 } 2391 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2392 2393 error = 0; 2394 map = &vm->vm_map; 2395 vm_map_lock_read(map); 2396 for (entry = map->header.next; entry != &map->header; 2397 entry = entry->next) { 2398 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2399 continue; 2400 2401 addr = entry->end; 2402 bzero(kve, sizeof(*kve)); 2403 obj = entry->object.vm_object; 2404 if (obj != NULL) { 2405 for (tobj = obj; tobj != NULL; 2406 tobj = tobj->backing_object) { 2407 VM_OBJECT_RLOCK(tobj); 2408 kve->kve_offset += tobj->backing_object_offset; 2409 lobj = tobj; 2410 } 2411 if (obj->backing_object == NULL) 2412 kve->kve_private_resident = 2413 obj->resident_page_count; 2414 kern_proc_vmmap_resident(map, entry, 2415 &kve->kve_resident, &super); 2416 if (super) 2417 kve->kve_flags |= KVME_FLAG_SUPER; 2418 for (tobj = obj; tobj != NULL; 2419 tobj = tobj->backing_object) { 2420 if (tobj != obj && tobj != lobj) 2421 VM_OBJECT_RUNLOCK(tobj); 2422 } 2423 } else { 2424 lobj = NULL; 2425 } 2426 2427 kve->kve_start = entry->start; 2428 kve->kve_end = entry->end; 2429 kve->kve_offset += entry->offset; 2430 2431 if (entry->protection & VM_PROT_READ) 2432 kve->kve_protection |= KVME_PROT_READ; 2433 if (entry->protection & VM_PROT_WRITE) 2434 kve->kve_protection |= KVME_PROT_WRITE; 2435 if (entry->protection & VM_PROT_EXECUTE) 2436 kve->kve_protection |= KVME_PROT_EXEC; 2437 2438 if (entry->eflags & MAP_ENTRY_COW) 2439 kve->kve_flags |= KVME_FLAG_COW; 2440 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2441 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2442 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2443 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2444 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2445 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2446 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2447 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2448 2449 last_timestamp = map->timestamp; 2450 vm_map_unlock_read(map); 2451 2452 freepath = NULL; 2453 fullpath = ""; 2454 if (lobj != NULL) { 2455 vp = NULL; 2456 switch (lobj->type) { 2457 case OBJT_DEFAULT: 2458 kve->kve_type = KVME_TYPE_DEFAULT; 2459 break; 2460 case OBJT_VNODE: 2461 kve->kve_type = KVME_TYPE_VNODE; 2462 vp = lobj->handle; 2463 vref(vp); 2464 break; 2465 case OBJT_SWAP: 2466 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2467 kve->kve_type = KVME_TYPE_VNODE; 2468 if ((lobj->flags & OBJ_TMPFS) != 0) { 2469 vp = lobj->un_pager.swp.swp_tmpfs; 2470 vref(vp); 2471 } 2472 } else { 2473 kve->kve_type = KVME_TYPE_SWAP; 2474 } 2475 break; 2476 case OBJT_DEVICE: 2477 kve->kve_type = KVME_TYPE_DEVICE; 2478 break; 2479 case OBJT_PHYS: 2480 kve->kve_type = KVME_TYPE_PHYS; 2481 break; 2482 case OBJT_DEAD: 2483 kve->kve_type = KVME_TYPE_DEAD; 2484 break; 2485 case OBJT_SG: 2486 kve->kve_type = KVME_TYPE_SG; 2487 break; 2488 case OBJT_MGTDEVICE: 2489 kve->kve_type = KVME_TYPE_MGTDEVICE; 2490 break; 2491 default: 2492 kve->kve_type = KVME_TYPE_UNKNOWN; 2493 break; 2494 } 2495 if (lobj != obj) 2496 VM_OBJECT_RUNLOCK(lobj); 2497 2498 kve->kve_ref_count = obj->ref_count; 2499 kve->kve_shadow_count = obj->shadow_count; 2500 VM_OBJECT_RUNLOCK(obj); 2501 if (vp != NULL) { 2502 vn_fullpath(curthread, vp, &fullpath, 2503 &freepath); 2504 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2505 cred = curthread->td_ucred; 2506 vn_lock(vp, LK_SHARED | LK_RETRY); 2507 if (VOP_GETATTR(vp, &va, cred) == 0) { 2508 kve->kve_vn_fileid = va.va_fileid; 2509 kve->kve_vn_fsid = va.va_fsid; 2510 kve->kve_vn_fsid_freebsd11 = 2511 kve->kve_vn_fsid; /* truncate */ 2512 kve->kve_vn_mode = 2513 MAKEIMODE(va.va_type, va.va_mode); 2514 kve->kve_vn_size = va.va_size; 2515 kve->kve_vn_rdev = va.va_rdev; 2516 kve->kve_vn_rdev_freebsd11 = 2517 kve->kve_vn_rdev; /* truncate */ 2518 kve->kve_status = KF_ATTR_VALID; 2519 } 2520 vput(vp); 2521 } 2522 } else { 2523 kve->kve_type = KVME_TYPE_NONE; 2524 kve->kve_ref_count = 0; 2525 kve->kve_shadow_count = 0; 2526 } 2527 2528 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2529 if (freepath != NULL) 2530 free(freepath, M_TEMP); 2531 2532 /* Pack record size down */ 2533 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2534 kve->kve_structsize = 2535 offsetof(struct kinfo_vmentry, kve_path) + 2536 strlen(kve->kve_path) + 1; 2537 else 2538 kve->kve_structsize = sizeof(*kve); 2539 kve->kve_structsize = roundup(kve->kve_structsize, 2540 sizeof(uint64_t)); 2541 2542 /* Halt filling and truncate rather than exceeding maxlen */ 2543 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2544 error = 0; 2545 vm_map_lock_read(map); 2546 break; 2547 } else if (maxlen != -1) 2548 maxlen -= kve->kve_structsize; 2549 2550 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2551 error = ENOMEM; 2552 vm_map_lock_read(map); 2553 if (error != 0) 2554 break; 2555 if (last_timestamp != map->timestamp) { 2556 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2557 entry = tmp_entry; 2558 } 2559 } 2560 vm_map_unlock_read(map); 2561 vmspace_free(vm); 2562 PRELE(p); 2563 free(kve, M_TEMP); 2564 return (error); 2565 } 2566 2567 static int 2568 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2569 { 2570 struct proc *p; 2571 struct sbuf sb; 2572 int error, error2, *name; 2573 2574 name = (int *)arg1; 2575 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2576 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2577 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2578 if (error != 0) { 2579 sbuf_delete(&sb); 2580 return (error); 2581 } 2582 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2583 error2 = sbuf_finish(&sb); 2584 sbuf_delete(&sb); 2585 return (error != 0 ? error : error2); 2586 } 2587 2588 #if defined(STACK) || defined(DDB) 2589 static int 2590 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2591 { 2592 struct kinfo_kstack *kkstp; 2593 int error, i, *name, numthreads; 2594 lwpid_t *lwpidarray; 2595 struct thread *td; 2596 struct stack *st; 2597 struct sbuf sb; 2598 struct proc *p; 2599 2600 name = (int *)arg1; 2601 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2602 if (error != 0) 2603 return (error); 2604 2605 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2606 st = stack_create(M_WAITOK); 2607 2608 lwpidarray = NULL; 2609 PROC_LOCK(p); 2610 do { 2611 if (lwpidarray != NULL) { 2612 free(lwpidarray, M_TEMP); 2613 lwpidarray = NULL; 2614 } 2615 numthreads = p->p_numthreads; 2616 PROC_UNLOCK(p); 2617 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2618 M_WAITOK | M_ZERO); 2619 PROC_LOCK(p); 2620 } while (numthreads < p->p_numthreads); 2621 2622 /* 2623 * XXXRW: During the below loop, execve(2) and countless other sorts 2624 * of changes could have taken place. Should we check to see if the 2625 * vmspace has been replaced, or the like, in order to prevent 2626 * giving a snapshot that spans, say, execve(2), with some threads 2627 * before and some after? Among other things, the credentials could 2628 * have changed, in which case the right to extract debug info might 2629 * no longer be assured. 2630 */ 2631 i = 0; 2632 FOREACH_THREAD_IN_PROC(p, td) { 2633 KASSERT(i < numthreads, 2634 ("sysctl_kern_proc_kstack: numthreads")); 2635 lwpidarray[i] = td->td_tid; 2636 i++; 2637 } 2638 numthreads = i; 2639 for (i = 0; i < numthreads; i++) { 2640 td = thread_find(p, lwpidarray[i]); 2641 if (td == NULL) { 2642 continue; 2643 } 2644 bzero(kkstp, sizeof(*kkstp)); 2645 (void)sbuf_new(&sb, kkstp->kkst_trace, 2646 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2647 thread_lock(td); 2648 kkstp->kkst_tid = td->td_tid; 2649 if (TD_IS_SWAPPED(td)) { 2650 kkstp->kkst_state = KKST_STATE_SWAPPED; 2651 } else if (TD_IS_RUNNING(td)) { 2652 if (stack_save_td_running(st, td) == 0) 2653 kkstp->kkst_state = KKST_STATE_STACKOK; 2654 else 2655 kkstp->kkst_state = KKST_STATE_RUNNING; 2656 } else { 2657 kkstp->kkst_state = KKST_STATE_STACKOK; 2658 stack_save_td(st, td); 2659 } 2660 thread_unlock(td); 2661 PROC_UNLOCK(p); 2662 stack_sbuf_print(&sb, st); 2663 sbuf_finish(&sb); 2664 sbuf_delete(&sb); 2665 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2666 PROC_LOCK(p); 2667 if (error) 2668 break; 2669 } 2670 _PRELE(p); 2671 PROC_UNLOCK(p); 2672 if (lwpidarray != NULL) 2673 free(lwpidarray, M_TEMP); 2674 stack_destroy(st); 2675 free(kkstp, M_TEMP); 2676 return (error); 2677 } 2678 #endif 2679 2680 /* 2681 * This sysctl allows a process to retrieve the full list of groups from 2682 * itself or another process. 2683 */ 2684 static int 2685 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2686 { 2687 pid_t *pidp = (pid_t *)arg1; 2688 unsigned int arglen = arg2; 2689 struct proc *p; 2690 struct ucred *cred; 2691 int error; 2692 2693 if (arglen != 1) 2694 return (EINVAL); 2695 if (*pidp == -1) { /* -1 means this process */ 2696 p = req->td->td_proc; 2697 PROC_LOCK(p); 2698 } else { 2699 error = pget(*pidp, PGET_CANSEE, &p); 2700 if (error != 0) 2701 return (error); 2702 } 2703 2704 cred = crhold(p->p_ucred); 2705 PROC_UNLOCK(p); 2706 2707 error = SYSCTL_OUT(req, cred->cr_groups, 2708 cred->cr_ngroups * sizeof(gid_t)); 2709 crfree(cred); 2710 return (error); 2711 } 2712 2713 /* 2714 * This sysctl allows a process to retrieve or/and set the resource limit for 2715 * another process. 2716 */ 2717 static int 2718 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2719 { 2720 int *name = (int *)arg1; 2721 u_int namelen = arg2; 2722 struct rlimit rlim; 2723 struct proc *p; 2724 u_int which; 2725 int flags, error; 2726 2727 if (namelen != 2) 2728 return (EINVAL); 2729 2730 which = (u_int)name[1]; 2731 if (which >= RLIM_NLIMITS) 2732 return (EINVAL); 2733 2734 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2735 return (EINVAL); 2736 2737 flags = PGET_HOLD | PGET_NOTWEXIT; 2738 if (req->newptr != NULL) 2739 flags |= PGET_CANDEBUG; 2740 else 2741 flags |= PGET_CANSEE; 2742 error = pget((pid_t)name[0], flags, &p); 2743 if (error != 0) 2744 return (error); 2745 2746 /* 2747 * Retrieve limit. 2748 */ 2749 if (req->oldptr != NULL) { 2750 PROC_LOCK(p); 2751 lim_rlimit_proc(p, which, &rlim); 2752 PROC_UNLOCK(p); 2753 } 2754 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2755 if (error != 0) 2756 goto errout; 2757 2758 /* 2759 * Set limit. 2760 */ 2761 if (req->newptr != NULL) { 2762 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2763 if (error == 0) 2764 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2765 } 2766 2767 errout: 2768 PRELE(p); 2769 return (error); 2770 } 2771 2772 /* 2773 * This sysctl allows a process to retrieve ps_strings structure location of 2774 * another process. 2775 */ 2776 static int 2777 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2778 { 2779 int *name = (int *)arg1; 2780 u_int namelen = arg2; 2781 struct proc *p; 2782 vm_offset_t ps_strings; 2783 int error; 2784 #ifdef COMPAT_FREEBSD32 2785 uint32_t ps_strings32; 2786 #endif 2787 2788 if (namelen != 1) 2789 return (EINVAL); 2790 2791 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2792 if (error != 0) 2793 return (error); 2794 #ifdef COMPAT_FREEBSD32 2795 if ((req->flags & SCTL_MASK32) != 0) { 2796 /* 2797 * We return 0 if the 32 bit emulation request is for a 64 bit 2798 * process. 2799 */ 2800 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2801 PTROUT(p->p_sysent->sv_psstrings) : 0; 2802 PROC_UNLOCK(p); 2803 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2804 return (error); 2805 } 2806 #endif 2807 ps_strings = p->p_sysent->sv_psstrings; 2808 PROC_UNLOCK(p); 2809 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2810 return (error); 2811 } 2812 2813 /* 2814 * This sysctl allows a process to retrieve umask of another process. 2815 */ 2816 static int 2817 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2818 { 2819 int *name = (int *)arg1; 2820 u_int namelen = arg2; 2821 struct proc *p; 2822 int error; 2823 u_short fd_cmask; 2824 pid_t pid; 2825 2826 if (namelen != 1) 2827 return (EINVAL); 2828 2829 pid = (pid_t)name[0]; 2830 p = curproc; 2831 if (pid == p->p_pid || pid == 0) { 2832 fd_cmask = p->p_fd->fd_cmask; 2833 goto out; 2834 } 2835 2836 error = pget(pid, PGET_WANTREAD, &p); 2837 if (error != 0) 2838 return (error); 2839 2840 fd_cmask = p->p_fd->fd_cmask; 2841 PRELE(p); 2842 out: 2843 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2844 return (error); 2845 } 2846 2847 /* 2848 * This sysctl allows a process to set and retrieve binary osreldate of 2849 * another process. 2850 */ 2851 static int 2852 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2853 { 2854 int *name = (int *)arg1; 2855 u_int namelen = arg2; 2856 struct proc *p; 2857 int flags, error, osrel; 2858 2859 if (namelen != 1) 2860 return (EINVAL); 2861 2862 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2863 return (EINVAL); 2864 2865 flags = PGET_HOLD | PGET_NOTWEXIT; 2866 if (req->newptr != NULL) 2867 flags |= PGET_CANDEBUG; 2868 else 2869 flags |= PGET_CANSEE; 2870 error = pget((pid_t)name[0], flags, &p); 2871 if (error != 0) 2872 return (error); 2873 2874 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2875 if (error != 0) 2876 goto errout; 2877 2878 if (req->newptr != NULL) { 2879 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2880 if (error != 0) 2881 goto errout; 2882 if (osrel < 0) { 2883 error = EINVAL; 2884 goto errout; 2885 } 2886 p->p_osrel = osrel; 2887 } 2888 errout: 2889 PRELE(p); 2890 return (error); 2891 } 2892 2893 static int 2894 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2895 { 2896 int *name = (int *)arg1; 2897 u_int namelen = arg2; 2898 struct proc *p; 2899 struct kinfo_sigtramp kst; 2900 const struct sysentvec *sv; 2901 int error; 2902 #ifdef COMPAT_FREEBSD32 2903 struct kinfo_sigtramp32 kst32; 2904 #endif 2905 2906 if (namelen != 1) 2907 return (EINVAL); 2908 2909 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2910 if (error != 0) 2911 return (error); 2912 sv = p->p_sysent; 2913 #ifdef COMPAT_FREEBSD32 2914 if ((req->flags & SCTL_MASK32) != 0) { 2915 bzero(&kst32, sizeof(kst32)); 2916 if (SV_PROC_FLAG(p, SV_ILP32)) { 2917 if (sv->sv_sigcode_base != 0) { 2918 kst32.ksigtramp_start = sv->sv_sigcode_base; 2919 kst32.ksigtramp_end = sv->sv_sigcode_base + 2920 *sv->sv_szsigcode; 2921 } else { 2922 kst32.ksigtramp_start = sv->sv_psstrings - 2923 *sv->sv_szsigcode; 2924 kst32.ksigtramp_end = sv->sv_psstrings; 2925 } 2926 } 2927 PROC_UNLOCK(p); 2928 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2929 return (error); 2930 } 2931 #endif 2932 bzero(&kst, sizeof(kst)); 2933 if (sv->sv_sigcode_base != 0) { 2934 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2935 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2936 *sv->sv_szsigcode; 2937 } else { 2938 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2939 *sv->sv_szsigcode; 2940 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2941 } 2942 PROC_UNLOCK(p); 2943 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2944 return (error); 2945 } 2946 2947 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2948 2949 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2950 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2951 "Return entire process table"); 2952 2953 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2954 sysctl_kern_proc, "Process table"); 2955 2956 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2957 sysctl_kern_proc, "Process table"); 2958 2959 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2960 sysctl_kern_proc, "Process table"); 2961 2962 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2963 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2964 2965 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2966 sysctl_kern_proc, "Process table"); 2967 2968 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2969 sysctl_kern_proc, "Process table"); 2970 2971 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2972 sysctl_kern_proc, "Process table"); 2973 2974 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2975 sysctl_kern_proc, "Process table"); 2976 2977 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2978 sysctl_kern_proc, "Return process table, no threads"); 2979 2980 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2981 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2982 sysctl_kern_proc_args, "Process argument list"); 2983 2984 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2985 sysctl_kern_proc_env, "Process environment"); 2986 2987 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2988 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2989 2990 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2991 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2992 2993 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2994 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2995 "Process syscall vector name (ABI type)"); 2996 2997 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2998 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2999 3000 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 3001 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3002 3003 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 3004 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3005 3006 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 3007 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3008 3009 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 3010 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3011 3012 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 3013 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3014 3015 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 3016 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3017 3018 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 3019 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3020 3021 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 3022 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 3023 "Return process table, no threads"); 3024 3025 #ifdef COMPAT_FREEBSD7 3026 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3027 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3028 #endif 3029 3030 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3031 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3032 3033 #if defined(STACK) || defined(DDB) 3034 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3035 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3036 #endif 3037 3038 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3039 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3040 3041 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3042 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3043 "Process resource limits"); 3044 3045 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3046 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3047 "Process ps_strings location"); 3048 3049 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3050 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3051 3052 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3053 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3054 "Process binary osreldate"); 3055 3056 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3057 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3058 "Process signal trampoline location"); 3059 3060 int allproc_gen; 3061 3062 /* 3063 * stop_all_proc() purpose is to stop all process which have usermode, 3064 * except current process for obvious reasons. This makes it somewhat 3065 * unreliable when invoked from multithreaded process. The service 3066 * must not be user-callable anyway. 3067 */ 3068 void 3069 stop_all_proc(void) 3070 { 3071 struct proc *cp, *p; 3072 int r, gen; 3073 bool restart, seen_stopped, seen_exiting, stopped_some; 3074 3075 cp = curproc; 3076 allproc_loop: 3077 sx_xlock(&allproc_lock); 3078 gen = allproc_gen; 3079 seen_exiting = seen_stopped = stopped_some = restart = false; 3080 LIST_REMOVE(cp, p_list); 3081 LIST_INSERT_HEAD(&allproc, cp, p_list); 3082 for (;;) { 3083 p = LIST_NEXT(cp, p_list); 3084 if (p == NULL) 3085 break; 3086 LIST_REMOVE(cp, p_list); 3087 LIST_INSERT_AFTER(p, cp, p_list); 3088 PROC_LOCK(p); 3089 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3090 PROC_UNLOCK(p); 3091 continue; 3092 } 3093 if ((p->p_flag & P_WEXIT) != 0) { 3094 seen_exiting = true; 3095 PROC_UNLOCK(p); 3096 continue; 3097 } 3098 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3099 /* 3100 * Stopped processes are tolerated when there 3101 * are no other processes which might continue 3102 * them. P_STOPPED_SINGLE but not 3103 * P_TOTAL_STOP process still has at least one 3104 * thread running. 3105 */ 3106 seen_stopped = true; 3107 PROC_UNLOCK(p); 3108 continue; 3109 } 3110 _PHOLD(p); 3111 sx_xunlock(&allproc_lock); 3112 r = thread_single(p, SINGLE_ALLPROC); 3113 if (r != 0) 3114 restart = true; 3115 else 3116 stopped_some = true; 3117 _PRELE(p); 3118 PROC_UNLOCK(p); 3119 sx_xlock(&allproc_lock); 3120 } 3121 /* Catch forked children we did not see in iteration. */ 3122 if (gen != allproc_gen) 3123 restart = true; 3124 sx_xunlock(&allproc_lock); 3125 if (restart || stopped_some || seen_exiting || seen_stopped) { 3126 kern_yield(PRI_USER); 3127 goto allproc_loop; 3128 } 3129 } 3130 3131 void 3132 resume_all_proc(void) 3133 { 3134 struct proc *cp, *p; 3135 3136 cp = curproc; 3137 sx_xlock(&allproc_lock); 3138 again: 3139 LIST_REMOVE(cp, p_list); 3140 LIST_INSERT_HEAD(&allproc, cp, p_list); 3141 for (;;) { 3142 p = LIST_NEXT(cp, p_list); 3143 if (p == NULL) 3144 break; 3145 LIST_REMOVE(cp, p_list); 3146 LIST_INSERT_AFTER(p, cp, p_list); 3147 PROC_LOCK(p); 3148 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3149 sx_xunlock(&allproc_lock); 3150 _PHOLD(p); 3151 thread_single_end(p, SINGLE_ALLPROC); 3152 _PRELE(p); 3153 PROC_UNLOCK(p); 3154 sx_xlock(&allproc_lock); 3155 } else { 3156 PROC_UNLOCK(p); 3157 } 3158 } 3159 /* Did the loop above missed any stopped process ? */ 3160 FOREACH_PROC_IN_SYSTEM(p) { 3161 /* No need for proc lock. */ 3162 if ((p->p_flag & P_TOTAL_STOP) != 0) 3163 goto again; 3164 } 3165 sx_xunlock(&allproc_lock); 3166 } 3167 3168 /* #define TOTAL_STOP_DEBUG 1 */ 3169 #ifdef TOTAL_STOP_DEBUG 3170 volatile static int ap_resume; 3171 #include <sys/mount.h> 3172 3173 static int 3174 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3175 { 3176 int error, val; 3177 3178 val = 0; 3179 ap_resume = 0; 3180 error = sysctl_handle_int(oidp, &val, 0, req); 3181 if (error != 0 || req->newptr == NULL) 3182 return (error); 3183 if (val != 0) { 3184 stop_all_proc(); 3185 syncer_suspend(); 3186 while (ap_resume == 0) 3187 ; 3188 syncer_resume(); 3189 resume_all_proc(); 3190 } 3191 return (0); 3192 } 3193 3194 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3195 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3196 sysctl_debug_stop_all_proc, "I", 3197 ""); 3198 #endif 3199